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Relativistic plasma viscosity of the Burnett kind
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Hydrodynamic equations to describe relativistic and ultrarelativistic plasma dynamics were obtained by
Dzhavakhishvili and Tsintsadze@Sov. Phys. JETP37, 666 ~1973!# using the Chapman and Enskog scheme to
solve the relativistic kinetic equations for the different plasma species. This approach leads to a representation
of the particle viscosities in the Navier-Stokes form and, therefore, some relevant physical processes, such as
the Burnett type of particle viscosity, cannot be properly dealt with in this scheme. In this paper we employ the
extended Grad method to derive hydrodynamic equations which include ultrarelativistic viscosities of the
Burnett type, i.e., viscosities that depend not only on derivatives of the particle macroscopic velocities but also
on derivatives of particle heat fluxes.@S1063-651X~99!04010-6#

PACS number~s!: 52.60.1h, 52.25.Fi, 52.30.2q
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I. INTRODUCTION

The hydrodynamic description of plasma dynamics h
some advantages in comparison with the kinetic one. In p
ticular, the magnetohydrodynamic~MHD! equations are
more appropriate to follow the dynamics of macrosco
plasma quantities, such as the plasma density, velocity,
temperature in complicated physical systems. The useful
of the hydrodynamic approach has been put into evidenc
many occasions; for instance, the hydrodynamic equation
Braginskii@1# have been widely employed for laboratory a
space plasmas for a long time. However, because the Bra
skii equations are valid only for nonrelativistic plasma
there are cosmic plasmas which cannot be described by t
equations, e.g., electron-positron plasmas@2,3#, dense cos-
mic rays, and strong-current relativistic electron beams.
these plasmas, the particle velocitiesVa ~‘‘ a’’ is the particle
kind! are of the order of the speed of lightc and the particle
temperaturesTa are about the electron or positron rest en
gies«e05Mec

2, i.e., Ta>«e0 . Hydrodynamic equations fo
relativistic and ultrarelativistic plasmas were obtained in R
@4#; the relativistic kinetic equations for the different plasm
species were solved by means of the Chapman and En
procedure@5#, also used by Braginskii@1#. In this scheme,
the particle distribution function is expanded in a power
ries on the small parameters of the problem such as
Knudsen number Kna5la /Lp and 1/nabtch. Here,la is the
mean free path of plasma species ‘‘a,’’ Lp is the character-
istic length of the macroscopic plasma quantity profiles,nab
is the collision frequency of species ‘‘a’’ and ‘‘ b,’’ and tch is
the characteristic time for variation of macroscopic plas
quantities.

The MHD equations for ultrarelativistic plasmas deriv
by Dzhavakhishvili and Tsintsadze@4# take into account in-
teresting effects which are absent in the nonrelativistic eq
tions of Braginskii@1#. We mention, for example, the depe
dence of particle heat fluxes not only on temperat
gradients but also on electric fields, particle density gra
ents, and macroscopic velocities. So far, these effects h
not been fully explored. Nevertheless, there are problems
PRE 601063-651X/99/60~4!/4754~6!/$15.00
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plasma dynamics which cannot be properly dealt with
Braginskii @1# and Dzhavakhishvili and Tsintsadze@4# equa-
tions because these equations keep the viscosity in
Navier-Stokes approximation, which contains only deriv
tives of the macroscopic plasma velocity.

There are some important physical processes on which
would like to focus our attention, namely, the so-called th
mostress gas@6# and plasma@7# flows connected with the
dependence of the gas or plasma viscosities on the par
heat fluxes~the viscosities of the Burnett kind@8#!. The mag-
nitude of these flows is of the level of the so-called dr
velocities Va

dr'ravTa /Lp , where ra5vTa /vca
n is the par-

ticle Larmour radius,vTa5A2Ta /Ma is the particle thermal
velocity, vca

n 5eaB/Mac is the nonrelativistic particle cyclo
tron frequency,ea andMa are the particle charge and mas
respectively, andB is the magnetic field. Usually, it is as
sumed that parameterra /Lp is small, i.e.,ra /Lp!1, so that
the drift flows are small,Va

