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Categorization in the symmetrically dilute Hopfield network
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A symmetrically dilute Hopfield model with a Hebbian learning rule is used to study the effects of gradual
dilution and of synaptic noise on the categorization ability of an attractor neural network with hierarchically
correlated patterns in a two-level structure of ancestors and descendants. Categorization consists in recognizing
the ancestors when the network has been trained exclusively with the descendants. We consider a macroscopic
number of ancestors, each with a finite number of descendants, and take into account the stochastic noise
produced by the former in an equilibrium study of the network, by means of replica-symmetric mean-field
theory. Phase diagrams are obtained that exhibit a categorization, a spin-glass, and a paramagnetic phase, as
well as the dependence of the order parameters on the relevant quantities. The de Almeida—Thouless lines that
limit the validity of the replica-symmetric results are also obtained. It is shown that gradual dilution increases
considerably the region where a stable categorization phase may be [81063-651X99)00310-4
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[. INTRODUCTION decrease of the connectivity in states within the memory
phase, although the performance is impaired by the dilution
There has been much interest in understanding the progn the phase boundary. _ _
erties and predicting the behavior of large attractor neural |he categorization problem has been studied extensively
networks. Of primary concemn are the storage capacity, thih networks of various architectures, with either binary or

quality of the retrieval overlaps, and the ability to retrieve amul'usta}e units, and different learning rulp$,9-21. Thg .
ategorization problem has, apparently, not been studied in

set of learned patterns when a network starts to evolve frorﬁ]e symmetrically dilute Hopfield model. This is an interest-

an arb|t_rary_ initial statél,_Z]. Afurth_e_r, relevant, issue is the ing model with partial connectivity between neurons, that
categorizationor generalizatiohability of a network[3,4]. |25 a1 energy function and, in contrast to the extremely di-

This is the property of recognizing patterns in a high level ofy 1o asymmetric network, has a nontrivial dynamics and a
a hierarchical structure when a network is only exposed tQ,qre complex behavior.
patterns in a lower level during the training stage. A prototype categorization problem with a set of hierar-
The presence of an exponentially large number of unchijcally correlated patterns in two levels is the recognition of
wanted spin-glass-like states may limit severely the perforconcepts, or ancestors, from the extraction of common fea-
mance of a network. Indeed, except for a low storage ratio, &ures among the descendafts examples of the concepts
network is very likely to be trapped in these states, preventpresented to the network in the training stage. These features
ing the occurrence of finite overlaps with the patterns ofmay be characterized by symmetric overlaps between the
interest. To overcome this problem, a dilute Hopfield modelstate of the network and the training patterns, which can be
with low symmetricconnectivity has been considered someconstructed for any network, whether the training rule is
time ago to study the retrieval problef,6]. This problem  symmetric or not. Symmetric overlaps represent, usually, un-
consists in the search for retrieval states with zero overlagvanted spurious mixture states for the retrieval problem
except with one pattern. The storage capacity of the networlwhich are only destabilized at loW for uncorrelated pat-
in the extremely dilute limit was found to be considerably terns[22], but they have a crucial role in the categorization
enhanced, when compared either with that of the standargroblem[4]. Indeed, the correlation parameter that character-
symmetric model of full connectivity1,2] or with the stor- izes the hierarchical structure of patterns stabilizes the sym-
age capacity of the extremely dilute asymmetrical m¢@gl  metric mixture states up to relatively high This leads to a
particularly at finite temperatur®, which is the rounding-off large categorization phase in the phase diagranufos T
parameter in the neuron response function. The effect of thE9], where single concepts may be recognized with small
gradual dilution on the phase diagram of the random symerror when an appropriate number of examples is presented
metrically dilute network is to reduce the stability of the to the network. However, as in the retrieval problem, the
spin-glass states below the critical storage capaeityen-  categorization phase for the fully connected network has to
hancing thereby the retrieval states. In the limit of vanish-compete with a spin-glass phase in the ordered region of the
ingly small connectivity, stable spin-glass states are excludeghase diagram.
up to a ratioa =1, for T<1, according to exact results on  The purpose of this paper is to study the effects of a
the formally equivalent Sherrington-KirkpatridlSK) spin-  gradual dilution of the synaptic connections on the categori-
glass mode[8]. It has also been pointed out in Rg8] that  zation ability in a symmetrically dilute Hopfield neural net-
the retrieval performance of the network increases with avork model with binary units and patterns in a two-level
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hierarchy. We are particularly interested in the case of low oof other units. Whert=1 we have the generalized Hebbian
vanishing connectivity and our aim is to investigate to whatrule for the standard categorization problem in a fully con-
extent the influence of spin-glass states can be reduced, leagected network4,9], while the limit c—0 corresponds to

