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Linear response theory for thermodynamic properties

Johannes K. Nielsen
Department of Mathematics and Physics, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark

~Received 18 August 1998!

A fluctuation-dissipation theorem, connecting all thermodynamic response functions to equilibrium fluctua-
tions in the microcanonical ensemble, is derived from classical mechanics. This particular problem is not
included in the usual linear response scheme, since the relevant perturbations cannot be stated as additional
terms in the Hamiltonian. In experiments where the only control parameter is the heat flow, dissipation is
present in terms of an entropy flow from the system to the surroundings. As an example, the full frequency-
dependent thermodynamic response matrix is extracted from simulations of a supercooled binary Lennard-
Jones fluid. This fluid shows rather high relaxation strength of all response functions, except of the adiabatic
compressibility. The low frequency limit of all thermodynamic susceptibilities increases as temperature is
decreased along an isocore.@S1063-651X~99!10105-3#

PACS number~s!: 65.20.1w, 05.20.Gg, 65.50.1m, 64.70.Pf
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I. INTRODUCTION

Properties such as specific heat, thermal expansivity,
compressibility become dynamic in systems with slow int
nal relaxation processes. If, for instance, an instant volu
increasedV is imposed on such a system, the resulting pr
sure responsedP(t) will depend on time in a certain way
reflecting the internal dynamical properties of the system
fact there are 24 different thermodynamic response exp
ments of the typedX(t)/dY0uZ—response ofX following an
instant perturbation ofY while Z is kept constant, whereX, Y,
andZ can refer to one of the variables volumeV, pressureP,
heatQ, or temperatureT. In the case whereZ refers toQ, the
experiment is carried out without any heat transfer. This ty
of experiment is increasingly used on various biological s
tems, including, for example, vesicles and cell membra
@1#. Moreover, measurements of the isobaric frequen
dependent specific heatc̃p(v) @2–5# and the frequency-
dependent adiabatic bulk modulusk̃s(v) @6# have become an
experimental tool in investigation of supercooled liquids.

Theoretical treatment of thermodynamic response fu
tions has mainly been given in the context of hydrodynam
@7–11# or specific models@11,12#, and it is still an open
question whether a connection can be made between the
croscopical properties of a system, and the measured the
dynamic response, in the same spirit as was done for o
response functions@13–15#. Recently the fluctuation-
dissipation~FD! theorem for dynamic specific heat was d
rived for systems under isothermal conditions@16#, express-
ing a theoretically based relation between dynamic spec
heat and energy fluctuations. The derivation was done in
context of general stochastic processes, which includes
case of classical Newtonian dynamics@17#. The expression
‘‘FD theorem’’ refers to a relation between the equilibriu
fluctuations of a system and the response of the system t
external perturbation. As an example, consider relaxation
the enthalpyH5E1PV upon a small instantaneous isoba
temperature increasedT0 at time zero. The time-depende
isobaric specific heat, defined bydH(t)5cp(t)dT0, is given
by
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cp~ t !5
1

kBT2
$^@DH~0!#2&T,P2^DH~0!DH~ t !&T,P%,

~1!

where ^•••&T,P means averaging over the isotherma
isobaric ensemble andDH(t)5H(t)2^H&T,P @16#. kB is
Boltzmanns constant, which in the rest of this paper is
equal to 1. Other expressions for thermodynamic respo
functions are found in Ref.@9#, where the dynamic isocoric
specific heat is related to fluctuations of the potential ene
in the grand canonical ensemble. In general, of course,
FD theorem for some thermodynamic property depends
the choice of ensemble.

In this article the focus is on the connection between,
the one hand, dynamic pressure and temperature respon
systems where the parameters energyE and volumeV are
varied in time, and on the other hand fluctuations of press
and temperature in the corresponding constant energy
volume ensemble. The motivation for this view is that m
lecular dynamics~MD! simulations have become an increa
ingly used tool in investigation of supercooled liquid
@18,19#. The microcanonical ensemble (NEVP ensemble!,
where the number of particles, energy, volume, and to
momentum are fixed parameters, is usually employed for
purpose, because observations in this ensemble reflec
intrinsic dynamical behavior of the model system witho
disturbance from artificial devices.

Obviously, there must be a connection between, for
stance, kinetic energy fluctuations in the microcanonical
semble and dynamic specific heat. It was found by Lebow
et al. @20# that the static isocoric specific heat per molecu
has the form

cv5
1

2/32N^~DT!2&E,V /T2
, ~2!

whereDT5T2^T&E,V is the fluctuation away from equilib
rium of the kinetic temperature in a microcanonical e
semble. The kinetic temperature is defined by the total
netic energy of the system~see below!. In continuation of
471 ©1999 The American Physical Society
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this work similar expressions were derived for other sta
properties@21#. However, there is no treatment of the mo
general case of thermodynamicresponse functions in litera
ture, although in Ref.@22# the frequency-dependent isocor
specific heat has been extracted from equilibrium kinetic
ergy fluctuations in a computer simulation of a single co
ponent Lennard Jones fluid by using anad hocgeneraliza-
tion of Eq. ~2!. The reason for the absence of a rigoro
microscopic theory for thermodynamic response functio
may be that they cannot be derived from the usual respo
theory. In usual response theory@13–15# a perturbation is
imposed on a system through an additional term in
HamiltonianH5H02A f(t), whereA is some phase spac
variable and f (t) is its externally controlled conjugate
force. The response of the system is derived by tracing
time-dependent phase space probability distribution to
order in f (t). However, this method is not possible if one
the controllable variables is accumulated heat in the syst
As an illustration, consider a thermally isolated syste
which has an electrode in each end, with an electrical re
tanceR between the two electrodes. At timet50, a small
heat pulsedQ0 is imposed by applying a voltageV to the
electrodes in a small time intervaldt5RdQ0 /V2. The per-
turbation can certainly be explicitly included in the Ham
tonian

