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Relaxation oscillations of the synchrotron motion caused by narrow-band impedances
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Although the linearized theory of small amplitude synchrotron oscillations and the instability thresholds
derived from it have long been understood, there is no satisfactory description of the large amplitude highly
nonlinear synchrotron motion of a bunched beam. With an appropriate tuning of the RF cavity impedance,
large amplitude, low frequency, self-sustained relaxation oscillations of this synchrotron motion are generated.
This paper presents detailed experimental data on such behavior, tracking code results that reproduce the
important characteristics, and a simple analytical model that explains the key features of the relaxation oscil-
lation: growth of the instability, saturation of the oscillation, breakup of the bunch, and subsequent damping of
the system back to the beginning of the next cycle of the relaxation oscill§84063-651X99)10110-7

PACS numbd(s): 29.27.Bd, 05.45-a

[. INTRODUCTION different stages of its relaxation cycle. In the initial phase, at
low amplitude, the bunch behaves as a single macroparticle

To describe the complicated motion of a charged particlghat follows a harmonic oscillator equation. Its amplitude of
beam in a storage ring, one uses equations that can be trar@scillation grows toward an attractor at infinity. As the am-
formed, with the appropriate sets of variables, into those of &litude increases, nonlinearities manifest themselves through
perturbed harmonic oscillator. In the transverse planes, thif)e reduction of the self-driving term and in the loss of
transformation leads to a Hill equati¢a] and the restoring chqrge density. These nonlinearities can account fqr_ the satu-
forces come from external magnetic fields. In the longitudi-"ation of the amplitude, but a dynamic phase transition must
nal plane, the exact single particle equation is that of a ciroccur in order for the system to enter its damping phase.
cular pendulum, with the RF electric field providing the re- During that phase transition, a new center of attraction ap-
storing force. For sufficiently small amplitudes of motion, Pears. The single macroparticle model cannot explain this
the systems can be well described by the harmonic oscillatgPPearance, but a model including the flow of individual
equation. We refer to this as the linear regime. Electron maParticles leaving the macroparticle can. Escaping particles
chines also have natural damping as a consequence of si§s€ synchronicity with the macroparticle and are therefore
nificant synchrotron radiation emission. In addition, particlesN© longer driven by it. They then damp towards the origin.
generate electromagnetic fields that act as a driving forcel he rate of damping of the system is determined by the rate
perturbing the focusing and stability of the beam. Dependingit Which the current flows away from the macroparticle.
on their characteristics, these perturbations can either provide The macroparticle oscillation amplitude decreases, and
stability to the beam or drive it to instability. The linear the second center now accumulates charge and starts to
theory that explains the threshold of coupled bunch instabiligrow. This second center now becomes the new macropar-
ties has long been understood. Large forced oscillations hai¢le and the cycle is repeated. Models that use symmetric
been studied and described for both profghand electron modes to describe this instability are inappropriate b_eca_use
[3] machines. It has also long been observed that especial[%f the observed asymmetry of the phase space distribution.
for synchrotron oscillations, i.e., those in the longitudinal This asymmetry starts with the growth as a macroparticle
plane, self-excited oscillations can become very nonlinea@nd continues throughout the cycle. For certain conditions of
[4—6]. They can saturate at an amplitude large with respedh's selfjlnteractlon, the second macropartlcle is y|S|bIe at a
to the bunch size. The envelope of the synchrotron motiofix€d point approximatelyr out of phase with the first mac-
can also undergo very low frequency, large amplitude oscilfoparticle. These phase-locked particles are also not symmet-
lations. Such self-excited motion, which oscillates betweer!C-
two different dynamic states, is referred to here as a relax-
ation oscillation. The relaxation frequency is orders of mag- Il. EQUATION OF MOTION
nitude slower than the synchrotron frequency.

This paper presents experimental data taken from a de-
tailed study of such relaxation oscillations, computer simu- In electron storage rings, RF cavities are h@hesonant
lations that give further insights into the details of the oscil-structures that provide the electric field necessary to compen-
lations, and an analytical model that describes the cyclisate for the energy lost by the electrons. The energy gained
behavior of this nonlinear system. The instability studied isby a particle in the RF cavity depends on its arrival time in
that commonly known as the coupled bunch instability. Onthe RF cavity. Its longitudinal phase space coordinates are
the SPEAR electron storage ring, such an instability can bér,8), whereris the delay and is the relative energy devia-
produced from a multitraversal effect acting on a singletion of that particle with respect to the synchronous particle.
bunch. Most of the data presented in this paper were ackhe synchronous particle is the virtual particle that has en-
quired in this case. ergy Eo and enters the cavity d=nT,, whereT, is the

The bunch has qualitatively different characteristics at theevolution period of the machine. This particle loses an

A. Unperturbed oscillator
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amount of energy, per turn, primarily from its emission of B. Wake field
synchrotron radiation. The synchronous particle exactly re- \ynije passing through the RF cavity, the bunch can excite
covers that amount of energy from the electric field in the RF, high order modéHOM in accelerator physics jargnnThe
cavity. _ _ electromagnetic fields produced by a particle can give longi-
The evolution of the paramete(s,d) of a particle after  y,qina| kicks to subsequent particles or incoming bunches,
one revolution of the ring from turn to turnn+1 is given  jccelerating or decelerating them, depending on the phase of
by the field.
_ 2 The potential generated by a unit particle is commonly
Tn1= Tt @ToB"0n, @ referred to as a wake potential, or wake field. Wake fields
eV, U from HOMs can bg repr.ese.nted by the impulse response qf a
Sni1= Ot —— 3 Sln((Ps+ W Thag) — — 2) comparable elt_actncal circuit, consisting of a paral!el combi-
Eo’ nation of a resistofR), an inductor(L), and a capacitofC),
known as an RLC circuit. The wake field generated at time
and observed at time due to a HOM whose characteristics
areRg,ag,fr, is given by[7]

where a is the momentum compaction of the ring,is the
relativistic coefficient, very close to 1 for ultrarelativistic
electronsw,; is the RF angular frequency, ang the syn-
chronous phase defined hlp=eVggSings. .

