
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Universal low-frequency vibrations of proteins from a simple interaction potential
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A pairwise Born potential connecting the heavy atom sites within a prescribed cutoff, and the equation of
motion method~EOM!, reproduce the existence of a universal singularity in the low-frequency vibrational
density of states of typical globular proteins. This is due to quasilocalization of acoustic waves and an analogy
with a similar feature found in glasses is stressed. We explain the dependence of this anomaly with the
effective dimensionality of the protein. The EOM method allows for the study of even the largest proteins with
a simple personal computer.@S1063-651X~99!04910-7#
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The collective low-frequency dynamics of globular pr
teins is essential for a basic understanding of some of
functions they undertake in living matter. The glassylike n
ture of protein dynamics at low frequencies is a well est
lished phenomenon@1#. Specific heat measurements of bo
globular proteins and isolated secondary structures
polyaminoacids@2#, reveal a characteristic glass anomaly@3#
below ;325 K ~i.e., below;5 cm21), which can be ac-
counted for by the presence of vibrational two-level syste
~TLS’s!. The multiple conformational states that lead to
glassylike behavior have been confirmed by both molec
dynamics analysis@4# and optical spectroscopy@5#. The pres-
ence of many low-lying states not related by symmetry a
with nearly the same energy seems to be the hallmark
several complex systems including glasses, proteins, ne
networks, and spin glasses. Particular attention was give
the apparentfractal dimensionof the low-frequency phonon
and its influence on experimentally measured quantities s
as electron-spin relaxations@6#. At slightly higher frequen-
cies (;52200 cm21) the dynamics of proteins is harmon
and vibrations are collective molecular motions. The
modes would be characterized in solid-state theory asacous-
tic phonons. The importance of collective ‘‘acoustic’’ mo-
tions triggered a considerable effort to develop normal-m
analysis methods that isolate and individualize these mo
@7#. These methods confirmed that low-frequency phon
are properly described as backbone vibrations in dihed
angle space; an approximation widely used in the literat
@7#.

Normal mode analysis@7,8#, molecular dynamics simula
tions @7#, effective medium theories@6#, and experiments@9#
agree in that the low-frequency dynamics of globular p
teins is characterized by a peak in the vibrational density
states~DOS! around;50 cm21. This energy corresponds t
collective harmonic modes not related to the TLS’s, b
rather to the intrinsic disorder and effective dimensiona
of these molecular assemblies. In this paper, we shall s
how a simple calculation with realistic structures for t
globular proteins and simplified interaction potentials rep
duces this anomaly and gives further insight into its origi

ben-Abraham@8# argued that the singularity in the DOS
universaland one of us@10# proposed an interpretation base
on a similar anomaly~boson-peak! known for dielectric
PRE 601063-651X/99/60~4!/4593~4!/$15.00
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glasses. Moreover, a lognormal distribution was sugges
for this feature@10#, according to a conjecture originally pu
forward by Denisovet al. @11# to fit the boson-peak anomal
in glasses. In fact, a lognormal distribution fits the low fr
quency DOS of globular protein remarkably well in a wid
variety of cases as shown in Fig. 1, where a collection
previous results are gathered. Besides, Tirion@12# pointed
out that a simple random elastic network~REN! with pair-
wise Hookean interactions connecting sites within a p
scribed cutoff can be used to model the low frequency h
monic dynamics of proteins below 10 cm21. Through a
normal mode analysis, this method reproduced quite well
calculated temperature factors of the different residues
G-actin@12#. A similar approach has been used by Halilog
et al. @13#, who extended the normal mode analysis to int
mediate energies (;2 –100 cm21) and obtained a result re
sembling the universal boson-peak of ben-Abraham@8#, but
with a nonvanishing DOS atv→0. So far, a clear-cut theo
retical explanation of the physical origin of the boson pe
was not given. Moreover, full cartesian normal-mode ana
sis is currently limited to proteins no larger than;150 resi-
dues, since large Hessian matrices of orderN2 (N5 number
of atoms! are needed. The simplified potential of Ref.@12#
renders a substantial reduction in the stringent CPU mem
requirements to solve the generalized eigenvalue proble