H5H02(
i

qixiE~ t !, ~3!

where qi are the charges,E52(d/dx)V the electric field,
and xi particle i ’s position in thex-direction. But the heat
perturbationdQ0 is quadratic in the perturbing field, instea
of linear, thus the temperature response which is linea
dQ0 will also be quadratic inE. In addition to this difficulty
the derivation of ordinary linear response theory relies
equivalence between ensembles@13,23,24#. Equivalence be-
tween, e.g., the canonical and microcanonical ensemb
indeed true when dealing with the average of some ph
space variable or with correlation functions in time a
space, which only include a few particles. But the equi
lence is clearly broken when the question is about fluct
tions of properties which are correlated to the total energy
the system under consideration.

II. THERMODYNAMIC RESPONSE EXPERIMENTS
ON COMPUTERS

In MD simulations the positionsr 5$r i(t)% and momenta
p5$pi(t)% of N particles are followed in phase space
numerical integration of the equations of motion deriv
from the HamiltonianH5U(r )1K(p). Conventionally, in-
stantaneous kinetic temperature and pressure are defined@25#
as

T~ t !5
2K~ t !

3N2n
, P~ t !5

~2/3!K~ t !1W~ t !

V
, ~4!

where the kinetic energy and the virial is

K5(
i

pi
2

2mi
, and W52

1

3 (
iÞ j

]v i j

]r i j
r i j . ~5!
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v i j andr i j are the pair potential and the pair distance, resp
tively. n is a small number, counting how many kinetic d
grees of freedom are removed by the external constraint
the system. If the momentumP and angular momentumL
are conserved, the 3N kinetic degrees of freedom are re
duced by 6@26#. For large systems,n50 is a good approxi-
mation. A more general concept of dynamic temperature
the microcanonical ensemble has recently been develope
Rugh@27#. It is shown that several choices of dynamic va
ables are possible, each on average equaling the m
canonic temperature 1/T5]S/]E, whereS5 ln(V) is the en-
tropy. One of these choices, the kinetic temperature, defi
in Eq. ~4!, specifically measures the temperature of the
netic degrees of freedom. One could as well choose a ce
part of the kinetic degrees of freedom for determination
the temperature, a ‘‘thermometer’’ if you will. Apart from
tradition, a motivation for the choice of the kinetic temper
ture is that it is easy to calculate and easy to underst
intuitively. However, the basic results in the following do
not rely on this specific choice of temperature definitio
because the response of any phase variable can be f
from the basic FD theorem@Eq. ~32!#, and thereby the re-
sponse of any defined temperature one might want to us

The object is now to calculate how the system reacts t
small heat perturbationdQ(t) combined with a volume per
turbation dV(t). Only linear perturbations are considere
which means that the perturbation has to be sufficiently sm
to ensure that the response depends linearly on the pertu
tion. For example in the case of the temperature respons
a heat perturbation, a linear dependence ofdT(t) on the
history of dQ(t)

dT~ t !5E
2`

t

m~ t2t8!dQ~ t8!dt8 ~6!

is assumed. The memory kernelm(t) is specific for the sys-
tem. If linearity is fulfilled, the frequency-dependent re
sponse functionG̃TQ(v) is given by

G̃TQ~v!5E
0

`

e2 ivtm~ t !dt. ~7!

If the system is driven by an oscillating heat perturbati
dQ(v,t)5dQ0eivt, then G̃TQ(v) is the time-independen
complex ratiodT̃(v,t)/dQ̃(v,t). For later reference con
sider also the response to an instantaneous forced heat
turbationdQ0 at time t50,

dT~ t !5E
0

t

m~ t2t8!dt8dQ05E
0

t

m~ t8!dt8dQ0 . ~8!

The memory kernelm(t) can be found from this specific
experiment as

m~ t !5S 1

dQ0
D ]

]t
dT~ t !. ~9!
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To avoid misunderstandings, please note that the slow
down observed in supercooled liquids is due to slow
down of fluctuations in potential degrees of freedom—n
kinetic degrees of freedom. However, because of energy
servation, fluctuations of the potential energyU(r ) are bal-
anced with opposite directed fluctuations of the kinetic
ergy K(p), resulting in a slow relaxation of the kineti
temperatureT in the microcanonical ensemble.