The phase is referenced to the zero crossing of sinusoidal ~ W(t—7)=2agRsU(t— T)e_aR(t_T)[ cojw(t—1)]
voltage, and cog.<0. The variation over one turn can be

replaced by a time derivative. ar . __
- =sifw(t-7]/, ()
. A6, _ eV sin(@st w1 7) — U, 3
T, EoTo ’ ®  with
AT, 1 t>0
. n
T= TO =ald. U(t): 1/2 t=0
) . ) ) 0 t<O0
The equation of motion of a single particle can then be
written as a second order differential equation and

R; is the shunt resistandd.0 MQ) in this study, ag is the
damping rate of the HOM related to the quality fac@rby
ar=wrl/2Q (Q is 20000 in this study andfg is the reso-
nant frequency358 MHz in this study. The length of the
= — wﬁor. cavity is much smaller than the circumference of the ring and
can be assumed to be pointlike. The retarding voltd{e)

The natural synchrotron angular frequeney, is then  induced by a bunch containinly particles of chargee is

For small amplitudes, this equation is that of a harmoni
oscillator

defined by NeW).
This term adds a perturbing driving force to the harmonic
, ,aeVih|cose oscillator equation. Equatiofb) becomes
Wso™ Wo 27E, o
. . T+ 20 qqT— ﬁ[evrf SiN( s+ @ 7) — U]

In general, the motion is that of a circular pendulum. The olo
frequency of oscillation is reduced quadratically with ampli- aNeW 7)
tude with respect to the natural synchrotron frequency. This =——FT (7)

o'0

amplitude dependence is of major importance in the descrip-
tion of the relaxation mechanism.

Since the particle energy loss per turn is itself energy Ill. EXPERIMENT RESULTS
dependent, the synchrotron motion is naturally damped. The

equation of motion now has the form A. Motivations

Small dimensions and stability of the bunch in time and
. energy are essential for high performance of storage rings,
T ET, E T [eVitsin(est wii7) =Uol=2araq™ (5 for both collider rings and synchrotron radiation sources.
Particles are lost from the accelerator when the amplitudes of

with the radiation damping decrement their synchrotron oscillations exceed the acceptance of the
machine.
1 du, The voltage induced by the beam on the cavity imped-
¥ad= 57 JE . ance, at the upper synchrotron sideband of the revolution
(0]

E=E, harmonics, has a destabilizing effect on the beam. This in-
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—65 TABLE |. Machine parameters.

Energy Ug VRre Tdamp Rs

2.3 GeV 193 keV 1.68 MV 5 ms 10 ™

The wide range of these time scales means that these phe-
nomena occupy different ranges of the frequency spectrum.
Discrete series can be approximated by continuous integrals.
Synchrotron oscillations can be averaged to give simplified
time (s) 05 equations of motion for the relaxation oscillation.

Power (dBm)

-105
0

FIG. 1. Spectrum analyzer zero-span output for the cavity signal

at 75X ,+ f5. The first 0.2 seconds of the scan show the amplitude . . o
at the onset of an unstable synchrotron oscillation. The rest shows Since the amplitude of the driving force depends on the
the low frequency relaxation oscillation about the saturation level. HOM strength, the largest RF cavity impedance was chosen
for the study. SPEAR has two RF cavities, but needs only

stability, commonly known as the coupled bunch instability,one powered for normal operation. Therefore, the largest
occurs when this force exceeds the net damping force. ava_llable |mpedanpe is the fundamental mode of the idle RF
While characterizing the RF cavities in order to improve cavity. The HOM impedance produces a strong long-range
the stability of SPEAR8], much of our attention was paid to wake flelq at currents for which the short-range effects of the
the growth of the HOM-induced instabilities. A regular total ring impedance can be neglected. o
modulation about the saturation level was obsertfd. 1) Liberty has been taken with the term HOM in this paper.
[9]. Its period is always longer than a radiation damping!n all storage rings, the fundamental cavity mode is tuned to
time. This modulation is often small, but certain machinePe stable, and stability problems from narrow band imped-
parameters can make it very large, regular, and quite striking"ces come only from true HOMs. But the physics of the
(Fig. 2). The possibility of adjusting the HOM frequency by InSta_bIIIty depends only on the characterisitcs o.f the resona-
positioning a moveable RF cavity tuner in the passive RHO; it does not depend on whether the mode is the funda-

cavity made such observations very repeatable and conv&€ntal or of higher order. In this paper, HOM will also refer
nient to study on the SPEAR ring. to the fundamental mode in the idle cavity.

The independent variables in the study are machine cur-
rent, energy, and HOM center frequency. Of those three, the
HOM center frequency has the most striking effect on the

The experimental parameters are presented in Table I. Adynamics of the problem. This frequency can be accurately
2.3 GeV, the natural radiation damplng time is 10 ms, but thQuned by positioning a movable RF Cavity tuner.

total damping time was measured to be 5(@s2 mA). This

figure was used for the analysis. The resonance studied is the 1. Spectrum analyzer
fundamental resonanchom = fre. (Improper tuning of the The first series of data were taken on an RF spectrum
fundamental resonance, as studied here, in a powered RaF

cavity results in the instability known as the Robinson insta- nalyzer and downloaded via@eie program to a PC for
bility [10]) The large variety of time scales involved in the data analysis(All software for data collection, analysis, and

relaxation mechanism is presented in Table Il simulation is a combination of codes written internally at
P ' SSRL in the C programming language andtLAB© [11].)
The signal came from a probe in the RF cavity. The spec-

C. Description of measurements

B. Time scales

_,39 trum analyzer was used as a narrow-band receiver, in zero-
& span mode, tuned on the upper synchrotron sideband of the
= fundamental RF harmonic. Its resolution bandwidth, 10 kHz,
H allowed reasonable rejection of the RF harmonic while pre-
< serving the ability to see fast dynamic changes in the ampli-
80, 0.1 tude of the sideband. In particular, the value of the synchro-
' tron frequency varies by several kHz over a relaxation cycle.
-30
T TABLE II. System time scales.
% .
§ Frequency Period Niurns
£ f cawtooth <100 Hz >10ms >12800
-80, — o foo 28.4 kHz 35 us 45
R 56 kHz 17.8us 23
FIG. 2. Spectrum analyzer zero-span output for the cavity signaf, 1.28 MHz 0.78 us 1
at f,ou+ fs. Data such as these were fit, as a functiorf,gfy , frRe=THom 358.5 MHz 2.8us 1/280
for frequency, maximum and minimum oscillation power, growth (1/s,) 10 GHz 100 ps 1/7840

