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Avalanche of bifurcations and hysteresis in a model of cellular differentiation
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Cellular differentiation in a developing organism is studied via a discrete bistable reaction-diffusion model.
A system of undifferentiated cells is allowed to receive an inductive signal emanating from its environment.
Depending on the form of the nonlinear reaction kinetics, this signal can trigger a series of bifurcations in the
system. Differentiation starts at the surface where the signal is received and either cells change type up to a
given distance or, under other conditions, the differentiation process propagates throughout the whole domain.
When the signal diminishes, hysteresis is observed.@S1063-651X~99!07110-X#

PACS number~s!: 87.16.Ac, 87.17.Ee, 87.18.Hf
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I. INTRODUCTION

An adult higher organism, such as a human being,
some hundreds of functionally different cell types. The g
netic code stored by the DNA in the cell nucleus is identi
in these cells. This potential information, however, is n
utilized completely by the cells as many genes stay in
dormant, unexpressed, state. The spectrum of genes tha
expressed and functioning varies from cell type to cell ty
One of the most fascinating questions in modern biology
how a certain cell or group of cells finds its place and spe
task ~cell type! in a developing organism@1,2#.

From the point of view of dynamical systems, differe
cell types in the organism can be associated with differ
attractors of the common nonlinear internal dynamics of
cells @3#. The number of possible attractors depends on
complexity of this dynamics and on the number of gen
involved. It is widely believed that morphogenesis is a p
cise, well-controlled series of bifurcations which happens
the proliferating and migrating population of cells, gener
ing an ever-increasing complexity of patterns of differen
ated cell regions@3#.

Disregarding some early asymmetric cleavages, and n
uniform distribution of cytoplasmic factors in the fertilize
egg, cell divisions usually produce equivalent daughter ce
Consequently, cell proliferation leads to an increasing
main of identical cells, where all the system parameters
distributed uniformly. Such a subsystem of identical cells
however, embedded in, and communicates with other, ev
tually already differentiated, groups of cells.

There are essentially two ways that a subsystem of id
tical cells can later differentiate, either as a whole, or
parts:~i! There is a critical number of cells above which t
spatially homogeneous attractor loses stability~Turing insta-
bility !, leading tospontaneousspatial patterning@4#. It is the
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size~the number of cells! of the increasing domain that play
the role of a bifurcation parameter.~ii ! There is an externa
inductive signal @1#, emanating from another group of a
ready differentiated cells, which acts as a bifurcation para
eter, and drives the system into the new, spatially inhomo
neous state. In this latter case, timing of the signal is cruc

Many biological examples could be mentioned for the tw
mechanisms of differentiation. Size-driven instabilities@case
~i!# take place, e.g., in early insect development@1#. A well-
studied case is the syncytial blastoderm stage of the fruit
Drosophila, where a series of patterns of gene express
arise, forming various stripes of high and low concentrat
regions of gene products along the anterior-posterior axi

Inductive differentiation@case~ii !#, on the other hand, is
typical in later stages of development@1#. As examples, we
can mention the mesoderm and notochord induction in v
tebrates@1#, the vulva formation in the soil nematodeCae-
norhabditis elegans@5#, and the development of the retina o
the Drosophilafly @6#, where inductive influence of the en
vironment cells were clearly demonstrated.

Our aim in this paper is to study a simple example
inductive differentiation. Emphasis will be put on the aspe
of cellular discreteness. The fact that interacting cells ar
discrete objects is usually overlooked in modeling biologi
pattern formation processes. However, as will be dem
strated here, spatial discreteness is a source of a varie
phenomena with possible biological significance.

II. MODEL

In the following we consider a semi-infinite one
dimensional chain of cells where the cell distance~lattice
constant! is set to unity. We suppose that each cell in th
system is characterized by the concentration of a sin
chemical ~the morphogen! whose value~low or high! in-
forms us about the actual state~type! of the cell. The mor-
phogen concentration in celln at time t will be denoted by
un(t). In an obviously highly oversimplified setup the com
plicated cell biochemistry is reduced to an effective nonl

cs,
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ear autocatalytic reaction involving the morphogen. We a
assume that the morphogen is diffusive and that the dif
entiation process can be described on a reaction-diffu
basis. Since the cells are discrete objects their diffusive c
pling is modeled by adiscreteLaplacian, and as it will be
demonstrated, this has far-reaching consequences. The a
sis in the following can be readily generalized to two-
three-dimensional domains with a straight surface if fluct
tions in u(n,t) parallel with the surface can be neglected

Inside the bulk of the system 2<n,`, our reaction-
diffusion equation for the concentration distributionun(t)
takes the form

