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Quantum kinetic theory of plasmas in strong laser fields
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A kinetic theory for quantum many-particle systems in time-dependent electromagnetic fields is developed
based on a gauge-invariant formulation. The resulting kinetic equation generalizes previous results to quantum
systems and includes many-body effects. It is, in particular, applicable to the interaction of strong laser fields
with dense correlated plasmas.@S1063-651X~99!10609-3#

PACS number~s!: 52.25.Dg, 05.30.2d, 52.40.Nk
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I. INTRODUCTION

Recent impressive developments in the field of sho
pulse laser technology@1# make it possible to create strong
correlated plasmas in extreme nonequilibrium situations@2#.
At the same time, optical techniques for time-resolved di
nostics are becoming available@3# which creates the need fo
theoretical modeling of dense nonideal plasmas in inte
laser fields.

The conventional approach to nonequilibrium propert
of plasmas is based on kinetic equations of the Boltzm
type. In spite of their fundamental character, Boltzmann-l
kinetic equations have a number of shortcomings, espec
with respect to dense plasmas in laser fields. Boltzmann-
equations are valid only for times larger than the correlat
time. Further, the ordinary Boltzmann equation conser
only the mean kinetic energy instead of the sum of kine
and potential energy. Finally, the collision integrals are in
pendent of the electromagnetic field. However, strong co
lations, high-frequency electromagnetic fields and short-t
phenomena require generalizations. Kinetic equations
classical plasmas in high-frequency fields have been der
in the papers of Silin@4#, Obermanet al. @5#, and others, e.g.
Ref. @6#, and have been applied to the computation of
high-frequency electrical conductivity@7,6#. Collision fre-
quencies were calculated also in a dielectric@8# and a ballis-
tic @9# model, respectively. More recently, kinetic properti
of dense quantum plasmas in strong static fields have b
investigated@10,11#. Silin and Uryupin @12# developed a
quantum approach to absorption in strong electromagn
fields. However, a kinetic equation for dense quantum p
mas in time-dependent fields which is valid on arbitrary tim
scales is still missing.

Generalizations of the Boltzmann kinetic equation sho
include the following features.~i! As a consequence o
strong correlations, the collision integral will be no
Markovian, i.e., it should contain collisional broadening a
memory~retardation! effects, see, e.g., Refs.@6,13–16#. ~ii !
The electric field gives rise to an additional collisional broa
ening. Furthermore it yields an additional retardation in
distribution functions known as intracollisional field effec
~iii ! Non-Markovian effects should be of particular impo
tance for high-frequency fields varying on time scales sho
PRE 601063-651X/99/60~4!/4725~8!/$15.00
t-

-

e

s
n

e
lly
e
n
s
c
-
-
e
or
ed

e

en

tic
s-

d

-
e

r

than the correlation time~essentially one over the plasm
frequency! @4,6#. ~iv! In high-intensity laser fields, it is eas
to generate situations in which the quiver velocityv0
5eE0 /mV is large in comparison to the thermal veloci
v th5AkT/m. Therefore our goal is to derive a field depe
dent collision integral which is valid for arbitrary ratio
v0 /v th . As was shown first by Silin@4#, such collision inte-
grals depend on the field strength in nonlinear way. Con
quently, Coulomb scattering processes will give rise to
excitation of higher harmonics. Furthermore, Coulomb co
sion processes in intense fields can involve absorption
emission of photons~inverse bremsstrahlung and brem
strahlung, respectively!. On the other hand, for low frequen
cies and weak fields (v0 /v th,1) one enters the linear re
sponse regime. In contrast to the usual linear respo
theory, however, one gets from the collision integral an
ditional term linear in the field which is known as the rela
ation field contribution@17–19,10#.

The importance of quantum effects can be estimated c
sidering the ratios of the thermal wave lengthl
5h/A2pmkT, which characterizes the extension of th
probability density of the plasma particles, to other char
teristic lengths. Quantum effects are to be expected~i! if the
Landau lengthl 5e2/kT is of the same order as the therm
wave length, i.e.,l /l<1, ~ii ! for \V.kT, and ~iii ! if the
plasma particles are degenerated, i.e.,nl3.1 with n being
the density.