We report calculations of the vibrational DOS based o
different implementation of the REN model. Rather than a
plying a normal-mode analysis, we use the equation of m
tion ~EOM! method. Starting with an initial perturbatio

@rW i(0)# at a randomly chosen sitei, the time evolution of the
system is numerically evaluated. FromrW i(t), the Green func-
tion of the problem is calculated, and from the imagina
part of the Laplace transform the local DOS is evalua
@3,14–16#. Frequencies below;5 cm21, are poorly repre-
sented with the EOM method. An average of 50 local DOS
at randomly chosen sites in the interior of the protein str
ture is taken as representative of the full DOS. The EO
method requires the storage of positions and velocities
the N atomic sites in the computation. Thus, the CP
memory requirements scale linearly withN, allowing for the
calculation of very large proteins on relatively modest co
puters. The price to be paid is the total time needed fo
4593 © 1999 The American Physical Society
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reliable representation of the lowest frequencies. Typ
protein structures with;2000 atoms may easily take;15
220 h on a Pentium II processor. The method does not g
information on the eigenvectors of the system@3,14–16#.

The important results we report are~i! the EOM method
together with a pairwise Born potential leads to a singula
in the low-frequency DOS of typical globular proteins wi
all the characteristics of the boson-peak anomaly;~ii ! the
energy position of the boson peak depends on the conne
ity and, accordingly, on the effective dimensionality (ds) of
the REN-model;~iii ! the different DOS’s in the limitv→0
reported in the literature can be easily explained in terms
the particular connectivities of the different networks; a
~iv! a simple model can be used to explain the dependenc
the peak withds .

The calculation is implemented by retrieving the stru
tures of several typical globular proteins from th
Brookheaven protein data bank~PDB!. Hydrogens are ig-
nored for the computation and, besides, the average ma
the atoms in the protein is assigned to each atomic posit
The collective elastic properties depend fundamentally
the topology and connectivity of the underlying network
atomic positions and, therefore, mass differences among
are irrelevant. Each site is connected with its nearest ne
bors up to a distance defined by a prescribed cutoff~hereafter
RC!. Once the connectivity has been established, the inte
tion among sites is modeled by a pairwise Born potentia
the form

FIG. 1. Low-frequency DOS obtained from~a! neutron scatter-
ing in bovine pancreatic trypsin inhibitor@9# ~5pti!; ~b! molecular
dynamics of 5pti including damping of the modes@6#; ~c! 100-ps
molecular dynamics simulation of 5pti in water@6#; ~d! 100-ps mo-
lecular dynamics of 5pti in vacuum@6#; and~e! normal mode analy-
sis of lysozyme~6lyz!, ribonuclease~5rsa!, 5pti, and crambin~1crn!
@8#. Curves are vertically displaced for clarity. Solid lines are lo
normal fits to the data.
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Ui j 5AF ~mW i2mW j !•S rW i j

urW i j u
D G 2

1BumW i2mW j u2, ~1!

whererW i j is the distance between atomsi and j, mW i (mW j ) is
the displacement from equilibrium of the atomi ( j ), andA,B
are the bond stretching and bending potential parame
respectively. The presence of two parameters in Eq.~1! gives
more flexibility and allows for a clear separation betwe
acousticlikeand high frequency localized modes. This can
appreciated in Fig. 2, where different calculations of t
DOS versus energy are shown for crambin~1crn! with a
fixed cutoff (RC) and different potential parameters. B
changing the ratioA/B we note that~i! an acoustic region
where the DOS is essentially the same exists;~ii ! the maxi-
mum attainable frequency (vMAX) shifts with increasing
A/B; and, finally,~iii ! there is a low-frequency peak (vAC)
at ;30 cm21. If A/B is increased, the low-frequency DO
is dominated by acoustic-bond-bending-like phonons, wh
higher frequency modes~in particular,vMAX) depend onA
and are essentially bond stretching in character. By hav
two parameters in Eq.~1!, the spectral weight of high-
frequency localized modes can be pushed away from
acoustic regionthrough a pertinent choice. The peak label
as vAC in Fig. 2 consistently appears in all studied prote
structures. The position of this peak~as well as its low-
frequency tail towardsv→0) depends on the chosenRC . In
addition, the peak is fairly well reproduced by a lognorm
distribution and has all the characteristics of the boson-p
anomaly. The dependence ofvAC with ds will be studied
later but, before that, we evaluate the average numbe