]un

]t
5F~un!1D~un111un2122un!, ~1!

whereD is the diffusion constant, andF(u) is a nonlinear
reaction kinetics function characterizing the cells in the bu
We assume that the cell system is not coupled diffusively
its environment, but by receptor molecules in the cell me
brane, it is capable of receiving an external inductive sign
Since real biological signal transduction mechanisms
complicated cascades of different enzyme reactions, with
worrying about the details here, we only assume that du
the signal the reaction kinetics function in the cells chan
We consider the case when the penetration depth of the
naling molecules is so short that the signal is received alm
exclusively by the very first cell along the line, and, for sim
plicity, the signal is thought to effect the morphogen produ
tion linearly. ~Note that we make a clear distinction betwe
the signaling molecules and the morphogen. The latter
freely diffuse in the system, while the former cannot.! With
this proviso, we write the reaction-diffusion equation for t
first cell in the form

]u1

]t
5S1F~u1!1D~u22u1!. ~2!

Out of the various theoretical possibilities, in the follow
ing we analyze the case when the kineticsF(u) is bistable
and piecewise linear:

F~u!5H 2bu if u,a

2b~u21! if u>a,
~3!

with b.0 and 0,a,1. S>0 represents the signal. This
a caricature of the widely used Nagumo reaction kine
function

F~u!5bu~12u!~u2a!. ~4!

In the sequelb will be set b51, which can always be
achieved by rescaling appropriatelyt, D, andS.

In both cases ofF(u) the reaction kinetics of the cell i
bistablein the absence of the external signal. When the s
nal is present, it promotes the production of the morpho
in cell 1. Even though the continuous form Eq.~4! is more
realistic, we study in detail the piecewise linear caricat
since it is analytically more tractable. Numerical simulatio
carried out using the Nagumo form Eq.~4! show that the
o
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qualitative behavior of the two models are essentially
same. Some minor differences will be pointed out in t
sequel.

In order to be able to assess the role of discreteness in
model we will also consider its usual continuous space a
log, i.e., when the discrete Laplacian is replaced by the s
ond derivative

n→x
]u

]t
5D

]2u

]x2
1F~u!, x>0. ~5!

Coupling to the environment via theS term in Eq.~2! trans-
lates into a Neumann boundary condition at the surface
the system]u(x,t)/]xux50;S.

The discrete and continuum models become equiva
only in the largeD limit. This can be easily shown by di
mensional analysis. The only parameter whose dimens
contains the spatial length isD, @D#5@m2/s#. As @b#
5@1/s# any solutionu(x,t) of the continuum model mus
contain x and D in the combinationx/AD/b. When D is
largeu(x,t) varies slowly in space so the second derivat
can be discretized on the lattice without committing mu
error. Note that the discrete version contains an additio
length scale: it is the lattice constant which was chosen to
unity. The solution of the discrete model is expected to
viate considerably from that of the continuous model wh
the diffusion length becomes comparable to the lattice c
stant, i.e.,AD/b;1.

The set of equations defined above by Eqs.~1! and ~2!
contains the basic elements to model cellular differentiat
in response to an external signal: Before switching on
inductive signal, our system is uniform~undifferentiated!.
The morphogen concentration in every cell isun50, which
is clearly a stable steady state. We can say that all the c
have type 0. When the external signal begins to increase~that
we suppose to happen adiabatically slowly!, the first cell at
the end of the chain goes through a bifurcation, and switc
from the branchu,a ~type 0! to the branchu.a ~type 1!. It
becomes differentiated. As the signal strength increases
ther, more and more cells flip into type 1. This avalanche
bifurcations may become self-sustaining, and the differen
tion may sweep through the system in the form of a travel
wave. Under different conditions, the position of the doma
wall separating type-0 and type-1 cells stays a well-defin
function of the signal strengthS. Then a natural question i
what happens whenS ~adiabatically! returns to its original
zero value.~According to biological observations, inductiv
signals are only present in a certain time interval of the p
cess of development.! As we will see soon, eventually th
already differentiated cells do not revert type 0, but maint
their type-1 state even in the absence of the external sig
The system shows hysteresis.

III. PROPAGATION FAILURE

We begin our analysis with the classification of the po
sible bulk ~i.e., far from the surface! behaviors. We analyze
under what conditions can a two-domain steady state s
tion exist, whenun is a monotonic decaying function of th
cell position n and u2`51, u`50. We suppose that the
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domain wall~kink! is located between sitesM21 andM, so
that

un
M>a if n<M21,

~6!
un

M,a if n>M ,

where we introduced the superscriptM to explicitly denote
the position of the kink. A concentration distributionun(t)
satisfying Eq.~6! will be called a kinkM.