Furthermore, a quantum treatment of the collision integ
avoids the divergencies occurring in classical theories. T
no cutting procedure will be necessary.

In this paper, we develop a quantum kinetic theory
strongly correlated plasmas in laser fields which fully i
cludes these phenomena. As the starting point, we use
Kadanoff-Baym equations for the two-time correlation fun
tions of charged particles in an electromagnetic field. Th
equations are sufficiently general to account for all ma
body effects of interest. Moreover, they allow to develop t
theory in a highly consistent form where fundamental pro
erties, such as conservation of total energy are satisfied.

II. KADANOFF-BAYM EQUATIONS. GAUGE-INVARIANT
GREEN’S FUNCTIONS

Equilibrium and nonequilibrium properties of strong
correlated plasmas are successfully described using
4725 © 1999 The American Physical Society
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method of real-time Green’s functions. In this framewo
the nonequilibrium plasma state is given by the two-tim
correlation functions which are averages over creation
annihilation operatorsc† andc

ga
.~1,18!5

1

i\
^ca~1!ca

†~18!&,

~1!

ga
,~1,18!52

1

i\
^ca

†~18!ca~1!&,

where 1[(r1 ,t1 ,s1
3), and a labels the particle species.ga

:

contain the complete dynamical and statistical informati
Their time evolution in an electromagnetic field is dete
mined by the Kadanoff-Baym equations@20,21#

F i\
]

]t1
2

1

2ma
S \

i
¹12

ea

c
A~1! D 2

2eaf~1!Gga
:~1,18!

1E dr̄1 Sa
HF~1,r̄1t1!ga

:~ r̄1t1,18!

5E
t0

t1
d1̄ @Sa

.~1,1̄!2Sa
,~1,1̄!# ga

:~ 1̄,18!

2E
t0

t18d1̄ Sa
:~1,1̄! @ga

.~ 1̄,18!2ga
,~ 1̄,18!#, ~2!

which have to be fulfilled together with the adjoint equatio
Heret0 denotes the initial time where the system is assum
to be uncorrelated~otherwise, the equations have to b
supplemented with an initial correlation contribution toSa ,
see Ref.@22#!. Sa

: are the self-energies which will be dis
cussed below. For the following derivations, it is use
to introduce, in addition, the retarded and advanc
Green’s functions ga

R/A(1,18)56Q„6(t12t18)…@ga
.(1,18)

2ga
,(1,18)# which obey the simpler equations

F i\
]

]t1
2

1

2ma
S \

i
¹12

ea

c
A~1! D 2

2eaf~1!Gga
R/A~1,18!

2E d2 Sa
R/A~1,2!ga

R/A~2,18!5d~1218!. ~3!

In these equations, the electromagnetic field is given by
vector and scalar potentialsA and f, and it will be treated
classically. In the following, we will use microscopic an
macroscopic time and space variables being defined as

r5r12r18 , R5~r11r18!/2,

t5t12t18 , t5~ t11t18!/2.

From the Kadanoff-Baym equations~2!, there follows imme-
diately the equation of motion for the time-diagonal part
the correlation functions, i.e., for the Wigner distributio
function which is given by

2 i\ga
,~p,R;t1 ,t18!u t15t

18
5 f a~p,R,t !.
,

d

.
-

.
d

l
d

e

f

To this end, we consider Eq.~2! for equal times,t15t185t,
introduce the variablesR and r , and obtain, after Fourie
transformation with respect tor , for the spatially homoge-
neous case,

]

]t
f a~p,t !52 ReE

t0

t

d t̄$ga
.~p;t, t̄ ! Sa

,~p; t̄ ,t !

2ga
,~p;t, t̄ ! Sa

.~p; t̄ ,t !%. ~4!

This is an exact equation and, therefore, well suited for
riving generalized kinetic equations. To obtain explicit e
pressions for the collision integral, one has to solve t
problems.

~1! It is necessary to find appropriate approximations
the self energy. For this, there exist standard approximatio
such as the statically screened Born approximation, the
dom phase approximation and theT-matrix approximation.

