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Anomalous diffusion in a running sandpile model
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To explore the character of underlying transport in a sandpile, we have followed the motion of tracer
particles. Moments of the distribution function of the particle positighg(t) —x(0)|")=Dt""("™, are deter-
mined as a function of the elapsed time. The numerical results show that the transport mechanism for distances
less than the sandpile length is superdiffusive with an expon@nt close to 0.75, fon<1.
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I. INTRODUCTION running sandpile. Several momen¢sx(t) —x(0)|"), of the
distribution of the particle radial locations have been deter-
Some of the phenomena observed in plasmas confined bypined as well as their dependence on the elapsed time,
magnetic fields suggest that a broad range of space and tingkx(t) —x(0)|") =Dot""(". Determination of the exponemt
scales play an essential role in the dynamics of the plasma. I important for constructing plasma transport models that
particular, transport of particles and energy induced by turincorporate the multiplicity of time scales involved in trans-
bulence has features that are not explained by local diffusiveort, which is the ultimate aim of this research.
transport models. One possible explanafiby®] is that high- To understand the dynamical mechanism of the particle
temperature magnetically confined plasmas are close to mafansport, we have to look in detail at the properties of the
ginal stability, and their dynamics are governed by self-particle orbits. When an avalanche occurs, particles are car-
organized criticality( SOQ [3]. ried outward. The radial excursion of the particles, or flights,
Results of the ana|ysis of fluctuation data from Severaﬂepends on the radial extent of the avalanche. In the absence
experiments, including tokamaks, stellarators, and reverse@f an avalanche, the particles remain at a fixed radial loca-
field pinch, showed the self-similar character of the electrolion. Sometimes particles get buried in the sand, and the time
static fluctuations with a self-similarity parametet, in the ~ they spend in a given position can be very long. We call
range 0.6 to 0.74. There is also evidence of radial correlathose resting periods trapping times. From the information
tions over distances longer than the correlation length of th€n the particle motion, we can calculate the probability dis-
fluctuations[4]. Such a character of the plasma edge fluctuairibution function(PDF) of both the particle flights and the
tions is consistent with plasma transport by avalanches, aparticle trapping times. Similar transport studies of tracer
though it is not the only possible mechanism that may exJarticles in a rice pile have already been carried[aat for
plain these observations. Further analysis of data is needeti® Oslo rice pilg13]. However, the rice pile dynamics are
in particular the study of radial correlations of the fluctua-quite different from the sandpile models that have been used
tions and turbulent fluxes. in analogy to plasma transport. The main differences are a
Three-dimensional calculations of plasma turbulencedistributed particle source versus a localized one, the number
based on different dynamical mechanisms have shown sonfd particles tumbling at the unstable locations, and a random
of the characteristic SOC behavild,6]. The complexity of ~change of the critical slope in the rice pile. These differences
these calculations and the large amount of time consumed ggrobably account for major differences found in the tracer
them do not yet allow the accumulation of the statisticsParticle transport.
needed for a detailed and systematic study of these proper- In this paper, we have done a numerical analysis of the
ties. However, their results have been consistent with result8DFs, their scaling with the sandpile parameters, and a de-
from simple cellular automata calculations based on the dytermination of their self-similarity parameters. We have
namics of the sandpilE8,7,8). Such models suggest that the found that the particle orbits in a running sandpile system
transport processes may be dominated by anomalous difflpave some peculiar differences when compared to other dy-
sion[9—-11]. Anomalous diffusion has also been shown to benamical systems.
a possible plasma transport mechanism when a mixture of
magnetic islands and stochastic regions are present in the (1) The sandpile has a finite length, and it is nonperi-
plasma volume. If plasma transport has an SOC characteodic. The particle dynamics must incorporate the finite
anomalous diffusion may be present even with unbrokerength scaling.
magnetic surfaces. (2) The PDF of flights has no obvious algebraic tail, and
To explore the character of underlying transport in a sandboundary effects are important. A suitable change of variable
pile, we have followed the motion of tracer particles in ais required to obtain self-similarity.
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In spite of these differences, it is possible to determine the 1000 - -
superdiffusion exponent in terms of the decay index of the
PDFs. 800 ]
Previous calculations of diffusivities in a running sandpile
were based on the renormalization of a Burgerslike fluid
equation[1,8]. They were done in the hydrodynamic limit, 600 ]
the avalanche-overlapping regime. They showed that trans
port had a ballistic character, thatiis= 1. These calculations 200l
corresponded to continuously moving avalanches and did no a
include the effect of trapping time for the particles. The latter
is responsible for the reduction in the value:of 2001
The rest of this paper is organized as follows. In Sec. Il, A
the sandpile algorithm used in the present calculations is 0 = s
0 1 2 3 4 5x10°

