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Turing patterns on a sphere
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We address the problem of pattern formation on the surface of a sphere using Turing equations. By consid-
ering a generic reaction-diffusion model, we numerically investigate the patterns formed under different con-
ditions on the parameter values. Our results show that a closed surface with curvature, as a sphere, imposes
geometrical restrictions on the shape of the pattern. This is important in some biological systems where
curvature plays an important role in guiding chemical, biochemical, and embryological processes.
@S1063-651X~99!02610-0#

PACS number~s!: 87.10.1e, 47.54.1r, 05.70.Ln, 82.20.Mj
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I. INTRODUCTION

In 1952, Turing settled the basis for explaining biologic
patterns using two interacting chemicals that, under cer
conditions, can generate stable patterns of chemical con
trations from initial near-homogeneity@1#. This phenom-
enon, termed diffusion-driven instability, has now be
shown to occur in chemistry and biology. Experimental
sults exhibit the formation of striped patterns and spot
patterns, as well as more complicated patterns. Many
these patterns can be reproduced by Turing models,
there is now a vast theoretical and experimental literatur
this area ~see Maini et al. @2# for a review!. Reaction-
diffusion theory has been used in biological pattern form
tion by assuming that the nonuniform chemical concen
tions arising from diffusion-driven instability act as
prepattern to which cells respond and differentiate acco
ingly.

Periodic boundary conditions have been universally u
since Turing. In previous works@3–5# we studied Turing
systems in confined domains and showed that the boun
is important in aligning stripes or orienting triangular lattic
of spots in the plane. We also found that the shape of
domain~curvature of the perimeter! turns out to be of impor-
tance when modeling the coat pattern of some marine fi
since sources of chemicals that align the pattern are ne
sary to obtain agreement with the living systems.

However, in spite of recognizing that living fish or oth
organisms are far from being flat, curvature has been a
glected feature. Its importance was pointed out, almost a
tury ago, by Thompson in his famous bookOn Growth and
Form @6#, and currently it is admitted that many chemic
and biochemical surface processes are very much depen
on curvature@7#. Notably, we should mention that in 195
Richards, under direct supervision by Turing, perform
some detailed studies of the formation of patterns on sph
cal surfaces to acomodate the simpler possible patterns fo
in the monocellular radiolaria@8#. These efforts remained
unpublished. More recently, Zykovet al. @9# studied the evo-
lution of spiral waves on a spherical surface by numeri
integration of a reaction-diffusion system with feedback.

To start examining Turing systems in curved surfaces,
choose to explore pattern formation on the surface o
PRE 601063-651X/99/60~4!/4588~5!/$15.00
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sphere. This allows us to compare theoretical results w
spherical biological systems such as the skeletons of sev
radiolaria @10–12#. In this work we consider a generi
reaction-diffusion model@4# in spherical coordinates, an
numerically investigate the patterns formed in different
gions of the parameter space.

II. MODEL

Turing systems have the form

]U

]t
5D̄¹2U1F~U!. ~1!

These equations describe the dynamical evolution of
concentrations of several chemicals, described by the c
ponents of the vectorU( x̄,t), at positionx̄ and timet. The
diffusion coefficients are in the matrixD̄, usually chosen to
be diagonal with constant elements, and a chemical reac
between the substances is modeled by the~typically nonlin-
ear! functions,F5(F1 ,F2 , . . . ). Thereview by Mainiet al.
@2# considered the commonly used reaction kinetics, and p
sented their motivation.

Once the functionsF are specified, the model may conta
a set of parameters, and often presents a uniform steady
where all the components of the vectorF50. This state is
unstable under fluctuations within a range of wavelengt
These instabilities are determined by linear analysis fo
fixed set of values of the parameters. The instabilities
driven by the diffusion terms, and stabilized by the nonline
terms producing spatial patterns, as predicted by Tur
This is the now well-known phenomenon ofdiffusion-driven
instability.

The above equations are usually solved on some dom
V,Rn with boundary conditions which may be of Neu
mann, Dirichlet, Robin, or periodic type. The concentratio
of the chemicals are specified att50, ; x̄PV.