~2! To come to a closed equation for the Wigner functi
f a , the correlation functionsga

: have to be expressed a
functionals off a ~reconstruction problem!. This problem can
be solved approximately on the basis of the generali
Kadanoff-Baym ansatz~GKBA! of Lipavský et al. @23#, see
Sec. III.

To make the derivations transparent, we will consider
low the simplest approximation for the self-energies—t
statically screened Born approximation, thereby focusing
the modifications introduced by the time-dependent elec
field. Further, we will apply the GKBA in its generalizatio
to time-dependent fields@24#.

It is well known that the electromagnetic field can b
introduced in various ways~gauges! what essentially affects
the explicit form of kinetic equations. This becomes a p
ticular problem if one considers approximations to the
netic equations, such as retardation or gradient expans
which look different in different gauges. To avoid these d
ficulties, we will formulate the theory in terms of correlatio
functions which are made explicitly gauge invariant. T
Kadanoff-Baym equations~2! remain covariant under gaug
transformations, i.e., under the following transformations
the potentials and field operators:

Am8 ~x!5Am~x!2]mx~x!, ca8~x!5e( i /\)(ea /c)x(x)ca~x!,
~5!

where we use covariant four-vector notation withAm
5(cf,A), xm5(ct,r ), Xm5(ct,R), ambm5a0b02a•b etc.
The corresponding gauge transform of the Green’s functi
leads to

ga8~x,X!5e( i /\)(ea /c)[x(X1x/2)2x(X2x/2)]ga~x,X!. ~6!

Following an idea of Fujita@25#, we now introduce a gauge
invariant Green’s functiong(k,X) which is given by the
modified Fourier transform
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ga~k,X!5E d4x

~2p!4
expH i E

21/2

1/2

dl xm

3Fkm1
ea

c
Am~X1lx!G J ga~x,X!, ~7!

where use has been made of the identity

xS X1
x

2D2xS X2
x

2D5E
21/2

1/2

dl
d

dl
x~X1lx!

5xm]mE
21/2

1/2

dl x~X1lx!.

Indeed, one readily confirms that under any gauge transf
~5!, the phase factors cancel, andg8(k,X)[g(k,X), @24#.

In the following, we focus on spatially homogeneo
electric fields given in vector potential gauge by

A05f50, A52cE
2`

t

d t̄ E~ t̄ !. ~8!

In this case, relation~7! simplifies to

ga~k,v;R,t !5E dtdr expF i vt2
i

\
r•S k1

ea

c

3E
t2t/2

t1t/2 dt8

t
A~ t8! D Gga~r ,t;R,t !, ~9!

which means that the gauge-invariant Green’s functiong(k)
follows from the Wigner transformed functionga(p) by re-
placing the canonical momentump by the gauge-invarian
kinematic momentumk according to

p5k1
ea

c Et2t/2

t1t/2

dt8
A~ t8!

t
. ~10!

In particular, for a harmonic electric field,

E~ t !5E0cosVt, A~ t !52
cE0

V
sinVt, ~11!

the substitution for the momentum takes the form

p5k1
2

t

E0

V2
sinVt sin

Vt

2
. ~12!

For the derivations below, we will need the gauge invari
Fourier transform of the convolution of two functions

I ~r12r18 ; t1 ,t18!5E d t̄dr̄ B~r12 r̄ ; t1 , t̄ ! C~ r̄2r18 ; t̄ ,t18!.

~13!

After straightforward manipulations which involve the ba
transform of Eq.~9!, we arrive at
m

t

I ~k; t1 ,t18!5E d t̄ BS k1
ea

c Et18

t1
dt9

A~ t9!

t12t18

2
ea

c Et̄

t1
dt9

A~ t9!

t12 t̄
; t1 , t̄ D

3CS k1
ea

c Et18

t1
dt9

A~ t9!

t12t18

2
ea

c Et18

t̄
dt9

A~ t9!

t̄ 2t18
; t̄ ,t18D . ~14!

