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Turing patterns on a sphere
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We address the problem of pattern formation on the surface of a sphere using Turing equations. By consid-
ering a generic reaction-diffusion model, we numerically investigate the patterns formed under different con-
ditions on the parameter values. Our results show that a closed surface with curvature, as a sphere, imposes
geometrical restrictions on the shape of the pattern. This is important in some biological systems where
curvature plays an important role in guiding chemical, biochemical, and embryological processes.
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PACS numbgs): 87.10+e, 47.54+r, 05.70.Ln, 82.20.Mj

[. INTRODUCTION sphere. This allows us to compare theoretical results with
spherical biological systems such as the skeletons of several
In 1952, Turing settled the basis for explaining biological radiolaria [10-12. In this work we consider a generic
patterns using two interacting chemicals that, under certaiféaction-diffusion mode(4] in spherical coordinates, and
conditions, can generate stable patterns of chemical concefumerically investigate the patterns formed in different re-
trations from initial near-homogeneitjl]. This phenom- gions of the parameter space.
enon, termed diffusion-driven instability, has now been
shown to occur in chemistry and biology. Experimental re- Il. MODEL
sults exhibit the formation of striped patterns and spotted ]
patterns, as well as more complicated patterns. Many of Turing systems have the form
these patterns can be reproduced by Turing models, and
there is now a vast theoretical and experimental literature in
this area(see Mainietal. [2] for a review. Reaction-
diffusion theory has been used in biological pattern forma-

tion by assuming that the nonuniform chemical concentra- These equations describe the dynamical evolution of the

tions arising from diffusion-driven instability act as & concentrations of several chemicals, described by the com-

ip;]rgeli)lattern to which cells respond and differentiate accordbonents of the vecter(Zt), at positi@?and timet. The

Periodic boundary conditions have been universally usediffusion coefficients are in the matri, usually chosen to
since Turing. In previous workg3—5] we studied Turing be diagonal with constant elements, and a phemlcal reaction
systems in confined domains and showed that the boundaBgtween the substances is modeled by(tipically nonlin-
is important in aligning stripes or orienting triangular lattices €9 functions,F=(F,F,, ...). Thereview by Mainiet al.
of spots in the plane. We also found that the shape of th&2l conS|de_red th_e C(_)mmonly used reaction kinetics, and pre-
domain(curvature of the perimeteturns out to be of impor-  Sented their motivation. B _
tance when modeling the coat pattern of some marine fish, Once the function§ are specified, the model may contain
since sources of chemicals that align the pattern are nece8-Set of parameters, and often presents a uniform steady state
sary to obtain agreement with the living systems. where all the components of th vecter0. This state is

However, in spite of recognizing that living fish or other Unstable under fluctuations within a range of wavelengths.
organisms are far from being flat, curvature has been a nethese instabilities are determined by linear analysis for a
glected feature. Its importance was pointed out, almost a cerfixed set of values of the parameters. The instabilities are
tury ago, by Thompson in his famous boGk Growth and  driven by the diffusion terms, and stabilized by the nonlinear
Form [6], and currently it is admitted that many chemical terms producing spatial patterns, as predicted by Turing.
and biochemical surface processes are very much dependektis is the now well-known phenomenon diffusion-driven
on curvature[7]. Notably, we should mention that in 1953 instability. _ _
Richards, under direct supervision by Turing, performed The above equations are usually solved on some domain
some detailed studies of the formation of patterns on spheri@ CR" with boundary conditions which may be of Neu-
cal surfaces to acomodate the simpler possible patterns fourigann, Dirichlet, Robin, or periodic type. The concentrations
in the monocellular radiolarig8]. These efforts remained of the chemicals are specifiedtat 0, Vx e ().
unpublished. More recently, Zykast al.[9] studied the evo- In many models one considers only the interactions be-
lution of spiral waves on a spherical surface by numericatween two chemicals, and the nonlinear functions are usually
integration of a reaction-diffusion system with feedback. quadratic or cubic. From Eq1l) we can derive a simple set

To start examining Turing systems in curved surfaces, wef two reaction-diffusion equations by expanding the nonlin-
choose to explore pattern formation on the surface of aar functions around a stationary uniform solution

