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Linear response theory for thermodynamic properties
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A fluctuation-dissipation theorem, connecting all thermodynamic response functions to equilibrium fluctua-
tions in the microcanonical ensemble, is derived from classical mechanics. This particular problem is not
included in the usual linear response scheme, since the relevant perturbations cannot be stated as additional
terms in the Hamiltonian. In experiments where the only control parameter is the heat flow, dissipation is
present in terms of an entropy flow from the system to the surroundings. As an example, the full frequency-
dependent thermodynamic response matrix is extracted from simulations of a supercooled binary Lennard-
Jones fluid. This fluid shows rather high relaxation strength of all response functions, except of the adiabatic
compressibility. The low frequency limit of all thermodynamic susceptibilities increases as temperature is
decreased along an isocof81063-651X99)10105-3
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I. INTRODUCTION 1
cp()=——{{[AH(0)]*)1 p—(AH(0)AH (1)1 p},
Properties such as specific heat, thermal expansivity, and kgT
compressibility become dynamic in systems with slow inter- @)

nal relaxation processes. If, for instance, an instant VOlum'\:fvhere () means averaging over the isothermal
: o ! o )rp -
increasesV is imposed on such a system, the resulting PreSisobaric ensemble andH(t)=H(t) —(H)1 p [16]. kg i

sure responséP(t) will depend on time in a certain way, pgojtzmanns constant, which in the rest of this paper is put
reflecting the internal dynamical properties of the system. ”bqual to 1. Other expressions for thermodynamic response
fact there are 24 different thermodynamic response experiynctions are found in Ref9], where the dynamic iswric
ments of the type&X(t)/Y,|,—response oK following an  specific heat is related to fluctuations of the potential energy
instant perturbation of while Z is kept constant, whei€, Y,  in the grand canonical ensemble. In general, of course, the
andZ can refer to one of the variables volurgpressuré®,  FD theorem for some thermodynamic property depends on
heatQ, or temperaturd. In the case wherg refers toQ, the  the choice of ensemble.

experiment is carried out without any heat transfer. This type In this article the focus is on the connection between, on
of experiment is increasingly used on various biological systhe one hand, dynamic pressure and temperature response in
tems, including, for example, vesicles and cell membranesystems where the parameters eneffggnd volumeV are

[1]. Moreover, measurements of the isobaric frequencyvaried in time, and on the other hand fluctuations of pressure

dependent specific heEIp(w) [2-5] and the frequency- and temperature in the corresponding constant energy and

dependent adiabatic bulk modulegw) [6] have become an volume ensemble. The motivation for this view is that mo-
pen S L N lecular dynamic§MD) simulations have become an increas-
experimental tool in investigation of supercooled liquids.

Theoretical treatment of thermodynamic response funcIngly used tool in investigation of supercooled liquids

tions has mainly been given in the context of hydrodynamicél&lg]' The m|crocanon|ca_1l ensembiNEVP ensembly;
[7—11) or specific modeld11,17, and it is still an open where the number of particles, energy, volume, and total

guestion whether a connection can be made between the mrpomentum are fixed parameters, is usually employed for this

. . urpose, because observations in this ensemble reflect the
croscopical properties of a system, and the measured thermb-, " ! ) )
) X . mtrinsic dynamical behavior of the model system without

dynamic response, in the same spirit as was done for Othec{isturbance from artificial devices
response functions[13—-15. Recently the fluctuation- ; ' . .
R . o Obviously, there must be a connection between, for in-
dissipation(FD) theorem for dynamic specific heat was de- ) . . . _

. . i stance, kinetic energy fluctuations in the microcanonical en-
rived for systems under isothermal conditidd$], express-

ing a theoretically based relation between dynamic speciﬁg'emble and dynamic specific heat. It was found by Lebowitz

heat and energy fluctuations. The derivation was done in thet al. [20] that the static isocoric specific heat per molecule

context of general stochastic processes, which includes thﬁeas the form

case of classical Newtonian dynamids/]. The expression
“FD theorem” refers to a relation between the equilibrium
fluctuations of a system and the response of the system to an
external perturbation. As an example, consider relaxation of
the enthalpyH=E+ PV upon a small instantaneous isobaric whereAT=T—(T)g y is the fluctuation away from equilib-
temperature increas&T at time zero. The time-dependent rium of the kinetic temperature in a microcanonical en-
isobaric specific heat, defined [ (t) =c,(t) 6T, is given  semble. The kinetic temperature is defined by the total ki-
by netic energy of the systertsee below. In continuation of

1
213-N((AT))g /T2’