In the equal-time limit,t15t185t, the momentum argument
of B andC are identical, equal to

k1
ea

c
A~ t !2

ea

c Et̄

t

dt9
A~ t9!

t2 t̄
.

III. GAUGE-INVARIANT PROPAGATOR. GENERALIZED
KADANOFF-BAYM ANSATZ

To solve the reconstruction problem, we need express
for the retarded and advanced Green’s functions. We
determine these quantities for free particles in an electrom
netic field. In this case, Eq.~3! simplifies to

F i\
]

]t1
2

1

2ma
H p2

ea

c
A~ t1!J 2Gga

R/A~p;t1 ,t18!5d~ t12t18!,

with the solution

ga
R/A~p;t,t !57

i

\
Q~6t!expH 2

i

\Et2t/2

t1t/2

dt8

3Fp2
ea

c
A~ t8!G2

/2maJ , ~15!

which yields for the spectral function,aa[ i\(ga
R2ga

A),

aa~p;t,t !5expH 2
i

\Et2t/2

t1t/2

dt8 Fp2
ea

c
A~ t8!G2

/2maJ .

~16!

The functions~15! and ~16! depend on the canonic momen
tum p and are gauge dependent. As pointed out before,
useful to introduce instead gauge-invariant functions by
plying the transform~7!. A simple calculation yields

ga
R/A~k;t,t !57

i

\
Q~6t!expH 2

i

\ F k2

2ma
t1Sa~A;t,t !G J ,

~17!

with

Sa~A;t,t !5
ea

2

2mac2 F E
t2t/2

t1t/2

dt8A2~ t8!

1
1

t S E
t2t/2

t1t/2

dt8A~ t8! D 2G . ~18!



E
e

l

a

b-
o

ne
nt
y

m

to

e
as

A

p

e

ld.
he
the

the
il-
ard

r

ated
y

4728 PRE 60D. KREMP, TH. BORNATH, M. BONITZ, AND M. SCHLANGES
For a harmonic time dependence of the field as given by
~11!, the time integrations inScan be performed, and simpl
trigonometric relations lead to@26#

Sa~A;t,t !5«a
pondtF12

sinVt cos 2Vt

Vt

1
8 sin2Vt sin2~Vt/2!

~Vt!2 G , ~19!

where we introduced the familiar ponderomotive potentia

«a
pond5

ea
2E0

2

4maV2
, ~20!

which is just the time-averaged kinetic energy of a free p
ticle in the harmonic field.

Now we turn to the solution of the reconstruction pro
lem. Due to the expected retardation effects, the comm
Kadanoff-Baym ansatz is not applicable here. As mentio
above, a more general solution which properly takes i
account retardation~memory! effects has been proposed b
Lipavský et al. @23#:

ga
,~p;t1 ,t18!5 i\ga

R~p;t1 ,t18!ga
,~p;t18 ,t18!

2 i\ga
,~p;t1 ,t1!ga

A~p;t1 ,t18!. ~21!

This represents an exact relation in quasiparticle approxi
tion assuming static self-energies. However, the ansatz~21!
is often used approximately with more general propaga
ga

R/A @24#.
To transform this relation into a gauge-invariant form, w

start from its coordinate representation which, for the c
t1>t18 , reads

ga
,~r12r18 ;t1 ,t18!5 i\E dr̄ ga

R~r12 r̄ ;t1 ,t18!

3ga
,~ r̄2r18 ;t18 ,t18!. ~22!

Gauge-invariant Fourier transform of Eq.~22! and use of the
back transforms forga

R andga
, leads directly to

ga
,~k;t1 ,t18!52ga

R~k;t1 ,t18! f aF k2
ea

c
A~ t18!

1
ea

c Et18

t1
d t̄

A~ t̄ !

t12t18
;t18G , ~23!

which is the gauge-invariant generalization of the GKB
For t1,t18 , the second part of Eq.~21! applies which is
transformed analogously. The same transformations are
formed for ga

. , leading to the result~23! with f a being re-
placed by 12 f a .