dr!vTa . However, under some
conditions, these slow flows can be the only flows in bo
collisional and weakly collisional plasmas, as we show in
sequel. These plasma flows cannot be investigated on
basis of the Navier-Stokes equations. In the absence of
ternal forces, momentum sources, and boundary flows
confined plasmas, all plasma flows damp due to viscosity
the Navier-Stokes scheme. On the contrary, under the s
conditions, steady plasma flows induced by particle tempe
ture gradients are allowed in the Burnett equations. For c
lisional plasmas, this kind of nonrelativistic plasma viscos
was obtained in Refs.@9# and @10# and is widely used to
investigate flows in plasmas@7,11#. The so-called residua
plasma rotation in tokamaks is connected with the dep
dence of the ion viscosity on derivatives of the ion heat flu
both in collisional @11,12# and weakly collisional plas-
mas@13#. There exists also a kind of plasma drift instabilit
with the frequency v satisfying the inequalityVa

dr/Lp

'ravTa /Lp
2,v!vca

n , which should be investigated on th
basis of Burnett transport equations@9#. Consequently, it
may also be important to obtain the Burnett kind of plas
viscosities for relativistic and, specifically, ultrarelativist
plasmas.
4754 © 1999 The American Physical Society



a
er
-

fi-
bu

D
a
n
of
n

as

lly
o

o-
h
h
on

o
th

all

m

-

efi-

ions
ec-

PRE 60 4755RELATIVISTIC PLASMA VISCOSITY OF THE BURNETT KIND
In the Chapman and Enskog scheme, employing
expansion of the particle distribution function in a pow
series on the Knudsen number Kna , which was used to ob
tain the plasma viscosities in Refs.@1# and @4#, it is very
cumbersome to get the Burnett kind of viscosity. This dif
culty is connected with the necessity to expand the distri
tion function up to the second order on the parameters Kna or
ra /Lp . For this reason, in Refs.@9#, @10#, and@12# the Grad
method@14# was employed to obtain more complete MH
equations. In this paper, we include ultrarelativistic plasm
characterized byTa>«e0 , under the condition that the mea
particle velocitiesVa are much smaller than the speed
light c, i.e., Va,c. In the extended Grad approximatio
@9,10,12#, all moments of the distribution function, such
the particle densityna , velocityVa , temperatureTa , viscos-
ity pa , heat fluxqa , and so on, are considered to be equa
important. This is in contrast with the Chapman and Ensk
scheme, wherena ,Va ,Ta are considered as the main m
ments and all other moments are functions of them. T
Grad method substantially simplifies the calculations. T
resulting expressions coincide with the transport equati
obtained by Dzhavakhishvili and Tsintsadze@4#, except for
the plasma viscosity. As an example, we find the viscosity
rarefied electron-positron plasmas in the case when
electron-positron inelastic cross sections are much sm
than the elastic collision cross section.

II. BASIC EQUATIONS

As usual, to obtain the MHD equations we proceed fro
the relativistic plasma kinetic equations@4,15# for the par-
ticle distribution functionsf a(t,r ,pa) in the presence of elec
tric and magnetic fieldsE andB, respectively,
n

-

s

g

e
e
s
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] f a

]t
1

c2

«a
pa

] f a

]r
1eaH E1

c

«a
@pa3B#J ] f a

]pa

5(
b

Cab~ f a , f b!, ~1!

where «a5c(pa
21Ma

2c2)1/2 and Cab( f a , f b) is a collision
term, which will be defined below. As in Ref.@4#, in the rest
frame of a given plasma component, we introduce the d
nitions

E f adpa5na , c2E pa

«a
f adpa50, G~za!5

K3~za!

K2~za!
,

~2!

E ~«a2Mac2! f adpa5na@Mac2~Ga21!2Ta#,

za5
Mac2

Ta
,

whereKn(za) is the Macdonald function of thenth order.
Multiplying Eq. ~1! by 1, pa , and «a2Mac2, and inte-

grating over the momentum space, we obtain the equat
of continuity, momentum, and the thermal balance, resp
tively, for the macroscopic particle densityna , mean particle
velocity Va , and temperatureTa ,

]

]t
~gana!1“•~ganaVa!50, ~3!
gana

da

dt
~gaMaGaVai!52

]Pa

]xi
2

]

]xk
~saimsaknpamn!1ganaeaH E1

1

c
@Va3B#J

i

1saikRak1
1

c2 gaVaiQa2
1

c2

]

]t FgasaikVampakm1gaS saik1
1

c2 gaVaiVakDqakG
2

1

c2

]

]xk
@ga~saimVak1sakmVai!qam#, ~4!

na

da

dt
~Mac2Ga2Ta!2Ta

dana

dt
52

]

]xk
~ga

21sakmqam!2saimsaknpamn

]Vai

]xk
1ga

21Qa2
1

c2

]

]t
~qa•Va!