10—
E=DV2U+F(U). (1)
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(U4(c),U,(c)), given by the zeros df; andF,, neglecting
terms of order higher than cubiave refer the reader to the
paper by Barriocet al. [4] for full details, including a linear
stability analysis of the resulting equatjoriThe specific
forms we shall consider are

u
EzD5V2u+au(l—r1V2)+V(1—r2U)a
(2
v 5 ar,
E=5V v+ BV 1+7UV +u(7+F2V),

whereu=U;—U;(c) andv=U,—U,(c), so the uniform
stationary solution of Eq<2) is the point(0,0). The special
arrangement of the parametexs 8, and vy is dictated by , : .
- . . . _FIG. 1. Pattern ofu, drawn with a linear gray scale, obtained
Sv%lsrgr[\ﬁt'?gr riiljttg; bient\/\c/)(?sgrctrgeg\cjzlsgn?s Eﬁglaslnsglaﬁlsgﬂer 1520 000 iterations fakt=0.001 andd=0.0045. The other
. ’ ' . y p y parameters are;=3.5, r,=0, D=0.516, «=0.899, 8=—-0.91,
uniform steady statey= — . Also, we require the uniform

. . . . . and y=—a. To have a better view of the configuration of stripes,
solution to be linearly stable. This will hold for either L g P

) ! x-y maps of the solutions are also shown, where the horizontal axis
=0 andB<—a, orfora<0 andf=<—1.The quantityD is  c,rresponds t@ (0<6=) and the vertical axis corresponds to

the ratio between diffusion coefficients of the two chemicals,y (o< g<2x).
which must be different from unitjl], and é gives the size
of the domain in terms of the chosen wavelengths that wevithout compromising convergence. As the initial state we
want to be present in the patterns. The interaction parameteonsideru=v =0, except on a circle near the equator, where
r, is associated with a cubic coupling, and favors the formau andv take random values between0.5 and 0.5.
tion of striped patterns. The quadratic couplingproduces We know that the stable patterns can be either spots or
spot patterns. stripes, depending on the valuesrgfandr,. As mentioned
The model equatio2) has proven very useful in under- above, the quadratic term, favors spots, while the cubic
standing the formation of complex Turing patterns in gen-termr, produces stripes. Similarly, our extensive numerical
eral, and was analyzed in two-dimensional flat domains irsimulations suggest that, in general, spots are more robust
Ref.[4]. The model can be easily written in spherical coor-and that the amplitude differences are larger than those for
dinates and solved using a simple Euler method. Lineastripes; that is, spots are more pronounced. The stripes are
analysis of this system was carried out following exactly theonly formed for very small values of,, and can adopt dif-
same method explained and shown in Fig. 1 of Réf, ferent configurations around the sphere, depending on the
provided thatk? is interpreted a$(l+1)/r?, wherel is the initial conditions, and the size of the sphere.

polar index of the spherical harmonics, ang the radius of We first consider the formation of striped patterns. It is
the sphere. well known that the sphere cannot be “combed.” Therefore,
one does not expect a perfect stripped pattern, but there
l1l. NUMERICAL CALCULATIONS should be at least two defects. These can be point defects, or

line defects, as dislocations. If the size of the sphere matches

To solve Eq.(2), we discretize the Laplacian in spherical 3 half-integer number of wavelengths, one obtains closed
coordinates, using a grid with XN sites. Therefore, A6  fringes in the form of rings, that have to end in two opposite
=m/M andA¢=2=/N). To avoid the singularity ab=0  spots(defects, whose positions do not necessarily coincide
the grid starts fron®= A 6/2, so that in the discretized sphere with the geometrical poles of the grid, but depend on the
Om=A0/2+mA g for m=0...(M—1), and¢p,=nA¢ for initial conditions. Figure 1 shows an example of this situa-
n=0...(N—1). The sphere is obtained by using boundarytion.
conditions such that the missing neighbor wfm;n=N When this condition is not met, a set of ribbons is ob-
—1) is u(m;n=0), and the missing neighbor afi(m tained. These ribbons are not closed, but have ends on both
=0M;n=0,...N/2—1) is u(m=0M;n=N/2,... N  sides that produce line “defects” in the pattern. The particu-
—1). The same procedure is taken withObserve that this lar arrangement of the ribbons around the sphere depends on
method is not equivalent to consider the Laplacian on a plathe size of the system, that is, @ As an example of this
nar grid with constant intervals, then forming a cube bylast situation, in Fig. @) we show a pattern with two black
matching the boundaries, and then inflating the cube, as iibbons and one white ribbon; that is, there are four black
has been recently proposgti3]. The fact that the intervals ends and two white ones. In Fig(® there is a pattern with
become small near the poles of the sphere produces a veonly two black defects and two white ones. It seems that this
slow convergence of the numerical calculations. Howevermodel with only cubic terms does not produce bifurcation of
the presence of the poles is not sensed by the final patternge stripes, typical of labyrinthine patterns in the plane.
as shown below. Linear analysid4] allows one to choose the modes that

