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Equilibrium and dynamical properties of semiflexible chain molecules
with confined transverse fluctuations
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Abteilung Theoretische Physik, Universitdm, 89069 Ulm, Germany
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The partition function of a semiflexible chain molecule with harmonically confined transverse fluctuations is
calculated. Equilibrium properties exhibit qualitative differences between the weak and the strong confinement
behavior. The relaxation times of undulations perpendicular to the chain molecule contour are calculated on the
basis of a Langevin equation approach. With increasing confinement a decrease of the relaxation times is
found. As a consequence the mean square displacement of monomers and the dynamic structure factor are
strongly influenced by the confinement. The comparison of the calculated mean square displacement with
diffusing wave spectroscopy measurements of actin filaments exhibits good agreement.
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PACS numbeps): 87.15.By, 36.20.Ey, 61.25.Hq

[. INTRODUCTION are suppressed due to the constraint of inextensibility. We
determine the free energy of a semiflexible chain molecule in
It has long been realized that the key physics determining harmonic confinement potential using the path integral for
the properties of long chain molecules in melts or in en-a general second-derivative Lagrangian. The relaxation times
tangled solutions arises from the topological interaction becharacterizing transverse undulations are calculated. Using
tween the molecules. The most popular theoretical framethese relaxation times we compute the mean square displace-
work in which topological interactions are taken into accountMent of the monomers and the dynamic structure factor. -
is the tube model of de Genng#|, and of Doi and Edwards __The Paper is organized as follows. The chain model is
[2]. The topological constraints by which the chain mol- introduced in Sec. I. The free energy of a polymer chain and
ecules may not cross each other are assumed to be equival ilibrium correlation functions are calculated in Sec. Il. In

for each molecule to a tube surrounding its own contour; ec. Il dynamical properties are discussed. Finally, Sec. IV

: . summarizes our findings.
Hence, motions perpendicular to the tube contour are con- 9

fined while those along the contour are permitted. These mo-

tions have been visualized by video microscopy measure- Il. SEMIFLEXIBLE CHAIN MODEL

ments of actin filament43] and of DNA in entangled The semiflexible chain model is represented as a continu-
solutions[4]. Thus, one has direct evidence that tubelikeous, differentiable space curvés), wheres indicates dis-
constraints exist in these systems. tances along the chain. The bending enelryyof a chain

Chain molecules trapped in a tube exhibit strikingly dif- molecule of contour length is given by
ferent features from those in a bulk. The chain molecules are )
deflected back and forth by the tube boundary. Depending on Hy 1oL, [0%r(9)
the tube radius, relaxation processes perpendicular to the kB_T_?fo ds 952 |’
tube axis are suppressed while the motion along the tube
contour is the only unrestricted type of motion at timeswherel, is the persistence lengfii5]. Calculations of equi-
longer than an average monomer takes to diffuse across thiérium properties of the semiflexible chain model are diffi-
tube radius. Consequently, equilibrium, as well as dynamicatult due to the local inextensibility constraihdr(s)/ds|?
properties, are changed. Equilibrium properties of chain mol=1. A variety of approximations have been devised to ap-
ecules confined within a tube, such as the free energy inproach this problem. The most successful approximation is
crease or the chain molecule conformation have been of into impose the global constraint
tense interest{1,5—8. Dynamical properties have been )
worked out for flexible linear chain molecules inside a tube EJ"-d (ar(s))
[1,8-10. Recently, there has been increasing interest in the LJo Js
dynamics of semiflexible chain molecules in confined envi-
ronmentg11-14. rather than the local ofd6—19. The brackets designate an

The theoretical investigations on dynamical properties ofensemble average. Thus, the term
confined chain molecules performed so far mainly concen- 5
trate on the curvilinear motion of the molecules along their Hm _ ﬁdes< &r_(s))

keT 15Jo

(2.1

=1 (2.2

X : : 2.3
contour. In this paper we focus on constraint fluctuations Js @3

perpendicular to the molecules contour. These transverse
fluctuations are of particular importance for rather stiff chainis added to the potential energ®.1) and the dimensionless
molecules, where internal longitudinal degrees of freedonLagrangian multiplierw is determined by demanding the
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FIG. 1. Schematic presentation of a semiflexible chain molecule 0.1 _ 1
of contour lengthl and persistence length. The thick black and |
gray lines represent possible configurations apart in time. The mean ool N
square displacement perpendicular to the chain con@u4) is ' . .
given byR2. 0 6 8

constraint(2.2) to hold. This approximation is known to hold
for the calculation of various equilibrium properties, such as  FIG. 2. Computed correlation functidr(s) for two R/l values
the radius of gyration and the end-to-end distaricg19. according to Eq(3.2: R/I,=0.3, solid line;R/l,=1, dotted line.
Here we consider a semiflexible chain molecule with har-The chain length was fixed to/l ;= 25.
monically confined transverse fluctuations
is extremized with respect t@ and v. Once the Lagrangian
1 o multipliers are computed for the system, various equilibrium
[fo dsri(s) ) =R (24 and dynamical properties can be investigated.