ing to an improvement of the categorization ability of the the extreme low-connectivity network.

network. It is also interesting to investigate the dependence The components of the concepts, which are assumed to be
of the categorization performance of the network on the tembinary patterns¢“=+1, are taken to be statistically inde-
peratureT. Indeed, in an earlier work on the fully connected pendent and equally distributed unbiased random variables.
Hopfield network we found that a small-to-moderdtenay  Each concept generates a finite set of exampigsd=+1}

be useful to reduce the categorization error in the case of @hich are assumed to be statistically independent and

finite number of conceptd]. equally distributed random variables chosen according to the
In the present work we do not consider the dynamics butprobability distribution

instead, we study the equilibrium statistical mechanics of the

symmetrically dilute Hopfield model. The outline of the pa- 1 1

per is the following. In Sec. Il we introduce the model and P(&"")=5(1+b&f) S(&f"—1)+ 5 (1-bE&) 8(&1"+1),
the relevant order parameter for the problem that gives the 3)
categorization error of the network. The free-energy density

and other order parameters that are built into it are obtainegith the Kroneckers and 0O<b=<1. We see thab&* is the
in Sec. Ill, in a replica-symmetric mean-field theory. The hias that an example of the concejt may be+1 and this
limit of Val|d|ty of that theory is also SpeCified there. The will depend on the value taken by the Concept_ ThUS,(Eﬂ.
results are presented and discussed in Sec. IV, and we efdpjies a correlation( £} ¢")=b3, 5, , between a given

with a summary and conclusions in Sec. V. concept and its examples and a correlati()ff”ﬂ”)
=b26i,,-5M“ for p# v, among different examples of the

Il. THE MODEL same concept. Here, the brackéfsdenote configurational
We consider a random dilute Hopfield model of a neural@vérages over the examples and over the concepts, in this

network withN binary unitsS=+1;i=1,... N, described Order. , o _
by the Hamiltonian In resemblance with Sompolinsky’s work for a symmetri-

cally dilute random network2,23], the synaptic connections

1 may be written ag? =J;;+ 8J;; , in which
H=-52 JiSS, (1) j
277 1 Lb
where the sum is over ailand j, and the dilutesymmetric Jij :NZI 1}21 &g (4

synaptic connectionﬁ,ﬂ =J}’i , are specified by the appropri-
ate learning rule that involves the probability distribution of are the interactions of the fully connected network trained
the random dilution. Before specifying the rule, we note thatyjth examples [3,4] and the dilution term 83;=(1
EjJidj S i§ the chal field on unif due tg the activity of. the —cjj/c)J;; may be interpreted, in thid—oe limit, as a syn-
other units. An increase in the local field produces, in genaptic Gaussian noise effectively independent of the training
eral, an alignment of the component of the state of the netexamples, of mean configurational averg@d;;).=0 and
work with an example, improving the retrieval performance.variance<(5Jij)2>czA2/N. Here, the bracket$). denote
The learning rule consists, for our purpose, in presentingonfigurational averages over the patterns and dhe in
to the network a finite set ofs examples{£/"}, v which A?=a?(1—c)/c with a’?=acq1+(s—1)b*]. In-
=1,...5, qf ea_ch of a macroscc_)pi_c number of concepts,deed,@{\f'(sJH>C:o because the average of-1c;;/c) is
p=acN, with finite «=0(1), within the set{&l}, u  zero and((£")%¢")=0 for unbiasedexamples distributed

=1,...p, according to the generalized Hebb rule, according to Eq(3). It should be noted that the Gaussian
b s synaptic noise is of a different nature than the synaptic noise
Jd :i 2 E grvEny @) of temperaturel. Thus, with the separation of the synaptic
cN =y = ) connections into two parts, Eql) becomes a sum of a

