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Resistivity-independent dissipation of magnetohydrodynamic waves in an inhomogeneous plasm

F. Califano1,2 and C. Chiuderi1
1Dipartimento di Astronomia, Universita` di Firenze, Firenze, Italy

2Istituto Nazionale Fisica della Materia, Sezione A, Dipartimento di Fisica, Universita` di Pisa, Pisa, Italy
~Received 24 August 1998!

The heating of high temperature plasmas by magnetohydrodynamic~MHD! waves is one of the most
interesting and challenging problems of plasma physics especially when the energy is injected into the system
at length scales much larger than the dissipative ones. It has been conjectured that in two-dimensional MHD
systems the possibility exists of establishing a state in which energy is dissipated at a rate that is independent
of the Ohmic resistivity and that the time needed to reach such a state is finite and independent of resistivity
as well. In this paper we prove that this is actually possible as a result of the nonlinear interaction of
long-wavelength, ‘‘small’’ amplitude perturbations with a constant, inhomogeneous magnetic field, at least in
the relatively moderate Lundquist number~magnetic Reynolds! range 100<S<3200.
@S1063-651X~99!09410-6#

PACS number~s!: 52.35.Bj, 52.30.Jb, 96.60.Pb
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I. INTRODUCTION

Plasmas, both in laboratories and in cosmic environme
are quasi-ideal systems, given the extremely large value
the corresponding magnetic Reynolds numbers. This wo
seemingly preclude any possibility of heating such plasm
via Ohmic dissipation. It must be remembered, however,
those values are computed by assuming that the spatial
entering their definition is the ‘‘large’’ energy injectio
scale. However, the cascade of energy to smaller and sm
scales, down to the tiny ‘‘dissipation’’ scale, where the loc
Reynolds numbers are of the order of unity, is made poss
by nonlinear processes, whose presence thus opens the
sibility of actually heating plasmas to high temperatures. T
investigation of the physical mechanisms capable of prod
ing such a cascade and the determination of their dissipa
efficiency has been an active subject of research for a n
ber of years. Most of the literature deals with the ene
cascade in the context of magnetic reconnection and ma
toydrodynamic~MHD! turbulence. By analogy with hydro
dynamic turbulence theory, it is quite natural to assume t
in the presence of a three-dimensional~3D! MHD strongly
nonlinear dynamics, the small scale formation is so rap
that the dissipation rate remains constant when smaller
smaller values of the dissipative coefficients are conside
i.e., the dissipation rate is independent of the Reynolds
Lundquist numbers. On this ground, phenomenological m
els have been developed in different contexts, from sp
plasmas to laboratory plasmas@1–9#. Recently, a number o
these simple models have been examined by the help of
merical simulations@10#. In this idealized ~full periodic
boundaries! 3D framework, the main conclusion is that it
reasonable to assume that the energy transfer is rapid en
to justify a dissipation rate independent of the dissipat
coefficients. However, those models cannot replace deta
investigation of the MHD systems and in real systems, w
different energy injecting mechanisms and nonperio
boundaries, the above conclusions must be essentially
sidered an interesting conjecture.

Much of the effort of the numerical investigation of th
PRE 601063-651X/99/60~4!/4701~7!/$15.00
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nonlinear dynamics of the MHD equations has been p
formed in the 2D limit. Only recently, due to the impressi
development of super-computers, it has been possible to
to simulate the full 3D MHD equations of a ‘‘realistic’
model @39# where, moreover, the turbulence is quasi-tw
dimensional.

The energy transfer and dissipative properties of a rea
tic 2D MHD system represent an interesting and still un
solved problem, since 2D MHD cannot be directly connec
to 2D or 3D hydrodynamic results. Given the smallness
the dissipative coefficients in practically all cases of intere
the possibility that the energy dissipation tends to a fin
limit when the Reynolds numbers tend to infinity is,
course, of capital importance. The existence of such a li
has been conjectured almost 20 years ago@11#, but so far has
not been explicitly proven, even if the possibility of gene
ating a direct cascade with a corresponding extended ine
spectrum has been demonstrated by numerical simulation
the homogeneous case with large amplitude initial pertur
tions @12–14#. In the magnetic reconnection context, wh
the system is driven by the development of the tearing in
bility, i.e., by initial long-wavelength perturbations, a turb
lence capable to strongly speed up dissipative effects at
Lundquist numbers can be generated by the tearing m
only in the presence of a 3D sheared magnetic field, while
2D the tearing mode develops at large scales and does
generate turbulence@15#. Furthermore, numerical studies o
the evolution of the instability of a sheet pinch have sho
that nonlinear interactions are more likely to produce
coalescence of magnetic islands rather than efficiently ex
small scale dissipative structures@16#. However, when a low
level of turbulence is introduced into the system at the ini
time, an inertial spectrum reminiscent of the homogene
MHD turbulent case develops@17# similar to the driven re-
connection case@18#.

