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Fisher-based thermodynamics: Its Legendre transform and concavity properties
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It is shown that the Legendre-transform structure of thermodynamics can be replicated without any change
if one replaces the entrogyby Fisher’s information measute Also, the important thermodynamic property
of concavity is shown to be obeyed Hy By this use of the Fisher information measure we develop a
thermodynamics that seems to be able to treat equilibrium and nonequilibrium situations in a manner entirely
similar to the conventional ong¢S1063-651X99)03707-1

PACS numbdps): 05.30—d, 05.45-a

[. INTRODUCTION Indeed, much effort has been focused recently upon FIM.
The work of Frieden and co-workel3—11], Silver[12], and
One of the salient contributions of Shannon’s informationPlastinoet al. [13—-16. has shed much light upon the mani-
theory (IT) is a recipe for ascertaining in precise and unam-old physical applications of Fisher's information measure.
biguous terms the amount of informatigthe information  In that vein we mention that Frieden and Soffer have shown
measurgthat an observer possesses concerning a given ph#&iat FIM provides one with a powerful variational principle
nomenon in terms of a probability distribution function that yields the canonical Lagrangians of theoretical physics
(PDP). The information content of a normalized probability [10]. Additionally, | has been shown to characterize an “ar-

distributionP(i) (i=1, ... N), where the index runs over row of time” with reference to the celebrated Fokker-Planck
the states of the system one is trying to study, is given byequation[14]. Moreover, interesting relationships exist that
Shannon’s information measu(M) [1] connect FIM and the relative Shannon information measure

invented by Kullback[17,18. These have been shown to
N have some bearing on the time evolution of arbitrary systems
SI—Z P(i)In[P(i)], (1) governed by quite general continuity equatigas,16. Fi-
=t nally, a rather generdtbasedH theorem has recently been
Jroved [19,20. FIM is then an important quantity that is
involved in many aspects of the theoretical description of
nature.

where the choice of the logarithm basis is used to fix th

information units. If the basis is 2, thé3is measured ifits.
Jaynes[1] has shown that if one chooses Boltzmann's

constant as the informational unit and identifies Shannon’s

IM with the thermodynamic entropy, then the whole of sta- Il. EISHER'S INFORMATION MEASURE FOR

tistical mechanics can be elegantly reformulated, without any TRANSLATION EAMILIES

reference to the notion @fnsemblgby extremization of Sh-

annon’sS, subject to the constraints imposed by thpriori The investigation of the properties and applications of

information one may possess concerning the system of intefrisher’s information measure to diverse problems in theoret-
est(the maximum entropy princip)g1]. Now, the phenom- ical physics is much in vogue nowadays, mainly due to the
enal success of thermodynamics and statistical physics crgpioneering work of Frieden and co-workef8-11], who
cially depends upon certain necessary mathematicdlave unveiled the manifold physical applications of FIM and
relationships involving energy and entropftegendre- clarified its relation to Shannon’s logarithmic information
transform structune We will show here that these relation- measure.

ships are also valid if one replac8dy Fisher’s information Consider a system that is specified by a physical param-
measure(FIM) [2]. As pointed out above, the Legendre eter 6 and letg(x, 6),

structure of thermodynamics constitutes éssentialmath-

ematical ingredient, so that it should be of interest to study

that structure within a FIM context. f dxg(x,0)=1, 2

*Mailing address: 665 Bienveneda Avenue, Pacific Palisades, CAlescribe the PDF for this parameter. Fisher’'s information
90272. measurd is of the form
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dg9l901? some appropriate (fixed) time The analysis will use MFI
9x.0) (3)  (or EPJ to find the probability distributiorf=f g that ex-
tremizesl subject to prior condition§A;), Egs.(5)—(8). The

The special case dfanslation familiesdeserves special Pertinent result will be shown below to be given by the so-

mention. These are monoparametric families of distributiondutions of a Schrdinger-like equation.