described. The results of the tracer particle transport are pre
sented in Sec. lll. We discuss the form of the PDFs of the
trapping time and flights in Sec. IV. Based on these PDFS, F|G. 1. Radial position versus time for a particle in a sandpile
we present in Sec. V an interpretation of the transport resultyith L=1000,N;=3, andZ,,;= 10.

Finally, the conclusions of this paper are given in Sec. VI.

With Ng, it is the amount of “sand” that falls in an over-
turning event. In terms of the physical quantities we associ-
ate with turbulent systems, each cell can be thought of as the

The running sandpile model has been suggested as a paigeation of a local turbulent fluctuatiofeddy). Zq is the
digm for SOC turbulent plasma transport in magnetic conwritical gradient at which fluctuations are unstable and grow,
finement devices. The sandpile model has the instability graand N; is the amount of “gradient” that is transported by a
dients represented by the slope of the sandpile, while thical fluctuation(local eddy-induced transport, for example
turbulent transport is modeled by the local amount of sand'he average sandpile profile is equivalent to the mean tem-
that falls (overturng when the sandpile becomes locally un- perature or density profile, while the total number of sand
stable. A random “rain” of sand grains drives the sandpile.grains in the pile(the total massis the total energy and/or
This drive models the input power/fuel in the confinementparticle content of the device. At any given time, the local
system. The sandpile model allows us to study the dynamicux at a radial position is either zero, if this position is
of the transport independent of both the local instabilitystable, o, if it is unstable. Three-dimensional turbulence
mechanism and the local transport mechanism. Because @fodels have been used to compare with the running sandpile
the relative simplicity of the model, we are also able to domodel. The comparison shows strong similarity with the ava-
very long time calculations and collect reasonably large statanche distribution, power spectrum of fluxes, and subcritical
tistical samples. transport in the limit of low collisional dissipatidrb].

A standard cellular automata algorithfid] is used to To follow particle orbits in the running sandpile, we first
study the dynamics of the driven sandpile. The domain isharacterize the individual particle by its radial position
divided intoL cells, which are evolved in steps. The number=n, wheren is the cell in which the particle is located, and
of sand grains in a cell i, called the height of celt. We  zis its distance from the top of the pile in this cell. We give
take as radial position the valuethat identifies the cell. The each particle, characterized by an inder starting cell po-

Time

crit™

Il. SANDPILE MODEL

local gradient isZ,, the difference betweeh,, andh,, ,
and Z;; is the critical gradient. The sandpile evolution is
governed by the following simple set of rules:

(1) First, sand grains are added to the cells with a prob-

ability py. For each cell, a random numbex@=<1 is
drawn; if p=1—pg, then
ha=h,+1, ()

otherwise, the height,, is not changed.

(2) Next, all the cells are checked for stability against a

simple stability rule and either flagged as staldlg<Z;,
or not,Z,=Z;.

sition, x;, and we locate the particle on the surface of the
sandpile, that is witlg;=0. As the sandpile evolves in time,
the particles move following the rules.

(1) If a grain of sand is dropped at a location where there
is the particlel, z—z+ 1.

(2) If a cell is unstableZ,=Z,;;, and contains the par-
ticle i, then there are two possibilities:

(@) If z>N;—1, thenz;—z—N;. That is, in this case,
the particle lies buried deep in the sandpile and does not
move. Because the grains of sand on top of the particle fall
down the slope, the particle comes closer to the top.