times, and damping times.
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= FIG. 4. Schematic diagram of a dual sweep streak canfera.
g, photocathodeB, accelerating mestC, vertical sweep plated),
E horizontal sweep platesE, microchannel plate;F, phosphor
S screen;G, CCD camera.
3
03 S 15 05 pr 15 cathode in the camera transforms the time-dependent radia-
z

s z 80 tion into a beam of electrons, which are then rotated by an
FIG. 3. Relaxation oscillation parameters fisoy : (a) relax-  angle of 90° inside the camera before striking a photoanode.
ation oscillation frequency(b) maximum (A) and minimum(v)  The photoanode re-emits photons that are then imaged on the
powers of oscillation(c) growth times(A) and damping time§v), ~ camera’s charge-coupled-devi@@CD) array. This rotation
(d) v, showing~15% deviation over the range 6f;o - transforms the longitudinal temporal distribution of the
bunch into a vertical photon distributigor “streak’) which
The evolution of crucial parameters of the relaxation os-can be read out of the camefBig. 4). The streak camera
cillation as a function of the resonator frequency is summadata were taken with the same machine parameters as the
rized in Fig. 3. From the amplitude information, one seesspectrum analyzer data. Again, the resonator frequency was
that, at the instability threshold, the amplitude of the oscilla-the main independent variable. Data were taken both at a
tion quickly reaches its saturation value. Beyond that threshslow scan rate, one slow enough to see the entire relaxation
old, the maximum amplitude does not significantly increasepscillation cycle, and at a fast rate, one short enough to see a
but the large amplitude relaxation oscillations start almossingle streak every third revolution period.
immediately. The growth rate, as a function of frequency, is On the slow scan range, the entire relaxation oscillation
symmetric with respect to the center frequency. It matchesycle was captured. While growing, the envelope visible in
the resistive part of the resonator impedance. The dampintiie slow scan shows the bunch to be concentrated near the
rate is not nearly as symmetric. It is very small over theextremes of the oscillation. But its charge density decreases
second half of the resonance curfg. 3(c)]. Because of with time [Fig. 5a)]. The maximum amplitude of oscillation
this asymmetry, the frequency of the relaxation oscillation aseached is aboutr/2 radians. In the damping phase, this
a function of the HOM frequency is also asymmetric. macroparticle still exists and damps, but it has a much re-
The variation and/or spread of the synchrotron tune durduced intensity compared to its initial value. At the end of
ing these oscillations was also measured. These data wetleis phase, particles have accumulated around the center. In
obtained by frequency demodulating a signal from a pickughe particular case offyoy slightly abovehfy+fg,, when
in the storage ring. The demodulated signal was then inpuhe damping is very slow, a second accumulation point
into a digital spectrum analyzer. Since the analyzer averageclearly forms near the origifFig. 5 (b)]. The charge at this
over many relaxation periods, this measurement could ngboint grows in both amplitude and intensity as the original
resolve the difference between a tune variation and a spreadacroparticle continues its decay.
of tune within the bunch over the oscillation. The frequency The slow data confirm the periodic nature of the phenom-
deviation showed a decrease of 15% from the nominal synenon and allow fast scan data to be taken and correctly in-
chrotron frequency, corresponding to the shift for large am+terpreted. These data show the distribution of the bunch at
plitude pendulum oscillationgig. 3(d)]. every third turn, so that many distinct images are displayed

2. Streak camera (a) (b)

e
~
=]
]

All of the spectrum analyzer data only give information

about the dipole moment of the beam. The next set of date & &

was taken with a streak camera, an instrument that give: < B

information about the internal structure of the beam. Previ- © “ 3 |

ous attempts to explain these oscillations have used mod § §

coupling technique$12,13, but the streak camera images 2 3

show that this technique is not appropriate for compactly—-0.7 fime (ms) -0.7 time (ms)

50 0 90

describing this behavior. The great advantage of using a 0
streak camera was that the data obtained gave us key cluesf|G. 5. Relaxation cycles for two different valuesfofow : (a)
with which to bU|Id.aIS|mpIe.and accurate model. . f,~fs, (b) f,>f,, showing the appearance of a second center,

Synchrotron radiation emitted by the electron beam in theaxccumulation of particles there, and its growth. Note ifmthas
dipole is the incident signal to the streak camera. A photomuch slower damping thafa).
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FIG. 6. (a) Growth of bunch as a macroparticle) saturation of
main body with signs of filamentation visible. 10

along each synchrotron oscillation period. By comparing the
envelope of these images with that of the slow scan images
the proper stage in the relaxation cycle can be identified.
These data show that the bunch behaves as a single macr—1()
particle during its growth, oscillating between extremes and _j9 ¢ () 10 -10 1 (o) 10
slowly losing particles(Fig. 6). The second accumulation 0 0

point, when seen, is phase-locked to the initial macroparticle, FIG. 8. Distribution in phase spadeharge density levels are
but approximatelym out of phase with it(Fig. 7). It stays plotted in a logarithmic scale(a) Beginning of the relaxation os-
locked with the macroparticle and grows in amplitude, as theillation cycle; (b) initial growth: the bunch starts to filament; par-
original macroparticle damps. These streak camera imaggg|es leave the head of the buntimin A $>0 with respect to the
clearly show the two dynamic phases of the system. ONngyain body; (c) filamentation: the escaping particles spiral toward
center grows exponentially, then saturdteigs. 5 and )].  the center(second attractowhile the main body reaches its limit

It continues to lose particles, which accumulate at a secongycle; (d) damping: the bunch has lost its initial charge density
center. The second center grows in amplitude as it accumutistribution and damps.

lates more particles. Meanwhile, the first center damps. The

two centers have now exchanged roles in this oscillationdamping, and quantum fluctuations. The long memory of the

giving the system a bistable character. high Q cavity is retained by the use of propagators. They
enable the accurate retention of the phase information of the
IV. SIMULATIONS rapidly oscillating wake over the comparatively long time

scale of one revolution period. To get more than an entire

relaxation cycle, 10turns were commonly computed for a
Since the streak camera images show a loss and an asypepulation of 20000 particles, distributed over 30800

metric variation of charge density, a multiparticle simulationcells covering the area spanned by the &ze of the RF

program was written to determine the evolution of the bunchbucket and=20 standard deviations of the natural energy

phase space distribution, turn after turn, in the presence of pread. Each run calculating one second of evolution of the

perturbing long term wake field. Individual particles obey adistribution of 20 000 particles takes only a few hours on a

second order difference equation with a driving force proporstandard PC. Details on the wake field computation are pre-

tional to the wake termiV(7) of Eq. (6). The driving force is  sented in the Appendix.

