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Relativistic plasma viscosity of the Burnett kind
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Hydrodynamic equations to describe relativistic and ultrarelativistic plasma dynamics were obtained by
Dzhavakhishvili and TsintsadZ8ov. Phys. JETB7, 666 (1973] using the Chapman and Enskog scheme to
solve the relativistic kinetic equations for the different plasma species. This approach leads to a representation
of the particle viscosities in the Navier-Stokes form and, therefore, some relevant physical processes, such as
the Burnett type of particle viscosity, cannot be properly dealt with in this scheme. In this paper we employ the
extended Grad method to derive hydrodynamic equations which include ultrarelativistic viscosities of the
Burnett type, i.e., viscosities that depend not only on derivatives of the particle macroscopic velocities but also
on derivatives of particle heat fluxd$1063-651X99)04010-4

PACS numbsd(s): 52.60:+h, 52.25.Fi, 52.30:q

I. INTRODUCTION plasma dynamics which cannot be properly dealt with by

Braginskii[1] and Dzhavakhishvili and Tsintsadi4] equa-

The hydrodynamic description of plasma dynamics hag;, " hecause these equations keep the viscosity in the
some advantages in comparison with the kinetic one. In PaIR avier-Stokes approximation, which contains only deriva-

ticular, the magnetohydrodynamiMHD) equations are tives of the macroscopic plasma velocity.

more appropriate to follow the dynamics of macroscopic There are some important physical processes on which we

plasma guantities, such as the plasma density, velocity, aqﬁould like to focus our attention, namely, the so-called ther-

temperature in complicated physical systems. The usefulne :
of the hydrodynamic approach has been put into evidence czj&jﬁ ostress gag6] and plasmal 7] flows connected with the

many occasions: for instance, the hydrodynamic equations ependence of the gas or plasma viscosities on the particle

y U . eat fluxegthe viscosities of the Burnett kiri@]). The mag-
Braginskii[ 1] have been widely employed for laboratory anq nitude of these flows is of the level of the so-called drift

space plasmas for a long time. However, because the Brag'@/'elocities Vgr%paVTa/Lp where p,=vr,/o", is the par-

skii equations are valid only for nonrelativistic plasmas,,. . e .
there are cosmic plasmas which cannot be described by theggle Larmour radiusyr,=y2Ta/M, is the particle thermal

. N : o ) i
equations, e.g., electron-positron plasnias], dense cos- Vélocity, w.,=e,B/M4cC is the nonrelapwstlc particle cyclo

k L tron frequencye, andM, are the particle charge and mass,
mic rays, and strong-current relativistic electron beams. F

(0] . . . . .
these plasmas, the particle velocitiés (* a” is the particle Fespectlvely, and is the magnetic field. Usually, it is as-

kind) are of the order of the speed of lightand the particle sumed that parametpp/L, is small, i.e.,pa/Lp=<1, S0 that

¢ wred bout the elect " ¢ the drift flows are smaII,\/gr<vTa. However, under some
emperature 2 are about the etectron or positron rest ener-,q jitions, these slow flows can be the only flows in both
giesego=MqC%, i.e., T,=€4. Hydrodynamic equations for

~eo _©e0. ° X collisional and weakly collisional plasmas, as we show in the
relativistic and ultrarelativistic plasmas were obtained in Refsequel. These plasma flows cannot be investigated on the

