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Resistivity-independent dissipation of magnetohydrodynamic waves in an inhomogeneous plasma
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The heating of high temperature plasmas by magnetohydrodyndvititb) waves is one of the most
interesting and challenging problems of plasma physics especially when the energy is injected into the system
at length scales much larger than the dissipative ones. It has been conjectured that in two-dimensional MHD
systems the possibility exists of establishing a state in which energy is dissipated at a rate that is independent
of the Ohmic resistivity and that the time needed to reach such a state is finite and independent of resistivity
as well. In this paper we prove that this is actually possible as a result of the nonlinear interaction of
long-wavelength, “small” amplitude perturbations with a constant, inhomogeneous magnetic field, at least in
the relatively moderate Lundquist numi@nagnetic Reynoldsrange 106< S<3200.
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[. INTRODUCTION nonlinear dynamics of the MHD equations has been per-
formed in the 2D limit. Only recently, due to the impressive
Plasmas, both in laboratories and in cosmic environmentgjevelopment of super-computers, it has been possible to start
are quasi-ideal systems, given the extremely large values ¢d simulate the full 3D MHD equations of a “realistic”
the corresponding magnetic Reynolds numbers. This wouldhodel [39] where, moreover, the turbulence is quasi-two-
seemingly preclude any possibility of heating such plasmasimensional.
via Ohmic dissipation. It must be remembered, however, that The energy transfer and dissipative properties of a realis-
those values are computed by assuming that the spatial scale 2D MHD system represent an interesting and still unre-
entering their definition is the “large” energy injection solved problem, since 2D MHD cannot be directly connected
scale. However, the cascade of energy to smaller and smalles 2D or 3D hydrodynamic results. Given the smallness of
scales, down to the tiny “dissipation” scale, where the localthe dissipative coefficients in practically all cases of interest,
Reynolds numbers are of the order of unity, is made possibléhe possibility that the energy dissipation tends to a finite
by nonlinear processes, whose presence thus opens the ptisiit when the Reynolds numbers tend to infinity is, of
sibility of actually heating plasmas to high temperatures. Thecourse, of capital importance. The existence of such a limit
investigation of the physical mechanisms capable of produchas been conjectured almost 20 years [ddd, but so far has
ing such a cascade and the determination of their dissipativeot been explicitly proven, even if the possibility of gener-
efficiency has been an active subject of research for a nunmating a direct cascade with a corresponding extended inertial
ber of years. Most of the literature deals with the energyspectrum has been demonstrated by numerical simulations in
cascade in the context of magnetic reconnection and magné&ie homogeneous case with large amplitude initial perturba-
toydrodynamic(MHD) turbulence. By analogy with hydro- tions[12—14. In the magnetic reconnection context, when
dynamic turbulence theory, it is quite natural to assume thathe system is driven by the development of the tearing insta-
in the presence of a three-dimensiof@D) MHD strongly  bility, i.e., by initial long-wavelength perturbations, a turbu-
nonlinear dynamics, the small scale formation is so rapidlence capable to strongly speed up dissipative effects at high
that the dissipation rate remains constant when smaller andundquist numbers can be generated by the tearing mode
smaller values of the dissipative coefficients are consideredynly in the presence of a 3D sheared magnetic field, while in
i.e., the dissipation rate is independent of the Reynolds anéD the tearing mode develops at large scales and does not
Lundquist numbers. On this ground, phenomenological modgenerate turbulencgl5]. Furthermore, numerical studies of
els have been developed in different contexts, from spacthe evolution of the instability of a sheet pinch have shown
plasmas to laboratory plasmik-9]. Recently, a number of that nonlinear interactions are more likely to produce the
these simple models have been examined by the help of neoalescence of magnetic islands rather than efficiently excite