(2

v
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this work similar expressions were derived for other staticvij andr;; are the pair potential and the pair distance, respec-
properties[21]. However, there is no treatment of the moretively. n is a small number, counting how many kinetic de-
general case of therrdgnamicresponse functions in litera- grees of freedom are removed by the external constraints on
ture, although in Refl.22] the frequency-dependent isocoric the system. If the momentu and angular momenturi
SPECiﬁC heat has been extracted from equilibrium kinetic €Ngre Conser\/ed, the N8 kinetic degrees of freedom are re-
ergy fluctuations in a computer simulation of a single com-duced by §26]. For large systems)=0 is a good approxi-
ponent Lennard Jones fluid by using ath hocgeneraliza- ~ mation. A more general concept of dynamic temperature in
tion of Eq. (2). The reason for the absence of a rigorousthe microcanonical ensemble has recently been developed by
microscopic theory for thermodynamic response functionRugh[27]. It is shown that several choices of dynamic vari-
may be that they cannot be derived from the usual responsghles are possib|e, each on average equa"ng the micro-
theory. In usual response thed¥3—15 a perturbation is  canonic temperature T~ 9S/9E, whereS=In(() is the en-
imposed on a system through an additional term in thgropy. One of these choices, the kinetic temperature, defined
HamiltonianH=H,—Af(t), whereA is some phase space in Eq. (4), specifically measures the temperature of the ki-
variable andf(t) is its externally controlled conjugated netic degrees of freedom. One could as well choose a certain
force. The response of the system is derived by tracing thgart of the kinetic degrees of freedom for determination of
time-dependent phase space probability distribution to firsthe temperature, a “thermometer” if you will. Apart from
order inf(t). However, this method is not possible if one of tradition, a motivation for the choice of the kinetic tempera-
the controllable variables is accumulated heat in the systenure is that it is easy to calculate and easy to understand
As an illustration, consider a thermally isolated systemintuitively. However, the basic results in the following does
which has an electrode in each end, with an electrical resisiot rely on this specific choice of temperature definition,
tanceR between the two electrodes. At time=0, a small  pecause the response of any phase variable can be found
heat pulsesQ, is imposed by applying a voltagé to the  from the basic FD theorerfEq. (32)], and thereby the re-
electrodes in a small time intervat=R5Q,/V2. The per-  sponse of any defined temperature one might want to use.

turbation can certainly be explicitly included in the Hamil- ~ The object is now to calculate how the system reacts to a
tonian small heat perturbatioAQ(t) combined with a volume per-
turbation 6V(t). Only linear perturbations are considered,
H=Hq— E qixE(L), 3) which means that the perturbation has to be sufficiently small
|

to ensure that the response depends linearly on the perturba-
tion. For example in the case of the temperature response to
whereq; are the chargess=—(d/dx)V the electric field, a heat perturbation, a linear dependences®{t) on the
andx; particlei’s position in thex-direction. But the heat history of 5Q(t)
perturbationdQ, is quadratic in the perturbing field, instead
of linear, thus the temperature response which is linear in
6Qq will also be quadratic irkE. In addition to this difficulty t
the derivation of ordinary linear response theory relies on 5T(t)=f p(t—t")sQ(t")dt’ (6)
equivalence between ensemb|&8,23,24. Equivalence be- ’w
tween, e.g., the canonical and microcanonical ensemble is
indeed true when dealing with the average of some phase
space variable or with correlation functions in time andis assumed. The memory kerne(t) is specific for the sys-
space, which only include a few particles. But the equivaiem. If linearity is fulfilled, the frequency-dependent re-
lence is clearly broken when the question is about fluctuasponse functior@TQ(w) is given by
tions of properties which are correlated to the total energy of
the system under consideration. _ w
GTQ(“’):J’O e “u(tdt. )
Il. THERMODYNAMIC RESPONSE EXPERIMENTS

ON COMPUTERS If the system is driven by an oscillating heat perturbation

In MD simulations the positions={ri(.t)} and momenta  $Q(w,t)=5Qye'“, then GTQ(w) is the time-independent
p={pi(t)} of N particles are followed in phase space by complex ratio 6T(w,t)/5Q(w,t). For later reference con-

numerical integration of the equations of motion derivedsider also the response to an instantaneous forced heat per-
from the HamiltonianH=U(r) +K(p). Conventionally, in-  {,rpation 5Q, at timet=0,

stantaneous kinetic temperature and pressure are dé#sged

as ‘ ¢
oT(t =f t—t")dt's :f t")dt’ 6Qq. 8
. 2K (1) ; _(2/3)K(t)+W(t) . (t) OI-L( ) Qo O,U«( ) Qo 8
(t)—m, (t)—f. (4)
The memory kerneju(t) can be found from this specific
where the kinetic energy and the virial is experiment as

p|2 1 z?l)i‘ 1 d
K=§i) m and W=—§i2#1m'ri,-- (5) M(t)=(ﬁ)55ﬂt). 9)
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To avoid misunderstandings, please note that the slowinghere it is thermally equilibrated, but still needs to undergo
down observed in supercooled liquids is due to slowinga slow relaxation to reach equilibrium.