[4]; the relativistic kinetic equations for the different plasmapgasis of the Navier-Stokes equations. In the absence of ex-
species were solved by means of the Chapman and Enskegral forces, momentum sources, and boundary flows in
procedure[5], also used by Braginsk(il]. In this scheme, confined plasmas, all plasma flows damp due to viscosity in
the particle distribution function is expanded in a power sethe Navier-Stokes scheme. On the contrary, under the same
ries on the small parameters of the problem such as theonditions, steady plasma flows induced by particle tempera-
Knudsen number K=\, /L, and 1bgpte,. Here,\, is the  ture gradients are allowed in the Burnett equations. For col-
mean free path of plasma species,™ L, is the character- lisional plasmas, this kind of nonrelativistic plasma viscosity
istic length of the macroscopic plasma quantity profieg, —was obtained in Refd9] and[10] and is widely used to
is the collision frequency of specie®™ and “ b,” and tg, is investigate flows in plasmgs,11]. The so-called residual
the characteristic time for variation of macroscopic plasmallasma rotation in tokamaks is connected with the depen-
quantities. dence of the ion viscosity on derivatives of the ion heat flux,
The MHD equations for ultrarelativistic plasmas derivedboth in collisional [11,12 and weakly collisional plas-
by Dzhavakhishvili and TsintsadZd] take into account in- Mag13]. There exists also a kind of plasma drift instability,
teresting effects which are absent in the nonrelativistic equawith the frequency w satisfying the inequalityVa/L,
tions of Braginskii[1]. We mention, for example, the depen- ~pavTa/Lf,< o<w{,, Which should be investigated on the
dence of particle heat fluxes not only on temperaturebasis of Burnett transport equatiof8]. Consequently, it
gradients but also on electric fields, particle density gradiinay also be important to obtain the Burnett kind of plasma
ents, and macroscopic velocities. So far, these effects hawdscosities for relativistic and, specifically, ultrarelativistic
not been fully explored. Nevertheless, there are problems oplasmas.
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In the Chapman and Enskog scheme, employing an af, c? a
expansion of the particle distribution function in a power W"'s_pa?'*'ea
series on the Knudsen number Knwhich was used to ob- a
tain the plasma viscosities in Refsl] and [4], it is very
cumbersome to get the Burnett kind of viscosity. This diffi- :% Cab(fa.fp), @
culty is connected with the necessity to expand the distribu-
tion function up to the second order on the parametersdfn
palL,. For this reason, in Ref§9], [10], and[12] the Grad ~ where &,=c(p5+M35c?)Y? and C,p(fa,fp) is a collision
method[14] was employed to obtain more complete MHD term, which will be defined below. As in Rg#], in the rest
equations. In this paper, we include ultrarelativistic plasmagrame of a given plasma component, we introduce the defi-
characterized by ;=¢.9, under the condition that the mean nitions
particle velocitiesV, are much smaller than the speed of

Jf

IPa

C
E+—[pa><B]}
€a

light c, i.e., V,<c. In the extended Grad approximation P Ka(z,)
[9,10,13, all moments of the distribution function, such as f fdp.=n,, czf 22f.dp.=0, G(z)= 2,
the particle density,, velocityV,, temperaturd ,, viscos- a Ka(za)

ity 7,, heat fluxg,, and so on, are considered to be equally @
important. This is in contrast with the Chapman and Enskog

scheme, whera,,V,,T, are considered as the main mo- J (£a=Mac?)fadpa=n[M.c?(G,— 1)~ Tql,

ments and all other moments are functions of them. The

Grad method substantially simplifies the calculations. The

resulting expressions coincide with the transport equations M 4C?
obtained by Dzhavakhishvili and TsintsadzH, except for

the plasma viscosity. As an example, we find the viscosity of
rarefied electron-positron plasmas in the case when the
electron-positron inelastic cross sections are much smallé¥hereK,(z,) is the Macdonald function of theth order.

than the elastic collision cross section. Multiplying Eq. (1) by 1, py, ande,—M,c?, and inte-
grating over the momentum space, we obtain the equations
IIl. BASIC EQUATIONS of continuity, momentum, and the thermal balance, respec-

tively, for the macroscopic particle density, mean particle
As usual, to obtain the MHD equations we proceed fromyvelocity V,, and temperatur@,,
the relativistic plasma kinetic equatiofi$,15] for the par-
ticle distribution functiond 4(t,r,p,) in the presence of elec-

