
PHYSICAL REVIEW E JULY 1999VOLUME 60, NUMBER 1
ARTICLES

Fisher-based thermodynamics: Its Legendre transform and concavity properties
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It is shown that the Legendre-transform structure of thermodynamics can be replicated without any change
if one replaces the entropyS by Fisher’s information measureI. Also, the important thermodynamic property
of concavity is shown to be obeyed byI. By this use of the Fisher information measure we develop a
thermodynamics that seems to be able to treat equilibrium and nonequilibrium situations in a manner entirely
similar to the conventional one.@S1063-651X~99!03707-1#

PACS number~s!: 05.30.2d, 05.45.2a
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I. INTRODUCTION

One of the salient contributions of Shannon’s informati
theory ~IT! is a recipe for ascertaining in precise and una
biguous terms the amount of information~the information
measure! that an observer possesses concerning a given
nomenon in terms of a probability distribution functio
~PDF!. The information content of a normalized probabili
distributionP( i ) ( i 51, . . . ,N), where the indexi runs over
the states of the system one is trying to study, is given
Shannon’s information measure~IM ! @1#

S52(
i 51

N

P~ i !ln@P~ i !#, ~1!

where the choice of the logarithm basis is used to fix
information units. If the basis is 2, thenS is measured inbits.

Jaynes@1# has shown that if one chooses Boltzmann
constant as the informational unit and identifies Shanno
IM with the thermodynamic entropy, then the whole of s
tistical mechanics can be elegantly reformulated, without
reference to the notion ofensemble, by extremization of Sh-
annon’sS, subject to the constraints imposed by thea priori
information one may possess concerning the system of in
est ~the maximum entropy principle! @1#. Now, the phenom-
enal success of thermodynamics and statistical physics
cially depends upon certain necessary mathema
relationships involving energy and entropy~Legendre-
transform structure!. We will show here that these relation
ships are also valid if one replacesSby Fisher’s information
measure~FIM! @2#. As pointed out above, the Legend
structure of thermodynamics constitutes itsessentialmath-
ematical ingredient, so that it should be of interest to stu
that structure within a FIM context.

*Mailing address: 665 Bienveneda Avenue, Pacific Palisades,
90272.
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Indeed, much effort has been focused recently upon F
The work of Frieden and co-workers@3–11#, Silver @12#, and
Plastinoet al. @13–16#. has shed much light upon the man
fold physical applications of Fisher’s information measu
In that vein we mention that Frieden and Soffer have sho
that FIM provides one with a powerful variational princip
that yields the canonical Lagrangians of theoretical phys
@10#. Additionally, I has been shown to characterize an ‘‘a
row of time’’ with reference to the celebrated Fokker-Plan
equation@14#. Moreover, interesting relationships exist th
connect FIM and the relative Shannon information meas
invented by Kullback@17,18#. These have been shown t
have some bearing on the time evolution of arbitrary syste
governed by quite general continuity equations@15,16#. Fi-
nally, a rather generalI-basedH theorem has recently bee
proved @19,20#. FIM is then an important quantity that i
involved in many aspects of the theoretical description
nature.

II. FISHER’S INFORMATION MEASURE FOR
TRANSLATION FAMILIES

The investigation of the properties and applications
Fisher’s information measure to diverse problems in theo
ical physics is much in vogue nowadays, mainly due to
pioneering work of Frieden and co-workers@3–11#, who
have unveiled the manifold physical applications of FIM a
clarified its relation to Shannon’s logarithmic informatio
measure.

Consider a system that is specified by a physical par
eteru and letg(x,u),

E dxg~x,u!51, ~2!

describe the PDF for this parameter. Fisher’s informat
measureI is of the form
A
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I 5E dxg~x,u!F ]g/]u

g~x,u!G
2

. ~3!

The special case oftranslation familiesdeserves specia
mention. These are monoparametric families of distributio
of the formg(x2u) which are known up to the shift param
eteru. Following Mach’s principle, all members of the fam
ily possess identical shape~there are no absolute origins!,
and here FIM adopts the appearance

I 5E dx
1

g F]g

]xG2

. ~4!

This form of Fisher’s measure constitutes the main ingre
ent of a powerful variational principle devised by Fried
and Soffer@10#, which gives rise to a substantial portion
canonical physics. In particular, the existence of a thermo
namics based entirely on Fisher’s information has rece
been predicted@10,20#. In the considerations that follow w
shall restrict ourselves to the form~4! of Fisher’s information
measure and confirm the above mentioned prediction.