merical simulations[10]. In this idealized (full periodic = small scale dissipative structurglt]. However, when a low
boundaries 3D framework, the main conclusion is that it is level of turbulence is introduced into the system at the initial
reasonable to assume that the energy transfer is rapid enoutime, an inertial spectrum reminiscent of the homogeneous
to justify a dissipation rate independent of the dissipativeMHD turbulent case develod4d7] similar to the driven re-
coefficients. However, those models cannot replace detailecbnnection casgl8].
investigation of the MHD systems and in real systems, with In this paper we propose to concentrate on one specific
different energy injecting mechanisms and nonperiodigoroblem, that of the heating of the solar corona. On one hand
boundaries, the above conclusions must be essentially cothis subject is of interest in itself, being one of the big unre-
sidered an interesting conjecture. solved problems of plasma astrophysics. On the other, it is
Much of the effort of the numerical investigation of the sufficiently “typical” to be be a good paradigm for other
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situations, so that any progress in this particular field wouldand resonant absorptid@27—33. In the first one, the front
equally well constitute an advancement in our knowledge ofvave becomes increasingly more corrugated during propaga-
the behavior of plasmas. In essence the problem is the folion due to the spatial variation of the phase speed; as a
lowing. The solar corona, the outermost reach of the solaresult, stronger and stronger transverse gradients are gener-
atmosphere, is a tiny, hot plasma=£T0° K) which mainly  ated and the wave energy is dissipated in a characteristic
radiates in the soft x-ray range. High resolution observationsime which scales aS'>. In the second one, energy is con-
have now shown that the solar corona is a rapidly evolvingcentrated into a critical layer by a resonant mechanism; a
plasma where a large variety of spatial and temporal scalesormal mode analysis shows that the dissipation rate is then
are present. A general consensus has been reached on thdependent from the Lundquist number, but the transient
fact that the basic physical processes underlying energetiime necessary to set up this dissipative mechanism is ex-
phenomena occur mainly on very small scales, well beyondeedingly long if only linear interactions are considef@8—
the present and possibly the future observational capabilitie®5].
The first consequence of this situation is the lack of even a Some preliminary effects of nonlinearity on the evolution
““zero order” realistic model and the presence of a numberof a nonuniform field subject to moderate amplitude, long-
of “conceptual” models which, starting from the available wavelength perturbations have been investigateB5). In
data, try to give a rough scenario of the small scale dynamicthis paper the inhomogeneous background field is perturbed
and to derive from it all the possible consequences on meaatt=0 and the system is kept energetically isolated from the
guantities to fit the observational large scale constraints. Albutside. In the subsequent evolution, energy is drawn via
these models have some common ingredients. The primanyonlinear processes from the large scale field and transferred
energy source has been identified in the turbulent motionto smaller scales where it is dissipated and the initial field
observed at lower levels in the solar atmosphere which arprofile becomes increasingly more uniform. Because of the
the direct consequence of the presence of an extended colimited free energy available, the system is prevented from
vection zone underneath the visible solar surface. The mageaching an asymptotic regime where the dissipation remains
netic field plays a fundamental role both on the large scalessonstant in time. This behavior will be referred to as a dis-
as a link between the photosphere and the corona, and on tegative decay. The results of this paper strongly suggest that
small scales where it helps transferring energy by soméhe formation time of the current sheet, which is the resistive
mechanisms like, for example, resonant absorption and phasasalog of an ideal singularity, could indeed be independent
mixing of MHD waves, magnetic reconnection, nonlinearof the actual value of the dissipative coefficients. Although
interaction, and so on. The strict connection betweernnteresting, the validity of this conclusion is weakened by the