the combination of the wake field generated by particles _ _

ahead of it in the same bunch, and of all the wake fields B. Simulation results

generated from each particle on all previous turns. The results of the simulations are in good agreement with
The turn-by-turn difference equation of the code includesexperimental results. They reproduce the very low frequency

the synchrotron radiation emission through losses, radiationf the relaxation oscillatior(always below 100 Hz in our

case. They confirm qualitatively the evolution of frequency
(a) (b) and amplitude as a function of the induced voltage. These

A. Simulation program

0.7 0.7 simulations reproduce ther/2 limit cycle amplitude ob-

& & served with the streak camera. Finally, the simulations cor-

o 2 roborate the streak camera data, discussed above, that show

) B § that the bunch grows as a macroparticle that loses charge

S S density to an attractor at the cent8ig. 8).

2 2 Based on these results, the predictions of the simulations
-0.7 7 -0.7 . could be viewed with confidence. They were used to gain

0 time (Us) 100 0 time (Us) 100

further insight into the details of the oscillation too sensitive
FIG. 7. Two centers during damping féy>f,, with individual 0 be seen with our experimental setup. The tracking code
streaks now visible(@ The second center has more charge than théPhase space distribution shows that the filamentation starts
original main body, yet its oscillation amplitude is still smdlh) from the head of the bunch. Particles spiral from the head of
The second center now has most of the charge. Its amplitude cofthe bunch towards the center of phase sj&ig 8b)]. One
tinues to grow while that of the original main body continues to can observe that these particles perform synchrotron oscilla-
damp. Oscillations are about out of phase. tions at a higher frequency than those still attached to the
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main body. These results gave important clues for the theoFhe total wake can then be represented by an infinite sum of

retical model. wakes generated during previous traversals of the cavity. The
Additional comparisons such as formation of the secondlecelerating wake potential seen at titnis then

stable fixed point wheffi,qy is slightly abovepfy+fg, re-

t
main to be studied.

W(t)=2agRs 2, € ®"Y cod wg(t—u)],
u:—OO

V. ANALYTICAL MODEL ) )
whereag= wg/2Q. If the bunch revolution period were con-

stant atT,, t would be replaced bynT,, u would be re-
A simple analytical model of this system, explaining the placed bykT,, and the wake potential would be
main features of the experimental data and simulations, has
been developed. It takes advantage of the greatly different
time scales of the mechanism. The series of discrete, impul-
sive forces on the system are approximated by a continuous
expression, allowing a closed form solution of the equationsSince the revolution period is almost, but not exactly, con-
of motion to be developed. Another simplification can bestant, in order to keep the physics of the equation, one needs
made because of the slowly varying changes of the oscillato keep a term, small compared 1g, that represents the
tion amplitude and frequency with respect to the synchrotrorvariation of arrival time. Therefore,
oscillation frequency. The expression of the driving force

A. Introduction

n

W(nTy)=2agRs >, e *RMN"KTocod wr(n—k)T,l.
k=—o

presented here reduces to a single infinite sum that rapidly t=nTo+ 7,
converges. The two-particle version of this model reproduces U=KTot
the main characteristics of the system. o Tk
Now
B. Continuous approximation N

As given in Sec. Il B, the impedance of the cavity reso- W(t)=2agRg 2 e arl(n=K)To+(mn— 7]
nance can be modeled as a resonator with a wake function k=—co
(potential per unit chargeacting at timet and due to a X cog wr[ (N—K)To+ (7,— 7)1}

source particle present at time ) ) )
Representingwg=pwy+ w, as an integral multiple and a

W(t—7)=U(t— 7)2agRse” “R™7 cog wr(t— 1)+ ¢r]. fractional part of the revolution harmonic, the sum becomes

n

W(t)=2agRs >, e “RN0Tot(m=7 cod(pwo+ w,)[(N—K) T+ (7~ 7)1}
k= —o

n
=2agRs >, e *RI(M=KTo* (M= cod p(n—k) weTo+ w,(N—K) To+ wr(7— 7]
k=—
n

~2agRs >, e “R"NTocog w,(n—K) To+ wr(Th— )],
k=—o

where in the last line the small difference in the monotonic damping due to the deviations of the revolution period have been
ignored and multiples of 2 have been removed from the argument of the cosine term. Using the represerttatiohs

u=kTy, 7,=7(nTy), 7«=7(kTy), and the identity qF—(ll'l'o)ffkTEl)Todu, the time-dependent part of the wake can be
represented by the continuous convolution integral

A e

W(t) = 2aRR3k2

e~ “r(""WTocog w,(n—k) To+ wr( 7y~ 7 Jdu
e To Jk-1)1,

=2aRRSTiO ﬁwe—aR“—“) coq w,(t—u)+ og[ 7(t)— 7(u)]}du.
When the bunch hal particles of charge, the electrical potentiaV/(t) generated by the wake is
V(t)=2aRRSTiO ﬁw(Ne)e’“R(t’“) coq w,(t—u)+ wg[ 7(t)— 7(u)]}du
= 2aRRS£w|e*aR“*“> cof w,(t—u)+ wg[ 7(t) — 7(u) J}du,

wherel is the current in the bunch.
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C. Evaluation of the integral sincer, Ty, ws, wsy, ¢y, and ¢, are all slowly varying
functions of time with respect to the synchrotron frequency.
The integralV(t) can then be explicitly computed. Even
hough the integral starts atoc, the exponential damping of
he HOM means that the only important contributions come
from times no further back than a few resonator damping
times. For this system, this resonator damping time is also
(1) =7, co wet + by), comparable to the synchrotron period so that with the slowly
varying approximations,, ws,, and ¢, can be considered
as constants in the integration.
Tu(t) =Ty Cof gt + dy), The potential term can be expressed as

The continuous approximation of the synchrotron motion
is that of common pendulum motion. Even for large ampli-
tude oscillations observed in these data, the motion is still
very close to sinusoidal(t) andr(u) can be represented as
slowly varying sinusoidal functions

e *R"Y cof w,(t—Uu) + wg(m— 7,)]du

©

t

V(t):zaRRslf
t .
=2aRRS| Re{j eaR(tU)eJ[wz(tU)erR(TtTu)]du]

