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Quantum kinetic theory of plasmas in strong laser fields
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A kinetic theory for quantum many-particle systems in time-dependent electromagnetic fields is developed
based on a gauge-invariant formulation. The resulting kinetic equation generalizes previous results to quantum
systems and includes many-body effects. It is, in particular, applicable to the interaction of strong laser fields
with dense correlated plasm48§1063-651X%99)10609-3
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[. INTRODUCTION than the correlation timg¢essentially one over the plasma
frequency [4,6]. (iv) In high-intensity laser fields, it is easy

Recent impressive developments in the field of shortio generate situations in which the quiver velocity
pulse laser technolodil] make it possible to create strongly =€Eo/m{) is large in comparison to the thermal velocity
correlated plasmas in extreme nonequilibrium situati@ls V= VKT/m. Therefore our goal is to derive a field depen-
At the same time, optical techniques for time-resolved diag-dem collision integral which is valid for arbitrary ratios

nostics are becoming availaljl&| which creates the need for Vo/Vin. As was shown first by Silifi4], such collision inte-

theoretical modeling of dense nonideal plasmas in intensd'@'S depend on the field strength in nonlinear way. Conse-
laser fields. quently, Coulomb scattering processes will give rise to the

The conventional aporoach to noneauilibrium bro ert.esexcitation of higher harmonics. Furthermore, Coulomb colli-
vent PP quitiorium propertiesg;q , processes in intense fields can involve absorption and

X . ANBmission of photonginverse bremsstrahlung and brems-
type. In spite of their fundamental character, Boltzmann-hkestramung, respectivelyOn the other hand, for low frequen-

ki_netic equations have a number of shortcomings, especiallgies and weak fieldsvg/vy,<1) one enters the linear re-
with respect to dense plasmas in laser fields. Boltzmann-likgponse regime. In contrast to the usual linear response
equations are valid only for times larger than the correlationheory, however, one gets from the collision integral an ad-
time. Further, the ordinary Boltzmann equation conservegjitional term linear in the field which is known as the relax-
only the mean kinetic energy instead of the sum of kinetication field contributior{17—-19,10.

and potential energy. Finally, the collision integrals are inde- The importance of quantum effects can be estimated con-
pendent of the electromagnetic field. However, strong corresidering the ratios of the thermal wave length
lations, high-frequency electromagnetic fields and short-time=h/{27mkT, which characterizes the extension of the
phenomena require generalizations. Kinetic equations foprobability density of the plasma particles, to other charac-
classical plasmas in high-frequency fields have been deriveristic lengths. Quantum effects are to be expeg¢tei the

in the papers of Silifi4], Obermaret al.[5], and others, e.g., Landau length =% kT is of the same order as the thermal
Ref. [6], and have been applied to the computation of thevave length, i.e.J/x<1, (ii) for #Q>KT, and (iii) if the
high-frequency electrical conductivity7,6]. Collision fre-  plasma particles are degenerated, ma¥>1 with n being
quencies were calculated also in a dielediitand a ballis- the density.

tic [9] model, respectively. More recently, kinetic properties ~ Furthermore, a quantum treatment of the collision integral
of dense quantum plasmas in strong static fields have beed/0ids _the dlvergenC|e§ occurring in classical theories. Thus
investigated[10,11). Silin and Uryupin[12] developed a RO cutting procedure will be necessary.

quantum approach to absorption in strong electromagnetic " this paper, we develop a quantum kinetic theory of

fields. However, a kinetic equation for dense quantum plasStrongly correlated plasmas in laser fields which fully in-
mas in time-dependent fields which is valid on arbitrary timeCIUdeS these phenom_ena. As the star'tmg point, we use the
scales is still missing. Kadanoff-Baym equations for the two-time correlation func-

Generalizations of the Boltzmann kinetic equation shoulotions Qf charged F"_”_“C'es in an electromagnetic field. These
include the following features(i) As a consequence of equations are sufﬁmently general to account for all many-
strong correlations, the collision integral will be non- body effects of interest. Moreover, they allow to develop the

Markovian, i.e., it should contain collisional broadening andtheory in a highly consistent form where fundamental prop-

memory (retardatiop effects, see, e.g., Refis,13—16. (i) erties, such as conservation of total energy are satisfied.
The electric field gives rise to an additional collisional broad-|, \« \pANOFE-BAYM EQUATIONS. GAUGE-INVARIANT

ening. Furthermore it yields an additional retardation in the GREEN'S EUNCTIONS

distribution functions known as intracollisional field effect.