In this paper we propose to concentrate on one spe
problem, that of the heating of the solar corona. On one h
this subject is of interest in itself, being one of the big un
solved problems of plasma astrophysics. On the other,
sufficiently ‘‘typical’’ to be be a good paradigm for othe
4701 © 1999 The American Physical Society
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4702 PRE 60F. CALIFANO AND C. CHIUDERI
situations, so that any progress in this particular field wo
equally well constitute an advancement in our knowledge
the behavior of plasmas. In essence the problem is the
lowing. The solar corona, the outermost reach of the s
atmosphere, is a tiny, hot plasma (T.106 K) which mainly
radiates in the soft x-ray range. High resolution observati
have now shown that the solar corona is a rapidly evolv
plasma where a large variety of spatial and temporal sc
are present. A general consensus has been reached o
fact that the basic physical processes underlying energ
phenomena occur mainly on very small scales, well bey
the present and possibly the future observational capabili
The first consequence of this situation is the lack of eve
‘‘zero order’’ realistic model and the presence of a numb
of ‘‘conceptual’’ models which, starting from the availab
data, try to give a rough scenario of the small scale dynam
and to derive from it all the possible consequences on m
quantities to fit the observational large scale constraints.
these models have some common ingredients. The prim
energy source has been identified in the turbulent moti
observed at lower levels in the solar atmosphere which
the direct consequence of the presence of an extended
vection zone underneath the visible solar surface. The m
netic field plays a fundamental role both on the large sca
as a link between the photosphere and the corona, and o
small scales where it helps transferring energy by so
mechanisms like, for example, resonant absorption and p
mixing of MHD waves, magnetic reconnection, nonline
interaction, and so on. The strict connection betwe
magnetic-field structure and coronal heating events has b
experimentally established by satellite observations co
bined with magnetograms from space or from the grou
~see Ref.@19#, and references therein!.

Two standard pictures are used in order to underst
how photospheric energy is injected on dissipative scales
the first one, known as quasistatic equilibrium evolution, i
claimed that since the typical time scale of photospheric m
tions is much longer than the Alfve´n time, large scale struc
tures like coronal loops evolve through a series of magn
static force-free equilibria since they have enough time
reorganize themselves after any external perturbation. T
problem is strictly connected to that of the existence of id
MHD singularities,@20–24#. During this ‘‘equilibria walk-
ing,’’ strong current sheets eventually develop near the se
ratrix and magnetic energy is released via magnetic rec
nection. However, when a dynamical rather than quasist
approach is applied to the evolution of such a configuratio
turns out, at least in a 2D slab geometry, that ideal singul
ties ~i.e. current sheets! are in reality not accessible since th
Alfvén time becomes infinite near the separatrix@25#. In
other words, the intensity of the current sheet cannot
made infinite in a finite time due to resistive effects; in p
ticular, the current sheets grow on a characteristic time wh
scales asS1/3, whereS5t r /ta , the ratio of the resistive to
the Alfvén times, is the Lundquist number.

Wave heating theories, on the contrary, consider
photospheric perturbations as a continuous source of M
waves which propagate upwards and damp, mainly by tra
ferring their energy to small scales as the result of the in
action with an inhomogeneous background field. In this c
test, the most promising mechanism are phase mixing@26#
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and resonant absorption@27–32#. In the first one, the front
wave becomes increasingly more corrugated during propa
tion due to the spatial variation of the phase speed; a
result, stronger and stronger transverse gradients are ge
ated and the wave energy is dissipated in a character
time which scales asS1/3. In the second one, energy is co
centrated into a critical layer by a resonant mechanism
normal mode analysis shows that the dissipation rate is t
independent from the Lundquist number, but the transi
time necessary to set up this dissipative mechanism is
ceedingly long if only linear interactions are considered@33–
35#.