down of fluctuations in potential degrees of freedom—not

kinetic degrees of freedom. However, because of energy con- 2. Volume perturbation

servation, fluctuations of the potential enetdyr) are bal- Let H,, denote the isocoric Hamiltonian. If, for instance,
anced with opposite directed fluctuations of the kinetic enyne system is evolving in a cubic cell under periodic bound-
ergy K(p), resulting in a slow relaxation of the kinetic 5y congitions, therH, can be constructed by inserting a
temperaturel in the microcanonical ensemble. modified pair distance matrigly,(r)={L| mod(r;—r;,L)|}

in the potential,
A. Perturbations

In a real laboratory, it is only possible to measure instan- Hy(r,p)=U(dy(r))+K(p). (12
taneous temperature within a certain accuracy and time reso- . . L .
lution, depending essentially on diffusivity and sample size. An lsotroplc_:_volume scalln_g is imposed by a scaling of a_ll
So following the temperature as a function of time on micro_molecule positions, and a simultaneous scaling of the side
scopic time scale in a microcanonical ensemble is only posl—ength L,
sible in computer simulations. In a laboratory one can use
different means of imposing a heat perturbat#@(t) on a
sample. For example, heating with a resistor or an oscillatin
electric field directly applied to the sample may be used. Th
actual perturbation of the phase space coordinates will in dyr(r')=(1+ 8)dy(r), (14)
general depend on the method, the geometry, and also the
initial phase space coordinates of the system. On the othgne gbserves that
hand, the temperature response is not expected to depend on
the choice of perturbation in a laboratory experiment. To Uy, (r')=U(dy/(r"))=U((1+ 8)dy(r))=U(dy(r))
operate with the concept of thermodynamic response func- N
tions at all one has tassumethat the average response of AU (dy(r))
temperature and pressure on a long time scale is independent +i:1 oo,
of how exactly the perturbationQ(t) is imposed. This al-

lows one to freely choose ways of putting heat into a com+po first order ins. As in the previous example, the perturba-
puter simulation. The only requirement is that the systemjon shifts the system to a new subset of phase space on
must not be pushed far from equilibrium locally in real spacewhich it relaxes, but the change in energy turns out to de-
by the perturbation. If there is some slow relaxation in thepend on the initial stat€, which causes a problem in evalu-
system, the long time linear response is independent of howtion of the response function. To prevent this difficulty, the
one actually heats up the system. following perturbation experiment is constructed: Simulta-
neously with the volume chance, a scaling of all the mo-
menta by (H ¢) is imposed, which reduces the energy by an

As heat perturbation in the present study an instant scarmount corresponding to the increase in energy due to the
ing of all momenta is chosen, change of volume

r—r =ri(1+8),L—L'=L(1+ ), (13)

gﬂplying thatV—V'=V+8§V=V+3V4. Since

-ri6=Uy(r)+68U(r) (15

1. Heat perturbation

pi—p =(1+e)p; (10) SK=K(1+¢)2—K=—4U, (16)

where 1+ ¢ is close to 1. In agreement with laboratory ex- ensuring thaisH=0. Note the correspondence to the previ-
periments the energy chang® is controlled. As a result of ous example, where the volume was fixed and the energy
this, e becomes a phase variable because it depends on tekanged. Here the opposite situation is considered: Fixed
initial momenta. Expansion of to first order in6Q gives energy and perturbation of volume. The idea is that if the
linear response to any variation in energy and volume is
_ ia known, then the linear response to an adiabatic volume per-

e Q. (11 ; | o

2K turbation can be reconstructed by a suitable superposition of

energy or volume response functions. As the volume is the

Of course this choice gives rise to an instant overshopt ofctual control parameter, the quantitiésand ¢ is better
the temperaturédTo=26Q/(3N—n). However, the heat is expressed in terms oV

immediately transfered into the configurational degrees of

freedom, and within a few vibration times, the he¥ is 1
distributed between configurational and kinetic energy in the o= 3
same way as in a corresponding laboratory sample where the

heat is spatially equilibrated upon a heating procedure, but N
where the slow structural degrees of freedom are still not = — i E @r.lé_\/: ﬂﬂ (17)
relaxed. This may seem odd, but in fact the employment of 2K &1 o '3V 2K VT

specific heat spectroscopy in the laboratory as well as in

computer experiments relies on a separation of relaxation In the following derivations, only perturbations which are
times, which makes it possible to drive the system to a statbnear combinations of the two perturbations defined above

oV
V!
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are considered. This simplifies the calculations, which can 50) a
now be done under isocoric and isoenergetic conditions.

B. Perturbation of the microcanonical ensemble

Consider arN-particle system which is initially fixed on
an energy surface defined bi,(I') =H\/(r,p) =E. The sys-
tem is assumed to be in equilibrium, so that the distribution
in phase space is a uniform distribution on the energy surface<B>E+dEV

1
fE,v(F):Q_EVfS{HV(F)_E}a (18

1
1
1 1
1 1
1 1
<B>py * Y =

Log(t)

where the phase space volufig \, is defined by

FIG. 1. Schematic illustration of a response experiment. The
Qpy= f dI' 8{H\(T")—E}. (19 instant responséB, (a) is followed by a fast decagb) to a state
where the fast degrees of freedom are equilibrated. The slow decay
(c) follows, and the system finally reaches equilibrium under the
new constraint E+ 6E,V+ 6V) (d). It does not matter which value
f B is chosen as zero point in evaluation of the time dependence,
since the value oB(0) is subtracted anyway. For computational
reasonss;B=B—(B)g s.v+sv IS Chosen.