2
1

c2 FgasaikVampakm1gaS saik1
1

c2 gaVaiVakDqakG ]Vai

]t

2
1

c2 ga~saimVak1sakmVai!qam

]Vai

]xk
. ~5!
,

Here,

saik5d ik1~ga21!
VaiVak

Va
2 , ga5S 12

Va
2

c2 D 21/2

,

da

dt
5

]

]t
1Va•“,

Pa5naTa is the particle pressure,paik is the viscous tensor
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qa is the heat flux, andRa andQa are the friction force and
the collisional heat release, respectively. These quantities
defined by the expressions@4#

Pa5
c2

3 E pa
2

«a
f adpa ,

paik5c2E 1

«a
S paipak2

pa
2

3
d ikD f adpa ,

~6!

qa5c2E paf adpa ,

Ra5E paCadpa , Qa5~«a2Mac2!Cadpa .

In comparison with Ref.@4#, we have corrected some mis
prints in Eq.~5!, namely the parameterga appears correctly
with power21 in the first and third terms on the right-han
side of Eq.~5!.
e

la
re

III. ULTRARELATIVISITC PLASMA

As we confine ourselves to the ultrarelativistic case,za

!1 andVa,c, in the reference frame, where the mean v
locity of the particle kind ‘‘a’’ is equal to 0, the equilibrium
distribution functions can be chosen in the form@4,15#

f a
~0!5

na

8p S c

Ta
D 3

expS 2
pc

Ta
D ,

~7!

f b
~0!5

nb

8p S c

Tb
D 3

expH 2
1

Tb
@pc2p•~Vb2Va!#J .

In the following, we assume that the quasineutrality con
tion na'nb5n0 is fulfilled and that the particle temperature
are approximately equal,Ta'Tb5T0 . In this reference
frame, the kinetic equation~1! can be approximately written
as @4#
(
b

Cab~ f a , f b!2
cMa*

p
@p3vca#

] f a

]p
5

daf a

dt
1

c

p
p

] f a

]r
1S eaE* 2

p

c

daVa

dt D ] f a

]p
2

]Vai

]xk
pk

] f a

]pi
, ~8!
s
r
tain
ind

oxi-

n

e

ies,

l-
where

vca5
eaB

cMa*
, E* 5E1

1

c
@Va3B#, Ma* 5

4T0

c2 @Ma .

In both the Chapman and Enskog@5# and Grad @14#
schemes, the distribution function is supposed to be clos
a Maxwellian,

f a5 f a
~0!~11Fa!, Fa!1. ~9!

According to the extended Grad scheme, we write

Fa5Fa01piFai1~pipk2 1
3 p2d ik!Faik1¯ . ~10!

Here, Fa0 is the scalar part, which can depend on sca
moments of the distribution function butn0 ,T0 ;Fai is the
vector part depending on vector moments exceptVa ;Faik is
to

r

the tensor part depending onpaik and other tensor moment
of the second rank. The scalar partFa0 and the highest-orde
tensor moments are not used in this paper. Thus, we ob
equations for tensor moments of the second rank. We rem
the reader that it is appropriate to substitute the zero appr
mation distribution function Eq.~7! in the right-hand side of
Eq. ~8! to find equations for the moments of the distributio
function in the Chapman and Enskog scheme@5#. In the Grad
scheme@9,14#, one uses the distribution function Eq.~9! to
substitute both parts of Eq.~8!. The small parameters that w
consider are the Knudsen number Kna and the ratio of the
particle Larmour radiusra to the characteristic lengthLp of
the spatial variation of the macroscopic plasma quantit
ra /Lp .

To find the moments of the distribution function, we mu
tiply Eq. ~8! by a proper functionX of the momentump and
then integrate over the momentum space,
(
b

^XCab~ f a , f b!&1cMa* K Fp

p
3vcaG ]X

]p L
5

da

dt
^X&2 K daX

dt L 1c
]

]r K p

p
XL 2cK p

p

]

]r
XL 1 K XS p

cp

daVa

dt
1“3VaD L

2 K H eaE* 2
p

c

daVa

dt
2~p3“ !VaJ ]X

]PL , ~11!
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where ^X&5* f aX dp and X is the proper scalar, vector, o
tensor function of the momentump.