of the formg(x— #) which are known up to the shift param-  Jaynes used the Shannon functiona=—f Inf) [1] so

eter . Following Mach'’s principle, all members of the fam- that

ily possess identical shapg¢here are no absolute origins

and here FIM adopts the appearance Sf]= _f dxfinf. (9)

fdx—
g

This form of Fisher’'s measure constitutes the main ingredi-
ent of a powerful variational principle devised by Frieden
and SfoGI‘[lO],.WhICh gives rise to a gubstant|al portion of 5 I<f)—a<1>—2 N(A) =
canonical physics. In particular, the existence of a thermody-

namics based entirely on Fisher’s information has recently

been predictedl10,20. In the considerations that follow we !-€-,

shall restrict ourselves to the forgd) of Fisher’s information M
measure and confirm the above mentioned prediction. | f dx( Frane(f)—af— 3 NAf

I—f dxg(x,0)

agl?

X (4)  This is to be constrained by data inputs using the Lagrange

multiplier technique.Our Fisher-based extremization prob-
lem adopts the appearance

(10

There are two different approaches in current use that =0, (D

employ Fisher's information measure, namely, minimum

Fisher informationMFI1) [6] and extreme physical informa- where we have introduced th&i(+ 1) Lagrange multipliers
tion (EPI) [10]. The approaches differ in how the constraint (e,Aq, ... ,Ay). Variation leads now to

information is used to modify FIM. However, in the follow-

ing we do not distinguish between the two treatments since _,[of 2 9 of
for our present purposes they lead to the same result. dxaty (f) X ax (Z/f)_ + a+2 NiAi =0
(12)
Il. VARIATIONAL APPROACHES APPLIED TO
EXTREMIZING FISHER'S INFORMATION and, on account of the arbitrariness &ff,
Our present considerations assume one is dealing with af\2 g of M
vectorsx that belong toR. Let us focus our attention upon (f)=2 5_) +— (2/f)07— +a+z NiA=0. (13
the positive-definite, normalized densitipf probability) X X X :

function f(x, ), It is clear that the normalization condition drmakesa a

function of the\;’s. Let thenf,(x,}:) be a solution of Eq.

(13), where obviously\ is anM (Lagrange multiplier vec-
tor. Our extreme Fisher information is

J dxf(x,0)=1, 5

and consider the concomitaktsher’s information measure

for translation families: _q | 9fmm 2
X
I[f]= f dXFrighek ), 6 ) i
L] Fisnel f) © In what follows and for the sake of a simpler notation, we
write
with the functionalF g, in the particular form
2 fur=f.

Frisnel f)=1(x) (@)

of ;
ax

Further, assume that fdd functionsA,;(x) the mean values Let us now find the general solution of Ed.3). For the

IV. RICCATI EQUATION

(A), sake of simplicity let us define
M
<A|>:deA1(X)f(X) (i:].,...,M), (8) G(X)=a+2 )\iAi(X)v (15)

areknown stressing here the fact that t{wy;)’s depend in a
linear fashion upor. These mean values will play the role of
thermodynamical variables.

It will be of importance below to assume that our fore-
knowledge[the M x moments(8)] represents information at

and recast Eq(13) as

dlnf,]?
ox

#Inf,
x>

+G(x)=0. (16)
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We introduce now the identificatiofl2] f,=(i)? and the
new variable,

_alnz,/;(x)_

v(x) ax

7

then Eq.(16) becomegthe prime stands for derivative with

respect tox)

G(x)

v’(x)=—[T+v2(X)], (18

which is a Riccati equatiof21]. Introduction further of21]

u(x)= exp[ fxdx[v(x)]] ,

u(x)= exp[ fxdxd ;nxlp} =y,

makes Eq(16) become a Schdinger-like equatiori21]

(19

(20

M
— (U2 ¢ (x)— (1/8)2i NiAI(X) h(X) = aih(x)/8, (21)

where the Lagrange multiplie#/8 plays the role of an en-
ergy eigenvalue, and the sum of tReA;(x) is an effective
potential function

M

U(X)=(1/8)> NA(X). (22)

PRE 60

J ’
Ef(vl)dm: fvz(dn —dn). (23)

Substituting for the numberdn and dn’ the expressions
given by Maxwell's ansatf25| we obtain the simplest in-
stance of Boltzmann’s equation, namé¢Rg,26,

J
Ef(vl): fv2a|vl—vg|[f(vi)f(vé)—f(vl)f(vz)]dvz,
(24

where one must remember thai and v, depend upor
andv, (conservation of energy and momentym@nda takes
care of unitg23].