(b) If z<N¢, thenx;—Xx;+1, andz takes a value be-
tween 0 and\;—1 with equal probability. That is, the par-

(3) Finally, the cells are time advanced, with the unstablgliclé IS one of the grains to move to the next cell.

cells overturning and moving their excess “grains” to an-
other cell. That is, iZ,=Z;;, then

hn:hn_Nf

2

Nns+1=hne1+ Ny

An example of a particle moving along a sandpile is
shown in Fig. 1. Note that once the particle reaches the sand-
pile boundary, it is put back in again at the same initial
position.

Figure 1 shows that during some time periods particles
move very fast. However, there are also long waiting time
periods. Looking with more detail to the orbits by expanding
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FIG. 2. Expanded view of a short time period for the particle 1'(1)01 102 103 104 105

evolution shown in Fig. 1.

Time

the time scaléFig. 2), we see that the large excursions out of  FIG. 3. Instantaneous value of (t), for particle tracers ini-
the pile are caused by particle flights of all sizes. When arialized within 10% and 50% of the length of the sandpile. In both
avalanche occurs, particles are carried outward. The radiggses(t) converges to the same valGe=0.74, but the transient
excursion of the particles, or flights, depend on the radiaphase is considerably longer in the first initialization.

extent of the avalanche. In absence of an avalanche, the par- fh This has b q . h hat th |
ticles remain at a fixed radial location. Sometimes particled€W Of them. This has been done In such a way that the tota

get buried in the sand, and the time they spend in a giveH”mber of particles included is about 20 000 for each set of
position can be very long. We will call those resting periodssandp'le parameters. The results are averaged over the par-

trapping times. This is a situation very similar to the onet'ds\f '?] eacz t;pncahtﬁmd OY-GT a:l bunchest. i t
encountered in simple dynamical modgl®,11]. e have defined the particle tracers in two different ways.

In Ref. [13], the concept of particle transit time was in- Q|r1e W"éyfis" by_marrlfin_g pa_rticles tzat a[]e alread_y ig thzj_and-
troduced as the time taken for a grain of sand to go across tHy'¢ and following their trajectory. Another way Is by adding

sandpile. The averaged transit time over all particle trajecto% e tr::tcgrs tcl) trE)e tshandpne as gt[]alr][ drops and LOItIﬁW'Sg thg'r
ries is the equivalent of a particle confinement time, This rajectories. In both cases, as the tracers reach the boundary

is an important time scale to take into account in our transp_f _the sandpile, "aC?fS are adde_d or marked inside. Th?—‘ po-
port studies. sition of the tracers |s_kept growing as if the tracer particle
continues moving outside and beyond the sandpile boundary.
In this way, the number of tracers being followed remains
constant. The slow addition of tracers to the top of the sand-
To investigate the dynamics of particles moving in apile was the right way to solve the confinement problem in
sandpile, we have followed orbits of tracer particles and calthe Oslo sandpile[13]. However, in our case, this ap-
culated the ensemble average of the square of the displacetoach may distort the asymptotic time dependence of
ment as a function of time. This allows the evaluation of ([X(t)—x(0)]%), particularly, when the input particle flux,
Lpg, is very small. The addition of tracers is not a uniform
([x(t)=x(0)]%)=Dgt*". (3)  process and may cause a modification of the equilibrium
rofile and an overall drift of the parameters. Because there
fe also transient effects at short times, in the case of the

Ill. ANOMALOUS DIFFUSION

Here, the angular brackets indicate ensemble averaged ovg
the particle tracers. From E¢B) we can, in principle, deter- 5 qqition of tracers it is difficult to determine a priori the

mine whether the diffusion is normak=0.5, or anomalous,  roper time range in which to make the determination of the
v+ 0.5. The calculations are done for a running sandpile W'ﬂbxponentv.