(i) Non-Markovian effects should be of particular impor-  Equilibrium and nonequilibrium properties of strongly
tance for high-frequency fields varying on time scales shortecorrelated plasmas are successfully described using the
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method of real-time Green’s functions. In this framework, To this end, we consider Eq2) for equal timesf,=t;=t,
the nonequilibrium plasma state is given by the two-timeintroduce the variable® andr, and obtain, after Fourier
correlation functions WhICh are averages over creation angransformation with respect to, for the spatially homoge-
annihilation operatorg/" and neous case,

051~ ) b0 =2Re| dtigZ (LD 35T
to

(1)
9s(L,1)= <¢a(1 )a(1)), — (Pt 27 (Pt D)} @)

where 1=(r;,t;,s3), anda labels the particle speciegs  This is an exact equation and, therefore, well suited for de-
contain the complete dynamical and statistical informationriving generalized kinetic equations. To obtain explicit ex-
Their time evolution in an electromagnetic field is deter-pressions for the collision integral, one has to solve two
mined by the Kadanoff-Baym equatiof0,21] problems.
(1) It is necessary to find appropriate approximations for
2 _ the self energy. For this, there exist standard approximations,
( Vi— —A(l)) —ea¢(1)}g§(1.1') such as the statically screened Born approximation, the ran-
dom phase approximation and tfienatrix approximation.

h& 1
I&tl 2m

— — - (2) To come to a closed equation for the Wigner function
+ | dry SHR(Lr it g (rty, 1) ) A
1<a 41101/ 9a M1 fa, the correlation functiong; have to be expressed as
functionals off ; (reconstruction problemThis problem can

Y — [ be solved approximately on the basis of the generalized
:ft di[27(1L)-27(1,1)]95(1,1) Kadanoff-Baym ansatéGKBA) of Lipavsky et al. [23], see
0 Sec. lIl.

R _— To make the derivations transparent, we will consider be-
—j d1x7(1,1)[9,(1,1)—9g,(1,1)], (2  low the simplest approximation for the self-energies—the
fo statically screened Born approximation, thereby focusing on
the modifications introduced by the time-dependent electric
field. Further, we will apply the GKBA in its generalization
o time-dependent field4].
It is well known that the electromagnetic field can be

which have to be fulfilled together with the adjoint equation.
Heret, denotes the initial time where the system is assume
to be uncorrelatedotherwise, the equations have to be

supplemented Wit h an initial correlatip N coqtribut!onﬁg, . introduced in various way§auge$ what essentially affects
see Ref[22)). 37 are the self-_energ|e§ W_h'Ch W'”_ be dis- the explicit form of kinetic equations. This becomes a par-
cussed below. For the following derivations, it is useful o iar problem if one considers approximations to the ki-
to introduce, in ag?A'“O”; the retarded and adv/anceci]etic equations, such as retardation or gradient expansions,
Green's functions g5 "(1,1')==0(*(t:—11))[92(1.1)  which look different in different gauges. To avoid these dif-
-9, (1,1')] which obey the simpler equations ficulties, we will formulate the theory in terms of correlation
functions which are made explicitly gauge invariant. The

N 1 (% €a 2 RIA 4 a1 Kadanoff-Baym equation§) remain covariant under gauge
[' oty Z_ma<i_vl_ A | ~ead(1)|ga"(L.1) transformations, i.e., under the following transformations of
the potentials and field operators:
—f d23F¥A1,298%2,1)=68(1-1"). 3

Al (X)=A,(X)— 3, x(X), '(x) = eli/h)(ea/c)x(x) X),
In these equations, the electromagnetic field is given by the )= AU =X (X), - PalX) Yal )(5)

vector and scalar potentiaks and ¢, and it will be treated
classically. In the following, we will use microscopic and

macroscopic time and space variables being defined as where we use covariant four-vector notation witk,

=(c¢,A), x,=(ct,r), X,=(ct,R), a,b*=agby—a-b etc.
The corresponding gauge transform of the Green'’s functions
leads to

r=ri—ry, R=(ry+ry)/2,
T=t;—t], t=(t;+t))/2.