IV. PARTICLE VISCOSITIES

According to Refs.@4#, @9#, @10#, and@12#, we can write

Faik5(
l 50

`

aaik
~ l ! Ll

~5!~ya!, ya5
pc

T0
, ~12!

where Ll
(5)(ya) are the Sonine-Laguerre polynomials, a

keep only two terms in the expansion in Eq.~10!. The errors
in the transport coefficients due to this approximation are
larger than a few percent of the exact values, and taking
t
to

account three or more terms in Eq.~10! greatly increases the
algebra without substantially improving the accuracy. Us
the definitions given by Eq.~6!, we obtain

aaik
~0!5

c2

8n0T0
3 paik , aaik

~1!5
c2

8n0T0
3 paik* . ~13!

As in Refs.@9#, @10#, and@12#, we introduce the tensorpaik*
in Eq. ~13!, which is defined by the relationpaik*
5(c/6)*@paipak2(pa

2/3)d ik#L1
(5)(ya) f adpa /pa . Integrating

Eq. ~11! with the weightsX5(pipk2p2d ik/3)L0
(5)(ya) and

X5(pipk2p2d ik/3)L1
(5)(ya), we obtain the equations for th

particle viscositypaik and its analogpaik* ,
4vcaŝpaik1
c2

T0
(

b
E ~pipk2 1

3 p2d ik!L0
~5!~ya!Cab~ f a , f b!dpa54n0T0Waik

~1! ~14!

and

4vcaŝpaik* 1
c2

6T0
(

b
E ~pipk2 1

3 p2d ik!L1
~5!~ya!Cab~ f a , f b!dpa5n0T0Waik

~2! , ~15!
rre

f.
d
m

n

-
r-

o

respectively. Here,

Waik
~1!5^“•Va& ik1

1

4n0T0
2 ^“•@T0~2qa2qa* !#& ik , ~16!

Waik
~2!5

1

n0T0
2 ^“•@T0~2qa

* 2qa!#& ik

1
1

3n0T0
2 ^“T0•~2qa2qa* !& ik , ~17!

^A•B& ik5AiBk1AkBi2
2
3 d ikA•B,

ŝp ik5htetlm~p imdkl1pkmd il!, ht5
Bt

B
. ~18!

The momentqa* is an analog of the heat fluxqa , which is
defined below~Sec. V! and Bt is the t component of the
magnetic fieldB.

For the case when both kinds of particles ‘‘a’’ and ‘‘ b’’
are ultrarelativistic, the integrals in Eqs.~14! and~15! can be
transformed to the form

(
b
E X~pa!Cab~ f a , f b!dpa

5(
b

3nanab

4p E dyaX~ya!exp~2ya!

3H d ik

]2Fa~ya!

]yai]yak
2

yak

ya

]Fa~ya!

]yak
J . ~19!
Using the orthogonality property of the Sonine-Lague
polynomials@16#

E
0

`

yke2yLm
k ~y!Ln

k~y!dy5
~m1k!!

m!
dmn ,

we find from Eqs.~14!, ~15!, and~19!

vcaŝpaik23napaik5PaWaik
~1! , ~20!

4vcaŝpaik* 218napaik* 5PaWaik
~2! , ~21!

where

nab5
pea

2eb
2Ln0c

3T0
2 , na[naa , vca5

eaBc

4T0
. ~22!

L5 ln (bmax /bmin ) is the Coulomb logarithm defined in Re
@4#. Here,bmax andbmin are the characteristic maximal an
minimal collision parameters, respectively. The maximu
impact parameterbmax for ultrarelativistic plasmas is chose
to be the Debye screening radiusr D5(T0/4pn0ea

2)1/2 with
the factorea

2/hc51/137, i.e.,bmax5rDea
2/hc @17#. The lower

impact parameterbmin is equal tobmin 5ea
2/2T0 , i.e., the

value at which a deviation by an angle;p/2 takes place
@17#. Using conditionsbmax.bmin and T0.Mac2, we find
the critical particle densityncr at which elastic collisions take
place,ncr,(T0

3/pea
6)(ea

4/h2c2). From another side, the par
ticle mean free pathla5c/va should be less than the cha
acteristic scale of the system,Lp . From this condition, we
find the lower limit for the critical density, ncr

.3T0
2/(ea

4LpL). We remark that both inequalities are in n
contradiction. In Eqs.~20! and ~21!, there is only the colli-
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sion frequencyva , as we consider in the sequel only th
electron-positron case for which the equalityea

25eb
2 is ful-

filled.
In contrast to the Braginskii@1# and Dzhavakhishvili and

Tsintsadze@4# approximations, we see from Eqs.~16!–~21!
that the particle viscosities depend on derivatives of part
heat fluxes and their analogs. In contrast to the nonrelati
tic case@1,9,10#, Eqs.~20! and ~21! are not coupled. Thus
solutions of Eqs.~16!–~21! can be found independently an
they are@1,4#

paik52h0aWa0ik
~1! 2h1aWa1ik

~1! 2h2aWa2ik
~1! 1h3aWa3ik

~1!