-

FIG. 2. DOS in crambin~1crm! for different values ofA andB
@see Eq.~1!# andRC51.9 Å. The curves were vertically shifted fo
clarity. The different results correspond to~a! A/B51, ~b! A/B
52, and ~c! A/B54, while B is chosen to producevAC at
;30 cm21. ThevAC peak is the low-energy boson-peak anoma
present in this structure.
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connections per atom in the network (Nb) versusRC . This is
relevant to define the connectivity and theds of the network.
The results for several typical globular proteins are displa
in Fig. 3. The main results can be summarized as follows~i!
the curve seems to be universal,~ii ! two clear regions below
and aboveRC;2.25 Å can be observed and,~iii ! there are
small substructures forRC,2.25 Å. These results are no
surprising since they render the same information of the
erage universal structure factorS(q) in Ref. @10#. Their in-
terpretation is as follows: belowRC;2.25 Å, the main
backbone connections along the polypeptide chain are es
lished and the network behaves essentially as a o
dimensional~1D! object. The importance of typical chemic
bond distances with nearest neighbors is observed as s
substructures in bothNb and S(q) @10#. Slightly above
2.25 Å, connections among the different secondary str
tures of the protein appear. There is a continuos crossov
ds between one and two dimensions~2D! at RC;2.25 Å.
We expect the best representation of the dynamics of
proteins with this simplified potential to occur forRC
;2.25 Å, since real proteins behave approximately as
jects with ds;2 @8,12#. At much larger distances (Rc
@2.25 Å), connections among tertiary structures wo
eventually be formed, creating a three-dimensional~3D! net-
work. In Fig. 4 we now turn to the calculation of differen
low-frequency DOS’s for fixedRC’s around 2.25 Å. Note
that ~i! the boson peak (vAC) appears in all cases and
shifts for different RC’s, and ~ii ! the DOS’s show a low
energy tail towardsv→0, which disappears for increasin
RC’s. The latter can be explained in terms of the residual
characer of the network. BelowRC52.25 Å, the network

FIG. 3. Average number of connections per atom (Nb) vs the
cutoff distance (RC) as calculated for thioredoxin mutant~1tho!
~diamonds!, crambin~1crn! ~triangles!, rice ferrytochrome C~1ccr!
~circles!, lysozyme~6lyz! ~squares!, and bobine pancreatic trypsi
inhibitor ~5pti! ~inverted triangles!. The solid line is a guide to the
eye and shows a clear crossover between two distinct region
RC;2.25 Å.
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retains large portions of the original backbone which beh
as a 1D object. Since the DOS ford-dimensional harmonic
solid is }v (d21), any rest of a 1D structure will produce
nonvanishing DOS forv→0. Note that the tail in Fig. 4 is
abruptly reduced when the network passes through the
mensional crossover at 2.25 Å. It is important to realize t
the effective dimensionds is an averagetopological prop-
erty. In a real fractal, an object with 1,ds,2 has neither
pure 1D nor 2D objects inside; the DOS is in this ca
}v (ds21) for v→0. A real protein, however, is better de
scribed as a collection of coupled 1D objects forming a n
work with slight 2D character. In this case,ds can also be
1,ds,2, but there is a partial separation of the intrins
dynamics of the different substructures and the DOS will
dominated atv→0 by the objects with the lowest dimen
sion. Figure 4 also shows lognormal fits to the boson-p
anomalies. Albeit without demonstration, the lognormal d
tribution conjecture@10,11# seems to be extremely success
in reproducing the boson-peak anomaly in calculations
experiments, even when the peak is less pronounced~see
Fig. 1!.