A. Perturbations

In a real laboratory, it is only possible to measure inst
taneous temperature within a certain accuracy and time r
lution, depending essentially on diffusivity and sample si
So following the temperature as a function of time on mic
scopic time scale in a microcanonical ensemble is only p
sible in computer simulations. In a laboratory one can
different means of imposing a heat perturbationdQ(t) on a
sample. For example, heating with a resistor or an oscilla
electric field directly applied to the sample may be used. T
actual perturbation of the phase space coordinates wil
general depend on the method, the geometry, and also
initial phase space coordinates of the system. On the o
hand, the temperature response is not expected to depen
the choice of perturbation in a laboratory experiment.
operate with the concept of thermodynamic response fu
tions at all one has toassumethat the average response
temperature and pressure on a long time scale is indepen
of how exactly the perturbationdQ(t) is imposed. This al-
lows one to freely choose ways of putting heat into a co
puter simulation. The only requirement is that the syst
must not be pushed far from equilibrium locally in real spa
by the perturbation. If there is some slow relaxation in t
system, the long time linear response is independent of
one actually heats up the system.

1. Heat perturbation

As heat perturbation in the present study an instant s
ing of all momenta is chosen,

pi→pi85~11«!pi ~10!

where 11« is close to 1. In agreement with laboratory e
periments the energy changedQ is controlled. As a result of
this, « becomes a phase variable because it depends on
initial momenta. Expansion of« to first order indQ gives

«5
1

2K
dQ. ~11!

Of course this choice gives rise to an instant overshoo
the temperaturedT052dQ/(3N2n). However, the heat is
immediately transfered into the configurational degrees
freedom, and within a few vibration times, the heatdQ is
distributed between configurational and kinetic energy in
same way as in a corresponding laboratory sample where
heat is spatially equilibrated upon a heating procedure,
where the slow structural degrees of freedom are still
relaxed. This may seem odd, but in fact the employmen
specific heat spectroscopy in the laboratory as well as
computer experiments relies on a separation of relaxa
times, which makes it possible to drive the system to a s
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where it is thermally equilibrated, but still needs to under
a slow relaxation to reach equilibrium.

2. Volume perturbation

Let HV denote the isocoric Hamiltonian. If, for instanc
the system is evolving in a cubic cell under periodic boun
ary conditions, thenHV can be constructed by inserting
modified pair distance matrixdV(L)(r)5$Lu mod(r i2r j ,L)u%
in the potential,

HV~r ,p!5U„dV~r !…1K~p!. ~12!

An isotropic volume scaling is imposed by a scaling of
molecule positions, and a simultaneous scaling of the s
lengthL,

r i→r i85r i~11d!,L→L85L~11d!, ~13!

implying thatV→V85V1dV5V13Vd. Since

dV8~r 8!5~11d!dV~r !, ~14!

one observes that

UV8~r 8!5U„dV8~r 8!…5U„~11d!dV~r !…5U„dV~r !…

1(
i 51

N
]U„dV~r !…

]r i
•r id5UV~r !1dU~r ! ~15!

to first order ind. As in the previous example, the perturb
tion shifts the system to a new subset of phase space
which it relaxes, but the change in energy turns out to
pend on the initial stateG, which causes a problem in evalu
ation of the response function. To prevent this difficulty, t
following perturbation experiment is constructed: Simul
neously with the volume chance, a scaling of all the m
menta by (11«) is imposed, which reduces the energy by
amount corresponding to the increase in energy due to
change of volume

dK5K~11«!22K52dU, ~16!

ensuring thatdH50. Note the correspondence to the pre
ous example, where the volume was fixed and the ene
changed. Here the opposite situation is considered: Fi
energy and perturbation of volume. The idea is that if t
linear response to any variation in energy and volume
known, then the linear response to an adiabatic volume
turbation can be reconstructed by a suitable superpositio
energy or volume response functions. As the volume is
actual control parameter, the quantitiesd and « is better
expressed in terms ofdV,

d5
1

3

dV

V
,

«52
1

2K (
i 51

N
]HV

]r i
r i

1

3

dV

V
5

W

2K

dV

V
. ~17!

In the following derivations, only perturbations which a
linear combinations of the two perturbations defined abo
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are considered. This simplifies the calculations, which
now be done under isocoric and isoenergetic conditions.

B. Perturbation of the microcanonical ensemble

Consider anN-particle system which is initially fixed on
an energy surface defined byHV(G)5HV(r ,p)5E. The sys-
tem is assumed to be in equilibrium, so that the distribut
in phase space is a uniform distribution on the energy sur

f E,V~G!5
1

VE,V
d$HV~G!2E%, ~18!

where the phase space volumeVE,V is defined by

VE,V5E dGd$HV~G!2E%. ~19!

At t50 the system is displaced slightly in phase space
dG(G), simultaneously with a change of the Hamiltonia
HV→HV1dV . This perturbation will in general change th
energy of the system by

dE~G!5(
i 51

6N
]HV

]G i
dG i~G!. ~20!

In accordance with the preceding section, perturbations
constructed so thatdE does not depend on the initial stateG,
i.e., the system is shifted to another energy surface in ph
space defined byHV1dV(G8)5E1dE.

Now the distribution immediately after the perturbatio
f 0(G) can be constructed by ‘‘picking out the points’’ i
phase space which were on the energy surfaceHV(G)5E
before the perturbation.f 0 is formally written

f 0~G8!5 f E,V@G82dG~G8!#U]@G82dG~G8!#

]G8
U ~21!

and it is expected to be a nonuniform distribution on t
energy surfaceHV1dV(G8)5E1dE. The Jacobianu]@G8
2dG(G8)#/]G8u ensures proper normalization off 0. It com-
pensates for the immediate phase space expansion follo
the disturbance. Note that the determinant depends onG8.
f 0(G8) is explicitly written as

f 0~G8!5
1

VE,V
d$UV~r 82dr !1K~p82dp!2E%

3U]@G82dG~G8!#

]G8
U , ~22!

which by use of Eq.~15! is reformulated in terms of the
perturbed Hamiltonian
n

n
ce

y

re

se

ng

f 0~G8!5
1

VE,V
d$UV1dV~r 8!2dU~r 8!