. t . -
:ZaRRSI Re{ e*a,t+j[wzt+ TwR COS(wgt+ (()t)]f eurU—jolg—iTyoRr COS(wsuu+¢u)du )

Using the expansion

0

el Twg CoS(wgu+V) z J me( %wR)ejm(‘”qu’)

and the notatiom;= T,wg andr,= 7,wg, this integral can be expressed as the doubly infinite sum

j p_m\]p(rt)\]m(ru)ej(prt+ mwsu)tejp¢[+jm¢u

V(t)=2agRg Re > 8

p,m=—o at+j(Mog,— ;)

D. KBM method

The averaging method of Krylov, Bogoliubov, and
Mitropolsky [14-16 is well suited to such an oscillatory
problem with slowly varying parametefd7]. To solve a
driven harmonic oscillator b=—

1
r=- Isin(wsot-i— d)E(r,¢),

—cogws t+H)I(r. ),
X+ 02 x=f,(x,%), %
where f(r,¢) is the driving force expressed in terms of

new variables I(,¢) are defined in terms ofx(x) by the X )
(r,¢). The Krylov-Bogoliubov-Mitropolsky (KBM) ap-

equations ). the -
proximation involves taking the average value of the force
x=r(t)cog wg t+ (1], over the period of oscillation. Denoting the time-averaged
values ofr and ¢ by r and ¢, respectively, the desired
X=—wg, r(t)siogt+¢(t)]. equations of motion are
By equating . 1 [t
=—— sin(ws 7+ @) f(r,¢p)d7, (9
dx 27 Jt- 2mlog) 0
X= a,
o 1 [t
. ? d=— py . (zw/wSO)COS(wSOT+ d)f(r,d)d7r. (10
t 1

one obtains the differential equations for the amplitude andf f(r,¢) is expanded in a Fourier series with respect to the
phase of the oscillation, oscillation frequencyuso,
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- 1 B
f(r,¢)=Fo(r,¢)+ 21 [Fon(r, ¢)cogneg t+¢) == o, rcilld).
n= So

+Fsi(r, @)sin(nogt+ )], 11 E. Application of the KBM method

then the averaged evolution equations of the oscillation am- The evolu_t|on_ of the amplitude and_frequency of the syn-
. chrotron oscillation due to the wake field force can now be
plitude and phase become

extracted from Eq(8). Contributions toFg; and F¢; will

. 1 . only occur whenp=—m=1. After some algebra, one ob-

T=—-—Fg(r,¢), tains the Fourier coefficients of sift+¢) and cos@st
205, +¢y), respectively, as

2 0

So aR aR
Fgg=——"—2arRdl J(r)[Imeq(ro+J r — cog mA
5=~V Tcosg] 2% ol 2 In(ru)Im-a(r)+Imea(ro)] T (Moe— o)’ 2Bt (Maet ay?| CXMA9)
(mwsu_ wz) (mwsu+ wz)
— — i A 12
ag{""(mwsu_wz)z a§e+(mwsu+wz)2 simA ) . 12
2 oc
Bs, )
Fe1=yTooseq 24RRS [ 2 77 2200+ 2 In(ru)[Im-a(1) = Jmea(1)]
(Mwsy— w,) (Mwgy+ w,)
— A
a2R+(mwsu_wz)2 a2R+(mwsu+wz)2 cogma$)
o o
e |sinmAg) ||, (13
agt(Mog,— w,) agt(Mog,+ w,)

where A= ¢,— ¢,. These terms describe the force on a  VI. ANALYSIS OF RELAXATION OSCILLATIONS

test particlet due to a macroparticle carrying currentl.

This paper concentrates on a two-particle model. To gener- . .

alize to a distribution, the total force on a particle Bt ¢;) Equations(14) and (15) contain the key features of the

is calculated from the integral of the forces generated bylynamics of the system. These equations are expressed in a

particles distributed in r(,,¢,) and weighted by their rotating coordinate system in which the source particle

charge. moves radially along théé=0 axis. The angular position of
The wake field is not the only effect that must be includedthe test particle is given by its deviation in phasej, from

to describe the behavior of this system. The radiation dampthe source. For small and slowly varying differences in the

ing can be considered constant over the energy range of iftéquencies of the two particles) ¢~ (wsi— ws,)t. One

terest. The radiation damping term contributes only torthe _ter.m that affects the frequency of the test particle .|n(E[6)
§e|ndependent ob. All other terms have a harmonic depen-

A. Description of equations of motion

equation. The pendulum frequency decreases with increasirl . .
nce on it and average to zero as the test particle rotates by

amplitude. To first order, this decrease can be approximate : dicular th i ted by th ke field
by a term quadratic in [16]. Since these terms all satisfy the <™ N particuiar, the growth generated by the wake Tield on
slowly varying approximations, the KBM method can be ap-a test particle with a synchrotron frequency different from

plied by treating the three terms as independent contributiond@t of the source is nearly zero. ,
to the equations of motion c_rFand$ For amplitudes of within the RF bucket size, the Bessel

The final, averaged equations of motion for a test particleCOeffICIentS make the infinite series in Eq42) and (13)

at (r(, ¢, due to a macroparticle at {,¢,) are converge rapidly. When the impedance is such that
. w,= wg,, the dominant terms in those equations are the co-

efficients of cospA¢) and sinfnA¢), respectively. Conse-
_ 1 o o quently, these terms have a similar distribution in this coor-
Ty=—5—Fsi(ry, ¢ Ty, du) — Arag.lts (14)  dinate system, but one is rotated b¥2 with respect to the

205 other. In this case, the line of maximal growth and the line of
zero frequency shift both lie nedr¢=0.
L L For the case of a single macroparticle modekr, and
- - T Tt A ¢=0. Each term of Eqs(12) and (13) are antisymmetric
d 2wstr_tFC1(r_’¢"r“’¢“) 16t 19 nder the interchange ofMwg,— ®,) With (Mwg,+ ®,).
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This shows that tuning the resonance from an upjpgi=