Hopfield Hamiltonian for a fully connected neural network
in which ¢;;=cj; is 1 with probabilityc and 0 with probabil- model trained with examples according to a generalized
ity 1 —c, wherec is the connectivity of the network, while Hebbian learning rul¢4] and a spin-glass Hamiltonian with
¢;;=0. Thus, the synapses which are built exclusively fromrandom Gaussian interactioh8] the width of which de-
examples are cut symmetrically at random so that on th@ends now on the connectivity of the dilute network.
average each unit remains connectedNbother units, andv It is known that the categorization ability in a fully con-
is the ratio of concepts to be recognized. Following Somponected Hopfield model is enhanced either by an increase of
linsky [23], we restrict ourselves in this work to dense the number of examples presented to the network in the
network in whichc is of O(1) whenN—c, meaning that training stage or by a larger correlation parameterThis
each unit remains connected @(N) other units. It should can be understood from the increase in the local field at a
be noted, however, thatmay become arbitrarily small after unit due to a larger widtta/ N of the random connection
the thermodynamic limit. We come back to this point in theJ;; . It can be seen that a decrease in the connectoitin
next section. In contrast, in the case of sparse netwarks, the case of a symmetrically dilute network, should similarly
=0(1/N) and each unit is just connected to a finite numberenhance the categorization ability. This will be demonstrated
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by the results presented in Sec. Ill. mt=df/dh#|._o, 8
The order parameter that describes the recognition of a
concepté” in a noiseless network, witi=0, as the main where at the end the field is set to zero. In the case of a noisy
characteristic of the categorization problem, is the overlap network, with temperatur&, the components of the state in
N Eqg. (5) are to be replaced by their thermal averag8s
1 with Z.
m"=ﬁi§1 &S, 5 Proceeding in a now standard way, for a macroscopic
number of conceptp and hence, for nonzer@=p/cN, we
for u=1,... p, between the statfS]} of the network and Make use of the replica method to write for a specific con-
the concep&*. The state may be near a true minimum or aCept, sayu=1,
metastable state of the Hamiltoniah We consider the half (ZMe—1
space in which & m“<1 and the value om* is a measure (INZ)e= lim 2= (9)
of the success in recognizing a concept. Due to the sum over n—0 n
sites, this overlap may be seen as the configurational average
over the probability distribution of that concept. As a sum ofin Which (Z"). is the configurational average of the repli-
a large numbefin the limit N—) of random variables, it cated partition function. Combining well-known procedures
should not depend on a particular realization of these varito deal with the generalized Hopfield Hamiltonian, on one
ables and becomes a self-averaging quantity. hand, and with the explicit spin-glass part on the other
It should be stressed that the recognition of concepts, i.e[8,24], we find
the existence of finite overlaps with the states of the network,
must emerge as a spontaneous feature of the network trained<zn>c:e—BnpSIZGnNﬁZAZM 11 dml”f IT dag,,dr,,
with examples. The network is neither exposed to the con- 2 R v B
cepts in the training stage nor to concept dependent external _
fields. A measure of the failure in recognizing a concept is xexp—NBr), (10
given by the categorization error, defined as the Hammingyhere

distance 2
1 acpB BA
1 =52 (M)2+ —= 2 ool pot 7 2 (Gpe)®
et=>(1-m¥) (6) 255 F 2 G T A G T
aC 1
between the statdS]} and the concepté”, where w _Fln G(qu)—E<Trsoexp(—,8H§)> (11

=1,...,p. Our aim is to find out the dependence of the

categorization error on the number of exampeshe so-  in which p and o are replica indices andp(o) denotes dif-

called categorization curves, and how these depend on thgrent pairs of replicas. Here, Jrmeans the trace over the
connectivityc and on the ration of recognized concepts. states, and

Since all concepts are equivalent, we concentrate on one of
them, sayu=1. 1
my=5 2 & (12)
I
IIl. MEAN-FIELD THEORY