1K~p8!2dK~p8!2E%U]@G82dG~G8!#

]G8
U

5
1

VE,V
d$HV1dV~G8!

2~E1dE!%U]@G82dG~G8!#

]G8
U . ~23!

C. Calculation of response in the microcanonical ensemble

The dynamical behavior is assumed to be described b
conditional probability distributionG(G,tuG8,t8), which in-
cludes quite general types of systems. For instance, in c
sical mechanics, the conditional probability looks similar

G~G,tuG8,0!5d$G2eitLG8%, ~24!

whereL52 i $H,•% is the Liouville operator.
The response of a phase variableB may be separated into

two terms as illustrated in Fig. 1,

dB~ t !5dB01@B~ t !2B~0!#, ~25!

that is, an instantaneous responsedB05^(]B/]G)dG&E,V
plus a time-dependent response@B(t)2B(0)#, whereB(0)
is the value ofB right after the perturbation. The first one
straightforward to calculate and the latter is calculated
averaging the deviation ofB(t) from its mean value in the
final state: d fB(t)5B(t)2^B&E1dE,V1dV , since B(t)
2B(0)5d fB(t)2d fB(0). By use of theinitial distribution

FIG. 1. Schematic illustration of a response experiment. T
instant responsedB0 ~a! is followed by a fast decay~b! to a state
where the fast degrees of freedom are equilibrated. The slow d
~c! follows, and the system finally reaches equilibrium under
new constraint (E1dE,V1dV) ~d!. It does not matter which value
of B is chosen as zero point in evaluation of the time depende
since the value ofB(0) is subtracted anyway. For computation
reasonsd fB5B2^B&E1dE,V1dV is chosen.
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~23! and the conditional probabilityG(G,tuG8,0), the devel-
opment of the phase variabled fB(G) can be traced in time
after the perturbation as

d fB~ t !5E dGE dG8d fB~G!

3GV1dV~G,tuG8,0!
1

VE,V
d$HV1dV~G8!

2~E1dE!%U]@G82dG~G8!#

]G8
U . ~26!

Expansion of 1/VE1dE,V1dV in dE anddV yields

1

VE,V
5

1

VE1dE,V1dV
S 11

] ln VE,V

]E
dE1

] ln VE,V

]V
dVD

~27!

and by inserting 1/VE,V in Eq. ~26! one gets

d fB~ t !5E dGE dG8d fB~G!GV1dV~G,tuG8,0!

3
1

VE1dE,V1dV
S 11

] ln VE,V

]E
dE

1
] ln VE,V

]V
dVD d$HV1dV~G8!2~E1dE!%

3U]@G82dG~G8!#

]G8
U , ~28!

which allows identification of the equilibrium distribution

f E1dE,V1dV~G!5
1

VE1dE,V1dV
d$HV1dV~G!2~E1dE!%.

~29!

When the averaging in Eq.~28! is carried out, it is notewor-
thy that the Jacobian determinant has no fluctuating term
zeroth order, which means that the correction ter
@(] ln VE,V /]E)dE1(] ln VE,V /]V)dV# to the density of states
do not influence the first order result. Therefore,d fB(t) turns
out to be given by the equilibrium autocorrelation functio

d fB~ t !5 K U ]~G2dG!

]G U~0!D fB~ t !L
E1dE,V1dV

, ~30!

whereD fB5B2^B&E1dE,V1dV is the equilibrium fluctuation
of the variableB with respect to its average in the final sta
^ &E1dE,V1dV means isoenergetic-isocoric average with
specified parametersE1dE,V1dV. The full response can
be constructed as

dB~ t !5dB01 K U ]~G2dG!

]G U~0!D fB~ t !L
E1dE,V1dV

2 K U ]~G2dG!

]G UD fBL
E1dE,V1dV

, ~31!

which equals
of
s

.
e

dB~ t !5dB01 K U ]~G2dG!

]G U~0!DB~ t !L
E,V

2 K U ]~G2dG!

]G UDBL
E,V

, ~32!

in the linear limit. Below the notation̂•••& is used for
^•••&E,V .

Now the specific perturbations proposed in Sec. II A a
considered. First the heat perturbation defined in Eqs.~10!
and ~11! is inserted in Eq.~32!. The Jacobian is ex-
panded to first order

U]~G2dG!

]G U5)
i 51

3N S 12
1

2K
dED'123N

1

2K
dE, ~33!

leading to the response

dB~ t !5dB01
3N

3N2n K D
21

T
~0!DB~ t !L dE

2 K D
21

T
~0!DB~0!L dE. ~34!

The frequency-dependent response functionG̃BEuV(v) is
found directly from Eq.~34! by use of Eqs.~7! and ~9!,

GBEuV~v!5E
0

`

dte2 ivt
d

dt
u~ t !H dB0

dE UV1
3N

3N2n K D
1

T
DBL

2
3N

3N2n K D
1

T
~0!DB~ t !L J , ~35!

whereu(t) is the Heaviside step function. Equation~35! can
be written as

GBEuV~v!5
dB0

dE U
V

1
3N

3N2n H K D
1

T
DBL

2 ivE
0

`

dte2 ivtK D
1

T
~0!DB~ t !L J . ~36!