Jd
tric and magnetic field& and B, respectively, E(yanaH V- (7aNaVa) =0, 3

d, P, 0 1
'Yanaa('yaM aGaVai) = — W_ a_xk(saimsaknﬂ'amn) + YaNa€a) E+ E[Va>< B]
! i
1 J 1
+ SaikRakt 2 YaVaiQa— 2ot YaSaikVamTakmt Yal Saik T 2 YaVaiVak| dak
1 09
- ? (9_)(k['Ya(saimvak"_sakmvai)Qam]v (4)
d, 5 dan, J 1 AV 4 1 90
nam(MaC Ga—Ta) Ty dt =- [7_Xk(7a Sakaam)_S’aimsakn'”'amn(9_)(k +¥a Qa— o2 E(qa'va)
1 1 Vi
T2 YaSaikVamTakmt Yal Saik T o2 YaVaiVak|dak ot
AV ,i
- ? Ya(SaimVakt Sakmvai)qam&_xk- 5
Here, d, 4 V..V
—=—4V,'V,
VVar V2| -1 dt ot
aiVa a
Saik= Oik T (¥a—1) VA Ya:( - ?) , _ _ . .
a P.=n,T, is the particle pressurer,;, is the viscous tensor,
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0, is the heat flux, andR, andQ, are the friction force and IIl. ULTRARELATIVISITC PLASMA
the collisional heat release, respectively. These quantities are
defined by the expression4] As we confine ourselves to the ultrarelativistic case,
<1 andV,<c, in the reference frame, where the mean ve-
2 [ p? locity of the particle kind ‘a” is equal to 0, the equilibrium
paZE —afadpa, distribution functions can be chosen in the fojfi15]
€a
1 Pa ng(c)\® pc
_ 2 a a
Maik=C"| — i ——5-)fd , (O -
aik f Sa(palpak 3 ik | TadPa fa 87T(Ta) EX[{ Ta> ,
(6) 7)

Ja= sz Pafadpa,
Np

(o c\? 1
b 8T, ex —T—b[PC—p-(Vb—Va)] .
Ra:f PaCadpa, Qa:(sa_Macz)Cadpa-

In the following, we assume that the quasineutrality condi-
In comparison with Ref[4], we have corrected some mis- tion ny~ny=n, is fulfilled and that the particle temperatures
prints in Eq.(5), namely the parameteyr, appears correctly are approximately equall,~T,=Ty. In this reference
with power —1 in the first and third terms on the right-hand frame, the kinetic equatiofl) can be approximately written
side of Eq.(5). as[4]

cM; of, d.fy c of, pd.V,| df, Va df,
- X —= +—-p—+ *—— —
Eb Can(fa,fp) p [PX o] ap dt pp ar €a c dt |ap  oxg pkﬁpi ) (8
|
where the tensor part depending ary;, and other tensor moments
of the second rank. The scalar pdrt, and the highest-order
- €.B * ZE4 E[V XB], M?* =4TO>M tensor moments are not used in this paper. Thus, we obtain
@ cME’ chan T A s & equations for tensor moments of the second rank. We remind

the reader that it is appropriate to substitute the zero approxi-
In both the Chapman and Ensk¢§] and Grad[14]  mation distribution function Eq(7) in the right-hand side of
schemes, the distribution function is supposed to be close tgq. (8) to find equations for the moments of the distribution

a Maxwellian, function in the Chapman and Enskog schédBieIn the Grad

0) schemg[9,14], one uses the distribution function E®) to
fa=fa (1+®5), Pa<l. ©) substitute both parts of E8). The small parameters that we
According to the extended Grad scheme, we write con§|der are the Kn_udsen number Kand _th_e ratio of the
particle Larmour radiug, to the characteristic length,, of
D=0+ Do+ (PiP— 2p20 ) Pai+-+-.  (10) the spatial variation of the macroscopic plasma quantities,
pally,.

Here, ®,, is the scalar part, which can depend on scalar To find the moments of the distribution function, we mul-
moments of the distribution function but,, Ty;®,; is the  tiply Eq. (8) by a proper functiorX of the momentunp and
vector part depending on vector moments exdeptd®,; is  then integrate over the momentum space,

; <xcab<fa,fb>>+cM;< E

a0l
J

X
5/ (11
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where (X)=[f,X dp and X is the proper scalar, vector, or account three or more terms in E40) greatly increases the
tensor function of the momentum algebra without substantially improving the accuracy. Using

IV. PARTICLE VISCOSITIES
According to Refs[4], [9], [10], and[12], we can write

[’ pC

(I)aik:; aliL®(ya), ya:T—O, (12

the definitions given by Eq6), we obtain

2 2

0) — (1)