) ) o is the overlap of the replicated state with an exanﬁﬁl”eof
We consider now the mean-field theory for finde For o specified concept, while

the purpose of practical calculations of the properties of the
network, it is convenient to introduce a field¥{) dependent
term for each concept into the Hamiltonian, adding alto- qpazzi s (13
gether; h*¢lS;, and taking the fields to be zero at the
end. The averaged free-energy density, per connected site, iis the spin-glass order parameter fo#-o andr , is the
given by usual auxiliary parameter that will be interpreted below.
Also,
f=—lim i(In Z) (7) 1
= . i
e ONE G(ay)= | T [ax,, 1N2mlexd =53 ],
—o° v,p v,
where Z=Trexp(—pBH) is the partition function of the 8
model, in whichH is the sum of a generalized Hopfield d
Hamiltonian and a spin-glass Hamiltonian with random "2 pE(r xzu Xp”X”B”QP”> a4
Gaussian interactiodJ;; , as discussed in the preceding sec- )
tion, while B=T~L. Here, and in the following, we first take N Which
the thermodynamic limiN—co, keeping the connectivitg
fixed in accordance with the model introduced in the preced-
ing section, and thereafter we vacy which may eventually Q,,=q,,+(1—q,,)8
become vanishingly small. The overlap with a given concept pe ee posTpet
is then obtained as and, finally,

By, =b%+(1-b?34) ,,
(15
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Hee 3 M s LS (acr, 0%, q=<<tanh?ﬂ( Jarez+ 3, mg)>> @
v,p p,o v 7
g__|hlel _ 2 _ 4 2
X SPST—hlg Ep} . (16) r=sq(l CO,0,)%+(s—1)b +qA

(1-C6H,)%(1—Ch,)° ac’

So far we have the averaged replicated partition function ) )
prior to any assumption in replica space. It is interesting tdVhere( >22 denotes the integral over the Gaussian measure,
note that, in the limit— 0, the dependence ar, and part ~ ¢1=1-b%, and #,=1+(s—1)b% In the noiseless limit,
of that ing,,,, drop out and, with a rescaling af and g that ~ Where—, we have thagj—1 andC remains finite.
involves the number of examples (Z"), becomes formally The order parameters may be interpreted as follows;
similar, for generals, to the expression obtained for the M*'=(§*"(S)t) is the overlap between the state of the net-
memorization problem in this limit by Watkin and Sher- WOrk and an ezxqmple of the concept to be recognized, here
rington [5] and is identical to their result, as it should be, #=1; a=((S)7) is the spin-glass order parameter, and
whens=1. In this case it coincides with the expression for
t_he S_K spi_n—glass modéB]_, after a local gauge transforma- = 1 2 E (me)?) 21)
tion in which a state{S;} is replaced by{ &S}, for all i ap=2 5
=1,... N. A crucial step in this transformation is that
(fi”)2= 1. In contrast, in our case we have an effective mang the contribution of theincondensedverlaps in this prob-
netization given by the symmetric overlap,=m'*, for »  lem [24]. The averaged free-energy density and the order
=1,...s, which characterizes the categorization phase, aBarameters for the symmetrically dilute Hopfield model are
discussed below, and that is associated with an average suigcovered in the limis=1=b [6]. Also, in the limitc—0,
s, £M/s that cannot be used in any simple gauge transformal/e recover the equations of Watkin and Sherrindtdhfor
tion, unlesss (or b)=1. This observation has an important the extremely dilute netwqu. As one wou[d expect, there is
consequence on an argument concerning the phase bound&§ need for the parameterin this limit. Making use of Egs.
to the ordered state in the limit of vanishing connectivity, (8) and(18) one obtains, in the replica-symmetric theory, the
which will be discussed below. overlap

Assuming now replica symmetry, we write
m'= < < &t tanhﬁ( Jarcz+ Y, leglV) > > . (22