Some preliminary effects of nonlinearity on the evolutio
of a nonuniform field subject to moderate amplitude, lon
wavelength perturbations have been investigated in@35#. In
this paper the inhomogeneous background field is pertur
at t50 and the system is kept energetically isolated from
outside. In the subsequent evolution, energy is drawn
nonlinear processes from the large scale field and transfe
to smaller scales where it is dissipated and the initial fi
profile becomes increasingly more uniform. Because of
limited free energy available, the system is prevented fr
reaching an asymptotic regime where the dissipation rem
constant in time. This behavior will be referred to as a d
sipative decay. The results of this paper strongly suggest
the formation time of the current sheet, which is the resist
analog of an ideal singularity, could indeed be independ
of the actual value of the dissipative coefficients. Althou
interesting, the validity of this conclusion is weakened by t
fact that the values of the Lundquist number used in th
simulations were quite low (S<103) and that the predicted
substantial restructuring of the background field that acco
panies the dissipation does not seem to be supported by
observations.

In the present paper we try to circumvent the latter pro
lem by studying the nonlinear evolution of an inhomog
neous 2D incompressible MHD system perturbed as in
previous case, but where the large scale field is assume
stay the same at all times, as actually suggested by the
servations. This is equivalent to the assumption that an
specified external mechanism is at work to compensate
changes that would be otherwise imposed on the field pro
as a result of the the processes responsible for the en
transfer to smaller scales and for its subsequent dissipa
Contrary to the case previously studied, the system is
longer energetically isolated from the outside and we refe
this case as a driven dissipative evolution. Notice that in t
configuration the energy injection mechanism from the la
scale equilibrium to the small dissipative scale is still giv
by the ‘‘resonant’’ interaction between the long-waveleng
initial perturbation and the nonuniformity of the backgrou
field. We underline that the initial magnetic equilibrium
stable with respect to tearing modes, since no neutral li
are present at the initial time.

It will be shown in this work that, in typical solar coron
conditions, i.e., small amplitude, long-wavelength perturb
tions interacting with an inhomogeneous magnetic field, i
possible to set up a nonlinear energy cascade capable to
sipate the energy of the equilibrium field at a rate indep
dent of the dissipative coefficients. The characteristic ti
necessary to set up the cascade is also independent of
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coefficients. As already mentioned, the basic physics of
nonlinear energy transfer from large to small scales at a
sufficiently high to allow a resistivity-independent dissip
tion has already been investigated in the context of tur
lence theory, but, to our knowledge, it has never be
proved, in the 2D inhomogeneous case subject to in
small amplitude, coherent, large scale perturbations.

In the next section we introduce the model equations
the initial conditions imposed on the system. These equat
are integrated numerically and the results are presente
Sec. III. Finally, conclusions are drawn in Sec. IV.

II. EQUATIONS AND NUMERICAL METHOD

To study the evolution of an initial perturbation in a
inhomogeneous time-independent magnetic field, we c
sider the incompressible magnetohydrodynamic equation
the Elsasser formulation where, for the sake of simplic
the Reynolds number is equal to the Lundquist number.
reduce the equations to a dimensionless form we choos
measure lengths, velocities, and densities with respect to
spatial scale of variation of the initial magnetic fieldl̄ , the
average Alfve´n speedva , and a typical density%̄, respec-
tively. Times are then measured in units ofl̄ /va . The dimen-
sionless equations then read

]z6

]t
5@6B0~x!2z7#•“@6B0~x!1z6#2¹P1

1

S
¹2z6,

~1!

“•z650, z65v6b, ~2!

where z6 are the Elsasser variables andv and b are the
velocity and the magnetic field fluctuations, respectively.
these equationsB0 is the equilibrium field,P is the total
kinetic 1 magnetic pressure, andS is the Lundquist number
Equations~1! and~2! are integrated in the 2D domain (x,z)
of dimension@2Lx ,Lx#3@0,2p/k0,z#, whereLx>2p/k0,z ,
and k0,z is the wave number of the initial perturbation~see
Ref. @35#!.