magnetic-field structure and coronal heating events has bedact that the values of the Lundquist number used in those
experimentally established by satellite observations comsimulations were quite lowg=<10%) and that the predicted
bined with magnetograms from space or from the groundsubstantial restructuring of the background field that accom-
(see Ref[19], and references thergin panies the dissipation does not seem to be supported by the
Two standard pictures are used in order to understandbservations.
how photospheric energy is injected on dissipative scales. In In the present paper we try to circumvent the latter prob-
the first one, known as quasistatic equilibrium evolution, it islem by studying the nonlinear evolution of an inhomoge-
claimed that since the typical time scale of photospheric moneous 2D incompressible MHD system perturbed as in the
tions is much longer than the Alfwetime, large scale struc- previous case, but where the large scale field is assumed to
tures like coronal loops evolve through a series of magnetostay the same at all times, as actually suggested by the ob-
static force-free equilibria since they have enough time taservations. This is equivalent to the assumption that an un-
reorganize themselves after any external perturbation. Thispecified external mechanism is at work to compensate the
problem is strictly connected to that of the existence of ideathanges that would be otherwise imposed on the field profile
MHD singularities,[20—24. During this “equilibria walk- as a result of the the processes responsible for the energy
ing,” strong current sheets eventually develop near the separansfer to smaller scales and for its subsequent dissipation.
ratrix and magnetic energy is released via magnetic recorcontrary to the case previously studied, the system is no
nection. However, when a dynamical rather than quasistatitonger energetically isolated from the outside and we refer to
approach is applied to the evolution of such a configuration ithis case as a driven dissipative evolution. Notice that in this
turns out, at least in a 2D slab geometry, that ideal singularieonfiguration the energy injection mechanism from the large
ties(i.e. current sheetsare in reality not accessible since the scale equilibrium to the small dissipative scale is still given
Alfvén time becomes infinite near the separafi6]. In by the “resonant” interaction between the long-wavelength
other words, the intensity of the current sheet cannot bénitial perturbation and the nonuniformity of the background
made infinite in a finite time due to resistive effects; in par-field. We underline that the initial magnetic equilibrium is
ticular, the current sheets grow on a characteristic time whiclstable with respect to tearing modes, since no neutral lines
scales asS'®, whereS=r,/r,, the ratio of the resistive to are present at the initial time.
the Alfven times, is the Lundquist number. It will be shown in this work that, in typical solar corona
Wave heating theories, on the contrary, consider theonditions, i.e., small amplitude, long-wavelength perturba-
photospheric perturbations as a continuous source of MHBIons interacting with an inhomogeneous magnetic field, it is
waves which propagate upwards and damp, mainly by trangossible to set up a nonlinear energy cascade capable to dis-
ferring their energy to small scales as the result of the intersipate the energy of the equilibrium field at a rate indepen-
action with an inhomogeneous background field. In this condent of the dissipative coefficients. The characteristic time
test, the most promising mechanism are phase mif@%j necessary to set up the cascade is also independent of these
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coefficients. As already mentioned, the basic physics of théhe z direction. TheABIIl algorithm is slightly modified
nonlinear energy transfer from large to small scales at a ratsince at each time step a Poisson equation must be solved
sufficiently high to allow a resistivity-independent dissipa- (with particular cargin order to enforce the incompressibil-
tion has already been investigated in the context of turbuity condition. The numerical code is particularly efficient on
lence theory, but, to our knowledge, it has never beemmassively parallel computers. A description of the algorithm
proved, in the 2D inhomogeneous case subject to initiatan be found if35]. For further details on the time scheme
small amplitude, coherent, large scale perturbations. see alsd36]. The typical resolution for thex(z) numerical