Cc
_ *
A3ik= 8noT §7Ta|kv aaik_8n0T037Taik' (13

As in Refs.[9], [10], and[12], we introduce the tensar};,
in Eg. (13), which is defined by the relationmy;,

where L{®(y,) are the Sonine-Laguerre polynomials, and = (¢/6)J[PaiPax— (P 2/3) 8L (ya) fadpa/pa . Integrating

keep only two terms in the expansion in Ef0). The errors

in the transport coefficients due to this approximation are noX= (p;px—

Eq. (11) with the weightsX= (p;px— p?8i/3)LS(y,) and
P28 /3)LP)(y,), we obtain the equations for the

larger than a few percent of the exact values, and taking intparticle viscositym,;, and its analogry;,.,

C2
4w a0 ikt T_o% f(pipk_%ngik)Lg)s)(Ya)Cab(faifb)dpa:4nOTOVVglil)<

and

4wca0'7T;ik+6_To§b: f(pipk_%pzfsik)l-(f))(ya) an(fa, fp)dpa=neToWSE

respectively. Here,

1
Waik=(V-Vaict 02 (V-[To(20a— &) D, (16

1 *
W= T2 (V-[To(20,—da) Dik

+ 3n0Tg<VT0(2qa_q;)>lkl (17)
(A-B)ix=AB+AB;—%5A B,
R B,
Uwik:hTéT)\p,(’n-i,u,5k)\+7Tk,u5i)\)1 h'rZE' (18)

The momenty} is an analog of the heat fluy,, which is
defined below(Sec. V) and B, is the  component of the
magnetic fieldB.

For the case when both kinds of particlea™‘and “ b”
are ultrarelativistic, the integrals in Eq44) and(15) can be
transformed to the form

> f X(Pa)Cablfa,fp)dPa
b

aab

—2

f dyax(ya) exp( - ya)

( &2<I)a(ya) y_ak &(I)a(ya)

i - . 19
'k (?Yai(?yak Ya aYak ] ( )

(14)

(15

Using the orthogonality property of the Sonine-Laguerre
polynomials[16]

(m+k)!

m| 5mnv

fo yke YLK (y)LK(y)dy=

we find from Eqs(14), (15), and(19)

®cal0 Taik— 3VaTaik=PaWii, (20
A ot — 18v, s = P,W3) (21
where
me2ezlnge e.Bc
vab= g1z Va=Vaa: @ea= g7 (22)

L=1In (byay /bmin) is the Coulomb logarithm defined in Ref.
[4]. Here,bhax @andb,,;, are the characteristic maximal and
minimal collision parameters, respectively. The maximum
impact parameteb,,, for ultrarelativistic plasmas is chosen
to be the Debye screening raditg= (To/4mnye?)*? with
the factore2/hc=1/137, i.e.,bna=rpe/hc[17]. The lower
impact parameteb,,, is equal tobmin=e§/2T0, i.e., the
value at which a deviation by an angten/2 takes place
[17]. Using conditionsb qay>bmin and To>M ,c?, we find
the critical particle density,, at which elastic collisions take
place,n.< (T3/7ed)(e2/h?c?). From another side, the par-
ticle mean free patir,=c/v, should be less than the char-
acteristic scale of the systerh,. From this condition, we
find the lower limit for the critical density, ng
>3T§/(e;‘LpL). We remark that both inequalities are in no
contradiction. In Eqs(20) and (21), there is only the colli-
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sion frequencyv,, as we consider in the sequel only the

electron-positron case for which the equak=e is ful-
filled.

In contrast to the Braginskjil] and Dzhavakhishvili and
Tsintsadzg 4| approximations, we see from Eq4.6)—(21)

V. S. TSYPINet al.
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An(12) 1,2) 1,2 _ 1,2
UW(alik Z\Maak ) W(a3|k = élnz )
(39
Aaf(1,2) 1,2 1,2 _\pf(1.2
O'\Nfa\2il2__wfa14ik)i Wfamk) éz.ﬁ-

were used to solve Eq§20) and(21).

that the patrticle viscosities depend on derivatives of particle

heat fluxes and their analogs. In contrast to the nonrelativis-

tic case[1,9,10, Egs.(20) and(21) are not coupled. Thus,
solutions of Eqs(16)—(21) can be found independently and
they are[1,4]

770a\N£e10|k 771aWal|k 772aWa2|k+773aW(3|k

Taik= —

+ 7aaWali » (23

Thi= = ToaWidlc— 71aWZh — 75 WSk + 75 WG
+ WZa a24)ik ) (24

where
Wit=3(hihe—380(h,h,—358,, W2, (25
Wi =[(8,,—hih,) (8, —hh,)