[

+ w) to a lower (,= — w¢) synchrotron sideband changes _1 PR =
a growth rate to a damping rate of the same magnitude. Thicg 2 e s
general result confirms the well known property first re- ~ — /4 @ CM
ported by Robinsori10]. In most cases, thex=0 andm s gl R o
=1 terms of the series give a good approximation to the total.g 5
sum: ey t ' '
I 1 I 1
w§0 =1 ricosAp (rad) 1 =1 rcosA¢p (rad) 1
Fgo=—5———"—2arRglJ1(r)[Io(ry) +Ix(ry)
Ssi V| coSed rRRsIJ1(ry)[Jo(ry 2(ry)] q { (d)
=) =)
ag ag } g g
2 2 2 2|
apt(wsy— wy) agt(wgyt wy) . o
g g
=1 =]
2 ‘@ ‘@
F ", RI(Z 02 3o(ru)da(ry) T T
Cl~T\/_ |rpen | C4RRS 2., 2Jollu)dall ==
VRe|COS -1 -1
rr|COSes| ¥Rt w7 =1 rcosA¢ (rad) 1 =1 rcosA¢ (rad) 1

(wgy— wy)

PR FIG. 9. Amplitude ofand._in rotating phase space. The main
Rt (w5~ 0,)? P " gphasser

body, or center of mas&€CM) at (r,= w/4, ¢,=0) contains all of
} the charge; the test particle at;(¢;) has negligible chargep,

+J1(ru)[‘]o(rt) _Jz(rt)]

(wsyt w7) : y ! Y
T 2. 1 2 = wg,. (@) Wake field component in quadrature with oscillation and
agt(wsyt ) . — . . . .
proportional to theFg;(r;,¢;) function; particles in thé+) region
are strongly driven by the force generated by the CM; particles in
B. Linear regime the (—) region are dampedb) Wake field component in phase with

Using the narrow-band resonator impedance approximahe synchrotron motion of the CM and proportionalgy (T, ¢);
tion particles in the(+) region undergo an increase in synchrotron fre-

. quency,ws;, (AZ>O); particles in the—) region undergo a de-

Z(0p+ Aw)= agR agtjlw crease A $<0). (c) Same aga), but includes the radiation damp-
R R SazR—i- Aw? ing term (—a,,4.Ty); the region of damping now extends over a
wider zone.(d) Same agb) but includes the pendulum frequency

and the small amplitude expansion of the Bessel functionsshift; the pendulum frequency shiftvhich reduceswg; with in-
one recovers the formulas for growth and frequency shift§reasing radial amplitudedominates at large amplitudes, 0.2

given in[18,7): radiang.
o main body, or source, located at,(A¢=0). For conve-
[ — Re{Z(hwy+ ws) nience in expansions around the main bally,is defined as
2Vre|cosey| 0 Ar=r,—r,.

In Fig. 9b), the representation of the frequency shift in-
duced by the macroparticle wake shows tliBt particles
delayed with respect to the main bod $<0) will expe-

rience a greateE than the main body and will therefore
catch up to it, and2) particles ahead of the main body will

be deceleratedA($< 0) and will fall back to it. The wake
field induced frequency shift provides an azimuthal attracting

—Z(hwo— wso)}r__ @radls

w
So

2Vre|cosey

—Z(hwy— wso)}.

1 Im{2Z(hwo) = Z(hwo+ ws )

i . force.
When R§Z(hwo + wg) ~Z(hwo—wg)} is sufficiently large, the In Fig. 9a), the representation of the growth rate induced
bunch amplitude grows toward an attractor at infinity. by the macroparticle wake shows tha} particles withAr
<0 andA¢=0 will see more growth than the main body
C. Growth as a macroparticle and will be drawn out to it, an¢?) particles withAr>0 and

. T . A $=0 will see less growth than the main body and will be
A bunch has Gaussian distributions along the two d'menﬂrawn back to it.

sions of th_e phase space. lis thermal dis_,trik_)ution IS the_ reSUll 1n conclusion, the main body is an attractor for all the
of an equilibrium between quantum excitation and radiatio articles of the bunch.

damping. But despite its finite dimensions, the bunch can b
treated as a macroparticle, since it keeps its cohesion during
the first stage of its growth. This property can be deduced
from the representations of Eq&l2) and (13) in Fig. 9. Until now, the pendulum frequency shift was negligible
These equations give the expression of the driving force acieompared to the shift induced by the wake field. In the ex-
ing on a test particle located at;(A ¢) and produced by the periment performed on SPEAR, with the parameters de-

D. Filamentation
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scribed in Table I, the position of the bunch at which the 1200
pendulum frequency shift starts to dominate that induced by
the wake is atr=0.2 radians, for particles &k ¢=0. At

these amplitudes, the quadratic radial dependency of the pen-

dulum frequency shift causes an asymmetryAin that al- T, 8007
lows the test particle to escape from the front of the bunch. 2
(1) Particles with Ar=0, A¢>0) and Ar=0, A¢ E
<0) will undergo the same growth as the main body, and E 400
will tend to get pulled back towards it as during the early o
stage of growth. As before, the wake field induced frequency Radiation Damping
shift provides an azimuthal attracting force.
(2) A particle with (Ar>0, A¢=0) will experience a 0 ; ;
Iarger pendulum fr_eque_ncy shift than the main body_and ac- 0 : Amplituzde (rad) : !
quire aA $<0. This shift in angle leads it to a region of
smaller radial growth, decreasinfr, and therefore of in- FIG. 10. Growth rate of center of mafis., main body, which
creasing synchrotron frequency. This sequence of events witlarries all of the charge, as a function of its radial position in the
lead it back to the main body. bucket. The distance at which the force actinga 2 mA bunch

(3) A particle with (Ar<0, A¢=0) will experience a would be cancelled by damping would be at 2.4 radians. However,
smaller frequency shift, due to the pendulum effect, than thathe bunch loses its charge density during the growth as filamenta-
induced by the wake field from the main body. Since thetion develops. A current of 0.7 mA remaining in the main body is
pendulum term now dominates over the wake field term, th{x""ctIy compensated by the incoherent damping when the main

test particle acquires A ¢>0. Because the main bunch is ody reaches its limit cycle.
near the angle of maximum growth, the test particle at POSlgia|g nearly vanishes, so the particle damps in a time longer

tive A‘ﬁ. also sees a driving force smaller than that seen b.¥han the radiation damping time, 10 ms in our experiment.
tf;le main qu)_/ andhso mov(;esl even fffurthe;_ﬁway frqrr|1 I ra_lclj"l’he escaping test particle also generates a wake field. Obvi-
iy’ f|nten3|fy|ng ]E € pﬁn fu um fe hect. . eb %artlce wi ously, this wake field provides a growth term to the net force
therefore escape irom the front of the main body. Hﬂs particle experiences. Other escaping particles will en-

corl-]gfeggi?)?]p?)fogaprzgiglse;frtﬁ? t:?;ﬁ?}g (k))fuahci ?;l‘;g;{; ance this growth term when they are in phase with the test
. . . . ticle. C tly, the | the ch f th i
what is observed with the tracking code. The loss of densit paricie. -onsequenty, the ‘arger the charge of the escaping