In many models one considers only the interactions
tween two chemicals, and the nonlinear functions are usu
quadratic or cubic. From Eq.~1! we can derive a simple se
of two reaction-diffusion equations by expanding the nonl
ear functions around a stationary uniform soluti
4588 © 1999 The American Physical Society
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PRE 60 4589TURING PATTERNS ON A SPHERE
„U1(c),U2(c)…, given by the zeros ofF1 andF2, neglecting
terms of order higher than cubic~we refer the reader to th
paper by Barrioet al. @4# for full details, including a linear
stability analysis of the resulting equation!. The specific
forms we shall consider are

]u

]t
5Dd¹2u1au~12r 1v2!1v~12r 2u!,

~2!
]v
]t

5d¹2v1bvS 11
ar 1

b
uv D1u~g1r 2v !,

where u5U12U1(c) and v5U22U2(c), so the uniform
stationary solution of Eqs.~2! is the point~0,0!. The special
arrangement of the parametersa, b, and g is dictated by
conservation relations between chemicals, as explained
where @4#, for instance, in order to have only one spatia
uniform steady state,a52g. Also, we require the uniform
solution to be linearly stable. This will hold for eithera
>0 andb<2a, or for a<0 andb<21. The quantityD is
the ratio between diffusion coefficients of the two chemica
which must be different from unity@1#, andd gives the size
of the domain in terms of the chosen wavelengths that
want to be present in the patterns. The interaction param
r 1 is associated with a cubic coupling, and favors the form
tion of striped patterns. The quadratic couplingr 2 produces
spot patterns.

The model equation~2! has proven very useful in unde
standing the formation of complex Turing patterns in ge
eral, and was analyzed in two-dimensional flat domains
Ref. @4#. The model can be easily written in spherical coo
dinates and solved using a simple Euler method. Lin
analysis of this system was carried out following exactly
same method explained and shown in Fig. 1 of Ref.@4#,
provided thatk2 is interpreted asl ( l 11)/r 2, wherel is the
polar index of the spherical harmonics, andr is the radius of
the sphere.

III. NUMERICAL CALCULATIONS

To solve Eq.~2!, we discretize the Laplacian in spheric
coordinates, using a grid withM3N sites. Therefore, (Du
5p/M and Df52p/N). To avoid the singularity atu50
the grid starts fromu5Du/2, so that in the discretized sphe
um5Du/21mDu for m50 . . . (M21), andfn5nDf for
n50 . . . (N21). The sphere is obtained by using bounda
conditions such that the missing neighbor ofu(m;n5N
21) is u(m;n50), and the missing neighbor ofu(m
50,M ;n50, . . . ,N/221) is u(m50,M ;n5N/2, . . . ,N
21). The same procedure is taken withv. Observe that this
method is not equivalent to consider the Laplacian on a
nar grid with constant intervals, then forming a cube
matching the boundaries, and then inflating the cube, a
has been recently proposed@13#. The fact that the intervals
become small near the poles of the sphere produces a
slow convergence of the numerical calculations. Howev
the presence of the poles is not sensed by the final patte
as shown below.

In all the calculations we consider a grid ofM534 and
N568, and use a simple Euler method with a time stepDt
ranging from 0.001 to 0.003. This value cannot be increa
se-
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without compromising convergence. As the initial state
consideru5v50, except on a circle near the equator, whe
u andv take random values between20.5 and 0.5.

We know that the stable patterns can be either spots
stripes, depending on the values ofr 1 andr 2. As mentioned
above, the quadratic termr 2 favors spots, while the cubic
term r 1 produces stripes. Similarly, our extensive numeri
simulations suggest that, in general, spots are more ro
and that the amplitude differences are larger than those
stripes; that is, spots are more pronounced. The stripes
only formed for very small values ofr 2, and can adopt dif-
ferent configurations around the sphere, depending on
initial conditions, and the size of the sphere.

We first consider the formation of striped patterns. It
well known that the sphere cannot be ‘‘combed.’’ Therefo
one does not expect a perfect stripped pattern, but th
should be at least two defects. These can be point defect
line defects, as dislocations. If the size of the sphere matc
a half-integer number of wavelengths, one obtains clo
fringes in the form of rings, that have to end in two oppos
spots~defects!, whose positions do not necessarily coinci
with the geometrical poles of the grid, but depend on
initial conditions. Figure 1 shows an example of this situ
tion.

When this condition is not met, a set of ribbons is o
tained. These ribbons are not closed, but have ends on
sides that produce line ‘‘defects’’ in the pattern. The partic
lar arrangement of the ribbons around the sphere depend
the size of the system, that is, ond. As an example of this
last situation, in Fig. 2~a! we show a pattern with two black
ribbons and one white ribbon; that is, there are four bla
ends and two white ones. In Fig. 2~b! there is a pattern with
only two black defects and two white ones. It seems that
model with only cubic terms does not produce bifurcation
the stripes, typical of labyrinthine patterns in the plane.