N¢=3, andZ=10. Four sandpile lengths have been con- another important effect for the determination ofs the
sidered L =100, 316, 1000, and 5000. We have also varieditia| |ocalization of the tracer particles. If the particle trac-
the probabilitypy in the range 210" to 10" “. . ers are initialized very close to the top of the sandpile, let us
For the particle transport studies, one of the main probsay in the upper 10%, there is a very strong transient in the
lems is understanding the impact of the particle initial con-cgjcylation ofy, and it takes a long timélonger than the
ditions and how to average them. In the sandpile dynamicgyeraged particle confinement tite relax to its asymptotic

there are very few degrees of freedom. For a given particle,g|ye, This effect is shown in Fig. 3, where the instantaneous
there is its initial position and two values of the velocity, 0 or 5jye of » (1), calculated as

1. If a few particles are initialized close together, they can be

swept away by the same avalanches, and their motion can be R d In{[x(t)—x(0)1?)

correlated for quite a long time. To avoid these correlations, v(t)= dint ’ )
only a few particles can be initialized simultaneously. We

have done the calculations by successively following manys plotted for initialization within 10% and 50% of the length
bunches of particles, with each bunch consisting of only af the sandpile. In this figurey(t) converges for both ini-
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FIG. 4. Ensemble average of the square of the displacement as a FIG. 6. Calculated value of(n) as a function oh for a sand-
function of time for sandpiles of different lengths wittpy=1.0. pile of L=1000 and p,=0.001. The figure shows the two
asymptotic regions for.
tializations to the same value~0.74, but the transient phase
is considerably longer in the first case. also calculated the exponenfor the case of the variance in
We found that the best way of initializing the particle the radial position of the particleg[x(t) —(x(t))]?). The
tracers for the transport studies is to use a few marked tracefgsults clearly show an increasing trend, in the logarithmic
randomly initialized over the upper 50% of the sandpile.scale, for ([x(t)—x(0)]?); the trend is less clear for
This allows the determination of the asymptotic time behav{[X(t) —(x(t))1?).
ior of ([ x(t) —x(0)]?) over at least two decades of time. We A reason for the slow increase of the exponentith the
checked afterward that the same values for the exponent af@ndpile size is that the probability distribution function of
obtained when we drop particles in the sandpile. In determinthe particle positions at different time(x,t), has different
ing the diffusivity exponent, we follow particles for distances similarity scaling for largex and smallx. That means that a
that are long compared with the cell size, but in average, néimple scaling of the probability distribution of the form
longer than a few times the sandpile length. The results oP(x,t)=t"" F(x/t") is not possible for all scales dfwith
calculating ([x(t) —x(0)]?) for different sandpile lengths the samew. In particular, for the case of the sandpile,
and keepingLp,=1.0 are shown in Fig. 4. The nearly P(x,t)=0 forx>L. This finite length effect breaks the self-
straight line of the results in the log-log plot indicates thatsimilarity of P. To better determine, we have calculated
the relation is essentially a power law. We have determine@ther moments of the distribution functiofi4], that is,
the exponentr by averaging the function(t) over t (|x(t) —x(0)|") for both then integer greater than 1 and the
<27,. For all the cases we have considered, the values of N fractional smaller than 1. In this case, we have
obtained by this method are summarized in Fig. 5. We have

(Ix() =x(0)[") =Dt ™, 5
2.0 . ———
and we can make a determination:igh). In Fig. 6, there is
—o— (IX(t) - X)) ] an example of the calculated(n) for a sandpile ofL
18 u— (X(1) - (XY - =1000 andpy=0.001. The figure shows that there are two

asymptotic regions, the low and highn regions. They pro-

] vide information on two regions of the probability distribu-

. tion function, for lowx and highx, respectively. Note that in

] the case of the sandpile(n) for high nis smaller tharv(n)

for low n. This situation is opposite the situation called

. strong anomalous diffusion in Refl4]. For largen, v(n)

tends to 0.5. A possible interpretation of these results fol-

] lows. For a particle moving in the sandpile with position

1.2 1 <L, the flight length may be the same size as the particle

] position. Therefore, this particle does not yet know that there

is a limit in the size of a flight. When summing over flights,

the distribution of sums is possibly close to a stable Levy

distribution. However, a particle that has moved far away, a

distance such that>L, knows that the flights are smaller
FIG. 5. Anomalous diffusion exponent as a function of the thanL. The particles have a distribution that is truncated at a

length of the sandpild,, for different values ofpy. finite length. When partial sums of flights are done to calcu-

1.0 ' ' —
100° 1000 10000

L
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FIG. 7. Values ofy(n) for all cases considered. Fox 1, the
averaged value isy(n)=0.74+0.05 and »(n)=0.56+0.07 for
n>1.