) . . . ; article, the slower its overall damping.
of the main body is also in good agreement with what is see From Egs.(13) and(15)

on the streak camera images.
The amplitude of the limit cyclémaximum amplitude of
the main body is found to be nea#r/2 on the streak camera E 1
images. This value corresponds to the value0at which S . C1 - *
the driving forceFg; is cancelled by the damping term in im e lim == OCJl(r_”)r_tCOS(A(ﬁjL(ﬁ )
Eq. (14). If all of the charge were in the main body, our
machine parameters would predict a larger limiting value for
f;. Since the 2 mA bunch loses substantial current duringvhere ¢* is a constant. Since there always exists a coordi-

its growth, the driving force is correspondingly reduced e pair ;,A¢) that can provide any desireat, there

(Fig. 10. . _ always exist points which are in phase with the main body.
The linear growth and the nonlinear effect leading to satupp, the locus of such points is a fixed point at which the
ration have now been described. The relaxation of the oscil-5ig) growth vanishes. If our system were static, this fixed

lation comes from the reduction of growth due to the leakagg,oint would be an attractor. Since our system is dynamic, the
of particles away from the main body and the formation of a . .

attractor location moves. It moves very slowly, so iitss
new attractor close to the center of phase space.

small. Therefore, the attractor lies close to the fixed point
defined above. This new attractor is initially located very
near the origin, where the wake-field-induced frequency shift
varies rapidly.

During filamentation, an escaping particle spirals towards The escaping test particle needs to reach the line where
the center, with a resultant increase in its synchrotron frethe main body exerts no radial force, which is abatiP
quency. As derived using the KBM method, the net force oraway from the line of maximal growth. Fav,= wg,, this
any particle is the average over one of its synchrotron periline is close to¢=0, i.e., close to the main body. As this
ods, 2m/ ws;. During each integration time, the escaping par-attractor accumulates more charge, its self-generated wake
ticle precesses im\ ¢, and the forces acting on it vary in increases in strength. To compensate for this, the attractor
amplitude. When the particle is out of phase with the main must see more damping from the main body and must move
body, for example, it is strongly damped by the wake field.further away azimuthally, i.eA¢ needs to increase. As it
As it spirals toward the center, it alternately experiencegaptures more particles, this attractor moves further away
positive and negative forces from the main body wake fieldfrom the center. It becomes the new main body in the next
Over a rotation ofA =2, the net growth due to this wake relaxation cycle.

ri—0 ry—0 't

E. Damping of system



PRE 60 RELAXATION OSCILATIONS OF THE SYNCHROTRON . .. 4833

(b)

—

—_

\) CcM

./

DT/4

! sin A¢ (rad)

! sin A¢ (rad)

=1 rcosAd (rad) 1 =1 rcosAd (rad) 1

FIG. 11. Amplitude ofr and ¢ in rotating phase space. Same
conditions as in Fig. 9, but witlv,> wg, (0,=1.4wsy). (8 The ;
quadrature component of the wake fie(td) The in-phase compo- -04 0
nent of the wake field. The amplitudes of these terms are nearly 1 cos A (rad)
identical to those of Fig. 9, but rotated by, ; in particular, the e
rotation of () justifies why the damping process takes longer than FIG. 12. Phase space._cor?_tour linesrp#0 (contour levels of
in the case ofv,= w,. —20, 0, 20 displayedand ¢,— ¢,=0=0 (contour levels of-200,

0, 200 displayed The CM at ¢ ,= 7/8, ¢,=0) carries 60% of the
2 mA current; the test particle afr(,¢,) carries the restw,
=1.4ws,. The second attractor is near the intersection of the zero
E. Visualization of second attractor level lines; particles at that location do not grow or damp and are
#ocked in phase with the main body withAsp close to.

0.4

A particularly interesting case appears when the lowe
edge of the resonance coincides with the synchrotron side-
band @,>wy). In this case, the second attractor forms

away from the center nearly out of phase with the main w2
initial body and the damping time of the system is much __ So i
longer than whenw,= w,. Fsi~ Ve cosey| 2aRRsII1(ru)[Jo(r) +J2(1)]
Defining ¢; such that -
cog ¢; +A¢)
—+ ]
sin ¢1i: z(wsu— ©2) > \/aé+(wsu_ wz)z
\/aR"'(wsui w) 5
R (10 F " RI(Z O 3o(rw)da(ry)
COS¢; = , C1~ =T Trnan 1 2ARRsl | 27— Jo(ry)J1(ry
b1 Vo2t (wgg @) Vrelcosey ap+ s
Sin( 7 +A )
and, keeping only the leading terms, E¢k2) and(13) can +Jl(ru)[~]0(rt)_*]2(rt)]m -
be written as RO Tsu Tz
The distributions of damping and growth from the; .
w2 function and of frequency shift from théc,. function are,
— %0 to first order, the same as those of the case wheye
Fare=——1——2agRal J1(r,)[Jo(r)+Jo(ry) ’ _ :
St Vrelcosey “ RS 1)l Jo(Te) + Jz(ro)] = ws,, but rotated by—¢; (Fig. 11). (Note that from its
_ definition in Eq.(16), ¢ is negative whenmw,> wg,.)
+ 1 z so
cod ¢, +44) _ cod¢s +A4¢) . @1 For w,= wg,, the line of maximum growth is defined by
Vait (wg—0)?  Vaz+ (wgt w,)? A¢=0. On this line, the wake-induced frequency shift is
close to zero. Fow,> wg,, this line of maximum growth is
5 now located at\ p=— ¢, .
Ws, w, The behavior of a test particle near the main body is now
FCl%:mzaRRSI ZmJo(fu)Jl(ft) qualitatively examined as in Sec. VID.
RF s RT %z (1) A test particle attempting to leave the rear of the
Sin(py +Ad) bunch has smaller growth, str, its radial position with
+J1(ru)[Jo(r) = Ja(ry) ] ! respect to that of the main body, decreases. Both the wake
\/azR-i-(wsu— w,)? field and pendulum frequency shifts move it back towards
o the main body, as before fov,= ws,. This recapture is
__sin(¢; +A¢) 19 similar to the cases described in Sec. VID for=0 and
Vagt (0gt w,)? Ar=0.