In all the calculations we consider a grid Bf=34 and  are unstable by tunin®, «, and 8. The wavelengths of the
N=68, and use a simple Euler method with a time séép unstable eigenmodes are very close to the wavelength stabi-
ranging from 0.001 to 0.003. This value cannot be increasetized in the nonlinear pattern. Therefore, it is easy to choose
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(a) \
FIG. 3. Pattern with six spots obtained after 250 000 iterations

forr;=0.02,r,=0.2, At=0.001, and5=0.0171.«, B, v, andD
are as in Fig. 1

obtaining triangular lattices in the plane.

In Fig. 6 a pattern with 59 spots is shown. The highly
disordered structure with sixfold and fivefold vertices is
again the result of the curvature of the sphere. In Fig. 6, all
the parameters were changed, because the parameters used in
the former figures give spots with radii comparable with the
size of the grid.

We observe that when more than 20 spots are involved,
the system tends to form structures arranged in a triangular
lattice, since the effective curvature is smaller, and the sys-
tem becomes more planar locally. The proportion of fivefold
vertices is a measure of the curvature. Euler proved that the
number of elements of any polygonal arrangement has to

FIG. 2. (a) Pattern ofu obtained after 4 800 000 iterations using satisfy the so c;alled Euler's lapd4], which in its general
the same parameters as in Fig. 1, except A¢+=0.003 andé form can be written af —E+V=y, Wh_ereF, E, and_V are
=0.0029.(b) Same aga), but with 5=0.0021. the numbers of faces, edges, and vertices, (espectlvely_. In the
sphere, the spots can be thought of as being the vertices of
imbedded polyhedra. The Euler characterigtis a geomet-

&c invariant associated with the structure of the same shape

the system size by changing the valuedodnly. In the strip
pattern of Fig. 1 the system size was such that an exa 1000l For all polvhedray— 2
number of waves fit on the sphere. This condition to form©" t0POl0gy. Forall polynedray = <.

- : . For instance, consider a triangular tesselation with only
closed rings is apparently extremely stringent, and one has 7 i
use a very small time step to converge to this solution. %’vefold and sixfold vertices. We know that each face has

Next we consider the formation of spot patterns. Wetfrzeglgd_?ﬁs’ andbeacp edtge IS s:lhared by ]Evtvr? facesl;Fthusf
chooser;=0.02 andr,=0.2, as in previous works. The - 1€ NumDber ol VErtices 1S the sum of the numbers o

number of spots should be controlled by modifying the sys-the two kinds V=Ns+Ns. Also, the number of edges i

tem size in terms of the wavelength. First we try to match a$(5N5+6N6)/2' Then, according to Euler's law, the num-

integer number of spots on the size of the sphere. As ex2¢" of fivefold vertices is 12 in a closed structure. Therefore

amples, we performed calculations for six, 12, and 20 spot§f there is a large number of spots,_there Sh.OUId be a "'?“ge

since regular figures are expected for these numbers. number of sixfold vertices, approaching the triangular Iattlc.e..
In Fig. 3 we show a pattern with exactly six stable spots The existence of pentagons does not guarantee the sphericity

Observe that the spots are distributed homogeneously on tﬁg’é fthet C|1°556d SFrE:Cttl_Jre; tE catn bf aCh_Ii_i\.’e? bty i_?tr(i_duci_ng
sphere forming the vertices of a regular octahedron, a efects[15] or distorting the structure. This last situation is

shown in the triangular tessellation on the right hand side Fnalnly what we observe in our calculations when the number

0 .
the same figure, and where the black spots correspond ﬁ’)f Spots increases.
maxima ofu.

In Fig. 4 we show the pattern with 12 spots, which corre-
sponds to a slightly distorted icosahedron. This distortion ca
be attributed to a small mismatch in the exact number of
wavelengths, since distortions are more visible when one ha
more spots to accommodate. This difficulty increases wherg
one tries to fit in more spots on the sphere. Also, conver-
gence becomes slower whéndiminishes.