FIG. 8. PDF of transit times for four different sandpile lengths.
The PDFs have been rescaled By= L% (poL) 1%

dependence is close to the expecteerd1.35+ 0.1 from the
late the particle motion, the particle positions no longer havgynomalous diffusion exponent. The connection between the
a Levylike distribution. Because of the truncation, the vari-|ocal and global dependences will be further discussed in
ance of the flights is finite, and the successive sums are dissec, V. The whole distribution of particle transit times can
tributed close to a Gaussida5]. Therefore, then>1 mo-  pe rescaled by,=L%(p,L)~% and a universal function
ments that sample these-L particle positions should scale s obtained. The rescaled PDFs are shown in Fig. 8.
with an index ofy~0.5. Note that thea>1 regime is only
the result of the way we treat particles when they reach the
sandpile boundary. For low the value ofv is larger than IV. PROBABILITY DISTRIBUTION FUNCTION
0.5. This is the relevant regime for the sandpile calculation OF FLIGHTS AND TRAPPING TIME
because it describes the transport process within the sandpile, |, 5 given particle orbit, each time period that a particle
that is forx<L. The values oi(n) for all cases considered gpends at a fixed location is called trapping time. We call a

are plotted in Fig. 7. Fon<1, the averaged value i&n)  flight the radial length traveled by a particle between trap-
=0.74+0.05, andv(n) =0.56+0.07 forn>1. The error bars - ying times. We can calculate the PDF of trapping times,
correspond to one standard deviation of the values plotted (1), and PDF of flightsW(x), by following many particle
Fig. 7. Therefore, transport is superdiffusive becau@e)  orhits. One of the problems in this calculation is the finite
>0.5, but does not reach to ballistic levet=1. Forn<1,  gjze of the sandpile. To have an understanding of how finite
there is practically no difference between the expone(t  sjze affects the PDF, we have done calculations for different
obtained by fitting the momentgx(t) ~x(0)|") and the  sandpile lengths. Then, a way to take into account the finite-
ones obtained from fitting|x(t) —(x(t))|"). size scaling of the PDF is to rescale it. Let us assume that

We can also look at the particle transport problem from ap(t, 1) is the PDF for either the trapping times and/or the
global perspective. Following Refl12], we calculate the

PDF of the particle transit time, that is, the time taken for a
tracer particle to move across the whole sandpile. The PDF

of the transit time has a clear algebraic tail, as can be seen ir
Fig. 8, with a decay indeg+=2.15+0.13, very close to the

value obtained for the Oslo sandpjtE2]. To extract the size
dependence of the confinement time is not straightforward. 8
The reason is that there is &ndependence through the size |3
and another one through the flux of particles in the sandpile, [<
Lpo. For a purely diffusion process, the confinement time &
scales asVl/S, whereM is the total mass of the pileyl 10 3
~Z,L?/2, andSthe number of particles falling in the pile by
unit of time, S=poL. That is, 7;~Z,L%/(2poL)=L?/D,
whereD=2pyL/Z, can be interpreted as the averaged dif-
fusion coefficient an&, is the average gradient of the sand- 10° S ” = .
pile in steady state. Based on that, we can fit the calculated 10 L 10 10
confinement time as a power bfand (poL). The result of Confinement Time

the fit, Fig. 9, givesr.=6.8.1%(p,L)*%. The power depen- FIG. 9. Dependence of the mean value of the transit time, the
dence ofL is 1.2 instead of 2 in case of diffusion. This particle confinement times,, on T.