It is known @7# that in the continuum version of the mod
in Eq. ~5! for an infinite system (S50), a steady statekink
can only exist in the special case whena51/2. If a.1/2, a
kink-type initial profile develops instead into a travelin
wave in which the domain wall travels with a constant spe
c leftward. On the other hand, ifa,1/2, the domain wall
travels rightward.

In the lattice version of Eq.~1!, however, steady stat
domain wall solutions persist in a wide range values ofa.
When aP@u2 ,u1#, with u65u6(D), the domain wall is
pinnedand its propagation is impeded. This so calledpropa-
gation failure@8–10# is due to spatial discreteness. Traveli
wave behavior exits only whena,u2 or a.u1 .

In the case of the piecewise linear functionF(u) in Eq.
~3! the calculation ofu2 and u1 is straightforward@9#. A
candidate kink-M steady state solution of Eq.~1! with
]un /]t50 can be looked for in the form

un
M5H 11Aenk if n<M

Be2nk if n.M .
~7!

Substituting this ansatz into Eq.~1!, the inverse diffusion
lengthk and the two constantsA andB turn out to be

k52 sinh21A1/4D ~8!

and

A52
1

ek11
e2Mk, B5

ek

ek11
eMk. ~9!

Note, however, that when the Ansatz in Eq.~7! is used, one
tacitly assumes that all cells on the left~right! of the kink are
on theu.a (u,a) branch of the piecewise linear functio
F(u). Having found the solution in Eqs.~8! and ~9!, this
assumption must be checked for consistency: The conce
tion values obtained for the left (L5M21) and right (R
5M ) neighboring cells of the kink are

uL
M5

1

2
1

1

2
tanh

k

2
5

1

2
1

1

2
~114D !21/2,

~10!

uR
M5

1

2
2

1

2
tanh

k

2
5

1

2
2

1

2
~114D !21/2,

thus the above calculation is only consistent if we find th

uL
M.a and uR

M<a. ~11!

This allows us to identify the pinning region boundaries fo
given D as
d

ra-

u65
1

2
6

1

2
~114D !21/2. ~12!

The values ofu1 andu2 are plotted in Fig. 1 as a function
of the diffusion constantD. Clearly, the obtained kink-M
steady state solution is only valid in the shaded region of
diagram. On the other hand, when (D,a) is outside the
shaded domain, the solution in Eqs.~7!–~9! is only a spuri-
ous solution. In this region of (D,a) there are no steady stat
solutions; all initial conditions develop into traveling wave

Even though the effect of lattice pinning is alike for th
case of the Nagumo-type~continuous! reaction function, ex-
act calculation of the pinning boundaries is not feasible.
perturbative approach in the smalla limit was carried out in
Ref. @10#. There is also an important difference between
piece-wise linear and the Nagumo cases in how the wa
front speedc scales as, for a givena, the diffusion constant
approaches its critical valueDc5Dc(a) where the traveling
wave gets pinned. Simple bifurcation theory analysis@10#
shows that in the continuousF(u) casec scales following a
power law with an exponent 1/2, i.e.,

c;~D2Dc!
1/2 ~13!

while for the piecewise linear kinetics the singularity is log
rithmic

c;21/ln~D2Dc!. ~14!

The latter form arises essentially from the nonanalicity~jump
discontinuity! of the F(u) function in Eq.~3!, and has been
analyzed in detail in Ref.@9#.

IV. INDUCTION WITH HYSTERESIS

Let us now investigate the inductive situation. As the s
nal S increases the distribution of concentration valuesun(t)
in the system becomes monotonically decreasing as a f
tion of n. Even when the system is not in an equilibrium sta
we can define anM value characterizing the actual positio

FIG. 1. Phase diagram on thea vs D plane for an infinite chain.
Pinned steady state solutions exist in the shaded region, while
eling waves exist in the unshaded ones. The pinning transition ta
place along thea5a1(D) and thea5a2(D) curves, and can be
initiated either by changingD for a fixed, or by varyinga with D
fixed ~see arrows!. All quantities are dimensionless.
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PRE 60 4607AVALANCHE OF BIFURCATIONS AND HYSTERESIS IN . . .
of the domain wall separating type-1 and type-0 cells us
Eq. ~6!. When seeking asteady statekink at siteM, we solve
the semi-infinite set of equations defined by Eqs.~1! and~2!
with ]un(t)/]t50. Again, the analytic solution is possib
for the piecewise linearized kineticsF(u). Working with the
ansatz

un5H 11Aenk1Be2nk if n<M

Ce2nk if n>M11,
~15!

the unknown coefficients turn out to be

A52
1

ek11
e2Mk, ~16!