In the next section we introduce the model equations andgyrid is (800x 2048) points forS~800.
the initial conditions imposed on the system. These equations We define the energ§~(t) and the dissipated power
are integrated numerically and the results are presented W=(t) of the fluctuations as

Sec. lll. Finally, conclusions are drawn in Sec. IV.
L
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* * 2k 2%
= _ = = — =4 ’
1. EQUATIONS AND NUMERICAL METHOD EZ(D) 2L, _LXE O Ddx, e Zx z,
To study the evolution of an initial perturbation in an N N

inhomogeneous time-independent magnetic field, we con- 22% (%)= =12 2%y = * |2
sider the incompressible magnetohydrodynamic equations in (%) IZl 6™ 2700 kzl 162
the Elsasser formulation where, for the sake of simplicity,
the Reynolds number is equal to the Lundquist number. To N bx
reduce the equations to a dimensionless form we choose to W ()= o) (x,t)dx, @
measure lengths, velocities, and densities with respect to the *

spatial scale of variation of the initial magnetic fidldthe 1 & (ot J? |ocz]?

average Alfve speedv,, and a typical densitp, respec- Wo=3 gl ax | T ox +K Lol 2K 7

tively. Times are then measured in unitslé¥, . The dimen-

sionless equations then read Here{y  (x,t) and{; (x,t) are the Fourier transforms in the
97 1 z direction of the fluctuationg, (x,z,t) andz, (x,z,t), re-
——=[*+By(X)—z"]- V[ +Bg(x)+z"]—-VII+ §V22t, spectively. In the following we will use the quantizﬁf and
ot 1) zif as the averaged values in the inhomogeneous direction

of |£? and| ¢, |% respectively, and)y =25y + 22y . Fi-

V.z5=0, z'=v=bh, 2) nally, we define the averaged disisipation rate of the pertur-
bation as the ratio of the enerdy (t) over the dissipated

where z* are the Elsasser variables amdand b are the powerW=(t) of the fluctuationsI' = =W=/E~.

velocity and the magnetic field fluctuations, respectively. In By assuming an exponential decay of the fluctuation en-

these equations, is the equilibrium field,IT is the total ~ €rgy as~exp(-kt/S), wherek is the largest wave number

kinetic + magnetic pressure, ar®is the Lundquist number. (without distinction between the parallel and the transverse

Equations(1) and(2) are integrated in the 2D domain,g) oneg, we estimate the dissipative characteristic time at the

of dimension[ —Ly,L,]X[0,27/ko,], whereL,=2m/k,,,  Scalex=2m/k astq[K(t),S]=S/k.

andkg, is the wave number of the initial perturbati¢see

Ref. [35]). . NUMERICAL RESULTS
The unidirectional, inhomogeneous equilibrium magnetic
field is given by In Fig. 1 we plot the fluctuating enerdy", the dissipated
B energyW' andI'* vs time for different values of the Lun-
Bo(x)=[1+0.5tantix)]e;, (3 quist number,S=100, 200, 400, 800, 1600, 3200. These

guantities are normalized witlE*(t=0,S=100), W*(t
=0,5=100), I'*(t=0,5S=100), respectively. In the top
panel, increasing values of the curvest&t100 correspond
7t =asin(ky,z), z,=2;=0, (4)  tolarger Lundquist numbers, while in the middle and bottom
panels increasing values of the curves-aD correspond to
wherea=10 2 andky,=0.03. In thex inhomogeneous di- lower Lundquist numbers. Notice that the curves correspond-

and, at the initial time, we introduce a perturbation of the
form,

rection we use the following boundary conditions: ing to S=1600,3200 stop at nearty=100 due to numerical
grid resolution problems.
9z, z,  dz, In the top panel two features are worth noticing. The first
ox 0 ax . oz ) is that, fort<100, the energy of the fluctuations increases

with time due to an energy transfer from the frigghomo-
and periodic boundary conditions are used inzfukrection.  geneous energy of the equilibrium field to the fluctuations
The numerical algorithm used to integrate the equations i¢see alsd35,37,38). The second is that the differences be-
the explicitAdams-Bashford llivhich is third order accurate tween the curves corresponding to different valueS tégnd
in time and does not add numerical dissipation on the shoito disappear aSincreases. This is a clear indication that the
wavelengths. We use fourth order finite differences inxhe energy transferred to the fluctuations will become practically
direction on a nonuniform grid and fast Fourier transform inindependent ofS starting from a value ofS not much
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larger than a few units in £01t is also important to notice line) whose slope turns out to be7/12. Att=0 the same
that the total amount of energy transferred from the equilibdinear fit would have a slope of 1. The —7/12 scaling law
rium to the fluctuations is a small fraction of the energyremains unaltered until the strongly nonlinear phase starts,

initially stored in the large scale equilibrium field E/E i.e., up tot~90.
~103.
In the middle and bottom panels, we observe that the B. Nonlinear regime

evolution of the system is characterized by three distinct . .
phases, each of them with a characteristic time independerﬁ At the end of the linear resonant phase, the amplitude of

of the Lundquist number. We define these phases as the jjhe wave in the mhomogeneou_s region ha; grown by ap-
ear resonant phase<A<45, the nonlinear phase 4% proximately two orders of magnitude becoming comparable