108 T T

105 5
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FIG. 10. PDF of trapping time for different sandpile lengths. FIG. 11. Rescaled PDF of trapping time to incorporate the finite
size scaling.

flights; we look for a functiory, such as

A similar rescaling exercise can be carried out with the
6) PDF of the flights lengthsW(x). In this case, the depen-
dence on the sandpile length is even more critical. For the

. trapping time, we can get long trapping time values by run-
Furthermore, we can take into account the dependende onning the sandpile for very long times, even if the length of

P(t,L)=L"“g X

and onpg by using the rescaling transformation: the sandpile is short. The situation is different for the particle
flights; the flight length cannot be larger thanFurthermore,
_ o —ap —q for flights close to the sandpile length, boundary effects are
= p L
P(t.L.po)=p, °L F( ngLaL> ' ™ important. For the samie scan of Fig. 8, Fig. 13 shows that

the flight's PDF has a dependence on the sandpile size. How-

The calculated PDFs of the trapping time(t), are ever, there is observable dependencepgn Therefore, by
shown in Fig. 10. The calculation is done for a running sandusing the rescaling of Eq7) with @ =0.5 anda,~0, we
pile with the same parameters as the previous calculationgptain the invariant functiof, for the flights. This function
that isN;=3, andZ.;= 10. Four sandpile lengths have beenis shown in Fig. 14. Although there is clear superposition of
consideredl =100, 316, 1000, and 5000. In varyihg we  PDFs for all cases considered, the functigndoes not have
have first maintained a constant particle flux, thatlig, an obvious region of algebraic tail. Therefore, the flight
=1.0. The figure shows a clear change in the PDF with lengths are not the right variable to describe the self-
Using Eq.(6), the PDFs have been rescaled. From the ressimilarity properties of the particle trajectories if they exist.
caling, we concluded thai, ~0.4. The rescaled PDFs based ~ The character of the plot in Fig. 14 changes by doing a
on this value fora; are shown in Fig. 11. This figure indi-
cates that a universal function gf may exist. T T T

We have also calculated the PDF for different values of - eV
po in the range 0.0002 po=<0.01 and considered a rescaling
as given by Eq(7). The result of rescaling the PDF of trap-
ping times is shown in Fig. 12. The scaling exponents ob-
tained area; ~—0.8 anda,~ —1.2. In this case, the value
of a is different froma, because, in the previous calcula-
tion, when we changetd we were also changing, to keep
Lpo=1.0. From this condition, we have the relatian
=a — ap, which is verified by the numerical values. Again,
from Fig. 12 we see that a universal functiBpmay exist.

43 - * L= 1000 pg=0.0002
« L =100 py = 0.01
+ L =100 py = 0.005
© s L =100 py = 0.002
| vL=316p, = 0.00316
L oL =316 py=0.00158

10~

P/(L08p2)2)

. oL =316 py = 0.000633 %
We expect that for values ¢fin the range ¥t, the PDF 107, Lo 1ooopgo - 0.001 =
. . . . E - = . el
of trapping times has an algebraic tail, L L= 1000 py = 0.0005 ]
1 oF L = 5000 pg = 0.0002 E
t EP t,L’ [ 8 10™ | - i el el conl el i
W(O=P(LL,Po) tht ® 103 102 107" 10° 10' 102 10° 10* 10°

TLO.8p1.2
Figure 12 also shows that the PDF has such asymptotic 0
algebraic dependence that it is well defined over three de- FIG. 12. Rescaled PDF of trapping time to incorporate the finite
cades. The value of the decay exponenBis 1.75+0.2. length scaling.
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FIG. 13. PDF of flight lengths for different sandpile lengths. (x+xq)LOS
simple coordinate transformationé=x+x,, where Xg FIG. 15. Rescaled PDF of the shifted flight lengths showing the

=0.5L“.. The new graph has been represented in Fig. 15algebraic tail.