The temperature and pressure response may be found
Eq. ~34! by substitutingB with T andP, respectively.

The volume perturbation is now considered. The Jacob
is to first order

U]~G2dG!

]G U5)
i 51

3N

~12d!~12«!'123N~d1«!. ~37!

Inserting the expression for the Jacobian from Eq.~37! in Eq.
~32!, with « andd taken from Eq.~17! one arrives at

dB~ t !5dB01
1

V

3N

3N2n H K D
W

T
DBL

2 K D
W

T
~0!DB~ t !L J dV ~38!

and in the frequency domain the response function is
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G̃BVuE~v!5
dB0

dV U
E

1
3N

V~3N2n! H K D
W

T
DBL

2 ivE
0

`

dte2 ivtK D
W

T
~0!DB~ t !L J . ~39!

The temperature and pressure response may now be f
directly from Eq.~38!. In each case the instantaneous te
dB0 /dVuE must of course be evaluated by considering
actual perturbation. As an example the immediateisoener-
getic pressure response is found to be

dP

dV U
E

5^dP~dG!&5
21

V K 2K

3
1

1

9V (
iÞ j

]2v~r i j !

]r i j
2

r i j
2 L .

~40!

D. Laboratory response functions

The results above can be contracted in the following m
trix equation:

S dT̃

d P̃
D 5S G̃TEuV G̃TVuE

G̃PEuV G̃PVuE
D ~v!S dẼ

dṼ
D . ~41!

The object is now to construct the response functions
an adiabatic volume perturbation. This means an experim
carried out without energy exchange,exceptwork done by
the immediate volume expansiondE52^P&. Note the dif-
ference from an isoenergetic experiment, wheredE50. To
derive the adiabatic response, one can use linearity and
culate the response as a superposition of two experime
one experiment with energy fixeddE50, while volume is
changed instantaneously, and one with volume fixeddV50,
butdE52^P&dV, the~mean! change of energy produced b
the change of volumedV in an adiabatic experiment.

The response is then given as a superposition of the
sponse to the volume perturbation and the energy pertu
tion, implying that the response function looks similar to

G̃BVuQ~v!5@G̃BVuE~v!2^P&G̃BEuV~v!#5
dB0

dV U
E

2^P&
dB0

dE U
V

1
1

V

3N

3N2n H K D
W2^P&V

T
DBL

2 ivE
0

`

dte2 ivtK D
W2^P&V

T
~0!DB~ t !L J .

~42!

In large systems, for instance,

GPVuQ~ t !5
dP0

dV U
E

2^P&
dP0

dE U
V

1
1

^T& H ^DPDP&

2 ivE
0

`

dte2 ivt^DP~0!DP~ t !&J . ~43!
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Now the response matrix for the situation where volume a
heat are the controllable parameters may be written. Defin
q5Q/N andv5V/N, and defining the frequency-depende
response matrix by

S dT̃

d P̃
D 5S G̃Tquv~v! G̃Tvuq~v!

G̃Pquv~v! G̃Pvuq~v!
D S dq̃

d ṽ
D , ~44!

one finds in theN→` limit, that the matrix elements are
given by

G̃Tquv~v!5 c̃v~v!215
2

3
1NH K D

1

T
DTL

2 ivE
0

`

dte2 ivtK D
1

T
~0!DT~ t !L J , ~45!

G̃Tvuq~v!52TG̃Pquv~v!,

G̃Pquv~v!5
2

3
r1NH K D

1

T
DPL

2 ivE
0

`

dte2 ivtK D
1

T
~0!DP~ t !L J , ~46!

G̃Pvuq~v!5rH ^W&
V

2
5

3
^P&2

1

9V K (
iÞ j

]2v i j

]r i j
2

r i j
2 L J

1
N

^T& H ^DPDP&2 ivE
0

`

dte2 ivt

3^DP~0!DP~ t !&J . ~47!

This constitutes the FD theorem for thermodynamic respo
functions. Equation~45! is in agreement with the expressio
used by Grest and Nagel@22#, while limv→0 c̃v(v) is in
accordance with Eq.~2!, taken from Lebowitzet al. ~Ref.
@20#!. Also, the frequency-dependent bulk modul
GPvuq(v) approaches the well known expression for t
static adiabatic bulk modulus@21,25# in the v→0 limit.

Consider the situation, whereT and P are controllable
parameters, whileq and v are fluctuating freely. By inver-
sion of Eq.~44!,

S dq̃

d ṽ
D 5S c̃P~v! 2TãP~v!

ãP~v! 2k̃T~v!
D S dT̃

d P̃
D

5
1

D̃~v!
S G̃Pvuq~v! 2G̃Tvuq~v!

2G̃Pquv~v! G̃Tquv~v!
D S dT̃

d P̃
D ,

~48!

D̃~v!5G̃Tquv~v!G̃Pvuq~v!2G̃Pquv~v!G̃Tvuq~v!.