<90, and the strongly nonlinear phase90. ;[r?tctjhslae;uilibrium field, so that nonlinear interactions come
In Fig. 3 we show the energy spectrum averaged along the
A. Linear regime direction of nonuniformity,, , as a function of the parallel
wave numberk,, during the resonant, nonlinear, and
gtrongly nonlinear phases for two cas&s200 and S
=800. In this figure the energy spectrum of the initial per-
turbation, a single point dt=k,,, see Eq(4), is indicated

In the initial phaset<45, the nonlinear interactions are
negligible with respect to the linear ones since the amplitud
and the gradients of the initial perturbation are “smdl§ee
\I/Evg.ve(légilgtlr? pZ;{[E?b;t?grngsiﬁ ;hi?\hgﬁc?grgﬁg omj) ; rr? eé?:r% py astar. Notige thgt the dissipative characteristic time of the
is controlled by resonant absorption, while phase mixing idnitial perturbation istg(k=ko.) =10°S.
inefficient, at least for times shorter than the period of the ot N
wave, t<27/Ky=200 (see Ref[35]). In the left frame of )0 GO 010 ¥ /?‘,
Fig. 2 we pIotz?’Jr vs x at the end of the linear phasg,
=40, for S=800. This picture shows that the resonant pro-
cess concentrates the energy inside the inhomogeneous r, |
gion close to the maximum of the equilibrium magnetic field
gradient. As a consequence, the local amplitude of the wave
is enhanced by some order of magnitude and larger anc
larger spatial gradients are generated in the inhomogeneol?-279%}
direction [notice that the initial perturbation is flat in the
direction, see Eq(4)]. On the other hand, no significant en-
ergy transfer towards small scales occurs in the parallel o.0010t .
direction, so that the typical parallel wave number of the 001}
fluctuations remains of the order of the initial ohe=kg,.
Therefore, at the end of the resonant linear phase wé&,get o007l 10t ot L
>K,; this result is not surprising since in tlzelirection the -40 -20 0 20 40 100 1000
plasma is assumed to be perfectly homogeneous. * s

In the right frame of Fig. 2 we show the computed values FIG. 2. Left framez?* vs x att=40, S=800; right frameI *
of I'" at the end of the linear phases40 for different  vsS(stars at the end of the linear phages 45, and a best fit curve
values ofS (starg, together with a linear best fitontinuous  (continuous ling ~S~ 712

~ S -7/12
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TABLE I. From left to right: the value of the Lundquist number
used in the simulation, the minimum and mean value of the energy
of the fluctuations, the minimum and mean value of the dissipated
power, and the minimum and mean value of their ratio. The mini-
mum values of these quantities correspond to their respective values
N at t=0, while the mean value§E™), (W*), and(T'*) are time
averaged in the interval 120t<160(see Fig. 1 of E*(t), W' (1),
andI*(t), respectively.

o; 3 S Eri;in <E+> Wri]in <W+> l—‘r_i—lin <F+>
10% -
10k - 200 1.0 5.2 0.5 34 0.5 6.5
102 = 400 1.0 5.7 0.25 36 0.25 6.2
10k E 800 1.0 63 0125 48 0125 74
a3 e e e
o7 " "0 '®¢" Lundquist number is still too strong to consider this as a

possible heating mechanism for astrophysical plasmas whose
FIG. 3. The energy spectrusly vs the parallel wave numb&;  typical Lundquist numbers are of the order of-4010™.
att=45 (pointg, t=80 (dasheg, andt= 120 (dotted-dashedor
S=200, first frame, an®=800, second frame. The star represents

the energy spectrum of the initial perturbation in both pictures. All ) ) )
these curves have been normalized wifi(t=0). The existence of a strong nonlinear phase is the feature of

