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Avalanche of bifurcations and hysteresis in a model of cellular differentiation
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Cellular differentiation in a developing organism is studied via a discrete bistable reaction-diffusion model.
A system of undifferentiated cells is allowed to receive an inductive signal emanating from its environment.
Depending on the form of the nonlinear reaction kinetics, this signal can trigger a series of bifurcations in the
system. Differentiation starts at the surface where the signal is received and either cells change type up to a
given distance or, under other conditions, the differentiation process propagates throughout the whole domain.
When the signal diminishes, hysteresis is obser{/®#063-651X99)07110-X]

PACS numbes): 87.16.Ac, 87.17.Ee, 87.18.Hf

[. INTRODUCTION size(the number of cellsof the increasing domain that plays
the role of a bifurcation parametsii) There is an external

An adult higher organism, such as a human being, haiductive signal [1], emanating from another group of al-
some hundreds of functionally different cell types. The ge-eady differentiated cells, which acts as a bifurcation param-
netic code stored by the DNA in the cell nucleus is identical€ter, and drives the system into the new, spatially inhomoge-
in these cells. This potentia| information, however, is notN€ous state. In this latter case, tlmlng of the Signal is crucial.
utilized Comp|ete|y by the cells as many genes Stay in a Many biOlOgicaI examples could be mentioned for the two
dormant, unexpressed, state. The Spectrum of genes that df@chanisms of differentiation. Size-driven instabiliﬁease
expressed and functioning varies from cell type to cell type (i)] take place, e.g., in early insect developmigrjt A well-
One of the most fascinating questions in modern biology isstudied case is the syncytial blastoderm stage of the fruit fly
how a certain cell or group of cells finds its place and speciaProsophila where a series of patterns of gene expression
task (cell type in a developing organisii,2]. arise, forming various stripes of high and low concentration

From the point of view of dynamical systems, different regions of gene products along the anterior-posterior axis.
cell types in the organism can be associated with different Inductive differentiatior{case(ii)], on the other hand, is
attractors of the common nonlinear internal dynamics of thdypical in later stages of developmei]. As examples, we
cells[3]. The number of possible attractors depends on th€an mention the mesoderm and notochord induction in ver-
complexity of this dynamics and on the number of genedebrated1], the vulva formation in the soil nematodzae-
involved. It is widely believed that morphogenesis is a pre-norhabditis elegang5], and the development of the retina of
cise, well-controlled series of bifurcations which happens inthe Drosophilafly [6], where inductive influence of the en-
the proliferating and migrating population of cells, generat-vironment cells were clearly demonstrated.
ing an ever-increasing complexity of patterns of differenti- Our aim in this paper is to study a simple example of
ated cell region$3]. inductive differentiation. Emphasis will be put on the aspects

Disregarding some ear|y asymmetric C|eavages' and norp.f cellular discretenessThe fact that interaCting cells are
uniform distribution of cytoplasmic factors in the fertilized discrete objects is usually overlooked in modeling biological
egg, cell divisions usually produce equivalent daughter cellsPattern formation processes. However, as will be demon-
Consequently, cell proliferation leads to an increasing dostrated here, spatial discreteness is a source of a variety of
main of identical cells, where all the system parameters arehenomena with possible biological significance.
distributed uniformly. Such a subsystem of identical cells is,
however, embedded in, and communicates with other, even- Il. MODEL
tually already differentiated, groups of cells. '

There are essentially two ways that a subsystem of iden- In the following we consider a semi-infinite one-
tical cells can later differentiate, either as a whole, or indimensional chain of cells where the cell distar(tattice
parts:(i) There is a critical number of cells above which the constank is set to unity. We suppose that each cell in this
spatially homogeneous attractor loses stabilityring insta-  system is characterized by the concentration of a single
bility), leading tospontaneouspatial patterningi4]. Itis the  chemical (the morphogenwhose value(low or high) in-