Note that the propertiesc̃P(v), k̃T(v), and ãP(v) are cal-
culated ‘‘per particle.’’
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E. Dissipation

A few remarks about dissipation are appropriate at t
point. In any linear response experiment there is a dissipa
which is of second order in the perturbing variable, usua
characterized by a positive net heat production. For exam
if an adiabatic volume perturbationdV(t)5Re$V0eivt% is
forced on the system, the work done on the system du
one cycle is given by the integral

dE5E
0

Tcycle
2P~ t !V̇dt5E

0

Tcycle
2@P01dP~ t !#V̇dt

5E
0

Tcycle
2@P01Re$dV0G̃Pvuq~v!eivt%#Re$ ivdV0eivt%

5
dV0

2p

N
Im$G̃Pvuq~v!%5

dV0
2p

N
ImH 1

k̃S~v!
J . ~49!

Since Im$G̃Pvuq(v)% is non-negative, this means that if the

is an imaginary part ofG̃Pvuq at all, the system is slightly
heated by the adiabatic oscillating compression, and the t
perature will eventually increase so much that the linearit
broken.

Of course, if one considers an isocoric specific heat
periment where the heat is controlled by the functi
dQ(t)5Re$dQ0e2 ivt%, there is no energy absorbed during
cycle of the experiment, since the system returns to exa
the same thermodynamic state after each cycle. Howe
there is anentropyproduction during a cycle, as noted b
Birge and Nagel@3#. This entropy production is a gener
feature, which, like the linear response, does not depend
the choice of heat perturbation. However, the entropy
crease resulting from a perturbation of the sort specified
Eqs. ~10! and ~11! may be calculated directly. Consider a
arbitrary ensemble spread out in phase space by some d
bution f (r ,p). The entropy is given by S@ f #5
2*drdp f(r ,p)ln h3Nf(r,p), whereh is some constant with
the same dimension asr 3p. The actual size ofh has no
significance, since a change ofh will only shift the zero point
of the entropy axis. When all momenta are scaled simu
neously bypi→pi85pi(11«), the new distribution is

f 8~r ,p8!5 f „r ,p8~12«!…U ]p

]p8
U , ~50!

and the new entropy is

S852E drdp f„r ,p8~12e!…U ]p

]p8
U

3 lnS f „r ,p8~12e!…U ]p

]p8
U D

52E drdp f~r ,p!H ln„f ~r ,p!…23N
dQ

2K
1O~dQ2!J .

~51!

Thus the first order entropy increase is found to be in acc
dance with the well known thermodynamic expression
s
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dS5S82S5
3N

3N2n K dQ

T L 5 K dQ

T L 1OS 1

ND , ~52!

as it should be for any choice of small heat perturbation.
Following Christensen@28#, the oscillatory heat pulse

dQ(t) is constructed from small successive steps of the t
indicated by Eq.~11!, so that the entropy flow into the sys
tem during one cycle of durationTcycle may be calculated as

dScycle5K E
0

Tcycle
dt

dQ̇~ t !

T~ t ! L . ~53!

If terms of second order indQ are included in Eq.~52!, these
will appear as products of sine and cosine, and integrate
over one cycle. Thus the only second order term stems f
expansion of the right-hand side of Eq.~53!. Letting T0 de-
note the mean temperature of the process, one may writ

dScycle5K E
0

TcycledQ̇~ t !

T0
2

dQ̇~ t !dT~ t !

T0
2

dtL . ~54!

The first term in the time integral is just a cosine whi
integrates to 0. SincedT(t)5Re$@dQ0 /Nc̃v(v)#eivt%, the
entropy flow into the system to second order indQ0 is found
to be

dScycle52p
dQ0

2

NT0
2
ImH 1

c̃v~v!
J . ~55!

The entropy flow into the system is negative, meaning t
entropy flows out of the system. There is a net entropy p
ductions within each cycle inside the system, which is c
tured by the surroundings, and may be interpreted as a
of free energy of the surroundings@28#. In the case of an
oscillatory adiabatic volume perturbation, the system w
heated up by work done on the system, causing a los
energy in the surroundings. In both cases the dissipatio
proportional to the imaginary part of the relevant respon
function.

III. EXAMPLE: BINARY LENNARD-JONES LIQUID

A. Simulations

To illustrate the use of the FD theorem, MD simulatio
of the well known Kob and Andersen model@18# were per-
formed. The model consists of a mixture of two differe
kinds of particles, labeledA andB. Each sample consists o
80% A particles and 20%B particles. Interaction betwee
two particles is governed by a Lennard-Jones poten
Vab(r )54eab@(sab /r )122(sab /r )6#, wherea andb refer
to the labelsA and B. The particles have identical massm
and the parameters are chosen@29# as eAA51.0, eAB51.5,
eBB50.88, sAA51.0, sAB50.8, andsBB50.88.

Below, distances are in dimensionless units ofsAA , en-
ergy in dimensionless units ofeAA , and time is given in
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dimensionless units of (msAA
2 /eAA)1/2. A characteristic vi-

bration time is around 1/10 time units. The potential is tru
cated at the distance 2.5.