Now, it is clear that, in equilibrium, d/dt)f(v,,t)=0.
This implies thatf(v) cannot have zero$bviously, if, for
somev,, f(v4)=0, one of the two terms in the integrand
above vanishes and the derivative on the left hand side
(LHS) cannot vanish for that, value. As a consequence of
the multiple solutions of Eq21), we are forced to select the
one with no nodes. It is a theorem that the ground state
solution of Schrdinger equations has no nodésee, e.g.,
Ref. [24]). According to the variational equatiai0), this
solution that we are here choosing has a statiohaglue.

V. RECIPROCITY RELATIONS

Standard thermodynamics makes use of derivatives of the
entropy S with respect to both\; and (A;) parametergfor
instance, pressure and volume, respectively the same
way, we are led to investigate analogous propertied i\ ;
anddl/a(A;). It will be seen that Euler’s theoref27] still
holds whithin this new, Fisher context.

Starting from Eq.(14) and after a single integration by
parts, we find

of,
(21f)—

It is to be remarked here that Fisher's information measure
af, L[af\2a
X

corresponds to the expectation value of the kinetic energy of al

Schralinger's equation. This point has been appropriately N N EN
discussed in Ref3]. In a similar vein, an extensive analysis,

within the framework of functional density theory, can also Comparing Eq(13) to Eq. (25 we immediately gather that
be found in[22].

Notice that Eq.(21) has multiple solutions, in contrast al of, M
with the unique solution one obtains when employing Shan- 3_7\i:f dxa_)\i “+; NA [
non’s entropy in place of FIM1]. The question is then,
which solution to choose? Our solutions will, of course, de~yhich, on account of normalization, yields
pend upon the form of the effective potential functidx).

It seems reasonable to assume that the solution leading to the dl
lowest | value is the equilibrium one. The following argu-
ment supports such a conclusion.

Consider thak is a velocity and concentrate our attention .
upon a very simple case of the Boltzmann equati@8]: 1€
space-homogeneous solutiof(®,t) that depend only upon
the velocityv and the tima. Focus attention upon the num-
ber f(v4)dv, of particles in the elementv; of the space of
velocities. This number is decreased by all collisions for
which one of the two pertinent initial velocities belongs to Which is a generalized Fisher-Euler theorg28]. The ther-
dv, [the other velocity ¢,) and the kind of collision may be modynamic counterpart of Eq28) is the derivative of the
arbitraryl. Conversely,f(v,)dv, is increased by all colli- €ntropy with respect to the mean values. We easily find
sions for which one of the final velocities belongsdo;.
Here the other final velocityu;) and the kind of collision 2
may also be arbitrary. In mathematical terms this reads i

] . (25
(26)
(27)

(28)

al N A N

A S 2 Moy, aay @
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ie. dl
P :)\ ,
0 0 HA)

oAy N oN .
as expected. The Lagrange multipliers and mean values are oA HA) - HA)IA)
seen to be conjugate variables, related as is typical, ofs 2

. . . A A
(A;) variables in thermodynamics. HA) :a< Ji __ TN , (37)
N O\ INiON,

It is also clear that

f|Ef|()\1,...,)\M), (31)

since, based on thid mean values that constitute carpri-
ori knowledge, the extremization process rendgra func-
tion of the Legendre multipliers only.

VI. LEGENDRE STRUCTURE

In thermodynamics it is equivalent to have as input infor-

mation either the chemical potential or the number of moles,
the pressure or the volume, etc. This is so because of the
characteristic Legendre structure of thermodynamics. Now,

as our densityf, formally depends upoM +1 Lagrange
multipliers, normalization

f dxfi=1 (32
makesa a function of theM remaining\'’s:
a’=a()\1, ...,)\N). (33)

It is also of importance to stress that, of course, xfeeand
the(A;)’s play reciprocalsymmetrical roles within thermo-
dynamics[29,30. It is thus possible to assume, as initial
conditions, that the input information refers to thé&s and
not to the(A;)’s [29,30. TheM Lagrange multipliers and the