At t=0 the system is displaced slightly in phase space b
oI'(T"), simultaneously with a change of the Hamiltonian
Hy—Hyy sv- This perturbation will in general change the
energy of the system by

1
6N fo(I'")=5—{Uysa(r’)—8U(r")
5E(r)=i§l %m(r). (20) Qev

+K(p')—6K(p")—E}

8[1”—51“(1“’)]‘
. . . . ar’
In accordance with the preceding section, perturbations are
constructed so thalE does not depend on the initial stdte
i.e., the system is shifted to another energy surface in phase = Q—EV5{HV+ (')
space defined b, s,(I'')=E+ SE. ’

Now the distribution immediately after the perturbation
fo(I') can be constructed by “picking out the points” in —(E+E)}
phase space which were on the energy surtdgél’)=E
before the perturbatiorf, is formally written

(23

a[r'—ar(r')]‘
ar’ '

C. Calculation of response in the microcanonical ensemble

The dynamical behavior is assumed to be described by a
(21)  conditional probability distributiorG(I",t|T"’,t"), which in-
cludes quite general types of systems. For instance, in clas-
sical mechanics, the conditional probability looks similar to

JT'—T(T")]

!

fo(I'")=fe [T —ol(I')]

and it is expected to be a nonuniform distribution on the
energy surfaceHy, sy(I'')=E+ 6E. The Jacobiand[T"’

— oI (T'')]/aT’| ensures proper normalization ff. It com-
pensates for the immediate phase space expansion followinghereL=—i{H,-} is the Liouville operator.

the disturbance. Note that the determinant depend$on The response of a phase variaBlenay be separated into
fo(I'") is explicitly written as two terms as illustrated in Fig. 1,

G(I t|T’,00=6{I'—€"* T}, (24)

1 SB(t)=6By+[B(t)—B(0)], (25
fo(I'")= Q—E\/5{Uv(r’—5r)+K(p’—5p)—E}

that is, an instantaneous respon8B,=((dB/JI") I )k v
plus a time-dependent resporid®(t) —B(0)], whereB(0)

is the value ofB right after the perturbation. The first one is
straightforward to calculate and the latter is calculated by
averaging the deviation d8(t) from its mean value in the
which by use of Eq(15) is reformulated in terms of the final state: &B(t)=B(t)—(B)gisev+sv, Since B(t)
perturbed Hamiltonian —B(0)=6:B(t) — 6;B(0). By use of thenitial distribution

X (22)

I —80(")]
ar’ '
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(23) and the conditional probabilit(I",t|T"’,0), the devel-
opment of the phase variabi&B(I") can be traced in time
after the perturbation as

5fB(t)=fdrfdr'5fB(r)
! l !
X Gy ov(THt|T ’O)Q_é{HV'FﬁV(F )
EV

—(E+5E)} (26)

I —8T(I")]
ar’ '

Expansion of ), st v+ sv in E and 6V yields

alnQ
E+ EV 5v>

dInQey
+ Sl EY;

JE

1 _ 1 (1
QE,V QE+5E,V+5V
(27)
and by inserting X \, in Eq. (26) one gets

5fB(t)=fdrfdr'afB(r)va(r,ﬂr',O)

dInQ
+ E,V

E oE

x|
QE+ 6E,V+ 6V

N dINnQey

&V5V

H{Hy4sv(I'")—(E+ 6E)}

IT" —8T(I'")]
ar’

X , (29)

which allows identification of the equilibrium distribution

1
fersevesv(l)==m————6{Hy,s5()—(E+ JE)}.
Qe sgvsov 29

When the averaging in E28) is carried out, it is notewor-
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J(T — oT')
ar

a(I'— oT")
([,

E,V

6B(t)=6BO+<‘ (O)AB(t)>

E,V

(32

in the linear limit. Below the notatior---) is used for
(e

Now the specific perturbations proposed in Sec. Il A are
considered. First the heat perturbation defined in Ed.
and (11) is inserted in Eq.32). The Jacobian is ex-
panded to first order

AT —oD)| _ry 1- L sE|~1-3NtsE, (33
o | i (17 g 9B~ 173N5p ok, (33
leading to the response
SBO=B.+ —N (A~ 0)aB(t) ) 5E
(t)=06Bg aN"n T() (t)
-1
—<A7(O)AB(O)>6E. (34)

The frequency-dependent response funct@QE|V(w) is
found directly from Eq.(34) by use of Eqs(7) and(9),

_de Ll [9Bo BN [ 1
Gegv(w)= . te aa(t) SE |Vian—gn| ATAB
3N 1
—an=p | AT(OABM®) ) 1, (35

whered(t) is the Heaviside step function. Equati@b) can
be written as

5B

GBE|V(w): SE

3N 1/alas
JiaNen|\ AT

thy that the Jacobian determinant has no fluctuating terms of

zeroth order,

do not influence the first order result. TherefafeB(t) turns

which means that the correction terms
[(9In Qg y/dE)E+(dIn Qe\/dV)6V] to the density of states

H ” —iw 1
—|wf0 dte t<AT(O)AB(t)>]. (36)

out to be given by the equilibrium autocorrelation function The temperature and pressure response may be found from

J(T — oT')
ar

(O)AfB(t)> . (30)