Simulations were carried out at the temperaturesT
50.464,0.527,0.614,0.71160.002 and pressures P
52.43,3.20,4.40,5.6160.02. The density was kept fixed a
r51.18873 in all cases by means of periodic boundary c
ditions, and the equations of motion was integrated by me
of the Verlet velocity algorithm@30#. At each temperature
four different samples with 256 particles in each were p
pared by first quenching a random configuration, then equ
brating with a Nose´ Hoover thermostat@31#, and there upon
tuning the energy to make sure that all four samples wer
the same energy surface with a relative uncertainty of
than 1023 of the total energy. Then the samples whe
equilibrated under constant energy in 400 time units in
casesT50.614,0.711, 4000 time units in the caseT50.527
and 8000 time units in the caseT50.464, which in each cas
is more than the slow relaxation time. After this preparat
the kinetic energy, the pressure and the prope
((]2v i j /]r i j

2 )r i j
2 was sampled during runs at 1.63105 time

units (43107 time steps! for T50.464, 83104 time units
for T50.527, and 83103 time units forT50.614 and 0.711.
The autocorrelation function and Fourier transforms w
calculated by use of theESSL subroutines library@32#. In
addition five samples of 800 particles each, and the sa
density as above were prepared atT50.527, and runned fo
43104 time units to check for finite size effects.

B. Simulation results

In Fig. 2 the time correlation function

2N^~1/T!~0!T~ t !&

is plotted at different temperatures. The long tail of the c
relation function is identified with the slow structural rela
ation in the liquid. The slow relaxation increases in stren
and duration with decreasing temperatures. The often u
phenomenological stretched exponential~Kohlrausch-
Williams-Watts@33# form! is used as a fitting formula. Re
laxation times grow in a non-Arrhenius way@34#, common
to supercooled liquids, as shown in the inset of Fig. 2. Thb
exponents change from approximately 1 atT50.711 down
to 0.7 atT50.464. b measures the sharpness of the rel
ation time distribution. Lower values ofb correspond to
broader spectra. In laboratory measurements on organic
uids @2–5,16,35# the specific heat spectra have in gene
been found to be broader, withb lying in the range 0.50–
0.65. However, these measurements were done much c
to the glass transition temperatureTG , and for molecular
liquids. In generalb for other relaxation functions~for in-
stance, the intermediate scattering function! is found to be in
the interval 0.721 in the high-temperature range accessi
to computer simulations@18,19#. The relaxation strength is
increasing with decreasing temperature, a feature whic
qualitatively different from the behavior of the intermedia
scattering function@18#, which is found to have temperature
independent relaxation strength. However, there is no rea
to believe that these two properties should behave exact
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the same manner, so there is no direct contradiction h
The low relaxation strength of

2N^~1/T!~0!T~ t !&

at high temperatures is consistent with an energy landsc
picture, where the number of configurational traps is redu
as temperature is increased, and it is qualitatively consis
with the general behavior ofcP found in real liquids@36#.

There is a small finite size effect for samples at 256 p
ticles. In Fig. 3 real parts of specific heat and compressibi
are compared for runs with both 800 and 256 particles w
the same amount of total energy per particle. The spec
heat was the same in the two cases as seen in Fig. 3, w
was also the case for the mean temperature. On the o
handk̃T is smaller by approximately 3%, and the pressure
systematically larger by 3% in anN5800 sample. That is
there is a small finite size effect, which is most pronounc
in properties related to the pressure, but which is small co
pared to the noise in the data.

Figures 4, 5, and 6 show the response functionsc̃P(v),
ãP(v), and k̃T(v). The overall behavior is the same. Th
crossover frequency which reflects the slow (a) decay is
moving approximately two decades down, as the tempera
is lowered. In general the configurational part is increas
with decreasing temperature, but whilec̃P and ãP have a
high configurational part relative to the vibrational pa
@cP8 ~0!2cP8 (`)#/cP8 (`)'0.420.6, @aP8 ~0!2aP8 (`)#/aP8 (`)

'0.520.8, the same property calculated fork̃T is somewhat
lower, @kT8(0)2kT8(`)#/kT8(`)'0.1520.3.

FIG. 2. The correlation functionŝ2ND(1/T)(0)DT(t)& for
four different mean temperatures, on a logarithmic time axis. E
correlation function is based on eight different runs with 106 sample
points each. No smoothing has been employed. The data p
have been logarithmically averaged, i.e., the data points on
graph are averaged over increasing time intervals with increa
time. The lines are fits to stretched exponentials,f (t)
5exp@2(t/t)b#, with exponentsb50.73,0.75,0.92,1.05 for the tem
peraturesT150.46460.002,T250.52760.002,T350.61460.002,
and T450.71160.002, respectively. The insert shows the no
Arrhenius temperature dependence of the relaxation timet.
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For comparison, real parts of the pairsc̃v(v), c̃P(v), and
k̃s(v), k̃T(v) are also shown in Figs. 7 and 8. There is
significant difference between isocoric specific heat and
baric specific heat, as it was also found by other meth
@22#. The shapes of the relaxational parts of the respo
functions @c8(v)2c8(`)#/@c8(0)2c8(`)# are very much
alike each other, butc̃P(`) is 20% bigger thanc̃v(`), and
the ratio between configurational and vibrational parts in
case ofc̃v(v), is only around 30–40 % of that ofc̃P(v).
Even more pronounced is the difference betweenk̃s(v) and
k̃T(v). The ratio between configurational and vibration
parts ofk̃s(v) is only between 3 and 5%. Generally the ra
between configurational and vibrational parts of thermo

FIG. 3. Real part of isobaric specific heat, and real part of i
thermal compressibility atT250.527, for two different sample
sizes. The samples were prepared so that the total energy pe
ticle is the same in each case. The temperature appeared to b
same within an insignificant relative deviation of 231023, while
the pressure showed a relative deviation of 331022 ~largest in the
N5800 sample! which is interpreted as a small finite size effect

FIG. 4. Real part~upper curves! and negative imaginary par
~lower curves! of isobaric specific heat per particle. The four tem
peratures are the same as in Fig. 2. Logarithmically averaged
-
s

se

e

l

-

namic properties for this substance are small, compare
the same ratio of, e.g., the intermediate scattering func
@18#. But considering the high temperature range, they
actually quite big when compared to experiments on vari
liquids @2–6#.