A regular dodecahedron was never obtained. In Fig. 5 a
pattern with 20 spots is shown. The tessellation shows verti
ces with coordinations 6 and 5. The presence of fivefold
vertices obeys the fact that the curvature is positive, and FIG. 4. Pattern with 12 spots obtained after 1 750 000 iterations
Euler's law[14] has to be fulfilled. This is also the reason for for §=0.0085. All the other parameters are as in Fig. 3.
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FIG. 5. Pattern with 20 spots obtained after 1 750 000 iterations
for 6=0.0045. All the other parameters are as in Fig. 3.

FIG. 7. Silica skeletons of two radiolaria with spherical shape

that resemble some of our Turing pattefnsproduced from Ref.
IV. DISCUSSION AND APPLICATIONS [16).

Turing systems were originally put forward to explain the Notice that theBacteriophage Phi X 174 an icosahedron,

chemical basis of morphogenesis, that is, how a zygoteynq the viruses of Figs.(8) and 8c) show the tendency to

which is a spherical object, can acquire a form with a smalleg, g4 ctures arranged in a triangular lattice with some
symmetry. Our calculations are ideal to revive this discus

o, \V ol callul ) A licat éjistorted pentagons, as observed in our simulatifits. 6).
slon. Very Ssimplé unicefiuiar organisms present complica (,3 There are many other examples of systems where patterns
symmetry breaking that should be compared with Turing’s

predictions. Among the simplest ones are Radiolaria are formed on curved surfaces. Lipids, together with pro-

These micro-organisms present very beautiful patterns otlems’ are essential ingredients of gll cell membranes and
silicates formed on their membranes. There is an incredibl@N€r organelles. Also, polien grains show a variety of
variety of forms, some are spherical and others are conical ofPnerical forms with icosahedral polygonal arrangements in
elongated. Many, although not all, of the radiolaria skeletondh® Surface. The surface structure of the compound eye of the
have hexagonal structuring on their surfaces. In Fig. 7 w&umblebee has nearly regular hexagonal faceting upon a seg-
show photographs of two selected common spherical radient of spherical surface. These are systems where function-
olaria. Notice the resemblance of the skeleton in Fig) 7 ality and curvature are intimately connecfeq12].
with our pattern in Fig. 5, and the remarkable correspon- We believe that our results constitute a first step toward
dence of the skeleton in Fig(h) with our pattern in Fig. 6. the exploration of more complex models in non-Euclidean
Although the exact process by which these skeletons argpaces whose importance is being recognized in chemical
formed is not known, we suggest that a simple Turingstructures, ranging from atomic and molecular arrangements
mechanism, of the sort presented here, might be important 48 crystals, to complex self-assembled colloidal aggregates,
a guide to investigate the chemical oscillations resulting irand in molecular organization of living systems. Our simu-
the final structure. This is matter of other more sophisticatedations of spotted patterns can be compared with many bio-
modeling, since it is not clear why SjOs concentrated on logical forms observed in Nature. The skeleton of micro-
the white regions of our diagrams, and how the fibers ar&copic sea animals, called Radiolaria, have spherical form
stabilized. The biological modelling should be much morewith motifs arranged in tetrahedral, octahedral, icosahedral,
laborious. and other more complex symmetriggd. Notably, the skel-
This work should encourage more reseach on the form ogton of a Radiolarian calleflulonia hexagonahows a fairly
other systems, like viruses. Virus particles also show spheridistorted triangular lattice spread out over the spheee
cal arrangements with icosahedral symmetry. In Fig. 8 we-ig. 55 in Ref.[11]). This pattern contains also distorted
show some computer graphic representations of viruses d@entagons as in the example we give in Fig. 6.
solved by x-ray crystallographyFigs. §a) and §b)] and by Our main conclusion is that curvature is important when

cryoelectron microscopy and image reconstucfieig. 8c)].  investigating the symmetry of Turing patterns. In our model,
it seems that stripes tend to be as continuous as possible,

FIG. 8. Computer graphic representation of virugasMolecu-
lar surface ofBacteriophage Phi X 174reproduced from Ref.

FIG. 6. Pattern with 59 spots obtained after 3200 000 itera{17]). (b) Molecular surface oSimian Virus 40(reproduced from
tions forr;=0.02 andr,=0.2. The parameters wer@= 0.0074, Ref.[18]). (c) Electron density isosurface délammalian Reovirus
At=0.001,2¢=0.398,3=—0.4, andD=0.122. Viron (reproduced from Ref.19]).
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avoiding bifurcactions and presenting a smaller number ofvhy micro-organisms that present patterns are so very sym-
defects. In the case where the wavelength matches the size mietric.

the system, only two point defects are present, because all
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