The unidirectional, inhomogeneous equilibrium magne
field is given by

B0~x!5@110.5 tanh~x!#ez , ~3!

and, at the initial time, we introduce a perturbation of t
form,

zx
15a sin~k0zz!, zx

25zz
650, ~4!

wherea51022 and k0z50.03. In thex inhomogeneous di-
rection we use the following boundary conditions:

]zz

]x
50,

]zx

]x
52

]zz

]z
, ~5!

and periodic boundary conditions are used in thez direction.
The numerical algorithm used to integrate the equation

the explicitAdams-Bashford IIIwhich is third order accurate
in time and does not add numerical dissipation on the s
wavelengths. We use fourth order finite differences in thx
direction on a nonuniform grid and fast Fourier transform
e
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the z direction. TheABIII algorithm is slightly modified
since at each time step a Poisson equation must be so
~with particular care! in order to enforce the incompressibi
ity condition. The numerical code is particularly efficient o
massively parallel computers. A description of the algorith
can be found in@35#. For further details on the time schem
see also@36#. The typical resolution for the (x,z) numerical
grid is (80032048) points forS;800.

We define the energyE6(t) and the dissipated powe
W6(t) of the fluctuations as

E6~ t !5
1

2Lx
E

2Lx

Lx
e6~x,t !dx, e65zx

2,61zz
2,6 , ~6!

zx
2,6~x!5 (

k51

N

uzx,k
6 u2, zz

2,6~x!5 (
k51

N

uzz,k
6 u2.

W6~ t !5
1

2Lx
E

2Lx

Lx
w6~x,t !dx, ~7!

w65
1

S (
k51

N FU]zx,k
6

]x
U2

1U]zz,k
6

]x
U2

1k2uzx,k
6 u21k2uzz,k

6 u2G .
Herezx,k

6 (x,t) andzz,k
6 (x,t) are the Fourier transforms in th

z direction of the fluctuationszx
6(x,z,t) and zz

6(x,z,t), re-
spectively. In the following we will use the quantityzx,k

2,6 and
zz,k

2,6 as the averaged values in the inhomogeneous direc
of uzx,k

6 u2 and uzz,k
6 u2, respectively, anduk

65zx,k
2,61zz,k

2,6 . Fi-
nally, we define the averaged dissipation rate of the per
bation as the ratio of the energyE6(t) over the dissipated
powerW6(t) of the fluctuations,G65W6/E6.

By assuming an exponential decay of the fluctuation
ergy as;exp(2k2t/S), wherek is the largest wave numbe
~without distinction between the parallel and the transve
one!, we estimate the dissipative characteristic time at
scalel52p/k as td@k(t),S#.S/k2.

III. NUMERICAL RESULTS

In Fig. 1 we plot the fluctuating energyE1, the dissipated
energyW1 andG1 vs time for different values of the Lun
quist number,S5100, 200, 400, 800, 1600, 3200. The
quantities are normalized withE1(t50,S5100), W1(t
50,S5100), G1(t50,S5100), respectively. In the top
panel, increasing values of the curves att5100 correspond
to larger Lundquist numbers, while in the middle and botto
panels increasing values of the curves att50 correspond to
lower Lundquist numbers. Notice that the curves correspo
ing to S51600,3200 stop at nearlyt5100 due to numerica
grid resolution problems.

In the top panel two features are worth noticing. The fi
is that, for t,100, the energy of the fluctuations increas
with time due to an energy transfer from the free~inhomo-
geneous! energy of the equilibrium field to the fluctuation
~see also@35,37,38#!. The second is that the differences b
tween the curves corresponding to different values ofS tend
to disappear asS increases. This is a clear indication that t
energy transferred to the fluctuations will become practica
independent ofS starting from a value ofS not much
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FIG. 1. The time evolution of the energy o
the fluctuationsE1, the dissipated powerW1 and
their ratio G15W1/E1. These quantities are
normalized withE1(t50, S5100), W1(t50, S
5100), G1(t50, S5100), respectively.
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larger than a few units in 103. It is also important to notice
that the total amount of energy transferred from the equi
rium to the fluctuations is a small fraction of the ener
initially stored in the large scale equilibrium field,DE/E
;1023.