From the Kadanoff-Baym equatioK®), there follows imme- (%, X) = (/M) (Ea XX+ X2 = x(X=x2)]g_(y X 6)
. . . . . a l ga 1 .

diately the equation of motion for the time-diagonal part of

the correlation functions, i.e., for the Wigner distribution

function which is given by Following an idea of Fujit425], we now introduce a gauge-

iz < - _ invariant Green'’s functiorg(k,X) which is given by the
119, (p'R’tl’t1)|t1:ti_fa(p’R’t)' modified Fourier transform
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1/2
Ja(k,X)=

o1 [

ea
XK S AR(XFAX)

1/2

]ga(xix)! (7)

where use has been made of the identity

-

1/2

fl/Z
=X o~
S Y7

X
X——

d
5 d)\—X(X-H\X)

X+X
X772

d\ x(X+\X).

Indeed, one readily confirms that under any gauge transform

(5), the phase factors cancel, agt{k,X)=g(k,X), [24].
In the following, we focus on spatially homogeneous
electric fields given in vector potential gauge by

t .
Ag= =0, A=—cf dtE(1). (8)

In this case, relatioii7) simplifies to

e
k+—
C

ga(k,w;R,t)=f drdr ex;{

|
lwT—T-
t+7/2 dt’
XJ't TA(t’)”ga(r,T;R,t), (9)

h
—1/2

which means that the gauge-invariant Green’s funcgjfi)
follows from the Wigner transformed functiay,(p) by re-
placing the canonical momentum by the gauge-invariant
kinematic momentunk according to

€, t+7/2

p= k+?

t’A(t ).

T

(10
t—7/2

In particular, for a harmonic electric field,

cE
“sinot,

E(t)= o

EocosQt, A(t)=-— (11

the substitution for the momentum takes the form

Qr

2

2 Eg

p=k+ — Q—stt si (12

For the derivations below, we will need the gauge invariant

Fourier transform of the convolution of two functions
l(rl—ri;tl,t1>=f dtdr B(ry—r; t;,t) C(r—rj; t,t}).
(13

After straightforward manipulations which involve the back
transform of Eq.(9), we arrive at
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— e, (tr At
|(k;t1,t1)=fdtB k+— | dtr —
4 ti—ty
e, [t A(t” -
__afildt// (l. t
c t tl_t
e, [t A(t”
xC| k+—=2| e —— )
4 ti—ty
e Il)
-2 d” Alt SRy (14)
cly t-ty

In the equal-time limitf,=t;=t, the momentum arguments

of B andC are identical, equal to
, A( /I)
k+ A(t)—— dt Pt

Ill. GAUGE-INVARIANT PROPAGATOR. GENERALIZED
KADANOFF-BAYM ANSATZ

To solve the reconstruction problem, we need expressions
for the retarded and advanced Green’s functions. We first
determine these quantities for free particles in an electromag-
netic field. In this case, Ed3) simplifies to

in L €a R/A ,
Iﬁa Z_ma{ ?A(tl)’ (p;ty,t ) oty tl)v
with the solution
t+7'/2
95 A(p; 7, 1) = +—®(_T)exp[ — —f
t—17/2
X|p— —A(t ) /2ma}, (15)

which yields for the spectral functiom,=i%(g5—g5),

t+ 7/2
ay(p;m,t)= exp[ - —f dt’
t—

The functions(15) and (16) depend on the canonic momen-
tum p and are gauge dependent. As pointed out before, it is
useful to introduce instead gauge-invariant functions by ap-
plying the transform(7). A simple calculation yields

e 2
p— ?aA(t')} /2ma].
(16)