B5~ek21!S2
ek

ek11
e2Mk, ~17!

C5~ek21!S1
ek

ek11
~eMk2e2Mk! ~18!

with k again given by Eq.~8!. Unlike in the translationally
invariant~infinite chain! case in Eq.~10!, the concentrations
at the kink,uL

M and uR
M , are now explicit functions of the

kink positionM and the signal strengthS

uL
M~S!5~ek21!e2MkS1

ek

ek11
~12e22Mk!,

~19!
uR

M~S!5e2kuL
M .

In the limit M→` we get back the bulk results of Eq.~10!.
As it was done for the infinite system, the consistency

the solution must be checked. When the consistency co
tion of Eq.~11! fails no steady state solution with the kink
site M exists. As a consequence, the process of differen
tion cannot stop at siteM, and the domain wall moves on.

Since the explicit expression foruL
M(S) and uR

M(S) is
available in Eq.~19!, for any values ofD, a, and S ~recall
that we setb51) we can readily construct the set of possib
M values$M% for which the consistency condition in Eq.~11!
holds, and the kink-M steady state exists. Although in theo
every element of this set$M% could be realized as a stead
state, it is the previous history of the system~the initial con-
ditions! and the dynamics of the reaction-diffusion proce
which determines which steady state~if any! gets finally re-
alized. This is in contrast with the continuum space mo
description where the position of a steady-state kink is
ways uniquely determined by the actual model paramete

The set of possible steady states on thea vs S plane for
the caseb51,D52 fixed is depicted in Fig. 2. The differen
domains are separated by straight lines which are artif
stemming from the simple form ofF(u) in Eq. ~3!. Never-
theless, a qualitatively similar diagram can be obtained us
the continuous Nagumo form. There are three main possi
ties for a givena and S: ~i! The number of steady states
finite, ~ii ! any M above a certain value yields a valid stea
state~this is indicated by a ‘‘1’’ !, ~iii ! there are no stead
state kinks at all.
g
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In the piecewise linear model under investigation the k
steady states, if they exist, are always stable against pe
bations@9#. Thus if at a given timet the actual kink position
is not an element of the set of steady states$M %, differentia-
tion or dedifferentiation continues until the domain wa
reaches the firstM value that is already in$M %. Having
reached the domain of attraction of a stable steady state
kink stabilizes at that point and the process halts until, ev
tually, a further change inS destabilizes the system again.

Let us consider now an adiabatically slow process
which the inductive signal increases from zero toSmax and
then decreases back to zero again. Using the above rule
can easily construct the phase diagram shown in Fig. 3

FIG. 2. Steady state kink solutions on thea vs S plane withD
52. The set$M1M2•••% denotes the possible positions of the kin
in the given region. A ‘‘1’’ represents that allM values are pos-
sible above the preceding value. In the shaded regimes many s
phases appear. All quantities are dimensionless.

FIG. 3. Phase diagram for the signaling schemeS: 0→Smax

→0 on thea vs Smax plane withD52. The symbol@M1M2 . . . #
denotes the order of kink positions as they get realized. In
shaded regime many small phases appear. All quantities are dim
sionless.
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such a process. Domains are labeled by theM values of the
kinks as they get realized in order. For example, the sm
domain@01230# has a history in whichM increases continu
ously from 0 to 3, then as the signal diminishes it jum
abruptly back to 0. Once again there are three main regi
separated by thick lines, in this phase diagram, listed as
lows.

~i! In the upper part of the phase diagram the syst
gradually differentiates and then completely dedifferentia
as the signal varies. The dedifferentiation process can
continuous or may contain sudden jumps when the valuea
is closer tou1 . Note that this region corresponds more
less to the values ofa where in the infinite model kinks
develop into traveling waves moving leftward, i.e., towar
the surface of our semi-infinite system. Due to this bia
continuous presence of the signal is needed to maintain
ferentiated type-1 cells in the system.

~ii ! In the middle part of the phase diagram, correspo
ing approximatively to the pinning region of Fig. 1, the ce
remain differentiated even whenS falls back to zero. Note
that whena is close tou2 the domain wall can make a hug
jump at the beginning asS reaches a certain value. In th
situation the maximum value of the signalSmax is important,
since this is the factor that determines the range of the i
versible differentiated domain.

~iii ! Finally, for small values ofa, the differentiation pro-
cess becomes self-sustaining when a critical value of the
nal is exceeded. This mimics the infinite chain behavior w
a traveling wave moving rightwards. The signal only trigge
the differentiation process but after that it plays no furth
role. Typical examples of the three kinds of behavior a
depicted in Figs. 4~a!–4~c!.