In the middle and bottom panels, we observe that
evolution of the system is characterized by three disti
phases, each of them with a characteristic time indepen
of the Lundquist number. We define these phases as the
ear resonant phase 0,t,45, the nonlinear phase 45,t
,90, and the strongly nonlinear phaset.90.

A. Linear regime

In the initial phaset,45, the nonlinear interactions ar
negligible with respect to the linear ones since the amplit
and the gradients of the initial perturbation are ‘‘small’’@see
Eq. ~4!#. In such conditions, the dynamics of a lon
wavelength perturbation,k!1, in a inhomogeneous medium
is controlled by resonant absorption, while phase mixing
inefficient, at least for times shorter than the period of
wave, t,2p/k0.200 ~see Ref.@35#!. In the left frame of
Fig. 2 we plotzz

2,1 vs x at the end of the linear phase,t
540, for S5800. This picture shows that the resonant p
cess concentrates the energy inside the inhomogeneou
gion close to the maximum of the equilibrium magnetic fie
gradient. As a consequence, the local amplitude of the w
is enhanced by some order of magnitude and larger
larger spatial gradients are generated in the inhomogen
direction @notice that the initial perturbation is flat in thex
direction, see Eq.~4!#. On the other hand, no significant e
ergy transfer towards small scales occurs in the parallz
direction, so that the typical parallel wave number of t
fluctuations remains of the order of the initial one,kz.k0z .
Therefore, at the end of the resonant linear phase we gekx
@kz ; this result is not surprising since in thez direction the
plasma is assumed to be perfectly homogeneous.

In the right frame of Fig. 2 we show the computed valu
of G1 at the end of the linear phase,t540 for different
values ofS ~stars!, together with a linear best fit~continuous
-

e
t
nt

in-

e

s
e

-
re-

ve
d
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s

line! whose slope turns out to be27/12. At t50 the same
linear fit would have a slope of21. The27/12 scaling law
remains unaltered until the strongly nonlinear phase sta
i.e., up tot;90.

B. Nonlinear regime

At the end of the linear resonant phase, the amplitude
the wave in the inhomogeneous region has grown by
proximately two orders of magnitude becoming compara
to the equilibrium field, so that nonlinear interactions com
into play.

In Fig. 3 we show the energy spectrum averaged along
direction of nonuniformity,uk

1 , as a function of the paralle
wave number kz , during the resonant, nonlinear, an
strongly nonlinear phases for two cases,S5200 and S
5800. In this figure the energy spectrum of the initial pe
turbation, a single point atk5k0,z , see Eq.~4!, is indicated
by a star. Notice that the dissipative characteristic time of
initial perturbation istd(k5k0,z).103S.

FIG. 2. Left frame:zz
2,1 vs x at t540, S5800; right frame:G1

vs S ~stars! at the end of the linear phase,t545, and a best fit curve
~continuous line!, ;S27/12.
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At the end of the resonant phase~dotted line!, the energy
spectrum in terms ofkz is an exponential rather than a pow
law, which means that during the linear phase no energ
efficiently transferred on small scales along the homo
neous direction. In the subsequent evolutiont>50, due to
the resonant amplification of the amplitude of the pertur
tion, nonlinear interactions become efficient and the ene
starts to cascade also in the homogeneous direction. Th
shown by the25/3 power law for 0.03<kz<0.2. In this
regime,t.80 ~dashed line!, the energy is dissipated at wav
numberskd!S1/2. In fact, as discussed in Ref.@35#, the pres-
ence of an inhomogeneity in the background magnetic fi
is responsible for a speed up of the small scale forma
process in the inhomogeneous direction as soon as p
mixing becomes ‘‘efficient,’’ i.e., fork;1@k0,z . In this
situation, the characteristic time necessary to transfer the
ergy on the scalek;1 equals the characteristic dissipati
time by phase mixing@37#. Therefore, the sink in the homo
geneous direction is moved at lower values ofkz with respect
to a pure homogeneous 2D case, where the energy is d
pated atkd

hom.S1/2.10230. At higher values ofkz the
slope of the spectrum becomes slightly steeper,}kz

27/3. We
cannot offer a physical explanation for this particular va
of the spectral index, even if we think that it should be co
nected with the existence of another cascade along the d
tion of nonuniformity.