From this figure and forkg<é<xy+L,

fractional kinetic equation$16,17]. Equations(1) and (2)

can be considered as the equations of motion of a dynamical
stem that possesses chaotic evolution due to its nonlinear
operties and randomized driving forces. The scaling prop-
rties of the observable data can be characterized by the PDF
% trapping time,y(t), with the asymptotic form given by
Eq. (8), and the PDF of flight lengthsW(x), with the
asymptotic form given by Eq9). An adequate framework
"Rr the interpretation of the dynamics can be based either on
Slhe fractional kinetic$16,17) or on the continuous time ran-

W(€)ox 1P,

and there is a clear algebraic region over at least one decai
with a decay index3,=2.1+0.1. For the largest values &f

the slope probably changes due to the edge boundary effe
The variable ¢ is a good variable to express the self-
similarity properties of the particle dynamics in a sandpile.
This problem has not appeared in the transport calculatio
because we always consider differences in coordinate po

tions. In this casex and¢ are equivalent. om walk (CTRW) method[18]. The latter operates with

IenV\{[Eshsr:/g t?:i\so iﬁximgegbtze ;Orir\i?]t'Ogrt?ciwt?;r;cf:ggrh wo basic probability functions: the probability density
9 ppIng 9ag partic Jec y¥V(x), to make a step of the lengthe (x,x+dx), and the
For all cases considered, only a very weak anticorrelation o o ) : .
robability densityi(t), to have time intervat e (t,t+ dt)
about 2% has been found. Therefore, at lowest order, we ¢ netween two consequent steps. Batx) and y(t) are nor-
assume that flights and trapping times are uncorrelated. . €q °ps. BY . .
malized to one. It is convenient to introduce their respective

Fourier and Laplace transforms:
V. INTERPRETATION OF THE NUMERICAL RESULTS

In this section, we would like to demonstrate that the W(Q) = * () d
numerical results of Secs. Ill and IV can be interpreted using (@=57 ] &Woodx
10! —— . T - E . (10
: (u)= f (e “dt.
0
109
We may interpret the functiong(t) andW(x) as PDFs for
10-1 waiting timet of the moving sand particle and lengtlof the
2 particle flight between two consequent waiting periods. The
T ) waiting time used in the CTRW theory is the same as the
107 trapping time of a particle defined in Sec. Ill.
In the CTRW theory, a probability densitlp(x,t), to find
10-3 a particle at the positior at time instant is introduced. This
function P(x,t) satisfies the equation
1074 . L : . 1
107! 107 10° 10 [1=H(WW(@]P(q,u)= - [1= (W], (11)

Flight Length/L%®

FIG. 14. Rescaled PDF of flight lengths to incorporate the finitewhere P(q,u) is the Fourier and Laplace transform of
size scaling. P(x,1),
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1 (= o )
P(q,u)= EJO d te““ﬁmdx d’P(x,t). (12

An equation similar to Eq(11) and based on the CTRW 1072
was used in Refl12] to obtain a distribution of the transit
time for the Oslo sandpile, with tracers that may be moving
from the moment of their insertion. There are several pos-q 158}
sible solutions of Eq(11) that depend on the original dy-
namical model, on the boundary and initial conditions, and

on other properties relevant to the dynamic features of the

model. Here we consider a simplified version of ELl) by
taking the asymptotic forms of the PDRg&t) and W(x)
when t—o and x—oo independently. In the transformed
variables, this corresponds to the limit~0 andq—0. The
corresponding form of the distribution functions is

Y(u)=1+BuU”,
(13
W(q)=1—A|q|*.

Here A andB are constants, and the exponeatand 3 are
restricted to be within some intervaJ&] and[B], respec-

tively. These intervals will not be specified here. For more

details see Ref.11]. Note that here the limik—co implies
x>1, butx<<L because of the finite size of the sandpile.
The fractional valuesr and 8 and the corresponding frac-

tional powers in Eq(13) express the singular character and

self-similarity of the dynamical process considered here. |
the approximation given by Eq13), the kinetic equation,
Eqg. (11), can be rewritten as
(Alg|“=BU#)P(q,u)=Buf1, (14

where we have neglected the prodigi®u?. We can use
Eq. (14) to directly calculate moments of the PDF of particle
positions,