E+ 0E,V+ 6V

whereA(B=B—(B)g, se.v+sv IS the equilibrium fluctuation

of the variableB with respect to its average in the final state.
( )e+sE,v+sv Means isoenergetic-isocoric average with the
specified paramete§+ 6E,V+ 6V. The full response can

be constructed as

(5 ome)

5B(t)=6Bg+ T(O)AfB(t)
(I — &I

(| )

which equals

E+ SE,V+ 6V

(31
E+ 0E,V+ 6V

Eq. (34) by substitutingB with T andP, respectively.
The volume perturbation is now considered. The Jacobian
is to first order

‘&(F—ﬁl“)

3N
T ‘:

[T (1-8)(1—e)~1-3N(5+¢). (37
=1

Inserting the expression for the Jacobian from B4) in Eq.
(32), with & and § taken from Eq(17) one arrives at

6B(t)=6B 1 SN AWAB
(D=0Bot G ann |\ AT

w
—<A?(O)AB(t)>]5V (39)

and in the frequency domain the response function is
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- 530‘ 3N W Now the response matrix for the situation where volume and
Gpyie(w)= vV, V(3N— ) [ < A AB> heat are the controllable parameters may be written. Defining

=Q/N andv=V/N, and defining the frequency-dependent
response matrix by

E‘qu\U(w) fsnm(w)) ( 631) Cwm
GPq|v(w) GPv|q(w)

—iwfwdtei‘”t<AV?V(O)AB(t)>]. (39
0

( 5T
The temperature and pressure response may now be found oP
directly from Eq.(38). In each case the instantaneous term

5B/ 8V|g must of course be evaluated by considering theone finds in theN—co limit, that the matrix elements are
actual perturbation. As an example the immediateener- ~ given by

getic pressure response is found to be

- - 2 1
GTqv(w)=cv(w)1=§+N[<ATAT>

5P -1/2K 1 o (ryj)
oV _<5P(5F)>_ 3 +9—Vi:ﬁj 8ri2]- i |- . 2 iwt] WL
(40) —|wJOdte A?(O)AT(t) , (49

D. Laboratory response functions Grylq(@)=—TGpq,(w),

The results above can be contracted in the following ma-

trix equation:
¥ 5

- o)l - |. (41

6P oV

The object is now to construct the response functions for
an adiabatic volume perturbation. This means an experiment
carried out without energy exchangexceptwork done by
the immediate volume expansiagfE = —(P). Note the dif-
ference from an isoenergetic experiment, whéke=0. To
derive the adiabatic response, one can use linearity and cal- (T)
culate the response as a superposition of two experiments:
one experiment with energy fixedE=0, while volume is
changed instantaneously, and one with volume figgd-0, X<AP(O)AP(U>]' “7)
but SE= —(P) sV, the(mean change of energy produced by
the change of volume@V in an adiabatic experiment. This constitutes the FD theorem for thermodynamic response

The response is then given as a superposition of the reunctions. Equatiorf45) is in agreement with the expression
sponse to the volume perturbation and the energy perturbgwed py Grest and NagéP2], while lim, .o C,(w) is in
tion, implying that the response function looks similar to  accordance with Eq(2), taken from Lebowitzet al. (Ref.
[20]). Also, the frequency-dependent bulk modulus
Gpu|q(w) approaches the well known expression for the
static adiabatic bulk moduly1,25 in the w—0 limit.

Consider the situation, wher€ and P are controllable

550‘ 1 3N W—(P)V parameters, while andv are fluctuating freely. By inver-
—(P) SE |V+\7 3N"n AB sion of Eq.(44),

~ 2 1
qu|v(w)=§p+N ATAP

Grgv  Grve

P ” —iw 1
—IwJO dte t<A?(O)AF’('{)>], (46)

Gpev  Gpye

éPv|q(a)) =p

W) 5 1 vy
<T‘§<P>‘W<§,- pel fﬁ>}

(APAP)—le dte it

~ ~ ~ 0By
GBV|Q(w) = [GBV|E(w) _<P>GBE|v(w)] = Y2

E

T
: - 5| [ ~Ta 5T
—iwj dte‘i“’t< < A (O)AB(t)H ( f) :(SP(‘”) ~ap(w)) ~)
i ) \ap(0) —wr(w) |\ 6P
“ __1 Gpyjo(@) _éTv|q(ﬁ))) ( cﬁ')
In large systems, for instance, D(w) —épq\v(w) Grgpo(@) 5/

(48)

5P

1
P - ~ ~ ~ ~
< > 6E <T> D(w):GTq|U(w)GPU\q(w)_GPq\U(w)GTUM(w)-
_iwfwdte—iwt<A P(O)AP(1))}. (43  Note that the propertiesp(w), kr(w), andap(w) are cal-
0 culated “per particle.”
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E. Dissipation 3N /48Q 5Q 1
A few remarks about dissipati iate at thi 08=8'=S=33= <_> :<_> +O<_)' (52
pation are appropriate at this 3N-n\ T T N
point. In any linear response experiment there is a dissipation
which is of second order in the perturbing variable, usuallyas it should be for any choice of small heat perturbation.
characterized by a positive net heat production. For example, Following Christenser{28], the oscillatory heat pulse
if an adiabatic volume perturbatiodV(t)=Re[Vye'“!} is 8Q(t) is constructed from small successive steps of the type