this paper with respect to our previous w¢8s]. We recall

At the end of the resonant phagiptted ling, the energy  that in that paper we have followed the dissipative decay of
spectrum in terms df, is an exponential rather than a power the same background field including the feedback action in-
law, which means that during the linear phase no energy iguced on the equilibrium field by the nonlinear interactions;
efficiently transferred on small scales along the homogethe field gradient was progressively smoothed out with a
neous direction. In the subsequent evolutten50, due to  corresponding reduction of the energy injection rate from the
the resonant amplification of the amplitude of the perturbaequilibrium to the fluctuationgsee alsq37]). Here, as al-
tion, nonlinear interactions become efficient and the energyeady explained in the Introduction, we study the case of a
starts to cascade also in the homogeneous direction. This éﬁ’iven dissipative evolution of a nonuniform MHD state by
shown by the—5/3 power law for 0.08:k,<0.2. In this  assuming that the large scatelependent magnetic field is
regime,t=80 (dashed ling the energy is dissipated at wave forced by an external energy source to keep the same gradi-
numbersky<SY2 In fact, as discussed in R¢B5], the pres-  ent for a time much longer than that needed to reach a sta-
ence of an inhomogeneity in the background magnetic fieldionary state where the energy injected into the system is
is responsible for a speed up of the small scale formatiomjissipated by Ohmic resistivitisee Fig. 1t>100). As al-
process in the inhomogeneous direction as soon as phaggady remarked, the total energy necessary to sustain the
mixing becomes “efficient,” i.e., fork~1>Kkg,. In this  equilibrium field is only a small fraction of the initial energy.
situation, the characteristic time necessary to transfer the es a result, a new regime appears as clearly shown in the
ergy on the scal&~1 equals the characteristic dissipative middle and bottom panels of Fig. 1. It starts after a charac-
time by phase mixin¢37]. Therefore, the sink in the homo- teristic “charging” time, teparg= 90, independent of, and it
geneous direction is moved at lower valuekpWwith respect s characterized by having the dissipation power and dissipa-
to a pure homogeneous 2D case, where the energy is dission both independent &
pated atk}°™=SY2=10-30. At higher values ofk, the In order to allow a better appreciation of this result, in
slope of the spectrum becomes slightly steepé:r;7’3. We  Table 1 we list the value of the Lundquist number used in the
cannot offer a physical explanation for this particular valuesimulation, the minimum and mean value of the energy of
of the spectral index, even if we think that it should be con-the fluctuations, the minimum and mean value of the dissi-
nected with the existence of another cascade along the direpated power, and the minimum and mean value of their ratio.
tion of nonuniformity. The minimum values of these quantities correspond to their

To summarize the evolution of the system up4e90, we  respective values at=0, while the mean value$E™),
notice that the setting up of the “anisotropic” energy cas-(W*) and (I'") are time averages in the interval X0
cade is abldi) to transfer and to dissipate at a constant rate< 160 (see Fig. 1of E*(t), W (t) andT " (t), respectively.
(as shown in Fig. JLlthe energy stored in the large scale field As discussed in Sec. lll, for “low” Lundquist numbers, part
and(ii) to substantially speed up the dissipation rate that nowof the energy injected towards small scales is dissipated be-
scales a2 to be compared with an initig~* depen-  fore entering the strongly nonlinear regime. As a result, also
dence. The characteristic time needed to reach the nonlinetire values of W*) slightly depend on the Lundquist num-
regime,t=50, is also independent & This result is ob- ber, while this effect is less evident on the valuegbf ).
tained in spite of the very long initial wavelength of the  The values of ' ") reported in Table | together with the
perturbation with respect to the equilibrium gradient and ofresults of Fig. 1 constitute, to our knowledge, the first direct
the smallness of the initial amplitude of the perturbation withevidence of a resistivity-independent dissipation rate in a 2D
respect to the equilibrium. However, even if weaker thanMHD system, although this feature had been already antici-
before, the dependence of the dissipation rate from theated as a conjectufédl]. This result is obtained in spite of

C. Strongly nonlinear regime
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the fact that the amplitude of the initial perturbation is veryrent density. Notice that the initial magnetic configuration
small with respect to the background magnetic field. A con-had no neutral lines, see E@®), but only acted as a support
firmation of our findings for Lundquist numbers higher thanfor the wave motions.
those used here&,,,,= 1000, would be highly desirable.