IV. KINETIC EQUATION FOR QUANTUM PARTICLES
IN AN ELECTROMAGNETIC FIELD

We now come back to the time-diagonal limit of th
Kadanoff-Baym equations, cf. Eqs.~2! and ~4!, and derive
q.

r-

n
d
o

a-

rs

e

.

er-

the quantum kinetic equation for a plasma in a laser fie
Again, it is advantageous to derive this equation for t
gauge-invariant Wigner distribution. To this end, we take
Fourier transform~9! of the time-diagonal Kadanoff-Baym
equation and make use of relation~14! for the special case
t15t18 and obtain

]

]t
f a~ka ,t !1eaE~ t !•“k f a~ka ,t !

52 ReE
t0

t

d t̄ ~$ga
. ,Sa

,%2$ga
, ,Sa

.%!, ~24!

where we denoted

$ga ,Sa%5gaS k1
ea

c
A~ t !2

ea

c Et̄

t

dt8
A~ t8!

t2 t̄
;t, t̄ D

3SaS k1
ea

c
A~ t !2

ea

c Et̄

t

dt8
A~ t8!

t2 t̄
; t̄ ,t D .

For the collision term, we use here self-energies in
simple second Born approximation. Starting from the fam
iar expression in coordinate representation, a straightforw
calculation leads to the gauge-invariant result

Sa
:~ka ;t1 ,t18!5(

b
E dkbdk̄adk̄b

~2p\!9
uVab~ka2 k̄a!u2

3~2p\!3d~ka1kb2 k̄a2 k̄b!

3\2ga
:~ k̄a ;t1 ,t18!gb

:~ k̄b ;t1 ,t18!

3gb
"~kb ;t18 ,t1!. ~25!

The correlation functionsga
: are expressed by the Wigne

functions with the help of the GKBA~23!. Using for the
retarded and advanced Green’s functions the uncorrel
expressions~17! and taking into account the propert
Sa(A,2t,t)52Sa(A,t,t), a lengthy but straightforward
calculation leads to the following kinetic equation (t15t18
5t)

H ]

]t
1eaE~ t !•“kaJ f a~ka ,t !5(

b
I ab~ka ,t ! ~26!

with the collision integral

I ab~ka ,t !52E dkbdk̄adk̄b

~2p\!6

1

\2
uVab~ka2 k̄a!u2

3d~ka1kb2 k̄a2 k̄b!

3E
t0

t

d t̄ Re expH i

\
@~eab2 ēab!~ t2 t̄ !

2~ka2 k̄a!•Rab~ t, t̄ !#J $ f̄ a f̄ b @12 f a# @12 f b#

2 f af b @12 f̄ a# @12 f̄ b#% u t̄ , ~27!
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where we denotedeab5ea1eb , ea5pa
2/2ma and f a

5 f a@ka1Qa(t, t̄ ), t̄ #, and the quantitiesQa andRab are de-
fined by Eqs.~28! and ~29! below.

This is a rather general kinetic equation which descri
two-particle collisions in a weakly coupled quantum plas
in the presence of a spatially homogeneous time-depen
field. It generalizes previous results obtained for class
plasmas@4–6#.

The time-dependent field modifies the collision integral
several ways.

~1! The momentum arguments of the distribution fun
tions are

ka1Qa~ t, t̄ !, with Qa~ t, t̄ ![2eaE
t̄

t

dt8 E~ t8!, ~28!

i.e., they contain an additional retardation given byQa , the
intracollisional field contribution to the momentum. It d
scribes the gain of momentum in the time intervalt2 t̄ due
to the field. In the case of a harmonic field given by Eq.~11!,
we have

Qa~ t, t̄ !52
eaE0

V
~sinVt2sinV t̄ !.

The result for a static field@10# is readily recovered by taking
the limit V→0, i.e.,Qa

st52eaE0(t2 t̄ ).
~2! Another modification occurs in the exponent under

time integral which essentially governs the energy balanc
a two-particle collision: In addition to the usual collision
energy broadening~which has the form cos$@eab2ēab#(t
2 t̄)/\%), there appears a field-dependent broadening. This
fect is determined by the change of the distance betw
particlesa andb due to the field given by

Rab~ t, t̄ !5S ea

ma
2

eb

mb
D E

t̄

t

dt8E
t8

t

dt9 E~ t9!. ~29!