Linear analysis@4# allows one to choose the modes th
are unstable by tuningD, a, andb. The wavelengths of the
unstable eigenmodes are very close to the wavelength s
lized in the nonlinear pattern. Therefore, it is easy to cho

FIG. 1. Pattern ofu, drawn with a linear gray scale, obtaine
after 1 520 000 iterations forDt50.001 andd50.0045. The other
parameters arer 153.5, r 250, D50.516, a50.899, b520.91,
andg52a. To have a better view of the configuration of stripe
x-y maps of the solutions are also shown, where the horizontal
corresponds tou (0<u<p) and the vertical axis corresponds
f (0<f<2p).
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the system size by changing the value ofd only. In the strip
pattern of Fig. 1 the system size was such that an e
number of waves fit on the sphere. This condition to fo
closed rings is apparently extremely stringent, and one ha
use a very small time step to converge to this solution.

Next we consider the formation of spot patterns. W
chooser 150.02 and r 250.2, as in previous works. Th
number of spots should be controlled by modifying the s
tem size in terms of the wavelength. First we try to match
integer number of spots on the size of the sphere. As
amples, we performed calculations for six, 12, and 20 sp
since regular figures are expected for these numbers.

In Fig. 3 we show a pattern with exactly six stable spo
Observe that the spots are distributed homogeneously on
sphere forming the vertices of a regular octahedron,
shown in the triangular tessellation on the right hand side
the same figure, and where the black spots correspon
maxima ofu.

In Fig. 4 we show the pattern with 12 spots, which cor
sponds to a slightly distorted icosahedron. This distortion
be attributed to a small mismatch in the exact number
wavelengths, since distortions are more visible when one
more spots to accommodate. This difficulty increases w
one tries to fit in more spots on the sphere. Also, conv
gence becomes slower whend diminishes.

A regular dodecahedron was never obtained. In Fig.
pattern with 20 spots is shown. The tessellation shows ve
ces with coordinations 6 and 5. The presence of fivef
vertices obeys the fact that the curvature is positive,
Euler’s law@14# has to be fulfilled. This is also the reason f

FIG. 2. ~a! Pattern ofu obtained after 4 800 000 iterations usin
the same parameters as in Fig. 1, except forDt50.003 andd
50.0029.~b! Same as~a!, but with d50.0021.
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obtaining triangular lattices in the plane.
In Fig. 6 a pattern with 59 spots is shown. The high

disordered structure with sixfold and fivefold vertices
again the result of the curvature of the sphere. In Fig. 6,
the parameters were changed, because the parameters u
the former figures give spots with radii comparable with t
size of the grid.

We observe that when more than 20 spots are involv
the system tends to form structures arranged in a triang
lattice, since the effective curvature is smaller, and the s
tem becomes more planar locally. The proportion of fivefo
vertices is a measure of the curvature. Euler proved that
number of elements of any polygonal arrangement has
satisfy the so called Euler’s law@14#, which in its general
form can be written asF2E1V5x, whereF, E, andV are
the numbers of faces, edges, and vertices, respectively. In
sphere, the spots can be thought of as being the vertice
imbedded polyhedra. The Euler characteristicx is a geomet-
ric invariant associated with the structure of the same sh
or topology. For all polyhedra,x52.

For instance, consider a triangular tesselation with o
fivefold and sixfold vertices. We know that each face h
three edges, and each edge is shared by two faces, thF
52E/3. The number of vertices is the sum of the numbers
the two kinds,V5N51N6. Also, the number of edges isE
5(5N516N6)/2. Then, according to Euler’s law, the num
ber of fivefold vertices is 12 in a closed structure. Therefo
if there is a large number of spots, there should be a la
number of sixfold vertices, approaching the triangular latti
The existence of pentagons does not guarantee the sphe
of the closed structure; it can be achieved by introduc
defects@15# or distorting the structure. This last situation
mainly what we observe in our calculations when the num
of spots increases.