1lv_ 1w
m,"=m=" for all p, ,

17
dpo=0, pFO with the particular concept.
(=1, pto Next, we have to make a choice for the overtapy’ with
po the examples of concept=1. One way of doing this is
and find, up to constant terms, taking [4]
2 mt=¢8, (mr—me_)+me_q, 23
f:%E (min2s CZrCJr'B((LA) _%c 1 s—1) T M1 (23
! wheremg_, is the symmetric overlap witk—1 examples.
1 [+ This is the appropriate choice when there is a bias for storing
XInG(q)— 8 DZ< In| 2 coshg single examples by means of a given learning rule, as in the
o present problem. The categorization problem with competing
symmetric and retrieval states in nondilute networks has
x| Varcz+ 2 mirgtr—ntgt D (18)  been studied elsewhefd,9,19. Alternatively, one may di-

rectly consider the symmetric overlap with examples,

1V_ _ . .
in which Dz=exp(—2)dZ 27 is the usual Gaussian mea- M —Ms, »=1,... s. This enables us to write

sure, C=B(1—q), A specifies the width of the random
Gaussian interaction, as discussed in Sec. |, while > mlr el =mxs, (24)

1
INnG(q)=— E( (s—1)In(1—C#8,)+In(1—C#,) in terms of the symmetric sum of examplesx,=2,&,

which is a random variable that follows a binomial distribu-
tion dependent on the concept [9]. However, the emer-
gence of other features, such as the recognition of concepts,
must then be a spontaneous property of the network which
The replica-symmetric order parameters are given by th@hould not depend on the particular choice of E2B). The
saddle-point equations in zero external field, symmetric overlap witls examples, given by

1-C6,6, ) 19

~PASI=Coy(1-Coy)

m1V=<<§1”tanh,8 \/mz_i_Ev mlvglv)>> , mS:siN2 EV §i1V<S>T’ (25

z
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describes the simultaneous recognition of a set of example 30— - - - -
by the state of the network. This becomes, in replica-
symmetric mean-field theory,

mszé«xs tanhg( \/mz"' MsXs)) 7, (26) 20

where the inner brackets denote an average over the prok'

ability distribution ofx that includes an average ovéf.
The relevance of the symmetric mixture states, with finite [

mg, is that they characterize the categorization phase for ¢ '

given number of examples with nonzero overlam® with

a concept, by taking into account the common features of the

examples. This can be seen most easily by considering th

noiseless limit3—, of m! in Eq. (22). Indeed, this yields 0-00'5:) YT oo T v Y 760

o
mt= (& erf(myxs/2arc)), (27 FIG. 1. Phase diagram for the synaptic ndlsas a function of
the ratio @ of recognized concepts, for a correlation paraméter
which only is finite formg+ 0. =0.4, s=10 examples, and connectivity=1, 0.001, and O

The mean-field equations in the replica-symmetric theory—0). The categorization phas€) appears to the left of the lines
for the symmetrically dilute Hopfield model for the retrieval Tc. as indicated explicitly foc=0, and the spin-glass phatgG)
problem[6], as well as those for the SK spin-glass problemto the right of T.. The paramagnetic phas@) appears abové,

[8], are not valid below a de Almeida—Thoule@sT) line ~ andTg are the de Aimeida—Thouless lines.
[25] in a large part of the relevant phase diagram, her€ of
vs a. In contrast, the breakdown of the replica-symmetric  First we consider the phase diagram for the temperature
mean-field equations is far less important in the fully con-against the ratiar of recognized concepts, shown in Fig. 1,
nected Hopfield mod€l24]. Thus, it is important to deter- for various values of the connectivity when the overlap
mine that line, particularly where it meets the phase boundparameter between an example and the corresponding con-
ary between the categorization phase and the pure spin-glaggpt isb=0.4 for s= 10 examples. Similar diagrams are ob-
phase. Extending the calculation of the AT line to the presentained for other values of these parameters. Increasing either
case of a model with hierarchically correlated patterns, wey or s, keeping the other one fixed, allows one to reach
find that it is given by the joint solution of the equation |arger values ofw, that is, to recognize a larger number of
concepts and to support a bigger noise levellThe catego-
<<secH ’3( \/a_rcz+2 mlvglv) >> =1, (29) rizz_ation phase appears to the left of the phase boun@igry
v while spin-glass states appear everywhere belowPteG
phase boundaryly, except whenc=0. Indeed, the spin-
together with the saddle-point equations for the order pararrglass states turn out to be unstable within the categorization
eters. phase in the extremely dilute limit. In the region within the