To summarize the evolution of the system up tot.90, we
notice that the setting up of the ‘‘anisotropic’’ energy ca
cade is able~i! to transfer and to dissipate at a constant r
~as shown in Fig. 1! the energy stored in the large scale fie
and~ii ! to substantially speed up the dissipation rate that n
scales asS27/12, to be compared with an initialS21 depen-
dence. The characteristic time needed to reach the nonli
regime, t.50, is also independent ofS. This result is ob-
tained in spite of the very long initial wavelength of th
perturbation with respect to the equilibrium gradient and
the smallness of the initial amplitude of the perturbation w
respect to the equilibrium. However, even if weaker th
before, the dependence of the dissipation rate from

FIG. 3. The energy spectrumuk
1 vs the parallel wave numberkz

at t545 ~points!, t580 ~dashed!, andt5120~dotted-dashed! for
S5200, first frame, andS5800, second frame. The star represe
the energy spectrum of the initial perturbation in both pictures.
these curves have been normalized withuk

1(t50).
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Lundquist number is still too strong to consider this as
possible heating mechanism for astrophysical plasmas wh
typical Lundquist numbers are of the order of 101221014.

C. Strongly nonlinear regime

The existence of a strong nonlinear phase is the featur
this paper with respect to our previous work@35#. We recall
that in that paper we have followed the dissipative decay
the same background field including the feedback action
duced on the equilibrium field by the nonlinear interaction
the field gradient was progressively smoothed out with
corresponding reduction of the energy injection rate from
equilibrium to the fluctuations~see also@37#!. Here, as al-
ready explained in the Introduction, we study the case o
driven dissipative evolution of a nonuniform MHD state b
assuming that the large scalex-dependent magnetic field i
forced by an external energy source to keep the same g
ent for a time much longer than that needed to reach a
tionary state where the energy injected into the system
dissipated by Ohmic resistivity~see Fig. 1,t.100). As al-
ready remarked, the total energy necessary to sustain
equilibrium field is only a small fraction of the initial energy
As a result, a new regime appears as clearly shown in
middle and bottom panels of Fig. 1. It starts after a char
teristic ‘‘charging’’ time,tcharg.90, independent ofS, and it
is characterized by having the dissipation power and diss
tion both independent ofS.

In order to allow a better appreciation of this result,
Table 1 we list the value of the Lundquist number used in
simulation, the minimum and mean value of the energy
the fluctuations, the minimum and mean value of the dis
pated power, and the minimum and mean value of their ra
The minimum values of these quantities correspond to th
respective values att50, while the mean valueŝE1&,
^W1& and ^G1& are time averages in the interval 120<t
<160 ~see Fig. 1! of E1(t), W1(t) andG1(t), respectively.
As discussed in Sec. III, for ‘‘low’’ Lundquist numbers, pa
of the energy injected towards small scales is dissipated
fore entering the strongly nonlinear regime. As a result, a
the values of̂ W1& slightly depend on the Lundquist num
ber, while this effect is less evident on the values of^G1&.

The values of̂ G1& reported in Table I together with th
results of Fig. 1 constitute, to our knowledge, the first dire
evidence of a resistivity-independent dissipation rate in a
MHD system, although this feature had been already an
pated as a conjecture@11#. This result is obtained in spite o

s
l

TABLE I. From left to right: the value of the Lundquist numbe
used in the simulation, the minimum and mean value of the ene
of the fluctuations, the minimum and mean value of the dissipa
power, and the minimum and mean value of their ratio. The m
mum values of these quantities correspond to their respective va
at t50, while the mean valueŝE1&, ^W1&, and ^G1& are time
averaged in the interval 120<t<160 ~see Fig. 1! of E1(t), W1(t),
andG1(t), respectively.

S Emin
1 ^E1& Wmin

1 ^W1& Gmin
1 ^G1&

200 1.0 5.2 0.5 34 0.5 6.5
400 1.0 5.7 0.25 36 0.25 6.2
800 1.0 6.3 0.125 48 0.125 7.4
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FIG. 4. The current~shaded contours! at t
550, 75, 100,S5400. Lighter/darker regions
correspond to positive/negative values.
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to
the fact that the amplitude of the initial perturbation is ve
small with respect to the background magnetic field. A co
firmation of our findings for Lundquist numbers higher th
those used here,Smax<1000, would be highly desirable.