wherer | (S) is the position vector perpendicular to the chain . EQUILIBRIUM PROPERTIES
contour andR designates a tube radius. Due to this constraint The determinati f the L . itioli leads t
the number of conformations allowed for the chain molecule € determination ot the Lagranglan muitipiiers ieads to

is much smaller than in free space. The purpose of the Com_onlinear.equations which are solveq numerically. Bqt some
straint(2.4) is to restrict the transverse displacement consid-(:h"’lr"’lcterIStIC features can be obtained from analytical ap-

erably but not totally to an interval of widthR2 Thus, the proximations. An evaluation of the partition functidg.6)

chain molecule is confined in a tube-like cage. Figure 1‘3)(thItS that the functional reads approximately
shows a schematic presentation of the confined chain mol-

ecule. For the calculation of the allowed chain conformations Iy \/; 7 \12
we add the confinement potential L 2 (ki Np=w)
2
Heon v (L, , +(,LL_\//.L2_V)1/2_,U,_K E . (3.0
=—f dsri(s) (2.5 2\1
kgT 2I3 0 P

, , , As a result, the Lagrangian multipliers do not depend on the
to the potential§2.2) and(2.3. The dimensionless Lagrang- .oniour length. In the limit of weak confinemeR|,>1,

ian multiplier is denoted as. The partition function of the 4 Lagrangian multipliers are given by=9/8 and v
semiflexible chain molecule, under the influence of the con-:4(|p/R)4/9 whereas, for strong confinemeRtl ,<1, we

finement potential, reads find u=1/8 andv=(l,/R)®¥2%". From the numerical cal-
5 2 culations it follows that there is a transition poRtl ,~0.9
Z:J exp{ 3 I—pJLdS< J r(s)) with #2=v. To study the effect of this transition on equilib-
2Jo 952 rium properties, we determine the correlation function
L [ar(s)\? v (L r r
- H dS( ;s)) - —3J dsrf(s)lDr. (2.6) h(s)= {ru(s)-r. (00 3.2
P10 21570 (ri(0)-r,(0))

The position vector(s) can be decomposed into its compo- |n Fig. 2 we present this correlation function for two differ-
nentsr|(s) parallel to the chain molecule contour ands).  ent R/l,, values. From the figure it is apparent thags)
Then the functional integrdR.6) is straightforward and cor- exhibits a qualitatively different behavior below and above
responds to a path integral for a general second-derivativghe transition point. While it decays purely exponentially
Lagrangian[20]. The Lagrangian multiplierg. and v are  above the transition point, there are additional oscillatory
obtained from demanding the expectation valliegs.(2.2)  modulations below the transition point. In this limit the cor-
and(2.4)] to hold. Hence, the free energy=—kgTInZis  relation function is approximately given by

calculated and the functional
1 1/3 -
i +—.
sm{ ( 4IpR2) S 7

L o\e
F  ulL wRAL h(s)z\/fex;{—( 2) s
. h 2.7 a1,R

B p 21y (3.3
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The period of the oscillations in the sm&ll, regime is the 107
Odijk deflection length\ = (41 ,R?)*? [7], at which a chain F
molecule is deflected by the tube boundary in order to con-
form to the constraint$2.4). The observed transition is due

to competing effects in a one-dimensional system with local 10 E
interactions and is similar to the one recently found by Liv- o b
erpool et al. for their double-stranded semiflexible chain =,

model[18]. !

In the smallR/I , regime the confinement free energy,
defined by the increase in the free energy of a chain molecule
enclosed within a tube with respect to the one in the bulk,
scales like 10°

AF L R [nm]
= (3.9 o o . .
kgT A FIG. 3. First six relaxation times for a confined chain molecule

) ) . ~ of lengthL=100 nm and of persistence lendtf=1 nm as func-
This expression corresponds to the one derived by Helfrickion of the tube radiu®k. Mode numbem increases from top to
and Harbich for confined membrane surfaf2%|. bottom.