The numerical solution of the mean-field equations in theboundary T, when stable categorization and spin-glass
replica-symmetric theory and the AT line yield the results forstates coexist for finite, the former are more stable for
the phase diagrams and the order parameters discussed in g#gall a, while the latter become more stable for larger

B2arc

z

next section. This is similar to the competition between retrieval and spin-
glass states in the symmetrically dilute network for the
V. RESULTS memorization probleni6]. Retrieval states of examples are
expected to appear at lower valuesaof
The choice in Eq(24) illustrates the kind of stable solu- Note that the categorization phase is considerably en-

tions we concentrate on in this work. The retrieval of a singlehanced by synaptic dilution of the network, and the globally
example, alls examples being equivalent, is given byt  stable spin-glass states are correspondingly reduced, in par-
#0. The categorization phas&), in which the network ticular in the limit c—0. It is also worth comparing our
performs a generalization task for which it has not been spephase diagram for the symmetrically dilute network, in the
cifically trained, like the recognition of concepts, is specifiedlow connectivity limit, with the phase diagram found for the
by the fully symmetric overlapm!’=m,#0, for »  categorization problem in the extremedgymmetricdilute
=1,... s, since we do not consider the retrieval of single network[12]. The phase boundary for the latter, not shown
examples. A finite overlam® with a concept appears in that in the figure, starts at the place where @eP phase bound-
phase and there is, in general, a nonzero spin-glass ordary meets thd axis and it decreases continuously down to
parametery. Furthermore, there is a spin-glass ph&S&)  the a axis where it meets the low-end point of theC-SG
described byn,=0 andm!=0, whileq+0, and a disordered phase boundary for the extremely dilute symmetric network.
paramagnetic phaseP], wherems=0, m*=0, andq=0.  Thus, the critical ratiax,, at T=0, is the same in the two
There are, of course, other solutions to the saddle-poinmodels. Moreover, it can be argued that the behavior in ei-
mean-field equations, in which we are not specifically inter-ther of the limitsT=0 or «a=0 has to be the same. The
ested in this work. reason for this is that disorder due to temperatureyan,
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FIG. 2. Overlap with a conceph®, symmetric overlap witrs FIG. 3. Categorization curves(s) for c=0 (the same as

examplesmg, spin-glass order parameter and categorization er- =0.001),c¢=0.1, 0.5, and 1, from left to right, witlx=0.03125,
ror e(s) for T=0.1, b=0.4, s=10, and connectivitc=0 or ¢ b=0.5 forT=0 andT=0.8.
=0.001.

nectivity. Indeed, we checked that this is the case.

should have the same effect on both models. On the other The improvement of the categorization ability of the net-
hand, atT=0 we are left with stochastic noise from the Work with dilution can best be seen from the categorization
macroscopic number of concepts, which is assumed to beurves shown in Fig. 3 for the errai(s) in terms of the
Gaussian to start with in the asymmetrically dilute network,number of examples, for connectivity=0 (the same as
while it becomes Gaussian in our case through the assump=0.001),¢=0.1, 0.5, and 1, and for fixed: andb, either

tion of replica symmetry. As a result it turns out that there isfor T=0 or T=0.8. For a numbes of examples smaller

a much larger categorization phase in the symmetrically dithan a criticals;, there is an error of 0.5 due to a vanishing
lute network. overlap with the concepts and the presence of a spin-glass

The AT linesTg, below which the replica-symmetric so- State. We remind the reader of this almost always present
lutions for the order parameters become unstable to replicatate for lowT. On the other hand, there is a rapid drop in
symmetry-breaking perturbations, are also shown in Fig. 1the categorization error at a critical number of exampses,
Within the accuracy of our calculations, these lines meet th@s found before for the fully connected network, and this
corresponding replica-symmetric phase boundaries where thiimber is lower the smaller the connectivity in the present
slope of the latter change sign. This is similar to what hagnodel. Thus, an extremely dilute network tends to categorize
been found before for the memorization problg26].  for a smaller number of examples than a fully connected
There are reasons to believe that the phase diagram and thgtwork. It should be pointed out that the categorization
performance of the network, discussed here and below, prgurves have a nonmonotonic dependenceTorfor values
vide lower limits to the exact results for these features, apelow T=0.8, not shown for clarity in the figure. This will
will be argued in the next section. be discussed below.