forced on the system, the work done on the system durinéndicated by Eq(11), so that the entropy flow into the sys-

one cycle is given by the integral tem during one cycle of duratioh,,e may be calculated as
Tcycle . Tcycle .
5E=f - P(t)th=f —[Po+ 6P(t)]Vvdt .
0 0 8Seyote= f Ty 2 (53
Tcycle ~ . . ovele 0 T(t) .
=f —[Po+ Re[6VoGp,|(w)e' '} IRefi w8V oe' '}
0
2 2 If terms of second order iAQ are included in Eq(52), these
= IM{Gp,jq(w)}= Im{ = (49)  Will appear as products of sine and cosine, and integrate to 0
N ol N k(W) over one cycle. Thus the only second order term stems from

5 expansion of the right-hand side of E&3). Letting T de-
Since I{Gp,|4(w)} is non-negative, this means that if there note the mean temperature of the process, one may write

is an imaginary part ofspv‘q at all, the system is slightly

heated by the adiabatic oscillating compression, and the tem- ss TeyedQ(t) Q1) ST(1) it 54
perature will eventually increase so much that the linearity is cycle To T2 '
broken.

Of course, if one considers an isocoric specific heat exThe first term in the time integral is just a cosine which

periment where the heat is controlled by the functioninte : _ = ot

- it . . grates to 0. SincdT(t)=Re[[8Qq/Nc,(w)]e'“'}, the
4Q(t) = Re{ 5Qqe I. 1, there is no energy ahsorbed during entropy flow into the system to second ordesi@, is found
cycle of the experiment, since the system returns to exactly

the same thermodynamic state after each cycle. However,

there is anentropy production during a cycle, as noted by

Birge and Nagel3]. This entropy production is a general 5Q2 1

feature, which, like the linear response, does not depend on 8Seycle= — 7 —%m! = ) (55)

the choice of heat perturbation. However, the entropy in- eyee NTZ | ¢, (w)

crease resulting from a perturbation of the sort specified in

Egs. (10) and (11) may be calculated directly. Consider an

arbitrary ensemble spread out in phase space by some distiihe entropy flow into the system is negative, meaning that

bution f(r,p). The entropy is given by §f]= entropy flows out of the system. There is a net entropy pro-

— fdrdpf(r,p)Inh®Nf(r,p), whereh is some constant with ductions within each cycle inside the system, which is cap-

the same dimension asxp. The actual size oh has no tured by the surroundings, and may be interpreted as a loss

significance, since a changelofvill only shift the zero point  of free energy of the surroundindg28]. In the case of an

of the entropy axis. When all momenta are scaled simultaescillatory adiabatic volume perturbation, the system was

neously byp;—p/ =p;(1+¢), the new distribution is heated up by work done on the system, causing a loss of
energy in the surroundings. In both cases the dissipation is

ap proportional to the imaginary part of the relevant response
fr(r,p")=1f(r,p'(1-¢)) a_p’ : (50 function.
and the new entropy is Ill. EXAMPLE: BINARY LENNARD-JONES LIQUID

ap A. Simulations
S'= —f drdpf(r,p’(1-€)|— To illustrate the use of the FD theorem, MD simulations
ap of the well known Kob and Andersen moddl8] were per-

) formed. The model consists of a mixture of two different

p

f(r,p’(1—¢)) prv kinds of particles, labeled andB. Each sample consists of

80% A particles and 2098 particles. Interaction between
50 two particles is governed by a Lennard-Jones potential
— _f drdpf(r,p){ In(f(r,p))—3N—+O(6Q2) ] VQB(F)=4Ea,3[(0'aﬁ/r)12—(O'Qﬁ_/r)e], Wher_6a ar_1d,6’ refer

2K to the labelsA and B. The particles have identical mass
(51) and the parameters are cho4@8] as eap=1.0, €p5=1.5,
€g=0.88, 045=1.0, 045=0.8, andozg=0.88.
Thus the first order entropy increase is found to be in accor- Below, distances are in dimensionless unitsogf,, en-
dance with the well known thermodynamic expression ergy in dimensionless units af,,, and time is given in

XIn
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dimensionless units ofnfo4 A/ean) Y% A characteristic vi- 0.40 - .
bration time is around 1/10 time units. The potential is trun- 1000 ' . .
: 0.35 - .
cated at the distance 2.5. R
Simulations were carried out at the temperatuies 030 I

=0.464,0.527,0.614,0.7%#10.002 and pressures P
=2.43,3.20,4.40,5.610.02. The density was kept fixed at , 025
p=1.18873 in all cases by means of periodic boundary con—g
ditions, and the equations of motion was integrated by meansg 020
of the Verlet velocity algorithn{30]. At each temperature f:: 015
four different samples with 256 particles in each were pre-
pared by first quenching a random configuration, then equili- § o.10 |
brating with a NoSeHoover thermostat31], and there upon
tuning the energy to make sure that all four samples were at 0.0
the same energy surface with a relative uncertainty of less
than 102 of the total energy. Then the samples where
equilibrated under constant energy in 400 time units in the -2
casesT=0.614,0.711, 4000 time units in the cabe 0.527 log, )
and 8000 time units in the ca3e= 0.464, which in each case i .
is more than the slow relaxation time. After this preparation FIG. 2. The correlation functiong— NA(l./T)(Q)A.T(t» _for
s four different mean temperatures, on a logarithmic time axis. Each
the kinetic energy, the pressure and the property