There are two different approaches in current use
employ Fisher’s information measure, namely, minimu
Fisher information~MFI! @6# and extreme physical informa
tion ~EPI! @10#. The approaches differ in how the constra
information is used to modify FIM. However, in the follow
ing we do not distinguish between the two treatments si
for our present purposes they lead to the same result.

III. VARIATIONAL APPROACHES APPLIED TO
EXTREMIZING FISHER’S INFORMATION

Our present considerations assume one is dealing
vectorsx that belong toR. Let us focus our attention upo
the positive-definite, normalized density~of probability!
function f (x,u),

E dx f~x,u!51, ~5!

and consider the concomitantFisher’s information measure
for translation families:

I @ f #5E dxFFisher~ f !, ~6!

with the functionalFFisher in the particular form

FFisher~ f !5 f ~x!F ] f

]xY f G2

. ~7!

Further, assume that forM functionsAi(x) the mean values
^Ai&,

^Ai&5E dxAi~x! f ~x! ~ i 51, . . . ,M !, ~8!

areknown, stressing here the fact that the^Ai& ’s depend in a
linear fashion uponf. These mean values will play the role o
thermodynamical variables.

It will be of importance below to assume that our for
knowledge@the M x moments~8!# represents information a
s

i-

y-
ly

at

t

e

th

some appropriate (fixed) time t. The analysis will use MFI
~or EPI! to find the probability distributionf [ f MFI that ex-
tremizesI subject to prior conditionŝAi&, Eqs.~5!–~8!. The
pertinent result will be shown below to be given by the s
lutions of a Schro¨dinger-like equation.

Jaynes used the Shannon functional (F52 f ln f) @1# so
that

S@ f #52E dx f ln f . ~9!

This is to be constrained by data inputs using the Lagra
multiplier technique.Our Fisher-based extremization prob
lem adopts the appearance

d f H I ~ f !2a^1&2(
i

M

l i^Ai&J 50, ~10!

i.e.,

d f H E dxS FFisher~ f !2a f 2(
i

M

l iAi f D J 50, ~11!

where we have introduced the (M11) Lagrange multipliers
(a,l1 , . . . ,lM). Variation leads now to

E dxd f H ~ f !22S ] f

]xD 2

1
]

]x F ~2/f !
] f

]xG1a1(
i

M

l iAiJ 50

~12!

and, on account of the arbitrariness ofd f ,

H ~ f !22S ] f

]xD 2

1
]

]x F ~2/f !
] f

]xG1a1(
i

M

l iAiJ 50. ~13!

It is clear that the normalization condition onf makesa a
function of thel i ’s. Let then f I(x,lW ) be a solution of Eq.
~13!, where obviously,lW is anM ~Lagrange multiplier! vec-
tor. Our extreme Fisher information is

I 5E dx fMFI
21 F] f MFI

]x G2

. ~14!

In what follows and for the sake of a simpler notation, w
write

f MFI[ f I .

IV. RICCATI EQUATION

Let us now find the general solution of Eq.~13!. For the
sake of simplicity let us define

G~x!5a1(
i

M

l iAi~x!, ~15!

and recast Eq.~13! as

F] ln f I

]x G2

12
]2 ln f I

]x2
1G~x!50. ~16!
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We introduce now the identification@12# f I5(c)2 and the
new variable,

v~x!5
] ln c~x!

]x
; ~17!

then Eq.~16! becomes~the prime stands for derivative wit
respect tox)

v8~x!52H G~x!

4
1v2~x!J , ~18!

which is a Riccati equation@21#. Introduction further of@21#

u~x!5expH Ex

dx@v~x!#J , ~19!

i.e.,

u~x!5expH Ex

dx
d ln c

dx J [c, ~20!

makes Eq.~16! become a Schro¨dinger-like equation@21#

2~1/2!c9~x!2~1/8!(
i

M

l iAi~x!c~x!5ac~x!/8, ~21!

where the Lagrange multipliera/8 plays the role of an en
ergy eigenvalue, and the sum of thel iAi(x) is an effective
potential function

U~x!5~1/8!(
i

M

l iAi~x!. ~22!

It is to be remarked here that Fisher’s information meas
corresponds to the expectation value of the kinetic energ
Schrödinger’s equation. This point has been appropriat
discussed in Ref.@3#. In a similar vein, an extensive analysi
within the framework of functional density theory, can al
be found in@22#.

Notice that Eq.~21! has multiple solutions, in contras
with the unique solution one obtains when employing Sh
non’s entropy in place of FIM@1#. The question is then
which solution to choose? Our solutions will, of course, d
pend upon the form of the effective potential functionU(x).
It seems reasonable to assume that the solution leading t
lowest I value is the equilibrium one. The following argu
ment supports such a conclusion.