forms us about the actual stafiype) of the cell. The mor-

phogen concentration in catfl at timet will be denoted by
*Permanent address: Research Institute for Solid State Physicd,(t). In an obviously highly oversimplified setup the com-
P.O. Box 49, H-1525 Budapest, Hungary. plicated cell biochemistry is reduced to an effective nonlin-
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ear autocatalytic reaction involving the morphogen. We als@ualitative behavior of the two models are essentially the
assume that the morphogen is diffusive and that the differsame. Some minor differences will be pointed out in the
entiation process can be described on a reaction-diffusiosequel.
basis. Since the cells are discrete objects their diffusive cou- In order to be able to assess the role of discreteness in the
pling is modeled by aliscreteLaplacian, and as it will be model we will also consider its usual continuous space ana-
demonstrated, this has far-reaching consequences. The analgg, i.e., when the discrete Laplacian is replaced by the sec-
sis in the following can be readily generalized to two- orond derivative
three-dimensional domains with a straight surface if fluctua-
tions inu(n,t) parallel with the surface can be neglected. au 52
Inside the bulk of the system=2n<{e, our reaction- n—x —=D—+F(u), x=0. (5)
diffusion equation for the concentration distributior(t) Jat X’
takes the form
Coupling to the environment via tHeterm in Eq.(2) trans-
up, lates into a Neumann boundary condition at the surface of
Zt ~ FUn)+D(UnyatUp—1—2up), (D the systemiu(x,t)/dx|,_o~S.
The discrete and continuum models become equivalent
whereD is the diffusion constant, anB(u) is a nonlinear ©Nly in the largeD limit. This can be easily shown by di-
reaction kinetics function characterizing the cells in the bulk Mensional analysis. The only parameter 2vvhose dimension
We assume that the cell system is not coupled diffusively t¢ontains the spatial length i®, [D]=[m"s]. As [B]
its environment, but by receptor molecules in the cell mem-=[1/s] any solutionu(x,t) of the continuum model must
brane, it is capable of receiving an external inductive signalcontainx and D in the combinationx/yD/B. WhenD is
Since real biological signal transduction mechanisms aréargeu(x,t) varies slowly in space so the second derivative
complicated cascades of different enzyme reactions, withoftan be discretized on the lattice without committing much
Worrying about the details here, we on|y assume that due t8rror. Note that the discrete version contains an additional
the signal the reaction kinetics function in the cells changelength scale: it is the lattice constant which was chosen to be
We consider the case when the penetration depth of the signity. The solution of the discrete model is expected to de-
naling molecules is so short that the signal is received almostiate considerably from that of the continuous model when
exclusively by the very first cell along the line, and, for sim- the diffusion length becomes comparable to the lattice con-
plicity, the signal is thought to effect the morphogen produc-stant, i.e.yD/S~1.
tion linearly. (Note that we make a clear distinction between The set of equations defined above by E@s.and (2)
the signaling molecules and the morphogen. The latter cagontains the basic elements to model cellular differentiation
freely diffuse in the system, while the former canpilith ~ in response to an external signal: Before switching on the

this proviso, we write the reaction-diffusion equation for theinductive signal, our system is uniforfundifferentiategl
first cell in the form The morphogen concentration in every cellis=0, which