IV. DYNAMICAL PROPERTIES yields an equation for amplitudg,(t) and from there for the

time correlation functio t)- xn(0)):
In the following we investigate the dynamics of fluctua- (1) - 2 (0))

tions perpendicular to the chain molecule contour. The en- 9 1
ergy functional in the exponent of E(R.6) gives the restor- E()(n(t)-xn(O)): ——{xn(1)- xn(0)). (4.5
ing force to a fluctuation. Neglecting the inertia force as 7n
compared to the friction force, the Langevin equation for theT

motions perpendicular to the chain molecule contour is given he solution of this differential equation is given by

by ke T t
<Xn(t) : Xn(0)>: TheXg — —|, (4.6
9 n 02 (?4 a Th
yﬁrl(s,t)— I—kBT—ZrL(s,t)HpkBT—4rL(s,t)
P Js Js wherer, are the relaxation times of the normal mode analy-
sis and read
14
+ 5keTro(s,t)=f.(s,1), 4.7
I Yy 2 nar\? n774+1/ 4
kT -\ T Tl T T @D

where vy is the friction constant per unit length of the chain
molecule and | (s,t) is a white noise stochastic force. The i , L -
frictional force results from irreversible short time viscous The first six relaxation times are plotted in Fig. 3 as a func-
processes. The second and third terms in @dl) describe tion of the tube radiuRR In the calculations the contour
intramolecular forces, while the fourth term represents thd€ngthL =100 nm and the persistence lenggh-1 nm were
confinement force. Ars-dependent friction coefficient may fx€d. With decreasing tube radius we find a decrease of the
be used to take the hyrodynamic interaction in a dilute soluf€l@xation times. At a short time scale a chain molecule un-

tion into accoun{22]. The expansion of the position vector d€rgoes local wriggling motions within the tube. These mo-
tions are described by undulations with large mode numbers

% n. Therefore, relaxation times with large mode numbers are
r(s,t)=2 xa(t)n(s), (4.2 less influenced by the constraints than those with small mode
n=1 numbers. In particular, bending modes~L*/n* become
. . . dominant for short time§23].
in terms of the eigensolutions The relaxation times presented in Fig. 3 should not be
confused with the much longer relaxation times characteriz-
()= \ﬁco{n—ws 4.3 ing the curvilinear reptational motion. Reptation theories for
L L entangled polymers assume that temporary topological con-
straints formed by surrounding polymers force the polymers
of the corresponding eigenvalue equation to move anisotropically through the melt by favoring motion
along their own contoursl,2]. For reptating chain molecules

p

(?2

y o the relaxation times describing the curvilinear motion are
T_nwn(s):KkBTg‘/’n(s) enhanced relative to the relaxation times of unentangled
chain molecules. This increase has been confirmed by com-

Py puter simulation$24] and is an essential ingredient in theo-

—kaBT—4 Pn(S)— I%kBszn(s), (4.9 ries of long-time dynamics in polymer mel{see, for ex-
Js P ample,[25-27).
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FIG. 4. Computed mean square displacemegiit3 (solid line)
together with experimental datapen diamondsof actin filament
networks[28]. The dotted line displays the power laygt) ~t3

FIG. 5. Incoherent dynamic structure factor for different scatter-
ing vectors:q=0.5, 1, and 1.5 nm!. The scattering vector in-
creases from top to bottom. The contour length and the persistence

. . . .__length are given by =100 nm andl,=1 nm, respectively. The
The dynamics of chain molecules is often characterizeqpe radius is fixed t&R=1.5 nm.

by its mean square displacements. Here we investigate the

transverse mean square displacengg}. Using the trans- 1 (L

formation(4.2) and the correlation functio®.6), this quan- Sinc(Q,t) = EJ ds(exd —iq- (r(s,t)—r(s,0)]) (4.9
tity is given by 0

is studied as a function of time and scattering veqgtdrarge
g(t)= Edes,((r (s,)—r,(5,0)?) scattering vectors used in neutron scattering experiments do
LJo L= L= not probe long-time curvilinear motions. In this scattering
. vector regime the incoherent dynamic structure factor is
_ 4kgT t dominated by the constraint motions of the chain molecules.
YN nz To| 1—€xp = ol 48 since the distribution ofr, (s,t)—r, (s,0)) is Gaussian for
our chain model, the calculation of the ensemble average
yields

In Fig. 4 we preseng(t) (solid line) together with experi-
mental data of actin filament network28]. In the calcula- 1L q?
tions the persistence length, the tube radius, and the contour Sinc(d,t)= —f dsex;{ ——{((r (s,t)— rl(s,O))2>),
. LJo 4

length were fixed tol,=12um, R=16 nm, and L (4.10
=40 um. From the figure it follows that, at short timest) :
does not increase linearly in time but instead increases sulphere
diffusively with a power lawg(t) ~t* This power law is a
direct consequence of the bending relaxation times ((rl(s,t)—rl(s,O))2>
~1/n*[23] and is well known for actin filaments and micro- "
tubules[29—31). Furthermore, there is a crossover to a pla- _ AkeT S - u2s)| 1—exg — t
teau at longer times where the mean square displacement is oy & Tnia(S) exp -
only very weakly time dependent. The plateau vafy(¢)
=4R? provides a direct measure of the confinement. On thaising Egs.(4.2) and (4.6). The result(4.10 applies to a
time scale of the plateau, the normal modes are alreadgurely transverse scattering geometry witl (r(s,t)
equilibrated. Small deviations between our model calcula—r(s,0))=0. This is what one expects for networks, where
tions and the experimental data are most likely due to supethe longitudinal degree of freedom is suppressed and thus
imposed diffusion of the spherical probes inside the actircannot contribute to incoherent scattering. In a polymer melt,
network[28]. however, the evolution of longitudinal motions is coupled to