2

om, —— 17+ S(A;7,1)

g Ak 7 t) = +—®(+T)exp|’ -

17
with
eez1 t+7/2
S.(A;7,t)= f dt’A%(t")
2m,c?| Jt—r2
1 t+1/2 2
+— J dt’Act’ )) (18
T t—17/2
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For a harmonic time dependence of the field as given by Eghe quantum kinetic equation for a plasma in a laser field.
(112), the time integrations i$ can be performed, and simple Again, it is advantageous to derive this equation for the

trigonometric relations lead 26| gauge-invariant Wigner distribution. To this end, we take the
Fourier transform(9) of the time-diagonal Kadanoff-Baym
.\ pond sinQ) 7 cos 20t equation and make use of relati¢ohd) for the special case
Sa(Aimt)=eq 7| 1 Or t,=t; and obtain
N 8 sirfQt sir’(Q 7/2) , (19 Efa(ka,t)jLeaE(t).kaa(ka,t)
(Qr)?
t
where we introduced the familiar ponderomotive potential =2Re| dt ({g; .27}-{02 .22}, (29
to
22
e E
ghond 29 (200  where we denoted
4m,0?

which is just the time-averaged kinetic energy of a free par- {0..3a0=0a
ticle in the harmonic field.

Now we turn to the solution of the reconstruction prob-
lem. Due to the expected retardation effects, the common
Kadanoff-Baym ansatz is not applicable here. As mentioned
above, a more general solution which properly takes into

account retardatiotmemory effects has been proposed by For the collision term, we use here self-energies in the

€, e, ([t At
k+ —A(t)— J dt'——=;t,t |
c CJt t—t

X2

k+ A(t)——J dt’L t_t>
t

Lipavsky et al. [23]: simple second Born approximation. Starting from the famil-
<(orte 1) =ihaR(ote (D t! 1! iar expression in coordinate representation, a straightforward
9a (Pit1, 1) =1 Ga(Pit1 1) G (Pity,ty) calculation leads to the gauge-invariant result
—ihgs (Pt t)ga(psty,ty). (21
Ja (Pit1,t1)ga(Pits 1) ) . ik, dkdk, -
This represents an exact relation in quasiparticle approxima- ~ >a (Kait1:t )= 2 (2mh)° — 5 Van(ka—ka)|
tion assuming static self-energies. However, the an&iiz
is often used approximately with more general propagators 3 —k.— k.
oA (20 pp y g propag X(27h)°8(ky+kp—ka—Kp)
To transform this relation into a gauge-invariant form, we X 7295 (Kaity, 1) g5 (Kp sty t))
start from its coordinate representation which, for the case - ,
t,;=>t}, reads X0p (Kot ty). (25
_ ) o — = — The correlation functiongf are expressed by the Wigner
ga(rl_rl;tbtl)zlﬁf dr ga(ra—rity,ty) functions with the help of the GKBA23). Using for the
o retarded and advanced Green’s functions the uncorrelated
X g5 (r—ri;ty,ty). (22)  expressions(17) and taking into account the property

_ . . S.(A,—7,t)=—S,(A,7,t), a lengthy but straightforward
Gauge-invariant Fourier transform of E@2) and use of the  calculation leads to the following kinetic equatioty €t}
back transforms fog§ andg; leads directly to =t)

e
0a (k;ty,t))= —gi(k;tl,ti)fa[k— gaA(ti)

d
5+eaE<t>-kafa<ka,t)=§Iab<ka,t> (26)

+ea ld_ A(t) with the collision integral

C

it (23

t] t,—t; — —
Lobe dk,dk,dk, 1

_ - _ 1 \2
which is the gauge-invariant generalization of the GKBA. 'ab(ka’t)_zf (27h)5 ﬁ2|vab(ka ka)l
For t,<t;, the second part of Eq21) applies which is

transformed analogously. The same transformations are per- X 8(Ka+kp—Ka—Kp)
formed forg, , leading to the resul23) with f, being re- t )
_ 1 _ _
placed by 1-f,. xft dtRe ex;{%[(eab— €ap)(1—1)
0
IV. KINETIC EQUATION FOR QUANTUM PARTICLES
IN AN ELECTROMAGNETIC FIELD — (ky—Ky) - Rap(t,0)] ]{f fo[1—f ][1—f,]