is clearly a stable steady state. We can say that all the cells
U have type 0. When the external signal begins to incré&hse
—i ~ StF(u)+D(uz—uy). (20 we suppose to happen adiabatically slowlje first cell at
the end of the chain goes through a bifurcation, and switches
from the branclu<a (type 0 to the branchu>a (type 1. It
becomes differentiated. As the signal strength increases fur-
ther, more and more cells flip into type 1. This avalanche of
bifurcations may become self-sustaining, and the differentia-
~Bu if u<a tion may sweep through thg §ystem in thg form of atravelir]g
F(u)= _ (3  Wwave. Under different conditions, the position of the domain
—p(u=1) if u=a, wall separating type-0 and type-1 cells stays a well-defined
function of the signal strengt8. Then a natural question is
with >0 and O0<a<1l. S=0 represents the signal. This is what happens whef (adiabatically returns to its original
a caricature of the widely used Nagumo reaction kineticzero value(According to biological observations, inductive
function signals are only present in a certain time interval of the pro-
cess of developmentAs we will see soon, eventually the
F(u)=Bu(l—u)(u—a). (4)  already differentiated cells do not revert type 0, but maintain
their type-1 state even in the absence of the external signal.
In the sequelB will be set =1, which can always be The system shows hysteresis.
achieved by rescaling appropriatelyD, andS.
. In bo.th cases of(u) the reaction kingtics of the cell is_ Ill. PROPAGATION FAILURE
bistablein the absence of the external signal. When the sig-
nal is present, it promotes the production of the morphogen We begin our analysis with the classification of the pos-
in cell 1. Even though the continuous form Hg) is more  sible bulk (i.e., far from the surfagebehaviors. We analyze
realistic, we study in detail the piecewise linear caricaturaunder what conditions can a two-domain steady state solu-
since it is analytically more tractable. Numerical simulationstion exist, whenu,, is a monotonic decaying function of the
carried out using the Nagumo form E@) show that the cell positionn andu_,.=1, u,=0. We suppose that the

Out of the various theoretical possibilities, in the follow-
ing we analyze the case when the kinetitf@) is bistable
and piecewise linear:
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domain wall(kink) is located between sitéd —1 andM, so
that

ul=a if nsM-1,

(6)

uM<a if n=M,

where we introduced the superscritto explicitly denote
the position of the kink. A concentration distributian(t)
satisfying Eq.(6) will be called a kinkM.

It is known[7] that in the continuum version of the model
in Eq. (5) for an infinite system $=0), asteady statéink
can only exist in the special case whes 1/2. If a>1/2, a
kink-type initial profile develops instead into a traveling

wave in which the domain wall travels with a constant speed

c leftward. On the other hand, #<1/2, the domain wall
travels rightward.

In the lattice version of Eq(1), however, steady state
domain wall solutions persist in a wide range valuesaof
Whenae[u_,u,], with u.=u.(D), the domain wall is
pinnedand its propagation is impeded. This so caledpa-
gation failure[8—10] is due to spatial discreteness. Traveling
wave behavior exits only whea<u_ or a>u, .

In the case of the piecewise linear functiBiu) in Eq.
(3) the calculation ofu_ andu, is straightforward9]. A
candidate kinkM steady state solution of Eq.l) with
du,/dt=0 can be looked for in the form

1+Ae™
Be—nK

if n<M

if n>M.

uy

(@)

Substituting this ansatz into Eql), the inverse diffusion
length k and the two constants and B turn out to be

k=2 sinh 1\/1/4D (8)
and
1 er
A=— e M« = eMx, 9)
e“+1 e“+1

Note, however, that when the Ansatz in K@) is used, one
tacitly assumes that all cells on the léfight) of the kink are
on theu>a (u<a) branch of the piecewise linear function
F(u). Having found the solution in Eqg8) and (9), this

GABOR FATH AND ZBIGNIEW DOMAN SKI

PRE 60

1.0

traveling waves with c<0

T
region
s

a_(D)

traveling waves with c>0

0.0 T T T
8 12
D

FIG. 1. Phase diagram on tlaevs D plane for an infinite chain.
Pinned steady state solutions exist in the shaded region, while trav-
eling waves exist in the unshaded ones. The pinning transition takes
place along thea=a, (D) and thea=a_(D) curves, and can be
initiated either by changin® for a fixed, or by varyinga with D
fixed (see arrows All quantities are dimensionless.

1.1 —-1/2
Ui=§i§(1+4D) . (12

The values ofu, andu_ are plotted in Fig. 1 as a function
of the diffusion constanD. Clearly, the obtained kinkA
steady state solution is only valid in the shaded region of the
diagram. On the other hand, wheiD,@) is outside the
shaded domain, the solution in Eq3)—(9) is only a spuri-
ous solution. In this region oftf,a) there are no steady state
solutions; all initial conditions develop into traveling waves.