1h4aWa4ik
~1! , ~23!

paik* 52h0a* Wa0ik
~2! 2h1a* Wa1ik

~2! 2h2a* Wa2ik
~2! 1h3a* Wa3ik

~2!

1h4a* Wa4ik
~2! , ~24!

where

Wa0ik
~1,2!5 3

2 ~hihk2 1
3 d ik!~hmhn2 1

3 dmn!Wmn
~1,2! , ~25!

Wa1ik
~1,2!5@~d im2hihm!~dkn2hkhn!

1 1
2 ~d ik2hihk!hmhn#Wmn

~1,2! , ~26!

Wa2ik
~1,2!5@~d im2hihm!hkhn1~dkn2hkhn!hihm#Wmn

~1,2! ,
~27!

Wa3ik
~1,2!5 1

2 @~d im2hihm!ekgn1~dkn2hkhn!e igm#hgWmn
~1,2! ,

~28!

Wa4ik
~1,2!5~hihmekgn1hkhne igm!hgWmn

~1,2! . ~29!

The viscous coefficientsh can be found after the substitutio
of Eqs.~23! and ~24! into Eqs.~20! and ~21!,

h0a5
Pa

3na
, h1a5

3Pa

4naD1a
, h2a5

3Pa

naD2a
,

~30!

h3a5
xaPa

2naD1a
, h4a5

xaPa

naD2a
,

D1a5xa
21 9

4 , D2a5xa
219, xa5

vca

na
, ~31!

h0a* 5
Pa

18na
, h1a* 5

9Pa

32naD1a*
, h2a* 5

9Pa

8naD2a*
,

~32!

n3a* 5
xaPa

8naD1a*
, h4a* 5

xaPa

4naD2a*
,

D1a* 5xa
21 81

16 , D2a* 5xa
21 9

4 . ~33!

To find the coefficients of Eqs.~23! and~24!, given by Eqs.
~30! and ~31!, the relations

Wmn
~1,2!5Wa0ik

~1,2!1Wa1ik
~1,2!1Wa2ik

~1,2! , ŝWa0ik
~1,2!50,

~34!
Wapik

~1,2!Waqik
~1,2!50 if pÞq,
le
s-

ŝWa1ik
~1,2!522Wa3ik

~1,2! , ŝWa3ik
~1,2!52Wa1ik

~1,2! ,
~35!

ŝWa2ik
~1,2!52Wa4ik

~1,2! , ŝWa4ik
~1,2!5Wa2ik

~1,2! .

were used to solve Eqs.~20! and ~21!.

V. HEAT FLUXES

The heat fluxes are connected to the coefficientsai
( l ) in the

expansion

Fai5(
l 51

`

aai
~ l !Ll

~3!~ya! ~36!

through the relations

aai
~1!52

qai

4n0T0
2 , aai

~2!52
qai*

4n0T0
2 , ~37!

where the heat flux analog is defined by the relationqa*
5(c2/5)*Pa@61L1

(3)(ya)# f adPa . The equations for the par
ticle heat fluxes can be obtained integrating Eq.~11! with the
weightsX5piL1

(3)(ya) andX5piL2
(3)(ya),

4

c2 vcae ikmqakhm2(
b
E piL1

~3!~ya!Cab~ f a , f b!dpa

54n0“ iT0 , ~38!

10

c2

Ma

T0
vcae ikmqak* hm2(

b
E piL2

~3!~ya!Cab~ f a , f b!dpa50.

~39!

Using the orthogonality property of the Sonine-Lague
polynomials, we find from Eqs.~38! and ~39!,

vcae ikmqakhm26naqai5
c2Pa

T0
“ iT0 , ~40!

vcae ikmqak* hm29naqai* 50. ~41!