Finally, we briefly show how theRC dependence of the
boson peak in Fig. 4 can be understood. Foracousticwaves
we expectvAC}k}1/l. If l;L, whereL is the localization
length due to disorder, a singularity in the DOS can be e
pected. From the theory of fractons@17#, L depends onvAC

through L(vAC)}1/vAC
ds/3 . Thus, vAC5v0 exp@2C/(ds/3

21)#, wherev0 andC are constants.
Up until now, we have made some approximations as

obtain a reliable relation between the acoustic peak
quency and the effective network dimensionalityds . Addi-

at

FIG. 4. DOS’s in thioredoxin mutant~1tho! at low frequencies
for different values ofRC and A/B52. Symbols pertain toRC

51.65 ~circles!, 1.9 ~triangles!, 2.05~diamonds!, 2.15~inverted tri-
angles!, and 2.25~squares! Å. Solid lines correspond to lognorma
fits performed onvAC . The inset shows the shift ofvAC vs RC with
the analytic model proposed in the text~solid line!. See text for
further details.



b
i
th

r a

o
la

s
o
e

a

tw

-
n
on
n-

d

e

mal

in

M
lin-
-
cal-

nd
ly
on-

-
ity.

ruc-

r

al

odel
ses
aly

f
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tionally, in order to understand the relation betweenvAC and
the cutoff distance we must model the interdependence
tween the latter and the effective dimensionality, which
less trivial and depends on the topological aspects of
network. In order to explicitly demonstrate this, conside
linear chain with fixed interatomic distancea. The effective
dimensionality of the chain is zero untilRc5a, where full
connectivity is achieved and a steplike change tods51 is
accomplished. This abrupt transition is smeared out if dis
der is introduced in the chain. Similarly, a perfect rectangu
two-dimensional network with lattice parametersa and b
will show two steplike effective dimensionality changes a
function ofRc . Once again, these transitions are smeared
when moderate disorder is introduced in the lattice. In a g
eral case, numerical simulations must be used to evaluate
relation betweends and Rc . For the particular case of
linear disordered chain, numerical simulations@18# show that
an excellent analytic ansatz for the crossover between
given dimensions is given byds(RC)5d1tanh@(RC2R0)/D#
1d2, whereR0 is theaverage cutoff distancewhere the tran-
sition takes place, (d22d1) and (d21d1) are the upper and
lower dimensions, respectively, andD a measure of the dis
order. We believe that this ansatz is a good approximatio
general for arbitrary lattices. In this manner, the functi
vAC@ds(RC)# can be compared with the calculation. The i
set of Fig. 4 showsvAC as a function ofRC together with a
fit where we usedD, C, and v0 as fitting parameters, an
assumed a crossover from 1D to 2D atR052.25 Å. It is
quite clear that the a simple model of this sort can very w
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account for the dependence ofvAC on RC . A more complete
theory, however, should also render the presumed lognor
lineshape of the peak.

In closing, we showed that the boson-peak anomaly
real protein structures with simplified interactions~Born po-
tential 1 REN model! can be easily reproduced. The EO
method has modest memory requirements which scale
early withN, allowing for the study of large proteins in mod
est computers. The boson peak is interpreted as quasilo
ization of acoustic waves in a fractallike structure a
depends onds . A lognormal distribution seems to repeated
produce excellent fits for the boson-peak, supporting the c
jecture put forward in Refs.@10,11#. The nonvanishing DOS
at v→0 in Ref.@13# is easily explained by the residual num
ber of 1D-like structures for the specific chosen connectiv
Our results are similar to those of@13# for RC,2.25 Å,
which stands as a crossover between 1D- and 2D-like st
tures. The boson-peak details do depend on the specificRC
chosen, unlike the lowest frequencies (,10 cm21), which
were shown in Ref.@12# to be somewhat independent fo
sufficiently largeRC’s. The universality of the anomaly in
Ref. @8# is naturally explained by the statistical structur
similarities of different proteins@10#. Finally, inasmuch as
the protein is treated as a disordered nanocrystal, this m
is also relevant for the low frequency dynamics of glas
and, in particular, the analogy with the boson-peak anom
is put on a specific formal ground.

We are indebted to A. A. Aligia for a critical reading o
the manuscript.
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