We get for harmonic fields

Rab~ t, t̄ !5S ea

ma
2

eb

mb
D FE0•~ t2 t̄ !

V
sinVt

1
E0

V2
~cosVt2cosV t̄ !G . ~30!

It is clear that the field has no effect on scattering of identi
particles,Raa[0. @Of course, the scattering rates~collision
frequency! of identical particles will be modified by the fiel
indirectly via the distribution functions.# For static fields, it
follows Rab

st (t, t̄ )5(ea /ma2eb /mb)E0/2(t2 t̄ )2.
~3! A third important effect is the nonlinear~exponential!

dependence of the collision term in Eq.~27! on the field
strength which we discuss more in detail below.

As mentioned above, the kinetic equation~26! represents
a generalized version of kinetic equations used in de
plasma physics. Neglection of quantum effects leads to
well-known classical kinetic equation derived by Silin@4#.
On the other hand, for static fields Eq.~26! reduces to the
kinetic equation given in Ref.@10#. Finally, in the zero-field
s
a
nt

al

-

e
in

f-
n

l

e
e

case, we get the non-Markovian form of the well-know
quantum Landau equation@6#.

Now, let us consider the consequences of the nonlin
field dependence in the kinetic equation~38!. This nonlinear-
ity gives rise to interesting physical processes including g
eration of higher field harmonics and emission/absorption
multiple photons in two-particle scattering in the case of h
field strength. To show this, we expand the spectral kerne
the collision integralsI ab @second line in Eq.~27!# into a
Fourier series making use of the familiar relation

e6 iz cosVt5 (
n52`

`

~6 i !nJn~z!e7 inVt, ~31!

where Jn denotes the Bessel function ofnth order. As a
result, the collision integral in the kinetic equation~26! trans-
forms according to

I ab~ka ,t !52 ReE dkbdk̄adk̄b

~2p\!6

1

\2
uVab~ka2 k̄a!u2

3d~ka1kb2 k̄a2 k̄b!

3 (
n52`

`

(
l 52`

`

~ i ! lJnS q•wab
0

\V D Jn1 l S q•wab
0

\V D
3@cos~ lVt !2 i sin~ lVt !#E

t0

t

d t̄ expH i

\
@eab2 ēab

2q•wab~ t !1n\V#J ~ t2 t̄ !$ f̄ a f̄ b @12 f a# @1

2 f b#2 f af b @12 f̄ a# @12 f̄ b#% u t̄ , ~32!

where we denoted

q[ka2 k̄a5 k̄b2kb , wab~ t ![va~ t !2vb~ t !,

wab
0 [va

02vb
0 ,

va~ t !5va
0sinVt, va

0[
eaE0

maV
. ~33!

Obviously,va is the velocity of a classical particle of charg
ea in the periodic field. Separating real and imaginary pa
we get

I ab~ka ,t !5(
n

(
l 5even

i l@ReI ab
nl coslVt1Im I ab

nl sin lVt#

1(
n

(
l 5odd

i l 11@ Im I ab
nl coslVt

2ReI ab
nl sin lVt#, ~34!

where the summations overn andl run from2` to 1` and
the expansion coefficientsI ab

nl are given by
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I ab~ka,t !
nl 52E dkbdk̄adk̄b

~2p\!6

1

\2
uVab~ka2 k̄a!u2

3d~ka1kb2 k̄a2 k̄b!

3E
t0

t

d t̄JnS q•wab
0

\V D Jn2 l S q•wab
0

\V D expH i

\
@eab2 ēab

2q•wab~ t !1n\V#~ t2 t̄ !J $ f̄ a f̄ b @12 f a# @12 f b#

2 f af b @12 f̄ a# @12 f̄ b#% u t̄ . ~35!

This representation of the collision integral allows for
transparent physical interpretation of the binary scatter
process.

~1! In a strong periodic field, Coulomb collisions with
momentum changeq give rise to the generation of highe
harmonics of the field~sums overl ). This has already bee
shown by Silin for classical plasmas. These terms are imp
tant on very short time scales, whereas they do not contrib
to transport quantities which are averaged over times la
than the field period 2p/V.