Even though the effect of lattice pinning is alike for the
case of the Nagumo-typEeontinuou$ reaction function, ex-
act calculation of the pinning boundaries is not feasible. A
perturbative approach in the smallimit was carried out in
Ref.[10]. There is also an important difference between the
piece-wise linear and the Nagumo cases in how the wave-
front speedc scales as, for a givea, the diffusion constant
approaches its critical value.=D(a) where the traveling
wave gets pinned. Simple bifurcation theory analy4i6]
shows that in the continuous(u) casec scales following a
power law with an exponent 1/2, i.e.,

c~(D-Do)*? (13

assumption must be checked for consistency: The concentra-

tion values obtained for the left&=M—1) and right R
=M) neighboring cells of the kink are

uM=1+3tanh;—=1+3(1+4D)—1’2
L7273 212 !

(10)
=2l K=£—£(1+4D)’1’2
R=3 3G =573 !

thus the above calculation is only consistent if we find that

u'>a and u¥=<a. (12)

while for the piecewise linear kinetics the singularity is loga-
rithmic

c~—1/In(D—-D,). (14

The latter form arises essentially from the nonanaliitynp
discontinuity of the F(u) function in Eqg.(3), and has been
analyzed in detail in Ref9].

IV. INDUCTION WITH HYSTERESIS

Let us now investigate the inductive situation. As the sig-
nal Sincreases the distribution of concentration valug&)
in the system becomes monotonically decreasing as a func-

This allows us to identify the pinning region boundaries for ation of n. Even when the system is not in an equilibrium state

givenD as

we can define aM value characterizing the actual position
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of the domain wall separating type-1 and type-0 cells using 1

Eq. (6). When seeking ateady stat&ink at siteM, we solve
the semi-infinite set of equations defined by E{s.and(2)
with du,(t)/dt=0. Again, the analytic solution is possible
for the piecewise linearized kineti€q u). Working with the
ansatz

1+Ae™+Be ™ if n<M
= . 15
U= e if n=M+1, A9
the unknown coefficients turn out to be
1
A=— e M« (16)
e“+1
B=(e"-1)S— e M« (17)
e“+1
eK
C=(e"-1)S+ (eMr—g=Mx) (18
e“+1

with « again given by Eq(8). Unlike in the translationally
invariant(infinite chain case in Eq(10), the concentrations
at the kink,u and ul , are now explicit functions of the
kink positionM and the signal strengtf

K

ul(S)=(e—1)e M~s+ (1—e 2Mx),

e“+1
(19
up(S)=e *uM.

In the limit M — o we get back the bulk results of E(LO).
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FIG. 2. Steady state kink solutions on the/s S plane withD
=2.The se{MM,- - -} denotes the possible positions of the kinks
in the given region. A ‘“+” represents that alM values are pos-
sible above the preceding value. In the shaded regimes many small
phases appear. All quantities are dimensionless.

In the piecewise linear model under investigation the kink
steady states, if they exist, are always stable against pertur-
bations[9]. Thus if at a given time the actual kink position
is not an element of the set of steady stdfdg, differentia-
tion or dedifferentiation continues until the domain wall
reaches the firsM value that is already i{M}. Having
reached the domain of attraction of a stable steady state the
kink stabilizes at that point and the process halts until, even-
tually, a further change i destabilizes the system again.

Let us consider now an adiabatically slow process in

As it was done for the infinite system, the consistency ofwhich the inductive signal increases from zeroSg,, and
the solution must be checked. When the consistency condihen decreases back to zero again. Using the above rule we
tion of Eq.(11) fails no steady state solution with the kink at can easily construct the phase diagram shown in Fig. 3 for
site M exists. As a consequence, the process of differentia-

tion cannot stop at sitd, and the domain wall moves on.
Since the explicit expression far(S) and uM(S) is
available in Eq.(19), for any values oD, a, and S (recall

1

[01210]

[010]
[0123210]

that we sej3= 1) we can readily construct the set of possible
M values{M} for which the consistency condition in E{.1)
holds, and the kinkv steady state exists. Although in theory
every element of this sgM} could be realized as a steady
state, it is the previous history of the systétine initial con-
ditions) and the dynamics of the reaction-diffusion process
which determines which steady stdifany) gets finally re-
alized. This is in contrast with the continuum space model u.
description where the position of a steady-state kink is al-
ways uniquely determined by the actual model parameters.