> 212 | . o ti correlation function is based on eight different runs with §8mple
2(d%j; /arij)rii was sampled during runs at Xa0> time points each. No smoothing has been employed. The data points

units (4x 10" time stepgfor T=0.464, 8<10* time units  have been logarithmically averaged, i.e., the data points on the
for T=0.527, and & 10° time units forT=0.614 and 0.711. graph are averaged over increasing time intervals with increasing
The autocorrelation function and Fourier transforms werdgime. The lines are fits to stretched exponentialf(t)
calculated by use of thessL subroutines library[32]. In  =exd —(t/79)”], with exponentg3=0.73,0.75,0.92,1.05 for the tem-
addition five samples of 800 particles each, and the samperaturesT;=0.464+0.002,T,=0.527+0.002,T;=0.614=0.002,
density as above were preparedlat 0.527, and runned for and T,=0.711£0.002, respectively. The insert shows the non-
4% 10* time units to check for finite size effects. Arrhenius temperature dependence of the relaxation time

B. Simulation results . . .
the same manner, so there is no direct contradiction here.

In Fig. 2 the time correlation function The low relaxation strength of

=N{(1M)(0)T(1)) =N((@/M)(0)T(1))

at high temperatures is consistent with an energy landscape
is plotted at different temperatures. The long tail of the cor-picture, where the number of configurational traps is reduced
relation function is identified with the slow structural relax- as temperature is increased, and it is qualitatively consistent
ation in the liquid. The slow relaxation increases in strengthwith the general behavior afp found in real liquidg36].
and duration with decreasing temperatures. The often used There is a small finite size effect for samples at 256 par-
phenomenological stretched exponentigKohlrausch- ticles. In Fig. 3 real parts of specific heat and compressibility
Williams-Watts[33] form) is used as a fitting formula. Re- are compared for runs with both 800 and 256 particles with
laxation times grow in a non-Arrhenius w§84], common the same amount of total energy per particle. The specific
to supercooled liquids, as shown in the inset of Fig. 2. Bhe heat was the same in the two cases as seen in Fig. 3, which
exponents change from approximately 1Tat0.711 down was also the case for the mean temperature. On the other
to 0.7 atT=0.464. B8 measures the sharpness of the relax-hand}T is smaller by approximately 3%, and the pressure is
ation time distribution. Lower values o8 correspond to systematically larger by 3% in aN=800 sample. That is,
broader spectra. In laboratory measurements on organic lighere is a small finite size effect, which is most pronounced
uids [2-5,16,35 the specific heat spectra have in generalin properties related to the pressure, but which is small com-
been found to be broader, wil lying in the range 0.50— pared to the noise in the data.
0.65. However, thgse measurements were done much cIoser,:igures 4, 5, and 6 show the response functiogias),
to the glass transition temperatufg;, and for molecular

liquids. In generalB for other relaxation functionsfor in- crossover frequency which reflects the slow) (decay is

stance, the intermediate scattering funclisnfound to be in . :
L ; ) ) I h
the interval 0.7 1 in the high-temperature range accessmlemovIng approximately two decades down, as the temperature

to computer simulation§18,19. The relaxation strength is 's, lowered. Ir.1 general the conflguratlgnal part Is increasing
increasing with decreasing temperature, a feature which i&ith decreasing temperature, but whidg and ap have a
qualitatively different from the behavior of the intermediate Ngh_configurational part relative to the vibrational part,
scattering functio18], which is found to have temperature- [cp(0)—cp(=) J/cp(*)~0.4-0.6, [aP(O)_fP(O")]/aP(”’)
independent relaxation strength. However, there is no reason 0.5— 0.8, the same property calculated fof is somewhat

to believe that these two properties should behave exactly itower, [ k7(0)— «1() ]/ k() =~ 0.15-0.3.

ap(w), and’k(w). The overall behavior is the same. The
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FIG. 3. Real part of isobaric specific heat, and real part of iso-
thermal compressibility aff,=0.527, for two different sample FIG. 5. Real part and negative imaginary part of isobaric expan-
sizes. The samples were prepared so that the total energy per paivity per particle. Same temperatures as in Fig. 2. Logarithmically
ticle is the same in each case. The temperature appeared to be tieeraged data.
same within an insignificant relative deviation o203, while
the pressure showed a relative deviation of B) 2 (largest in the  pamic properties for this substance are small, compared to
N=800 samplgwhich is interpreted as a small finite size effect. the same ratio of, e.g., the intermediate scattering function
[18]. But considering the high temperature range, they are
For comparison, real parts of the pa?i:rgw), Ctp(w), and  actually quite big when compared to experiments on various