The structure of the phase diagram in Fig. 3 is rat
involved, demonstrating that even a simple model like t
can show an amazing complexity. When the more reali
Nagumo-type reaction function is considered the exact s
ability of the problem is lost. Nevertheless, numerical sim
lations we carried out demonstrated that the main con
sions about the qualitative behavior of the three pha
remain unchanged.

V. SUMMARY AND DISCUSSION

In this paper we analyzed a semi-infinite one-dimensio
one-chemical reaction-diffusion system. The reaction kin

FIG. 4. Schematic hysteresis diagrams for the signaling sch
S: 0→Smax→0 showing the actual domain wall positionM as a
function of the signal strengthS. ~a! All cells dedifferentiate,~b!
some cells remain differentiated,~c! all cells become differentiated
as a traveling wave emerges. All quantities are dimensionless.
ll
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ics was assumed to be bistable, giving rise to two differ
types of cells: type-0~low chemical concentration type! and
type-1 ~high chemical concentration type!. Starting from a
homogeneous situation~all cells are type 0! the system un-
dergoes a differentiation process in response to an exte
inductive signal. The signal was introduced as a bound
condition in the continuum version and as an extra term
the internal cell kinetics of the first cell in the discrete spa
version of the model.

Depending on the model parameters the differentiat
process sweeps through the whole system, or flips a lim
number of cells to type 1 up to a given position. We fou
that the behavior of the system differs considerably in
continuum and in the discrete space versions. In the for
the position of the domain wall between the two cell types
either a well-defined function of the external signal streng
or the front of differentiation inevitably develops into a tra
eling wave. In the discrete case the fate of the system
pends on its previous history, giving rise to hysteresis.

We analyzed in detail the situation when the react
function is piecewise linear. The model was solved anal
cally, and we constructed a detailed phase diagram base
the different types of behavior as a function of the mod
parameters. We found three major scenarios for the sys
~i! In response to the inductive signal the solution develo
into a traveling wave that differentiates the whole~semi-
infinite! domain,~ii ! the signal causes some spatially limite
differentiation but when it diminishes all cells dedifferen
ate,~iii ! differentiated cells get stabilized and the inhomog
neous solution persists even when the signal disappears

Although the analysis was carried out with a somew
special reaction function, numerical simulations we ha
done support our expectation that the observed behavio
widely universal in discrete space models, and the qualita
categories found remain valid in similar models with mo
realistic reaction functions. There are, of course, minor qu
titative differences such as the type of scaling near the bi
cation points, or the actual domain wall location for a giv
signaling scheme.

We have found that, in general, adding spatial discre
ness to reaction diffusion models has a tendency to impr
domain wall stability between different cells, and to ma
the emerging pattern less susceptible to fluctuations of
signaling mechanisms. Since robustness and stability of
velopmental processes and that of the adult organism
necessity for the survival of biological species, we may wo
der that the invention of cellular membranes by evolutio
which made the fundamental building blocks discrete, wa
least in part motivated by such a developmental benefit.

Finally we would like to mention an actual biological ob
servation which seems to be explainable on the basis of
above model. During the retina differentiation of Drosoph
it has been observed that ommatidia~the basic functional
units of the retina consisting of photoreceptor and other ty
of cells! develop behind a slowly moving wave front, th
‘‘morphogenetic furrow’’@6#. There are many genes that a
only expressed behind the furrow, and thus one~or more! of
them is believed to play the role of a morphogen. It was a
noticed@11# that a slight shift in the environmental temper
ture is enough to make the wave front stop. Until the te
perature is raised back to normal again the process of dif

e
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entiation does not continue. This slight artifici
manipulation, although capable of impeding the propaga
of the front for hours or days, is believed to have no resid
effects on further retina development.

Knowing that the wave front is propagating extreme
slowly @12#, c'10210 m s, we can speculate that the dev
oping retina is tuned very close to a pinning region bou
ary. A change in the tissue temperature necessarily alters
actual model parameters. Although it would be very diffic
to estimate on a phenomenological basis how the comp
non-linear set of biochemical reactions get modified by
temperature decrease, we can at least assume that the o
d
,

n
l

-
-
he
t
x,
a
rall

diffusivity of the chemicals get reduced. This can drive t
system into the pinning region as is illustrated in Fig.
eventually causing a propagation failure. In this unfavora
temperature regime the domain wall between undiffere
ated and already differentiated cells, represented by the m
phogenetic furrow, becomes a stable steady state, and
differentiation process temporarily halts.
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