The set of possible steady states on déhes S plane for
the casgB3=1,D=2 fixed is depicted in Fig. 2. The different

u,

a

0]

[0120]

[012320]
[07230]

~

[012] [0123]

[01234]

03] /02"023] [0234]

[02345

[034]
[traveling wave]

domains are separated by straight lines which are artifactc 0
stemming from the simple form df(u) in Eq. (3). Never-

theless, a qualitatively similar diagram can be obtained using
the continuous Nagumo form. There are three main possibili-

Smax

FIG. 3. Phase diagram for the signaling schege0— S,

ties for a givena and S (i) The number of steady states is —.0 on thea vs S, plane withD=2. The symbo[M;M, . .. ]
finite, (i) any M above a certain value yields a valid steady denotes the order of kink positions as they get realized. In the

state(this is indicated by a %), (iii) there are no steady
state kinks at all.

shaded regime many small phases appear. All quantities are dimen-
sionless.
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@ ®) © ics was assumed to be bistable, giving rise to two different
types of cells: type-Qlow chemical concentration typend
type-1 (high chemical concentration typeStarting from a
homogeneous situatiofall cells are type Dthe system un-
dergoes a differentiation process in response to an external
inductive signal. The signal was introduced as a boundary
condition in the continuum version and as an extra term in
the internal cell kinetics of the first cell in the discrete space
version of the model.
Depending on the model parameters the differentiation
Smax s Smax S process sweeps through the whole system, or flips a limited
number of cells to type 1 up to a given position. We found
FIG. 4. Schematic hysteresis diagrams for the signaling schemghat the behavior of the system differs considerably in the
S: 0—Snax—0 showing the actual domain wall positid as a  continuum and in the discrete space versions. In the former
function of the signal strengtB. (a) All cells dedifferentiate,(b) the position of the domain wall between the two cell types is
some cells remain differentiated) all cells become differentiated  gjther a well-defined function of the external signal strength,
as a traveling wave emerges. All quantities are dimensionless.  q the front of differentiation inevitably develops into a trav-

such a process. Domains are labeled byNhealues of the ~€ling wave. In the discrete case the fate of the system de-
kinks as they get realized in order. For example, the smalP€nds on its previous history, giving rise to hysteresis.
domain[01230 has a history in whictM increases continu- ~ We analyzed in detail the situation when the reaction
ously from 0 to 3, then as the signal diminishes it jumpsfunction is piecewise linear. The model was solved analyti-
abruptly back to 0. Once again there are three main regiongally, and we constructed a detailed phase diagram based on
separated by thick lines, in this phase diagram, listed as fotthe different types of behavior as a function of the model
lows. parameters. We found three major scenarios for the system:
(i) In the upper part of the phase diagram the systenti) In response to the inductive signal the solution develops
gradually differentiates and then completely dedifferentiatesnto a traveling wave that differentiates the whdkemi-
as the signal varies. The dedifferentiation process can bigfinite) domain,(ii) the signal causes some spatially limited
continuous or may contain sudden jumps when the valée of differentiation but when it diminishes all cells dedifferenti-
is closer tou, . Note that this region corresponds more or ate, (i) differentiated cells get stabilized and the inhomoge-
less to the values o& where in the infinite model kinks neous solution persists even when the signal disappears.
develop into traveling waves moving leftward, i.e., towards  Although the analysis was carried out with a somewhat
the surface of our semi-infinite system. Due to this bias &pecial reaction function, numerical simulations we have
continuous presence of the signal is needed to maintain difyyne support our expectation that the observed behavior is