%), *%(w) are also shown in Figs. 7 and 8. There is allauids [2—6. i
significant difference between isocoric specific heat and iso- !t IS found that thew=0 value of all susceptibilities are
baric specific heat, as it was also found by other method¥creasing with decreasing temperature. Empirically it is
[22]. The shapes of the relaxational parts of the respons&nown for several substa,mces, that aroungl the overall
functions [¢' (w)—c’ () ]/[c'(0)—c’ ()] are very much eqwhpnum specific hea[tcp(cf)=0)] is decreasmg with dg-
alike each other, buip(e) is 20% bigger thare, (), and creasing temperaturg36|, while only the relaxational part is

the ratio between configurational and vibrational parts in the"'creasing. In _addltlon to the fact that this is a Newtonian
model, two things may have to be taken into account to

case ofc,(w), is only around 30-40 % of that afp(w).  rationalize this difference. First the model investigated here
Even more pronounced is the difference betwegfw) and s far above itsTg. Second, the cooling is done along an
kt(w). The ratio between configurational and vibrationalisocore. So the fact that(0) is increasing upon cooling

parts ofk<(w) is only between 3 and 5%. Generally the ratio (the substance is getting softenay be due to the isocoric
between configurational and vibrational parts of thermody-constraint. The increase is not inconsistent with the estimated

structure factor at the lovg values reported in Ref.18].

6.0 T T T T

0.020 T T T T

FIG. 4. Real partupper curvesand negative imaginary part FIG. 6. Real part and negative imaginary part of isothermal
(lower curve$ of isobaric specific heat per particle. The four tem- compressibility per particle. Temperatures are the same as Fig. 2.
peratures are the same as in Fig. 2. Logarithmically averaged dathogarithmically averaged data.
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FIG. 8. Real part of isothermal compressibiligpen symbols

FIG. 7. Real part of isobari@pen symbolsand isocoridfilled  and adiabatic compressibilitffilled symbols. Temperatures as in
symbolg specific heat. Same temperatures as in Fig. 2. Fig. 2.

a way which is substantially different from regular linear

I—:lci)wev?]r,v\:ecent co?;ipu;er ts'vrmla;'?ﬁsg; ?finar:]orpi?lou\fvithresponse theoryi) The perturbation of the system cannot be
sflica Shows a Specitic_hea ch 1S Tirst increasing tated as an additional term in the Hamiltonian, as in usual

decreasing temperature, and then decreasing on further coQ ssponse theory. It is introduced as a direct change of the

ing, indicating that this feature may be model specific, ofphase space coordinates. In general it is not a phase space
dependent on the temperature range investigated. conserving perturbation, as in the case where the perturba-
Finally a remark about the quality of the data: Clearlytjon is introduced through the Hamiltoniafii) There is
they are quite noisy. This is because the thermodynamic respme freedom in the choice of perturbatidese Sec. Il A
sponse functions are calculated from the fluctuations of a fevrhis is justified with analogy to laboratory experiments
correlated propertie& and P in opposition to a property where one does not expect the actual choice of heating ag-
such as the intermediate scattering functji@B], where the gregate to influence the specific heat of the sysi@n.The
positions of each particle are sampled at different times anderivation of the FD theorem is done under strictly isoener-
added up in the correlation function. This method givesgetic and isocoric constraints, thus taking into account the
much more statistical material with which to perform the fact that the presence of these constraints affects the dynami-
averaging than the one presented here. It is not possible al fluctuations ofl andP. In ordinary response theof#3],
decompose, for example, the correlation functionequivalence of ensembles is assumed.
(AK(0)AK(t)) into small parts, referring to different parts ~ The FD theorem, essentially expressed in Ed48)—(47),
of the sample, evaluate them separately, and then add (§®nnects all thermodynamic response functions to equilib-
these parts to give better statistics. This is simply because tH&!m fluctuations of the isocoric/isoenergetic ensemble. The
kinetic energies of two particles in a system with constan@diSSipation has to be be considered carefully when dealing
energy are in general anticorrelated even if the particles ar@ith heat flow as a control parameter. It was demonstrated in
very far from each other. This anticorrelation contributes sig->€¢: IIE, that even in the case where the system is heated

nificantly to the correlation function. In fact, it reflects the and cooled in a cyclic process, and in this way returned to

, . L the same state after each cycle, there is a net entropy produc-
nature of a system’s response under |soenerget|c/|socor[c

. ) . : ion in the surroundings of the system which is proportional
constraints. The response is determined by the restricted MO-" the imaginary part of the freduency-dependent response
tion of the particles, and therefore actually a collective orga- TS gihary p q y-dep P
nized motion of the whole system. One might get the idedunction Gr|,(w). _ _
that it would be simpler to extract thermodynamic response | "€ response theory was applied on a binary Lennard-
functions from an isothermal simulation, employing the FDJones model system. This model showed a rather high con-
theorem derived from isothermal conditions in REf6].  figurational part in all response functions, except thak f
However, the problem is that there is no method by which tdGenerally both the configurational part of the susceptibilities,
perform isothermal simulation81] without influencing the and the total amplitude of the susceptibilities aat=0 in-
energy fluctuations of the system in an artificial way, whichcreased with declining temperature. The broadness of the
clearly spoils the dynamic response functions. relaxation spectrum was found to be in qualitative agreement

with that of other response functions8].

IV. SUMMARY AND CONCLUSIONS
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