In Fig. 4 we show the shaded contours of the current in IV. CONCLUSION
the (—10,10)X (0,77) domain at three different time instants,
t=50,75,100, corresponding to the three distinct physical re- In this paper we studied the energy transfer in a dissipa-
gimes, the linear, the nonlinear, and the strongly nonlineative 2D MHD system. The initial setup is intended to mimic
one, respectively. In this figur8=400, but the qualitative situations typical of the solar atmosphere, where energy is
main features and current structures are the same in all runsontinuously fed into the system by some turbulent velocity
In the first frame we observe closexe 3 the generation of field. Admittedly, the degree of realism of the proposed
a resonant dissipative layer. Then, in the next pi{aseond  model is rather poor, but a detailed description of the heating
frame a current sheet is formed which eventually developsof the actual solar corona was outside of the scope of the
into a very thin, very strong current layéhird frame lo-  paper. Our aim was to present a simple, but hopefully in-

cated at—4<x<-2, 0.8<z<1.2, characterized by the structive, example of the dynamics of energy transfer in a
presence of a neutral line where strong dissipation occurgriven, inhomogeneous 2D MHD system.

nonlim_aar dissipative regime corresponds physically to th‘?’nagnetic field fed by some unspecified external energy
formation of current sheets and neutral lines. ,ﬁ:)urce which maintains the equilibrium for times longer than
. . ! "the relatively few Alfven times necessary to set up the
f'?d 5 (with .S= 800) dwherﬁ thle st;ucr:]ture of the n;aﬁnetlc strongly dissipative regime. This configuration is subject to a
leld is superimposed on the plot of the contours of the Cur'Iong-wavelength perturbation whose amplitude is much
smaller than the value of the equilibrium field, as it is the
case for typical perturbations induced by photospheric mo-
tions in the solar atmosphere. The capability of 2D MHD
systems of developing an extended inertial spectrum respon-
sible for a “rapid” energy transfer towards the small dissi-
pative scales was already known and had already been dem-
onstrated by a number of other MHD simulatidi$,14,117.
On the other hand, our initial configuration differs from
those usually adopted in MHD simulations, where the energy
is injected either by the development of resistive instabilities,
or by using “large” amplitude initial perturbations, which
rapidly evolve toward a turbulent state.
The most interesting result presented here concerns the
possibility of tapping the energy contained in the equilibrium
-5.0 —45 —40 -35 -3.0 —25 -2.0 field. This is made possible by the development of a resonant
‘ mechanism capable of extracting the energy from the large
FIG. 5. The currenishaded contouysand the magnetic field scale background field and of injecting it on smaller and
(arrows at t=120, S=800. Lighter/darker regions correspond to smaller scales, with the wauge., the initial perturbation
positive/negative values.
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acting mostly as a catalyst. As soon as the resonance ditte nonlinear stage is much more efficient in injecting the
concentrate enough energy in the resonant layer, nonlineanergy towards smaller and smaller scales than the tearing
interactions come into play and the energy starts to cascadaode.
also in the homogeneous direction. Eventually, current sheets As this property was already been suggested by our pre-
are formed in a finite time. The corresponding magnetic fieldvious simulationg35] in a different situation, it is quite ap-
is characterized by the presence of a neutral line. In thesparent that the independence of the formation time of current
current sheets the energy is dissipated at a rate independesiteets on the actual value of the dissipative coefficients is
of the Lundquist number, at least for the relatively moderatenot related to the details of the energy injection mechanism,
values ofS used here. The characteristic time necessary tat least for the values @& used in these simulations.
reach this resistivity independent regime, turns out to be in-
depe_ndent of the_ Lundquist number as well. _ ACKNOWLEDGMENTS
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