We now come back to the time-diagonal limit of the . .
Kadanoff-Baym equations, cf. Eq&) and (4), and derive —fafp (1= [1—Tful}t, (27)
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where we denotede,,=e,+e€,, €,=p32m, and f, case, we get the non-Markovian form of the well-known

= f[ka+ Qu(t,1), 1], and the quantitie®, andR,, are de- duantum Landau equatid6]. _
fined by Egs(28) and (29) below. ~ Now, let us conS|der Fhe consequences .of the.nonllnear
This is a rather general kinetic equation which describediéld dependence in the kinetic equati@). This nonlinear-
two-particle collisions in a weakly coupled quantum plasmalty 9ives rise to interesting physical processes including gen-
in the presence of a spatially homogeneous time-dependeffation of higher field harmonics and emission/absorption of
field. It generalizes previous results obtained for classicafnultiple photons in two-particle scattering in the case of high
plasmag4-6]. field strength. To show this, we expand the spectral kernel of

The time-dependent field modifies the collision integral inthe collision integrald ,, [second line in Eq(27)] into a
several ways. Fourier series making use of the familiar relation

(1) The momentum arguments of the distribution func-
tions are

o0

etizcosOt_ E (ti)”Jn(z)eIi“m, (31)

N
Kat Qa(t,t),  with Qa(t,t_)E—eaf_tdt’ E(t'), (28)

‘ where J,, denotes the Bessel function oth order. As a
i.e., they contain an additional retardation givenQy, the  result, the collision integral in the kinetic equati(#®) trans-
intracollisional field contribution to the momentum. It de- forms according to

scribes the gain of momentum in the time intervalt due

to the field. In the case of a harmonic field given by Edl), dkbdk_adk_b 1 —
we have lap(Ka 1) =2 Ref T 2mn)y B2 Vap(ka—Ka)
— e.Ey . o —
Qult,t)=— ——(sinQt—sinQt). X 8K+ kp—Ka—Kp)
. . . . - _— q-wap q-wap
The result for a static fielflL0] is readily recovered by taking anw | Em (i )'Jn(W> ‘]n+|(W>

the limit Q—0, i.e.,Q'= —e,Eq(t—1t).

(2) Another modification occurs in the exponent under the ¢ i L
time integral which essentially governs the energy balance in X[cog1Qt)—i sin(IQt)]f dt exp{%[eab— €ab
a two-particle collision: In addition to the usual collisional to

energy broadeningwhich has the form C({Eeab—:ab](t -

—t)/#}), there appears a field-dependent broadening. This ef- =0 Wap(t) +n Q] (t—=t){fafp[1-Fa][1
fect is determined by the change of the distance between . .

particlesa andb due to the field given by —fpl—fafp[1—fal[1—ful}c, (32

— e e[t
Ran(t,t)= (Ha— m—i) J’Tdt, Jt,dt” E(t"). (290 Where we denoted
a

We get for harmonic fields q=ka—Ka=kp—Kp, Wap(t)=Va(t)—Vvy(t),
—_ €a € EO'(t__) . ngEVg_Vg,
Rab(t.t)—(m—a m—b) —q  sint
e.Eo
E — t)=vlsinQt, Vd=—>_. 33
+Q—2(co§lt—comt)l. (30 Va(t) = Vs Va m, Q) (33

Pbviously,v, is the velocity of a classical particle of charge

It is clear that the field has no effect on scattering of identical~"", L P . . .
e, in the periodic field. Separating real and imaginary parts,

particles,R,,=0. [Of course, the scattering ratésollision
frequency of identical particles will be modified by the field W€ 9€t
indirectly via the distribution functionsFor static fields, it

follows R3L(t,t) = (e,/m,—e,/m,)Eo/2(t—1)2. _ y i nl o

3 A third important effect is the nonlinedexponential 'an(ka.t) zn: |=§e:’/enI [Relgp coslf2t+1m g, sinl 2]
dependence of the collision term in E7) on the field
strength which we discuss more in detail below. +E 2 i1 1m |2|b cosl Ot

As mentioned above, the kinetic equati@®) represents n 1=odd

a generalized version of kinetic equations used in dense
plasma physics. Neglection of quantum effects leads to the
well-known classical kinetic equation derived by Sili].