(2) A test particle at Ar<0, A¢$=0) now has a more

difficult time leaving the head of the bunch for two reasons:
In our case of interest, i.e., whew, is larger thanwg,, (i) as the particle acquires someA ¢, it moves closer to
the dominant terms of Eq$17) and (18) are the line of maximal growth, located at ¢, , where the
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bunches in the presence of a strong HOM at 961 MHz. As
shown in Figs. 1 and 13, the relaxation oscillation frequency
is also smaller than 100 Hz. These data verify that this analy-
sis holds for general HOMs. As seen in Fig. 13, the satura-
tion amplitude scales with the ratio afxr/wyowm -

VIIl. CONCLUSION

bunch dist. (ns)

In this paper we have analyzed the characteristics of the
longitudinal relaxation oscillations, long observed in many
machines, generated in the presence of narrow-band imped-
ances. Extensive experimental measurements were per-

FIG. 13. Relaxation oscillation for h=751 (fuou formed _at_SPEAR. An enhance_d sir_nulation code prov_ided
=961.6 MHz) HOM. helpful insights into the mechanism involved. An analytical
method was presented that derives a simple model that ex-

wake field pushes it out radially and the pendulum slows itplaX;shthe Lmﬁprtantdfela;urez of the oscillation.f | in describ
down; (ii) the test particle will need to precedsp=2|¢; | though this model has been very successful in describ-

before its radial growth is less than that of the main body. ing the essential characteristics of this relaxation oscillation,

Accordingly, it will take much longer for the particles to it is hoped that further refinements bring even better agree-

escape from the bunch. Longer damping times of the relaxment with experimental data. The model likely needs to be

ation oscillation forw,> wg, have been observed experimen- efxtended. bta_yoqd a two—partlclg system, possibly to a con-
tally (Fig. 3. tinuous distribution. This extension should better explain the

As discussed in Sec. VIE, a second attractor, which isradlal amplitude of the second attractor in the case of large

locked in phase with the main body, forms neas# away amp]itudes_ of the main body. Work on the tracking code
from the line of maximal growth. Since this line is already continues in parallel.
located at— ¢, , the additionakr/2 places the second attrac-
tor close tow out of phase with the main bodyig. 12.

This two-particle model has described the complicated ACKNOWLEDGMENTS
behavior observed on the streak camera in Fig. 7 and de- We are very grateful to A. Hofmann, S. Heifets, and A.
scribed in Sec. IIIC 2. The model explains the growth as aChao for valuable discussions. We also thank H. Wiedemann
macroparticle, the filamentation and loss of charge densitgnd M. Cornacchia for their support and encouragement. Fi-
during this growth, the formation of a second attractor neanally, we would like to thank our colleagues J. Hinkson and
the origin, the flow of particles from the first attractor to the J. Byrd (LBNL), A. Fisher(SLAC), and A. Lumpkin(APS)

second, and the eventual growth of this second attractdfor their assistance in obtaining the beautiful pictures with
while the first is still visible. The second attractor is mostthe streak camera.

clearly visible in the case ab,>wg,, When the two attrac-
tors are phase locked nearyapart.

0.5

0 time (ms) 20

APPENDIX: NUMERICAL COMPUTATION
OF WAKE IN SIMULATION PROGRAM

VIl GENERALIZATION TO ANY HOM In the multiparticle tracking code, the wake field must be

This analysis also extends to true HOMs. The amplitudecomputed on short time scales, i.e., many time divisions per
of saturation is still determined by the decrease of the drivingms bunch length, and must be carried over long time scales
term and the loss of charge density in the main body as thto the next bunch.
radial amplitude increases, as presented in Fig. 13. The ar- The longitudinal wake for a resonator of resistafig
guments of the Bessel functions are now changed,to frequencyw, of damping ratexg and quality factorQ is
=Tiwyom andr,=T,wyom- Since the angular HOM fre-
guencywyowm is greater thamge, the saturation occurs for
smaller radial amplitude. Since the pendulum equation still
comes from the accelerating voltage, oscillating at frequency
wre, the pendulum frequency shift at saturation,
= (Twrp)?ws,, is much smaller than that observed for the _ ﬁsir{ﬁ(t— 7)]}
case of the fundamental. o

The analytical approach is also valid for multibunch
cases. For example, fod equally distributed bunches, in- with
stead of decomposinggg in pw,+ w,, wge Must now be
expressed asNw,+ (Mw,+ w,), 0=m<N, giving the ex- _“Rr — \/—2_2'
pectedN modes of the system. The derivation is straightfor- oR 2Q
ward and is omitted here.

Experimental data was obtained on SPEAR with sevewhereU(t) is the Heaviside function:

W(t—7)=U(t— T)ZaRRSe_“R(t_T)[ codo(t—1)]
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1 t>0 CwlAt) 1 i whAD
B - W(t+At) )\ COs wr — SIN(wg
U=y 12 t=0. (W’(t+At)>_e _ R
0 t>0 —wRSiN(wRAt)  cogwgrAt)
In the simulation, for the purpose of the calculation of the W(t)+ aRgn(t)
wake, particles are grouped into discrete bins of widlth W' (t) — 2a®R¢n(t)

The wake is then represented as a set of discrete steps, one

step per bin. The wake in a given Hir At is the sum of the ( aRsn(t+At) )

wake from the previous bih transported over one bin and —2aPRN(t+At) )

the contribution from the particles in the current bin. From

the fundamental theorem of beam loading, a particle sees

only one half of its instantaneous wake, whereas all subseSince the bin spacing is fixed, this bin-to-bin propagator is a
guent particles see all of this wake. Since the fields obey theonstant matrix that can be calculated once, and then be used
second order wave equations, the propagator can be deepeatedly. The derivative of the wake must also be com-

scribed by puted and carried along.
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