The calculation ofg(t) for flexible chain moleculeslf  transverse undulations and causes a reptational motion at
=0.5 nm) exhibits a power law(t)~t'? for short times long times. The incoherent scattering properties of a reptat-
and a long-time plateau. These results are in agreement withg chain molecule were already described qualitatively by
Monte Carlo simulations of flexible chains confined into de Genne$32].
straight tube$10]. Figure 5 representS;,.(q,t) for various scattering vec-

In general, the calculation of dynamical properties, suchors. In the calculations, the contour length and the persis-
as dynamic structure factors and viscoelastic moduli requireence length were fixed tio=100 nm and ;=1 nm, respec-
the knowledge of the time evolution of the position vectortively. The lateral confinement of the chain molecules is
r(s,t). Because we are mainly interested in transverse fluceharacterized by the tube radiBs=1.5 nm. From the figure
tuations, we study only time and length scales dominated bit is apparent that the incoherent dynamic structure factor
transverse motions. In dynamic scattering experiments thexhibits a plateau indicating the tube constraints. This pla-
incoherent dynamic structure factor teau becomes more pronounced with decreasing scattering

, (4.1

n
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vector. At small scattering vectors the dynamics on larger V. SUMMARY
length scales are probed. Thus, by studying the incoherent
dynamic structure factor at different scattering vectors, the
tube radius can be extracted. We have studied equilibrium and dynamical properties of
Using the transformatior4.2) and the correlation func- semiflexible chain molecules in a harmonic confinement po-
tion (4.6), the coherent dynamic structure for a purely trans-tential using an analytical approach. The chain molecules are
verse scattering geometry confined in tubelike cages. The partition function of the
1 ) chain molecules can be calculated exactly. Equilibrium prop-
B , . , erties exhibit qualitative differences between the weak and
S(q’t)_Fjo dsfo ds'{ex —ig-(r.(s,1) =r.(s".0)]) the strong confinement behavior. For strong confinement
(4.12  there are additional oscillatory modulations of the position
vector correlation function. The period of the spatially

can be calculateds(q,t) exhibits a rapid relaxation for short gamped oscillations is found to be the deflection length first
times, which changes into a plateau for longer times. Wenroduced by OdijK7].

have already discussed the initial decay of the coherent dy- The dynamics of the transverse fluctuations is discussed

namic structure factor and found a strong dependence of th'gy means of a Langevin equation which is solved in terms of

quantity on molgcula( stiffned83]. Thg major result of the a normal mode analysis. The confinement force acts to sup-
present calculations is the plateau similar to that found for

i ; o press normal modes with amplitudes larger than the tube
the incoherent dynamic structure factor. A tlme—lndependenradius our calculations of the mean sauare disolacement of
plateau of the coherent dynamic structure is well known ) q P

from the theory of the dynamics of polymer meltee, for the ‘monomers and the incoherent dy_namic strgctl_Jre factor
example[34—36). But the underlying physical mechanisms exhibit a tlme—lndepende.n't plateau. This platequ indicates the
are different. In the local reptation model of de Genf@4 reduced transverse mobility dpe to the ponstralnts. General!y,
the time-independent plateau arises from internal dilatation&® found a crossover from single chain to constraint domi-
and contractions of a flexible chain molecule inside a fixedateéd behavior with increasing time. A comparison of the
tube. Des Cloizeaux formulated a rubberlike model withtheoretical calculations with measurements of the mean
fixed entanglement poin{86]. Two branches of a flexible square displacement of actin filament networks shows good
polymer chain, which are separated by a fixed entangleme@greement.

point, are considered as independent from each other. Coher- The studies presented in the current article indicate that
ent scattering from two branches is therefore assumed to tae semiflexible chain model in a harmonic confinement po-
time independenf36]. But the plateau of the coherent dy- tential captures essential features of chain molecules in con-
namic structure factor observed in our calculations arisefined environments. In further studies it should be interesting
from restricted transverse fluctuations. These transverse flute include more complicated confinement potentials. This
tuations are of particular importance for semiflexible chaincan be achieved by using a variant of the Feynman-type
molecules because internal longitudinal fluctuations are supariational principle[37] for the partition function of the
pressed by the constraint of inextensibility. effective Gaussian chain model presented in this paper.
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