Consider thatx is a velocity and concentrate our attentio
upon a very simple case of the Boltzmann equation@23#:
space-homogeneous solutionsf (v,t) that depend only upon
the velocityv and the timet. Focus attention upon the num
ber f (v1)dv1 of particles in the elementdv1 of the space of
velocities. This number is decreased by all collisions
which one of the two pertinent initial velocities belongs
dv1 @the other velocity (v2) and the kind of collision may be
arbitrary#. Conversely,f (v1)dv1 is increased by all colli-
sions for which one of the final velocities belongs todv1.
Here the other final velocity (v2) and the kind of collision
may also be arbitrary. In mathematical terms this reads
e
of
y

-

-

the

r

]

]t
f ~v1!dv15E

v2

~dn82dn!. ~23!

Substituting for the numbersdn and dn8 the expressions
given by Maxwell’s ansatz@25# we obtain the simplest in-
stance of Boltzmann’s equation, namely@23,26#,

]

]t
f ~v1!5E

v2

auv12v2u@ f ~v18! f ~v28!2 f ~v1! f ~v2!#dv2 ,

~24!

where one must remember thatv18 and v28 depend uponv1

andv2 ~conservation of energy and momentum!, anda takes
care of units@23#.

Now, it is clear that, in equilibrium, (]/]t) f (v1 ,t)50.
This implies thatf (v) cannot have zeros. Obviously, if, for
somev1 , f (v1)50, one of the two terms in the integran
above vanishes and the derivative on the left hand s
~LHS! cannot vanish for thatv1 value. As a consequence o
the multiple solutions of Eq.~21!, we are forced to select th
one with no nodes. It is a theorem that the ground st
solution of Schro¨dinger equations has no nodes~see, e.g.,
Ref. @24#!. According to the variational equation~10!, this
solution that we are here choosing has a stationaryI value.

V. RECIPROCITY RELATIONS

Standard thermodynamics makes use of derivatives of
entropyS with respect to bothl i and ^Ai& parameters~for
instance, pressure and volume, respectively!. In the same
way, we are led to investigate analogous properties of]I /]l i
and ]I /]^Ai&. It will be seen that Euler’s theorem@27# still
holds whithin this new, Fisher context.

Starting from Eq.~14! and after a single integration b
parts, we find

]I

]l i
5E dx

] f I

]l i
H 2 f I

22S ] f I

]x D 2

2
]

]x F ~2/f I !
] f I

]x G J . ~25!

Comparing Eq.~13! to Eq. ~25! we immediately gather tha

]I

]l i
5E dx

] f I

]l i
H a1(

j

M

l jAj J , ~26!

which, on account of normalization, yields

]I

]l i
5(

j

M

l j

]

]l i
E dx fIAj~x!, ~27!

i.e.,

]I

]l i
5(

j

M

l j

]

]l i
^Aj&, ~28!

which is a generalized Fisher-Euler theorem@28#. The ther-
modynamic counterpart of Eq.~28! is the derivative of the
entropy with respect to the mean values. We easily find

(
i

]I

]l i

]l i

]^Aj&
5(

i
(

k
lk

]^Ak&
]l i

]l i

]^Aj&
, ~29!
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i.e.

]I

]^Aj&
5l j , ~30!

as expected. The Lagrange multipliers and mean values
seen to be conjugate variables, related as is typical ofl i vs
^Ai& variables in thermodynamics.

It is also clear that

f I[ f I~l1 , . . . ,lM !, ~31!

since, based on theM mean values that constitute oura pri-
ori knowledge, the extremization process rendersf I a func-
tion of the Legendre multipliers only.

VI. LEGENDRE STRUCTURE

In thermodynamics it is equivalent to have as input inf
mation either the chemical potential or the number of mo
the pressure or the volume, etc. This is so because of
characteristic Legendre structure of thermodynamics. N
as our densityf I formally depends uponM11 Lagrange
multipliers, normalization

E dx fI51 ~32!

makesa a function of theM remainingl ’s:

a5a~l1 , . . . ,lN!. ~33!

It is also of importance to stress that, of course, thel ’s and
the^Ai& ’s play reciprocal~symmetrical! roles within thermo-
dynamics@29,30#. It is thus possible to assume, as initi
conditions, that the input information refers to thel ’s and
not to thê Ai& ’s @29,30#. TheM Lagrange multipliers and the
M mean values are then on an equal footing for the purp
of determiningI.