On the other hand, for static fields E@6) reduces to the where the summations overand! run from —o to + % and
kinetic equation given in Refl10]. Finally, in the zero-field the expansion coefﬁcienlﬁ'b are given by

—Rel 2} sinlQt], (34)
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nl _
Iab(ka,t)_zf

X 8(Ka+ Ko —Ka—kp)
0 0 i
| QE— q'mﬁb q'mﬁb I —
Xﬁodt\]n( ) )Jn_|( 70 ) exprg[fab_ €ab

—q~wab<t>+nm]<t—_>]{Eﬁ,[l—fa][l—fb]

D. KREMP, TH. BORNATH, M.

dkydkadk, 1 _
(277—;)6 e Van(Ka—Ka)|?

—fafp[1—fal [1—Tul}jr (35)
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dk,dkadk, 1

— [Vap(ka—kg)|?
(27Tﬁ)6 ﬁ2| ab( a a)|

ke D=2

X 8(Ky+ kp—ka—Kp)

0
q-Wap) [t — |1 —
X; \]ﬁ ﬁﬂa )Jl dtCO{%(Gab_ €ap

0

—q'wabm+nm><t—t_>}{f_af_b[1—fa]

X[1—fpl=fafp[1—Tal[1—Tol}i. (39

This representation of the collision integral allows for a This quantum kinetic equation is a special case of(26). It
transparent physical interpretation of the binary scatteringan be applied to the important case of dense plasmas in

process.

(1) In a strong periodic field, Coulomb collisions with a
momentum change give rise to the generation of higher
harmonics of the fieldsums ovell). This has already been

shown by Silin for classical plasmas. These terms are impor-

strong high-frequency laser fields. For classical plasmas,
such an equation was given by Klimontovigy.

V. APPLICATION TO STRONG LASER PULSES

tant on very short time scales, whereas they do not contribute Let us consider the case of a laser pulse with the electric
to transport quantities which are averaged over times largefeld given by E-(t)=E5(t)[e'*'+e '], where E5(t) is

than the field period 2/Q).

the (rea) pulse envelope. In a strong field, we expect that

(2) Furthermore, it is obvious that collisions in strong also the electron distribution will be periodically modulated
harmonic fields are accompanied by emission and absorptiopith the frequency() and, possibly, with higher harmonics.

of multiple photons, cf. the sum over Indeed, if the retar-

We, therefore, look for solutions of the kinetic equati@6)

dation in the distributions is omitted, and the initial time is of the form

shifted to minus infinity, the time integration in the collision

term can be performed, giving rise to an energy delta func-

tion

8 €ab— €ap+ - Wap(t) —NAQ].

This function describes the energy conservation in a two

falka, )= 2 faj(ka,)e™"™, (39

where f,, are complex amplitudes. Inserting E@9) into
Eg. (38) and neglecting, for a moment, polarization induced

modifications of the electric field, we obtain a system of

pgrtiple scatt_ering process in _the presence Qf a periodic ele‘E:'oupled equations for the distribution harmonics
tric field, which leads to multiphoton emission and absorp-

tion.

For high frequency}, the collision integral ,;, given by
the expression(27) can be simplified by averaging over a
period of the oscillating field. The spectral kerrid#) then
reduces to

Re ex;{%[(eab—?abxt—t_)—q- Rab(t,_n]

1 _
2 co g[fab_ €ab— Q- Wap(t) +nA )]

n=-—w
CI‘ng
Q)

x(t—t_)] Jﬁ( (36)