It is found that thev50 value of all susceptibilities are
increasing with decreasing temperature. Empirically it
known for several substances, that aroundTG the overall
equilibrium specific heat@cP8 (v50)# is decreasing with de-
creasing temperatures@36#, while only the relaxational part is
increasing. In addition to the fact that this is a Newtoni
model, two things may have to be taken into account
rationalize this difference. First the model investigated h
is far above itsTG . Second, the cooling is done along a
isocore. So the fact thatkT(0) is increasing upon cooling
~the substance is getting softer! may be due to the isocoric
constraint. The increase is not inconsistent with the estima
structure factor at the lowq values reported in Ref.@18#.

-

ar-
the

ta.

FIG. 5. Real part and negative imaginary part of isobaric exp
sivity per particle. Same temperatures as in Fig. 2. Logarithmic
averaged data.

FIG. 6. Real part and negative imaginary part of isotherm
compressibility per particle. Temperatures are the same as Fi
Logarithmically averaged data.
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However, recent computer simulations@37# of amorphous
silica shows a specific heat which is first increasing w
decreasing temperature, and then decreasing on further
ing, indicating that this feature may be model specific,
dependent on the temperature range investigated.

Finally a remark about the quality of the data: Clea
they are quite noisy. This is because the thermodynamic
sponse functions are calculated from the fluctuations of a
correlated propertiesK and P in opposition to a property
such as the intermediate scattering function@18#, where the
positions of each particle are sampled at different times
added up in the correlation function. This method giv
much more statistical material with which to perform t
averaging than the one presented here. It is not possib
decompose, for example, the correlation functi
^DK(0)DK(t)& into small parts, referring to different part
of the sample, evaluate them separately, and then add
these parts to give better statistics. This is simply because
kinetic energies of two particles in a system with const
energy are in general anticorrelated even if the particles
very far from each other. This anticorrelation contributes s
nificantly to the correlation function. In fact, it reflects th
nature of a system’s response under isoenergetic/isoc
constraints. The response is determined by the restricted
tion of the particles, and therefore actually a collective or
nized motion of the whole system. One might get the id
that it would be simpler to extract thermodynamic respo
functions from an isothermal simulation, employing the F
theorem derived from isothermal conditions in Ref.@16#.
However, the problem is that there is no method by which
perform isothermal simulations@31# without influencing the
energy fluctuations of the system in an artificial way, whi
clearly spoils the dynamic response functions.

IV. SUMMARY AND CONCLUSIONS

In the first part of this paper the question of whether
FD theorem for thermodynamic properties can be deri
from microscopic theory was raised. It was shown that thi
indeed possible, though the derivation has to be performe

FIG. 7. Real part of isobaric~open symbols! and isocoric~filled
symbols! specific heat. Same temperatures as in Fig. 2.
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a way which is substantially different from regular line
response theory.~i! The perturbation of the system cannot
stated as an additional term in the Hamiltonian, as in us
response theory. It is introduced as a direct change of
phase space coordinates. In general it is not a phase s
conserving perturbation, as in the case where the pertu
tion is introduced through the Hamiltonian.~ii ! There is
some freedom in the choice of perturbations~see Sec. II A!.
This is justified with analogy to laboratory experimen
where one does not expect the actual choice of heating
gregate to influence the specific heat of the system.~iii ! The
derivation of the FD theorem is done under strictly isoen
getic and isocoric constraints, thus taking into account
fact that the presence of these constraints affects the dyn
cal fluctuations ofT andP. In ordinary response theory@13#,
equivalence of ensembles is assumed.

The FD theorem, essentially expressed in Eqs.~44!–~47!,
connects all thermodynamic response functions to equ
rium fluctuations of the isocoric/isoenergetic ensemble. T
dissipation has to be be considered carefully when dea
with heat flow as a control parameter. It was demonstrate
Sec. II E, that even in the case where the system is he
and cooled in a cyclic process, and in this way returned
the same state after each cycle, there is a net entropy pro
tion in the surroundings of the system which is proportion
to the imaginary part of the frequency-dependent respo
function G̃Tquv(v).

The response theory was applied on a binary Lenna
Jones model system. This model showed a rather high c
figurational part in all response functions, except that ofk̃S .
Generally both the configurational part of the susceptibiliti
and the total amplitude of the susceptibilities atv50 in-
creased with declining temperature. The broadness of
relaxation spectrum was found to be in qualitative agreem
with that of other response functions@18#.
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FIG. 8. Real part of isothermal compressibility~open symbols!
and adiabatic compressibility~filled symbols!. Temperatures as in
Fig. 2.
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