Introduce now the generalized thermodynamic poten
~the Legendre transform ofI )

lJ~l1 , . . . ,lN!5I ~^A1&, . . . ,̂ AN&!2(
i 51

N

l i^Ai&, ~34!

i.e., the Legendre transform of FIM@27#. We have

]lJ

]l i
5(

j 51

M
]I

]^Aj&

]^Aj&
]l i

2(
j 51

M

l j

]^Aj&
]l i

2^Ai&52^Ai&,

~35!

where Eq.~30! has been used.
With the latest relation the Legendre structure here

scribed can be summed up as follows:

lJ5I 2(
i 51

M

l i^Ai&,

]lJ

]l i
52^Ai&,
re

-
s,
he
,

se

l

-

]I

]^Ai&
5l i ,

]l i

]^Aj&
5

]l j

]^Ai&
5

]2I

]^Ai&]^Aj&
, ~36!

]^Aj&
]l i

5
]^Ai&
]l j

52
]2lJ

]l i]l j
. ~37!

As a consequence of the last relation we can recast Eq.~28!
in the form

]I

]l i
5(

j

M

l j

]

]l j
^Ai&. ~38!

The Legendre-transform structure of thermodynamics is t
seen to be entirely translated into the Fisher context.

VII. CONCAVITY OR MIXING PROPERTY

In order to be able to construct a thermodynamics ba
uponI, it is necessary to examine the concavity or convex
nature ofI @27#. We prove below thatI is a concave func-
tional @17# of the probability distributionp. Therefore,I ex-
hibits the desirable mixing property.

Let a,b be two real scalars such thata1b51, p1 ,p2 two
normalized probability distributions, and consider

c5Aap11 iAbp2, ~39!

so that

ucu25ap11bp2 . ~40!

We study now the properties of a third probability distrib
tion

P5ucu25ap11bp2 , ~41!

whose associated Fisher information for translation fami
reads~the prime stands for derivative with respect tox)

I ~P!5E dxP21P8254E dx
ducu2

dx
. ~42!

In order to investigate the convexity question we must fi
the relationship relatingI (P) to aI(p1)1bI(p2) @17#. If we
set now

c~x!5R~x!exp@ iS~x!#, ~43!

R,S two real functions inR, we immediately find

I ~P!54E dxR825E dxP~x!FR8~x!

R~x! G2

54K FR8

R G2L .

~44!

Now, it is easy to see that

dc

dx
5~1/2!~Aa/p1p181 iAb/p2p28!, ~45!

so that
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Udc

dxU
2

5~1/4!@~a/p1!~p18!21~b/p2!~p28!2#, ~46!

which implies

aI~p1!1bI~p2!54E dxUdc

dxU
2

. ~47!

Now, on account of Eq.~43!, it is clear that

Udc

dxU
2

5R821R2S825R821ucu2S82, ~48!

which leads to

aI~p1!1bI~p2!5I ~P!14E dx@ ucu2S82#. ~49!

The integral on the RHS of the preceding equation is clea
>0, which allows one to assert that

aI~p1!1bI~p2!>I ~ap11bp2!; ~50!

i.e., Fisher information for translation families is indeed
concave functional of the probability distributions. A gene
alization of the last equation easily follows. Assumeb1
1b251 and

p25b1p211b2p22. ~51!

Then, Eq.~50! implies

I ~ap11bb1p211bb2p22!<aI~p1!1bb1I ~p21!1bb2I ~p22!,
~52!
s

a,
ly

-

sincea1b(b11b2)51.
The RHS of Eq.~50! represents the net probability, afte

mixing, of two distinct systems. It should be mentioned he
that the approach can be generalized in the same fashion
mixture theorem forN systems. We see thatI displays the
same mixing property as does Boltzmann’s entropy. The
equality ~50! is a special instance of Fisher’sI theorem,

dI

dt
<0, ~53!

predicted in@31# and proved in@19#.

VIII. CONCLUSIONS

The entire Legendre-transform structure of thermodyna
ics has been expressed using Fisher information in plac
Boltzmann’s entropy. In general, this abstract Legen
structure constitutes an essential ingredient that allows on
build up a statistical mechanics. Fisher informationI allows
then for such a construction. The desired concavity prope
obeyed byI further demonstrates its utility as a statistic
mechanics generator.

It is becoming increasingly evident@3–6,10,13,14,19,20#
that Fisher information is vital to the fundamental structu
of physics. In this paper we have shown how the conc
lays the foundation for a thermodynamics, as well. In t
same way that Boltzmann entropy is normally used to de
extrinsic parameters such as temperature, etc., so we
likewise expect Fisher information to define its own extrins
parameters@20#. The two sets of parameters will be differe
in general. This will be the subject of future publications.
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