M mean values are then on an equal footing for the purpose

of determiningl.
Introduce now the generalized thermodynamic potentia
(the Legendre transform o)

AnD) = 2, Ni(A),

)\J()\l, ,)\N):I(<A1>, (34)
i.e., the Legendre transform of FIf27]. We have
M
Ny al a(AJ> 3
m—zlm -3 N (a),
(39

where Eq.(30) has been used.
With the latest relation the Legendre structure here de
scribed can be summed up as follows:

)\J:|—21 Ni(A),

m\J

—(A),

J

As a consequence of the last relation we can recastZgj.
in the form

(39

The Legendre-transform structure of thermodynamics is thus
seen to be entirely translated into the Fisher context.

VIl. CONCAVITY OR MIXING PROPERTY

In order to be able to construct a thermodynamics based
Uponl, it is necessary to examine the concavity or convexity
nature ofl [27]. We prove below that is a concave func-
tional [17] of the probability distributiorp. Therefore,| ex-
hibits the desirable mixing property.

Leta,b be two real scalars such that-b=1, p,,p, two
normalized probability distributions, and consider

y=+ap;+iybp,, (39
so that
|g|?=ap;+bp,. (40

We study now the properties of a third probability distribu-
tion
P=|y[*=ap,+bp,, (41)

Yvhose associated Fisher information for translation families
reads(the prime stands for derivative with respectdo

Il,al2

I(P)—fde pr2= fd (42

In order to investigate the convexity question we must find
the relationship relating(P) to al(p,) +bl(p,) [17]. If we

set now

Pp(x)=R(x)exdiS(x)], (43
R,S two real functions inR, we immediately find
(P 4Jd R’Z—fd P(x R,(X)Z =4 R’
- ) X X R( ) E .
(44)
Now, it is easy to see that
dw ! H !
ax ~ W2(Jalpipy+ivb/papy), (45)

so that
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duyl? s 's sincea+b(b;+b,)=1.
x| = WAL@/p) (P +(b/p2)(P2)7],  (46) The RHS of Eq.(50) represents the net probability, after
mixing, of two distinct systems. It should be mentioned here
which implies that the approach can be generalized in the same fashion to a
mixture theorem folN systems. We see thatdisplays the
B dy|? same mixing property as does Boltzmann'’s entropy. The in-
al(py)+bl(py)=4] dx ax (47) equality (50) is a special instance of Fishe'sheorem,
Now, on account of Eq43), it is clear that
al 0 53
—<
e 5 =0 (53
& :R'2+RZS,2:R,2+|I,&|ZS,2, (48)

. predicted in[31] and proved if19].
which leads to

VIIl. CONCLUSIONS

The entire Legendre-transform structure of thermodynam-
ics has been expressed using Fisher information in place of
The integral on the RHS of the preceding equation is clearlyBoltzmann’s entropy. In general, this abstract Legendre
=0, which allows one to assert that structure constitutes an essential ingredient that allows one to

build up a statistical mechanics. Fisher informatloalows

al(py) +bl(py)=I(ap;+bp,); then for such a construction. The desired concavity property
. ] . ) ) S obeyed byl further demonstrates its utility as a statistical
i.e., Fisher information for translation families is indeed amechanics generator.
concave functional of the probability distributions. A gener- i jg becoming increasingly evidefi3—6,10,13,14,19,20
alization of the last equation easily follows. Assurbe  that Fisher information is vital to the fundamental structure
+b,=1 and of physics. In this paper we have shown how the concept
lays the foundation for a thermodynamics, as well. In the
same way that Boltzmann entropy is normally used to define
extrinsic parameters such as temperature, etc., so we can
likewise expect Fisher information to define its own extrinsic

al(pl>+b|(pz>=l<P)+4fdx[lwlzsz]. (49

(50

P2=b1p21+bopas. (51)

Then, Eq.(50) implies

[(ap;+bbipyi+bbypsyy)<al(ps) +bbyl(pyy) +bbyl (p(2§)2’)

parameter$20]. The two sets of parameters will be different
in general. This will be the subject of future publications.
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