Using this expression in E¢27), we find

14
at+eaE<t>~\7ka]fa<ka,t>=§lab<ka,t> 37)

with the collision integral

fa,|+eaE|6'Vka(fa,|—1+fa,|+1):§b: lap,1
(40)

ilQ+ i

supplemented with the initial conditions given at titgesuf-
ficiently long before the pulseg(k,to) =0 andf, (K, ,to)
=19(ky) ) 0- The Fourier components of the collision inte-
gralsl,p, are defined in analogy to E¢B9). The harmonics
spectruml 5 is rather complicated since it depends on the
spectrum of the retardation kerrie},,, but also on the spec-
trum of the distributions. We consider first the effeciRyf;,
replacing in the collision integral§, by fg (1=0). In this
zeroth order approximation, due to the propeRiy,=0 (see
above, the equal-particle scattering integrals are not oscillat-
ing, i.e., 132~ a40-

On the other hand, for the integralg, with a#b, the
expansion coefficients are readily calculated. Using again re-
lation (31), we obtain

oo

|gb(ka,t)=| Ew 19p (ke e,
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dk,dk,dk, 1 _ — o (aw,
— vb<ka—ka>|2<2wﬁ)35<ka+kb—ka—kb>n=2xJn( 3

0 —o(_i\l —
Iab,l(kart)_z( |)f (27Tﬁ)9 ﬁz a

. Ob
a
||

X exp{;i—[eab—?aw q- Wap(t) + nm](t—t_)} ] {faofbol1=faol [1=fool~faofool 1= Facl [1=fool}y

(41)

t 0 '
g-Wap I —_ ey
X J'todﬂ Jn+l(h—9> exp[ - g[fab_ €abT 0 Wap(t) + N 2] (t—t)

where the superscript “0” underlines that the non-oscillatory gvercritical @ <wy) plasmas, for optical and x-ray fields as
parts of the distributions are used. The first order tergg;p well. Due to the presented nonrelativistic derivation, the field

contain the first harmonic of one distribution, efy,, while ~ @mplitude must not exceed a maximum value. One readily
for the other distributions the zeroth order is taken and so orhecks that for the intracollisional field effect to remain non-
Finally, in a strong field, polarization effects become es-relativistic, it is sufficient that the fields are below approxi-
, , : . o max
sential. In that case, everywhere the laser field has to b@ately the interatomic hydrogen fielkg <~T’n§<109 Viem,
replaced by the total fiel(t)— E(t) which is the solution for optical fields. With increasing frequendyg “” grows lin-

of Maxwell's equations. In the homogeneous case, this sol,early with Q._As in the case of static field_s, increasing the
tion is given by plasma density reduces the effect of the field.

In summary, we have presented in this paper a gauge-
t invariant derivation of the quantum kinetic equation for
E(t):E"(t)—AfoJ dtj(t), (42 dense plasmas in a laser field. Our main result, B8),
to generalizes previous work to quantum systems. This equa-
tion can be used to calculate the transport properties of a
dense plasma in a laser field on arbitrary time scales, i.e.,
over the whole frequency range. The use of the simple static
K Born approximation allowed for a very transparent discus-
= 2 faika,b). (43)  sion of the influence of the electromagnetic field on the two-
(27h)3 Ma T particle scattering process. On the other hand, the presented
. . . . gauge-invariant scheme can be extended straightforwardly to
Obviously, the harmonic modulation of the distributions yegcribe relativistic systems or to include more complex
leads directly to the generat[on of higher f|gld harmon'cs'many—body effects, such as dynamical screening and femto-
The above system of equations fully describes t_he tiMezecond screening buildup in the presence of a laser pulse.
dependent plasma response to the laser pulse. It will be effl- iharmore, it will be of interest to consider the modifica-
cient, of course, only for moderate intensities, when th§;o ot srong collisions T-matrix approximationdue to the
higher field harmonics do not significantly contribute 10 thefie|y a5 well as the incorporation of bound states and impact
collision integral. Otherwise, the field iy, has to be re- 5,4 fie|q jonization. This will allow us to microscopically

placed by a harmonics expansion itself leading 10 & MOrgegcrine the plasma generation process in the field of a
complex spectrum ,,,. Then, a direct integration of the strong laser pulse.

collision term(38) seems preferable.

where the current is self-consistently given by the distribu
tion functions

0= eaj

dk,
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