+3(8k—hihoh,h, W2, (26)

WSS =[(8,,—hih,)heh,+ (8, —hh,)hih JWE?
27

\A/f’:l]élzk)_ 2 [( 5ip,_ h| h,u)ékyv—'_ ( 5kv_ hkhv) € y,u]h)/WELlVZ) '

(28)
\/v(a:hizlzz(hihyekyv—i_hkhvei 'y,u.)h‘yWE/,lvz ' (29)

The viscous coefficientg can be found after the substitution
of Egs.(23) and(24) into Egs.(20) and(22),

B P. _ 3P, _ 3P,
770a_3_va1 7]la_4yaAlaa M2a= Vel
(30)
_ XaPa _ XaPa
32 2VaA la v Tea VaA 2a ,
2,9 2 Wea
Aa=x5+7, Ayp=x5+9, xa=v—, (31
a
P 9P 9P
« _ Fa * _ a * _ a
70T 18n, AT 320,08, "2 8w Mg,
(32)
JE = XaPa = XaPa
s 8 AT, “ 4v A%,
=GR, AL=xE+E (33

To find the coefficients of Eq$23) and(24), given by Egs.
(30) and(31), the relations

1,2) _\p/(1,2 1,2 12 _
VV(,uv)_ a0|12+ allk Wfaz|k)v vaa0|k)_
WLI2WL2_g if p= (39
apik¥Vaqik ™ T p*q,

V. HEAT FLUXES

The heat fluxes are connected to the coefficiafitsin the
expansion

=2, aLi*(ya) (36)
through the relations
Jai i
(H_ _ _"ai (2)—
& anoT2 % T T gnoT? 37

where the heat flux analog is defined by the relatign
=(c?/5)[P,[6+ L(13)(ya)]fadPa. The equations for the par-
ticle heat fluxes can be obtained integrating &d) with the
weightsX=piL{(ya) andX=p;L5(ya),

4
? wcafikaakhm_ % j Pi L(la)(ya)cab(fa vfb)dpa

= 4I’l0ViT0, (38)
10M,
C To wcaelkmqakh

-3 [ Py Carlta fo)dpa=0
29

Using the orthogonality property of the Sonine-Laguerre
polynomials, we find from Egq:38) and (39),

2

cP,
wcafikaakhm_GVaQai:T_OViTOa (40)

wcaeikmq;khm_ 9Vaqzi =0. (41)
Again, in contrast to the nonrelativistic cd€€9,10, Egs.
(40) and(41) are not coupled. We obtain the expressions for

g, andg} from Egs.(40) and(41),

0a=—KahV To+ ko[ WXV To]— ko [WX[VTXh]],
(42)
g =0, (43

where the heat conductivities are given by the expressions

_ CPP, | 2%,CP, _ 6c%P,
Kl ™5y, Ty T UaToAL T AT TA,
N (44)
a= X5+ 36.

Substituting Eqs(42) and (43) into Egs.(16) and (17), we
find from Eq.(23) the Burnett kind of ultrarelativistic plasma
viscosity. We see that in contrast with Reff&] and[4], in
addition to the derivatives of the macroscopic plasma veloci-
tiesV,, Eq.(23) contains terms connected with derivatives
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of Ty. Similar equations were obtained for the nonrelativisticadopted in this paper. In this method all moments of the

case in both gasd§] and plasma$9,10]. distribution function are considered to be equally important,
and the expansion procedure substantially facilitates the deri-
VI. CONCLUSION vation of ultrarelativistic particle viscosities of the Burnett

kind. As an example, the viscosity of rarefied electron-

Transport equations with the Burnett kind of particle Vis- yositron plasmas, in the case when the electron-positron in-
cosities for ultrarelativistic plasmas are derived in this paperg|astic cross section is much smaller than the elastic collision
This kind of plasma viscosities differs from the Navier- ¢ross section, is derived in the paper.
Stokes viscosities because of their dependence on the deriva-
tives of the particle heat fluxes in addition to the conven- ACKNOWLEDGMENTS
tional dependence on the derivatives of the particle
velocities. Instead of using the conventional Chapman and The work was supported by FAPE$®a Paulo Founda-
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