To judge to what extent a larger categorization phase is The effects of stochastic noise on the performance of the
more useful with stronger dilution, we consider now the per-network within the categorization phase, due to the presence
formance of the network. Indeed, the performance for ef a macroscopic number of conceptsTat0, are shown for
given a/ ay (Where ap=2/m is the critical storage ratio for b=0.2 andc=0 by the categorization curves in Fig. 4, for
the extremely dilute Hopfield modeWithin the categoriza- variousa/«a. The starting point fos=1 corresponds to the
tion phase is improved by dilution, as demonstrated by thaetrieval of a single example. Note that the categorization
order parameters, shown in Fig. 2, fo=0.1, b=0.4, s error first decreases monotonically with an increase in the
=10, and either foc=0 orc=0.001. In the case of vanish- number of examples, for small «, while for larger values it
ing connectivity, the symmetric overlap with the examplesfirst increases until an appropriedehas been reached, start-
and, hence, the overlap with a concept, vanishes contining to decrease thereafter. The reason for this is the compe-
ously on approach to the phase boundary from below, whildition between symmetric mixture states that favor categori-
for finite connectivity the overlaps drop discontinuously to zation and the presence of spin-glass states that tend to
zero on the phase boundaries, as in the case of the fullgestroy it. Eventually, whem/«q is close to 0.15, a spin-
connected network. Note that the discontinuities decreasglass state witlke=0.5 is reached continuously, reflecting the
with dilution. As one would expect, however, the overlapsnature of theC-SG phase boundary. With an increase in the
with a concept or of a mixture state decrease in both casegsumber of examples, however, the state of the network may
with an increasing ratia, while the categorization error in- again get into the categorization phase starting to recognize
creases. Also, since th®&-SG phase boundaries have an in-the concepts. Similar results are obtained for other values of
creasing criticaky.(T) for decreasing, the overlap with the the correlation parametdr. For larger values, the trend to-
concepts and, hence, the categorization ability of the networlvards categorization starts for a lower
should decrease on the phase boundary with decreasing con-A similar situation occurs aff =0 for small but finite



4586 P. R. KREBS AND W. K. THEUMANN PRE 60

05 ) 4

/’ . \ 0
, \, ——- oo, =0.12
J \ —-— 0/0,=0.147

04 — e, =02

03

0.2 |

0.1 01 r

L L L L n 0.0 . . .
0 30 60 90 120 150 180 0.0 0.1 0.2 0.3 0.4

0.0

FIG. 4. Categorization curve;(s) at T=0, for b=0.2, c=0, FIG. 6. Dependence of the categorization ewan « for vary-
and several values af/aq, as indicated, wherex,=2/7 is the  ing T, with b=0.3, s=10, andc=0.
storage ratio of the extremely dilute Hopfield model.
the categorization ability. This non-monotonic behaviofin

connectivity and small. However, forc=0.001, say, when is aIsp present at lowex and it is a feature of the network

a critical a/ a, of 0.0936 is reached the categorization errorthat is only present for more than one example. Indeed, we
jumpsdiscontinuouslyon the phase boundary to a spin-glassfound that f_or all values of for Whlc_h the network is in the
value of 0.5, in accordance with the nature of the transitiorfatégorization phase, the categorization curves start at the
discussed in the context of Fig. 1. The results in either cas&@me errok(s) =0.35 fors=1, as shown in Fig. 5. We also
clearly indicate that an increase in the stochastic noise levefound nonmonotonic behavior i near the phase boundary
due to a macroscopic number of concepts, always seems fo-SG for very smalic, but it may not be easy to see for
deteriorate the performance of the network. Except for verynoderate to large.

small a, where the stochastic noise simply slows down the The different dependence of the categorization perfor-
recognition of Concepts with the number of examp|es premance of the network on both typeS of noise can be seen best
sented to the network, there is a monotonic destabilization dft the evolution of the categorization error with an increase
the symmetric mixture states forgiven concept by the in- in eithera or T, keeping the other one fixed, shown in Fig. 6
terference of the random overlaps with the examplealbf for c=0, b=0.3, ands=10 examples. In contrast to the
other concepts. These are effects that only appear for a siglependence o, the dependence ohis clearly nonmono-
able number of examples. tonic apparently down to asymptotically smallAs a result,