fere__nti?tet(;l] type_zéélcells in ]Eht‘; sysr;(em. g JWidely universal in discrete space models, and the qualitative
(i) In the middle part of the phase diagram, correspon categories found remain valid in similar models with more

ng apprdq;(flmatlz{eiyéo the p'nrr:g% rﬁglgn ?(f::'g' 1, thﬁl cteIIs realistic reaction functions. There are, of course, minor quan-
remain ditierentiated even w alls back 1o zero. Note —yiative differences such as the type of scaling near the bifur-

fchat th?r? 'deo.se _tou_ tshe dorr:‘lam walltcz_an m:lake ell h?r?_e cation points, or the actual domain wall location for a given
jump at the beginning aS reaches a certain value. In this signaling scheme.

situation the maximum value of the sigrig,,, is important, We have found that, in general, adding spatial discrete-

since th|s_|s the factor that (_Jletermlnes the range of the irMe;qq 14 reaction diffusion models has a tendency to improve
versible differentiated domain.

i) Finally. f Il val & the diff . domain wall stability between different cells, and to make

(iii) Finally, for sma values o > the !_erentlanon Pro- the emerging pattern less susceptible to fluctuations of the
cess becomes self-sustaining when a critical value of the S'gs“lgnaling mechanisms. Since robustness and stability of de-
nal is exceeded. This mimics the infinite chain behavior wit

¢ i ina riahtwards. The sianal onlv tri elopmental processes and that of the adult organism is a
a traveling wave moving rightwards. -1 ne signal only rggers, o cessity for the survival of biological species, we may won-
the differentiation process but after that it plays no further

le. Tvpical I f the th kinds of behavi der that the invention of cellular membranes by evolution,
role. Typical examples of the three kinds of behavior ar§, hich made the fundamental building blocks discrete, was at
depicted in Figs. @-4(c).

least in part motivated by such a developmental benefit.

. Tlhe dstrcLiJcture ?f :he [tar?atse dlagram Irl] Flg.dSII?krattrkl‘.er Finally we would like to mention an actual biological ob-
involved, demonstraling that even a simplé model like tisqeation which seems to be explainable on the basis of the
can show an amazing complexity. When the more realisti

. v . %bove model. During the retina differentiation of Drosophila
ngumo—type reacnon function is considered the exactlsolvl—t has been observed that ommatidthe basic functional
ability of the problem is lost. Nevertheless, numerical Simu- g of the retina consisting of photoreceptor and other types
Ia}t|ons we carried out dgmonstratgd that the main ConCIUE)f cells) develop behind a slowly moving wave front, the
sions about the qualitative behavior of the three phasesmOrphogenetic furrow”[6]. There are many genes that are
remain unchanged. only expressed behind the furrow, and thus ¢mremore of
them is believed to play the role of a morphogen. It was also
noticed[11] that a slight shift in the environmental tempera-
In this paper we analyzed a semi-infinite one-dimensionature is enough to make the wave front stop. Until the tem-
one-chemical reaction-diffusion system. The reaction kinetperature is raised back to normal again the process of differ-

X
onem Buionen

V. SUMMARY AND DISCUSSION
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entiation does not continue. This slight artificial diffusivity of the chemicals get reduced. This can drive the

manipulation, although capable of impeding the propagatiosystem into the pinning region as is illustrated in Fig. 1,

of the front for hours or days, is believed to have no residuakventually causing a propagation failure. In this unfavorable

effects on further retina development. temperature regime the domain wall between undifferenti-
Knowing that the wave front is propagating extremely ated and already differentiated cells, represented by the mor-

slowly [12], c~10"'"m s, we can speculate that the devel-phogenetic furrow, becomes a stable steady state, and the

oping retina is tuned very close to a pinning region bound-ifferentiation process temporarily halts.

ary. A change in the tissue temperature necessarily alters the

actual model parameters. Although it would be very difficult

to estimate on a phenomenological basis how the complex, ACKNOWLEDGMENT

non-linear set of biochemical reactions get modified by a

temperature decrease, we can at least assume that the overallThe authors thank Paul Ersidor helpful discussions.
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