~2! Furthermore, it is obvious that collisions in stron
harmonic fields are accompanied by emission and absorp
of multiple photons, cf. the sum overn. Indeed, if the retar-
dation in the distributions is omitted, and the initial time
shifted to minus infinity, the time integration in the collisio
term can be performed, giving rise to an energy delta fu
tion

d@eab2 ēab1q•wab~ t !2n\V#.

This function describes the energy conservation in a tw
particle scattering process in the presence of a periodic e
tric field, which leads to multiphoton emission and abso
tion.

For high frequencyV, the collision integralI ab given by
the expression~27! can be simplified by averaging over
period of the oscillating field. The spectral kernel~34! then
reduces to

Re expH i

\
@~eab2 ēab!~ t2 t̄ !2q•Rab~ t, t̄ !#J

5 (
n52`

1`

cosH 1

\
@eab2 ēab2q•wab~ t !1n\V#

3~ t2 t̄ !J Jn
2S q•wab

0

\V D . ~36!

Using this expression in Eq.~27!, we find

H ]

]t
1eaE~ t !•“kaJ f a~ka ,t !5(

b
I ab~ka ,t ! ~37!

with the collision integral
g

r-
te
er

on

-

-
c-
-

I ab~ka ,t !52E dkbdk̄adk̄b

~2p\!6

1

\2
uVab~ka2 k̄a!u2

3d~ka1kb2 k̄a2 k̄b!

3(
n

Jn
2S q•wab

0

\V D E
t0

t

d t̄cosF1

\
~eab2 ēab

2q•wab~ t !1n\V!~ t2 t̄ !G$ f̄ a f̄ b @12 f a#

3@12 f b#2 f af b @12 f̄ a# @12 f̄ b#% u t̄ . ~38!

This quantum kinetic equation is a special case of Eq.~26!. It
can be applied to the important case of dense plasma
strong high-frequency laser fields. For classical plasm
such an equation was given by Klimontovich@6#.

V. APPLICATION TO STRONG LASER PULSES

Let us consider the case of a laser pulse with the elec
field given by EL(t)5E0

L(t)@eiVt1e2 iVt#, where E0
L(t) is

the ~real! pulse envelope. In a strong field, we expect th
also the electron distribution will be periodically modulate
with the frequencyV and, possibly, with higher harmonics
We, therefore, look for solutions of the kinetic equation~26!
of the form

f a~ka ,t !5 (
l 52`

`

f a,l~ka ,t !e2 i l Vt, ~39!

where f a,l are complex amplitudes. Inserting Eq.~39! into
Eq. ~38! and neglecting, for a moment, polarization induc
modifications of the electric field, we obtain a system
coupled equations for the distribution harmonics

H 2 i l V1
]

]tJ f a,l1eaE0
L
•“ka

~ f a,l 211 f a,l 11!5(
b

I ab,l ,

~40!

supplemented with the initial conditions given at timet0 suf-
ficiently long before the pulse,E0

L(k,t0)50 and f a,l(ka ,t0)
5 f a

0(ka)d l ,0 . The Fourier components of the collision inte
gralsI ab,l are defined in analogy to Eq.~39!. The harmonics
spectrumI ab,l is rather complicated since it depends on t
spectrum of the retardation kernelRab , but also on the spec
trum of the distributions. We consider first the effect ofRab ,
replacing in the collision integralsf a by f a

0 ( l 50). In this
zeroth order approximation, due to the propertyRaa50 ~see
above!, the equal-particle scattering integrals are not oscil
ing, i.e., I aa'I aa,0 .