A somewhat different behavior of the network in the cat-the effects of an increase in stochastic noise level can be
egorization phase is obtained when the effects of finite noiseompensated, up to a certain extent, by an increase in syn-
level T are taken into account. At relatively high stochasticaptic noiseT.
noise «, this is shown in Fig. 5 fora/ay=0.3, with b
=0.3, andc=0. It can be seen that the effect is, first, to
improve the categorization ability of the network for Iow
<0.4, while a further increase in the noise level deteriorates We studied in this work the effects of stochastic and syn-
aptic noise on the ability to recognize the ancestors of a
hierarchical two-level structure of patterns in a symmetri-
cally dilute network trained only with the descendants in that
structure. This is a network that has a nontrivial dynamics
and, consequently, it may have rich and interesting equilib-
rium behavior, even in the low-connectivity limit, as demon-
strated here. Due to the presence of a correlation between an
ancestor and its descendants, there appears a correlation be-
tween the latter that stabilizes the symmetric mixture states
with the descendants. These are states that generate finite
overlaps with the ancestors. Although the phase diagrams
look similar to those for the memorizatiqalso called the
retrieva) problem in the symmetrically dilute network, the

V. SUMMARY AND CONCLUDING REMARKS

107 interpretation of the ordered phase is quite different.
The categorization ability of the symmetrically dilute net-
0.00 - - : work trained with a generalized Hebbian rule was studied in
0 20 40 60 80 . . .. . . . .
N this work for varying connectivity, with particular interest in

FIG. 5. Categorization curves(s) at a/ay=0.3, b=0.3, and  the extremely dilute limit for which there is a considerable
c¢=0 for several temperaturdsas indicated. enhancement of the categorization phase when compared
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with that for the fully connected network, as can be seen bystrictly, be used in our case since there does not seem to be a
a comparison of our present result and that of a previousimple gauge transformation that can formally identify our
work [9]. As a result there is a reentrant categorization toproblem to the SK spin-glass problem, as discussed in Sec.
spin-glass phase boundary with a considerably increasedl. On the other hand, it is known that results for the order
critical ratio .. For a below, the categorization curves for parameter, in the memorization problem within replica-
the errore(s) are found to have a nonmonotonic dependencesymmetric mean-field theory, give lower bounds to results
on the synaptic noise levdl, for low to moderate values. In obtained by numerical simulations on large networks. One
contrast, the asymmetrically dilute network has only mono-may argue for our problem that the shape of the true catego-
tonic behavior. We also find that the transition from the cat-rization to spin-glass phase boundary, in the low-
egorization to the spin-glass phase boundary is a discontingonnectivity limit, should not be very different from that of
ous one for low but finite connectivity, as in the case of thethe SK model.
fully connected network, and that the transition becomes a The reason for considering a dilute network is that it is a
continuous one in the vanishing connectivity limit. more economical architecture than the fully connected net-
The explicit results presented in this work were obtainedvork and, in the present case of symmetric dilution, it has
in replica-symmetric mean-field theory. We also determinedilso a better performance. Indeed, particularly in the low-
the de Almeida—Thouless line that limits the stability of our connectivity limit, the network is fairly robust to synaptic
results to replica symmetry-breaking perturbations, for eacimoise for a moderate, since at least the upper part of the
connectivity. As a consequence, the reentrant parts of theategorization phase shown in Fig. 1 is correctly given by the
C-SG phase boundaries are not stable to these perturbationigplica-symmetric solution. Although a symmetric dilution is
In particular, one may worry about the low-connectivity limit not appealing on biological grounds, it may be a more suit-
where the whole phase boundary is a reentrant one. Howable architecture for hardware implementations.
ever, as we showed in Sec. lll, the average replicated parti-
tion function,_(Z“}c, for our problem, prior to the assump- ACKNOWLEDGMENTS
tion of replica symmetry, is formally similar but not
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