(IX|)=Ct;, (t—) (15
where C=B/A, and the angular bracké} indicates space
averaged over the PDF, that is

<xp>=f dx XPP(x,t). (16
Assuming self-similarity of the PDF,P(x,t), P(x,t)
=t~ "F(x/t"), we can write
<X2n>~t2n3/a=t”‘n. (17)
Here, the exponent is defined as
u=2pla. (19

Equations(17) and(18) describe the self-similarity property
of P(x,t). The situation can be more complicafédf] when
the self-similarity of the core part &?(x,t) is different from
the tail self-similarity. In this case, another expongninay
be needed to describe tlme<1 moments, with a crossover
between the two regimes nea+ 1, just as it is observed in
Fig. 6.

Let us rewrite the evolution equation for the PDF of Eq.
(14) in the form of the fractional kinetic equatidi6,17

n

1074 &

1075 . . )
1 10 100 1000
X

10000

FIG. 16. PDFP(x,t), of the particle tracers positions in a sand-
pile at severak. The calculation is for a sandpile with= 1000,
Nf:3, andZCm: 10

aﬁP(x,t)_ IP(X,1) t=F
ot 7 o] +F(1—ﬁ)

o(x), (t>0),

(19

where the second term in the right-hand side of this equation
is a source term. To compare the results of the theory to the
simulation, let us transform the asymptotic form of the PDFs
as given by Eq.(13) in the previous(x,t) coordinates. It
follows from Eq.(10) and the asymptotic forms adopted in
Eq. (13) that

W(X)~A/|x|1Te, y(t)~BItEHA, (20)
These asymptotic forms for the two PDFs can be compared
to Egs.(8) and(9). This comparison gives

By=1+a, Bi=1+p8 (21
or after substitution of E¢(21) in Eq. (18),
m=2(B—DI(Bx—1). (22)

For the particular values of the decay indices obtained in the
numerical calculationsB;=1.75+0.2 (Fig. 8 and 8,=2.1
+0.1 (Fig. 13, we can calculate the exponemtand obtain
u=1.36+0.11. This value is in good agreement with value
u=2v~1.48+0.1 obtained by using the averaged value of
the exponenw from Fig. 7 withn<<1.

In Fig. 16, we have plotted the PDP(x,t), as a function
of x for several values of. From this figure, it follows that
P(x,t) behaves as a power over almost all of interval {0,
with a strong change of the slope just near the boundary
=L. We can assume that the sharp increase in the slope in
the small intervalAx is caused by a boundary effect. To
avoid the influence of the boundary in evaluating the trans-
port exponent, one can consider moments$¢x,t) of the
order n<1. In this case, small values of give the main
contribution to the momentg|x|"), while the contributions
of large values ofx are suppressed. In fact, this approach
removes some of the difficulties found in the interpretation
of numerical calculations for a sandpile of finite length.
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From the rescaling of the trapping time, we have obtainegort exponent, we have calculated several moments,
the characteristic time scalg =L%%p,L) "12 and from the  (|x(t)—x(0)|"), of the distribution of the particle radial
flights we have obtained the length scale=L%% Using and also their dependence on the elapsed time,
these time and length scales in Efj7), we obtain a scaling  (|x(t) —x(0)|")=Dyt""(W. The use of moments with<1
for the global confinement time, r.~T,(L/X;)%* has been particularly useful in taking into account the finite
~LY¥(poL)12 This scaling is very close to the empirical length effect of the sandpile.
one obtained in Sec. Ill by fitting the calculated values af The numerical calculations have led to a value of the

Thus, we obtain the transport exponept, in Eq. (18)  transport exponenty(n)=0.74+0.05. This value is consis-
through the observable valugs and ;. It is worthwhile to  tent with the determination of the transport exponent based
mention that some models impose additional connections ben a theoretical interpretation of the transport using either
tween exponents and B, as occurred in the sticky islands fractional kinetics or the continuous time random walk
hierarchy of some Hamiltonian map$1,19. method.
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