On the other hand, for the integralsI ab with aÞb, the
expansion coefficients are readily calculated. Using again
lation ~31!, we obtain

I ab
0 ~ka ,t !5 (

l 52`

`

I ab,l
0 ~k,t !e2 i l Vt,
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I ab,l
0 ~ka ,t !52~2 i ! lE dkbdk̄adk̄b

~2p\!9

1

\2
uVab~ka2 k̄a!u2 ~2p\!3d~ka1kb2 k̄a2 k̄b! (

n52`

`

JnS q•wab
0

\V D
3E

t0

t

d t̄H Jn1 l S q•wab
0

\V DexpH 2
i

\
[ eab2 ēab1q•wab(t)1n\V]( t2 t̄ )J 1Jn2 l S q•wab

0

\V D
3expH i

\
[ eab2 ēab1q•wab(t)1n\V]( t2 t̄ )J J $ f̄ a,0f̄ b,0 @12 f a,0# @12 f b,0#2 f a,0f b,0 @12 f̄ a,0# @12 f̄ b,0#% u t̄

,

~41!
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where the superscript ‘‘0’’ underlines that the non-oscillato
parts of the distributions are used. The first order termsI ab,l

1

contain the first harmonic of one distribution, e.g.,f̄ a1, while
for the other distributions the zeroth order is taken and so

Finally, in a strong field, polarization effects become e
sential. In that case, everywhere the laser field has to
replaced by the total fieldEL(t)→E(t) which is the solution
of Maxwell’s equations. In the homogeneous case, this s
tion is given by

E~ t !5EL~ t !24pE
t0

t

d t̄ j ~ t̄ !, ~42!

where the current is self-consistently given by the distrib
tion functions

j ~ t !5(
a

eaE dka

~2p\!3

ka

ma
(

l
f al~ka ,t !. ~43!

Obviously, the harmonic modulation of the distributio
leads directly to the generation of higher field harmoni
The above system of equations fully describes the tim
dependent plasma response to the laser pulse. It will be
cient, of course, only for moderate intensities, when
higher field harmonics do not significantly contribute to t
collision integral. Otherwise, the field inI ab has to be re-
placed by a harmonics expansion itself leading to a m
complex spectrumI ab,l . Then, a direct integration of th
collision term~38! seems preferable.

VI. DISCUSSION

Let us briefly discuss the range of applicability of o
results. There is no limitation on the frequencyV, therefore,
our kinetic equation is valid for undercritical (V.vpl) and
ci

.

n.
-
e

u-

-

.
-
fi-
e

e

overcritical (V,vpl) plasmas, for optical and x-ray fields a
well. Due to the presented nonrelativistic derivation, the fi
amplitude must not exceed a maximum value. One rea
checks that for the intracollisional field effect to remain no
relativistic, it is sufficient that the fields are below approx
mately the interatomic hydrogen field,E0

max,53109 V/cm,
for optical fields. With increasing frequency,E0

max grows lin-
early with V. As in the case of static fields, increasing t
plasma density reduces the effect of the field.

In summary, we have presented in this paper a gau
invariant derivation of the quantum kinetic equation f
dense plasmas in a laser field. Our main result, Eq.~38!,
generalizes previous work to quantum systems. This eq
tion can be used to calculate the transport properties o
dense plasma in a laser field on arbitrary time scales,
over the whole frequency range. The use of the simple st
Born approximation allowed for a very transparent disc
sion of the influence of the electromagnetic field on the tw
particle scattering process. On the other hand, the prese
gauge-invariant scheme can be extended straightforward
describe relativistic systems or to include more comp
many-body effects, such as dynamical screening and fem
second screening buildup in the presence of a laser pu
Furthermore, it will be of interest to consider the modific
tion of strong collisions (T-matrix approximation! due to the
field, as well as the incorporation of bound states and imp
and field ionization. This will allow us to microscopicall
describe the plasma generation process in the field o
strong laser pulse.
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@23# P. Lipavský, V. Špička, and B. Velicky´, Phys. Rev. B34, 6933

~1986!.
@24# H. Haug and A. P. Jauho,Quantum Kinetics in Transport and

Optics of Semiconductors~Springer-Verlag, Heidelberg
1996!.

@25# S. Fujita,Introduction to Nonequilibrium Quantum Statistica
Mechanics~Saunders, Philadelphia, 1966!.

@26# A.-P. Jauho and K. Johnsen, Phys. Rev. Lett.76, 4576~1996!.