FIG. 3. Pattern with six spots obtained after 250 000 iteratio
for r 150.02, r 250.2, Dt50.001, andd50.0171.a, b, g, andD
are as in Fig. 1

FIG. 4. Pattern with 12 spots obtained after 1 750 000 iterati
for d50.0085. All the other parameters are as in Fig. 3.
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IV. DISCUSSION AND APPLICATIONS

Turing systems were originally put forward to explain t
chemical basis of morphogenesis, that is, how a zyg
which is a spherical object, can acquire a form with a sma
symmetry. Our calculations are ideal to revive this disc
sion. Very simple unicellular organisms present complica
symmetry breaking that should be compared with Turin
predictions. Among the simplest ones are theRadiolaria.
These micro-organisms present very beautiful patterns
silicates formed on their membranes. There is an incred
variety of forms, some are spherical and others are conica
elongated. Many, although not all, of the radiolaria skeleto
have hexagonal structuring on their surfaces. In Fig. 7
show photographs of two selected common spherical r
olaria. Notice the resemblance of the skeleton in Fig. 7~a!
with our pattern in Fig. 5, and the remarkable corresp
dence of the skeleton in Fig. 7~b! with our pattern in Fig. 6.

Although the exact process by which these skeletons
formed is not known, we suggest that a simple Turi
mechanism, of the sort presented here, might be importan
a guide to investigate the chemical oscillations resulting
the final structure. This is matter of other more sophistica
modeling, since it is not clear why SiO2 is concentrated on
the white regions of our diagrams, and how the fibers
stabilized. The biological modelling should be much mo
laborious.

This work should encourage more reseach on the form
other systems, like viruses. Virus particles also show sph
cal arrangements with icosahedral symmetry. In Fig. 8
show some computer graphic representations of viruse
solved by x-ray crystallography@Figs. 8~a! and 8~b!# and by
cryoelectron microscopy and image reconstuction@Fig. 8~c!#.

FIG. 5. Pattern with 20 spots obtained after 1 750 000 iterati
for d50.0045. All the other parameters are as in Fig. 3.

FIG. 6. Pattern with 59 spots obtained after 3 200 000 ite
tions for r 150.02 andr 250.2. The parameters wered50.0074,
Dt50.001,a50.398,b520.4, andD50.122.
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Notice that theBacteriophage Phi X 174is an icosahedron
and the viruses of Figs. 8~b! and 8~c! show the tendency to
form structures arranged in a triangular lattice with so
distorted pentagons, as observed in our simulations~Fig. 6!.

There are many other examples of systems where patt
are formed on curved surfaces. Lipids, together with p
teins, are essential ingredients of all cell membranes
other organelles. Also, pollen grains show a variety
spherical forms with icosahedral polygonal arrangements
the surface. The surface structure of the compound eye o
bumblebee has nearly regular hexagonal faceting upon a
ment of spherical surface. These are systems where func
ality and curvature are intimately connected@7,12#.

We believe that our results constitute a first step tow
the exploration of more complex models in non-Euclide
spaces whose importance is being recognized in chem
structures, ranging from atomic and molecular arrangeme
in crystals, to complex self-assembled colloidal aggrega
and in molecular organization of living systems. Our sim
lations of spotted patterns can be compared with many
logical forms observed in Nature. The skeleton of micr
scopic sea animals, called Radiolaria, have spherical f
with motifs arranged in tetrahedral, octahedral, icosahed
and other more complex symmetries@6#. Notably, the skel-
eton of a Radiolarian calledAulonia hexagonashows a fairly
distorted triangular lattice spread out over the sphere~see
Fig. 55 in Ref. @11#!. This pattern contains also distorte
pentagons as in the example we give in Fig. 6.

Our main conclusion is that curvature is important wh
investigating the symmetry of Turing patterns. In our mod
it seems that stripes tend to be as continuous as poss

s

-

FIG. 7. Silica skeletons of two radiolaria with spherical sha
that resemble some of our Turing patterns~reproduced from Ref.
@16#!.

FIG. 8. Computer graphic representation of viruses.~a! Molecu-
lar surface ofBacteriophage Phi X 174~reproduced from Ref.
@17#!. ~b! Molecular surface ofSimian Virus 40~reproduced from
Ref. @18#!. ~c! Electron density isosurface ofMammalian Reovirus
Viron ~reproduced from Ref.@19#!.
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avoiding bifurcactions and presenting a smaller number
defects. In the case where the wavelength matches the si
the system, only two point defects are present, becaus
the stripes are closed. When spots are formed, they tend
evenly accommodated, following only geometrical rules t
take into account the curvature. In this sense it is not surp
ing that in a plane only regular triangular lattices are o
tained, with only few defects when the initial conditions d
not permit orientational matching of the lattice in all th
domain ~grain boundaries!. The existence of grain bound
aries on a sphere is not needed. We think this is the rea
c
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why micro-organisms that present patterns are so very s
metric.
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