In Fig. 4 we show the shaded contours of the curren
the (210,10)3(0,p) domain at three different time instant
t550,75,100, corresponding to the three distinct physical
gimes, the linear, the nonlinear, and the strongly nonlin
one, respectively. In this figureS5400, but the qualitative
main features and current structures are the same in all r
In the first frame we observe close tox53 the generation of
a resonant dissipative layer. Then, in the next phase~second
frame! a current sheet is formed which eventually develo
into a very thin, very strong current layer~third frame! lo-
cated at 24,x,22, 0.8,z,1.2, characterized by th
presence of a neutral line where strong dissipation occ
These findings demonstrate that the establishment of a st
nonlinear dissipative regime corresponds physically to
formation of current sheets and neutral lines.

The presence of a magnetic neutral line is clearly see
Fig. 5 ~with S5800) where the structure of the magne
field is superimposed on the plot of the contours of the c

FIG. 5. The current~shaded contours! and the magnetic field
~arrows! at t5120, S5800. Lighter/darker regions correspond
positive/negative values.
-

n

-
r

ns.

s

s.
ng
e

in

r-

rent density. Notice that the initial magnetic configurati
had no neutral lines, see Eq.~3!, but only acted as a suppo
for the wave motions.

IV. CONCLUSION

In this paper we studied the energy transfer in a dissi
tive 2D MHD system. The initial setup is intended to mim
situations typical of the solar atmosphere, where energ
continuously fed into the system by some turbulent veloc
field. Admittedly, the degree of realism of the propos
model is rather poor, but a detailed description of the hea
of the actual solar corona was outside of the scope of
paper. Our aim was to present a simple, but hopefully
structive, example of the dynamics of energy transfer in
driven, inhomogeneous 2D MHD system.

The initial configuration represents a typical large sc
magnetic field fed by some unspecified external ene
source which maintains the equilibrium for times longer th
the relatively few Alfvèn times necessary to set up th
strongly dissipative regime. This configuration is subject t
long-wavelength perturbation whose amplitude is mu
smaller than the value of the equilibrium field, as it is t
case for typical perturbations induced by photospheric m
tions in the solar atmosphere. The capability of 2D MH
systems of developing an extended inertial spectrum resp
sible for a ‘‘rapid’’ energy transfer towards the small diss
pative scales was already known and had already been d
onstrated by a number of other MHD simulations@13,14,17#.
On the other hand, our initial configuration differs fro
those usually adopted in MHD simulations, where the ene
is injected either by the development of resistive instabiliti
or by using ‘‘large’’ amplitude initial perturbations, which
rapidly evolve toward a turbulent state.

The most interesting result presented here concerns
possibility of tapping the energy contained in the equilibriu
field. This is made possible by the development of a reson
mechanism capable of extracting the energy from the la
scale background field and of injecting it on smaller a
smaller scales, with the wave~i.e., the initial perturbation!
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acting mostly as a catalyst. As soon as the resonance
concentrate enough energy in the resonant layer, nonli
interactions come into play and the energy starts to casc
also in the homogeneous direction. Eventually, current sh
are formed in a finite time. The corresponding magnetic fi
is characterized by the presence of a neutral line. In th
current sheets the energy is dissipated at a rate indepen
of the Lundquist number, at least for the relatively moder
values ofS used here. The characteristic time necessary
reach this resistivity independent regime, turns out to be
dependent of the Lundquist number as well.

It is worth noting that the resonant mechanism obser
in our simulations is driven by the interaction of a cohere
large scale wave mode with the equilibrium inhomogene
a situation reminiscent of the case of the tearing mode wh
in order to generate a well developed inertial spectrum,
initial turbulent ‘‘background’’ is needed@17#. On the other
hand, since no noise is introduced at the initial time in o
simulations, we must conclude that the resonant proces
tt.

s

eo

id

T.
id
ar
de
ts

d
se
ent
e
to
-

d
t
,
e,
n

r
in

the nonlinear stage is much more efficient in injecting t
energy towards smaller and smaller scales than the tea
mode.

As this property was already been suggested by our
vious simulations@35# in a different situation, it is quite ap
parent that the independence of the formation time of curr
sheets on the actual value of the dissipative coefficient
not related to the details of the energy injection mechani
at least for the values ofS used in these simulations.
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