Again, in contrast to the nonrelativistic case@1,9,10#, Eqs.
~40! and~41! are not coupled. We obtain the expressions
qa andqa* from Eqs.~40! and ~41!,

qa52kaih“ iT01ka∧@h3“T0#2ka'@h3@“T03h##,
~42!

qa* 50, ~43!

where the heat conductivities are given by the expressio

kai5
c2Pa

6naT0
, ka∧5

2xac2Pa

naT0Da
, ka'5

6c2Pa

naT0Da
,

~44!
Da5xa

2136.

Substituting Eqs.~42! and ~43! into Eqs.~16! and ~17!, we
find from Eq.~23! the Burnett kind of ultrarelativistic plasm
viscosity. We see that in contrast with Refs.@1# and @4#, in
addition to the derivatives of the macroscopic plasma velo
ties Va , Eq. ~23! contains terms connected with derivativ
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of T0 . Similar equations were obtained for the nonrelativis
case in both gases@6# and plasmas@9,10#.

VI. CONCLUSION

Transport equations with the Burnett kind of particle v
cosities for ultrarelativistic plasmas are derived in this pap
This kind of plasma viscosities differs from the Navie
Stokes viscosities because of their dependence on the de
tives of the particle heat fluxes in addition to the conve
tional dependence on the derivatives of the parti
velocities. Instead of using the conventional Chapman
Enskog scheme, which makes it very difficult to derive eq
tions including this type of viscosity, for the reason e
plained in the Introduction, the extended Grad method
s

r.

-
,

k

r.

va-
-
e
d
-

is

adopted in this paper. In this method all moments of
distribution function are considered to be equally importa
and the expansion procedure substantially facilitates the d
vation of ultrarelativistic particle viscosities of the Burne
kind. As an example, the viscosity of rarefied electro
positron plasmas, in the case when the electron-positron
elastic cross section is much smaller than the elastic collis
cross section, is derived in the paper.

ACKNOWLEDGMENTS

The work was supported by FAPESP~São Paulo Founda-
tion for Research Support! and PRONEX~Superior Scien-
tific Projects! RMOG 050/97 grant from the Ministry of Sci
ence and Technology, Brazil.
@1# S. I. Braginskii, inReview of Plasma Physics, edited by M. A.
Leontovich~Consultants Bureau, New York, 1965!, Vol. 1, p.
205.

@2# Ya. B. Zeldovich and I. D. Novikov, inRelativistic Astrophys-
ics, edited by K. S. Thorne and W. D. Arnett~The University
of Chicago Press, Chicago, 1971!, Vols. 1 and 2.

@3# P. K. Shukla, N. N. Rao, My Yu, and N. L. Tsintsadze, Phy
Rep.138, 1 ~1986!.

@4# D. I. Dzhavakhishvili and N. L. Tsintsadze, Zh. Eksp. Teo
Fiz. 64, 1314~1973! @Sov. Phys. JETP37, 666 ~1973!#.

@5# S. Chapman and T. G. Cowling,Mathematical Theory of Non
uniform Gases~Cambridge University Press, New York
1960!.

@6# M. N. Kogan, V. Galkin, and O. G. Fridlender, Usp. Fiz. Nau
119, 111 ~1976! @Sov. Phys. Usp.19, 420 ~1976!#.

@7# S. M. Dikman and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.78,
1752 ~1980! @Sov. Phys. JETP51, 879 ~1980!#.
.

@8# D. Burnett, Proc. London Math. Soc.39, 385;40, 382 ~1935!.
@9# A. B. Mikhailovskii and V. S. Tsypin, Plasma Phys.13, 785

~1971!.
@10# A. B. Mikhailovskii and V. S. Tsypin, Beitr. Plasmaphys.24,

317 ~1984!.
@11# R. D. Hazeltine, Phys. Fluids17, 961 ~1974!.
@12# A. B. Mikhailovskii and V. S. Tsypin, Zh. Eksp. Teor. Fiz.83,

139 ~1982! @Sov. Phys. JETP56, 75 ~1982!#.
@13# F. L. Hinton and M. N. Rosenbluth, Phys. Fluids16, 836

~1973!.
@14# H. Grad, Commun. Pure Appl. Math.2, 331 ~1949!.
@15# S. T. Belyaev and G. I. Budker, Dokl. Akad. Nauk106, 807

~1956! @Sov. Phys. Dokl.1, 218 ~1956!#.
@16# M. Abramovitz and I. A. Stegan, inHandbook of Mathemati-

cal Functions~Dover, New York, 1972!.
@17# L. D. Landau and E. M. Lifshitz,The Classical Theory of

Fields ~Pergamon, Oxford, 1975!.


