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By using molecular dynamics simulations on a large number of hard spheres and the \fessatiation we
characterize hard-sphere systems geometrically at any packing fracatong the different branches of the
phase diagram. Crystallization of disordered packings occurs only for a small range of packing fraction. For the
other packing fractions the system behaves as either a(8table or metastabler a glass. We have studied
the evolution of the statistics of the Voronessellation during crystallization and characterized the apparition
of order by an order paramete®§) built from spherical harmonic$S1063-651X%99)19510-2

PACS numbd(s): 05.70.Fh, 05.206-y, 61.20—p

I. INTRODUCTION 1. NUMERICAL PACKINGS

Packings of hard spheres are convenient models to StUdt% In this section, we first present the different methods used

many physical systems such as granular matefiaisd] > buildlthelinitigl pack_ings Iof s_prr]]eres, e:jnd then v;/r; describ(;a
simple liquids[5-8], colloidal suspension9,10], etc. The the molecular dynamics algorithm used to equilibrate an

main advantage of this model is the simplicity of its inter- eventually crystallize them. We start from nonequilibrated

particle potentiakb, which is defined by packings, ordered or disordered. To obtain an ordered pack-
ing, we simply decrease the radius of the spheres of a FCC

d=wx if r<2R packing to have the wanted packing fraction. A disordered

B=0 if r>2R’ (1) packing is obtained using the Jodrey and Tory’s algorithm

[16]. It is based on an iterative sequential resorption of over-

wherer is the distance between two centers of sphereRind laps. The input parameters allow to control the final diameter
the radius of the spheres. It is admitted that the packin@f the sphere. As a consequence, we can build Jodrey-Tory’s
fraction 7 of such packinggdefined as the ratio of the vol- packing in a large range of packing fractifnrom »~0.4 to
ume occupied by the spheres to the total voluroennot  7~0.64).

exceedr/3v2~0.74, corresponding to compact ordered con- All the packings are made of approximately 15000
figurations [hexagonal close-packedHCP) and face- spheres. Some larger packings with approximately 30000
centered cubi¢FCC)]. One of the most striking properties of spheres were built to refine some peculiar data. Once the
a hard-sphere system is the existence of a first order fluidpacking has been built, ordered or disordered, it is equili-
to-solid transition when the packing fraction increafes~  prated and eventually crystallized using a molecular dynam-
14]. It is possible to have disordered systems at packing fraccs (event-driven algorithm. We give a random initial veloc-
tions higher than the packing fraction of freezing, but theyjty to each sphere, in such a way that the total momentum is
are metastable. The maximum packing fracfithre so-called  gqual to 0. The spheres move independently unless an event
random close packing, RGhat such packings can reach is (axes place. An event is an instantaneous elastic collision

aDF}TOXimateW??chg—‘O-gA'- Thki§ Va“ée is not an .e'xa::t Va'“ﬁ between two particles. It is characterized by a sudden change
as for clc_JrTﬁlact or ?jr_e Fafhmgsth u;;énlemplnca one thafg particle momentum. Since the collisions are instantaneous,
varies slightly according to the authdis8,19. there are only binary collisions in the system. Our algorithm

In this paper, by using the Vorontessellation, we char- e o 2
: ; . uses periodic boundary conditions. A general description of
acterize geometrically hard-sphere systems obtained by nu-

merical simulations along the different branches of the phasrﬁ%ecular dynamics of hard-sphere systems can be found in
diagram and we study the crystallization of disordered pack!™"-"

ings. In Sec. Il, we introduce the algorithms used to build the

initial systems and our hard-sphere molecular dynamic algo-

rithm. In Sec. Ill, we present the tools used to characterize  !ll. CHARACTERIZATION OF THE PACKINGS

the packing, i.e., the Vorondessellation and the bond order
parameter. In Sec. IV, we report the phase diagram. The
geometric properties of the packings along the different The thermodynamical properties of elastic hard-sphere
branches are described in Sec. V. In Sec. VI, we study thgéystems depend on the temperature in a trivial manner. Since
possible crystallization of disordered metastable packings, it§1e collisions are instantaneous, changing the temperature
effect on the geometric parameters during the crystallizatiojust rescales the time in the system.

A. Thermodynamical properties

and compare the informations given by the Vorotessella- Two methods can be used to calculate the pressure in the
tion and by the order parameter. Finally, in Sec. VI, wepacking. The first one consists of calculating the collision
present our conclusions. ratel” from which we can deduce the pressure by the formula
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PV r C. The measure of the order

N @ The classical way for determining order in an isotropic

packing of spheres is by inspection of its radial distribution
function. As the crystallization begins to occur, a very small

whereP is the pressurey the total volumeN the number of peak appears for a value bfwhich corresponds to the sec-

spheres] the temperaturek the Boltzmann’s constant, and ond neighbors in a FCC or HCP arrangemert 2vaR. As

F.OISV”?’ %/SRZN(lel)/Vf[ﬁS]Ciis thﬁ Iow—clienhsity colli- .doointed out by Rintoul and Torquat@2], this method is
sion rate for large packings of hard spheres. In the expressidn___.- . . ’
of Ty, (V) is tﬁe ﬁ]ean sgquare velocpity. The second E’netho nsatisfying for two reasons: on one hand the absence of the

. . eak does not necessarily mean the absence of crystalliza-
is based on the fact that the equation of state of hard spher e - i
is related to the radial distribution functiay(r) at contact |%n, and on the other hand it is very difficult to determine

- . X when the peak appears.
r=2R, whereR is the radius of the spheres, Steinhardet al.[33] have proposed another way to deter-

mine more quantitatively order in a packing. The method
consists of assigning the quantity

Qim=Yim(6(F), (1)) ®)

The two methods give close values, but the second one ree every “bond” joining a sphere to its neighbors, where
quires some cargg(2R) is difficult to measure with preci- Y,,(6(F),#(F)) are spherical harmonics, each bond being
sion since the radial distribution function can rise or fall identified by its midpointr and its polar angle®(r) and
rapidly close tor=2R. So we determine the pressure from ¢(f) measured in respect to some arbitrary reference coor-
the collision ratd Eq. (2)]. dinate system. Th®),, depend on the reference coordinate
system, so one must consider rotationally invariant combina-
tions, such as

PV _
m—1+4ng(2R). 3

B. Geometric characterization of the packing
[ 112

Our analysis of the geometry is based on a classic tool of A
L (Qm)?| (6)

the statistical geometry: the Voronmssellation of the pack- Q=
ing [19]. This method is very powerful for studying correla-
tions in packings of spher¢20,21], the structure of glasses
[22,23, of Frank-Kasper phasgf4], or of simple liquids
and amorphous solidg25,26. It can been generalized to
polydisperse assemblies of spheres by using the Laguer
distance between spheife&y] or by using the Voronos-net
[28]. One of its more recent and original uses is the study o
the growth of cellular material®9]. It has been already used
by Tanemureet al.[30] in a geometrical analysis of crystal-
lization. A Voronoipolyhedron of a spher81] contains all
points in space that are closer to the sphere center than to
other particles. It is delimited by the smallest envelope o
bisecting planes with the other spheres. The Vordassel-
lation is the whole collection of the Vorongolyhedra. It
creates a froth which may be considered without any refer
ence to the underlying spherfgX]. It allows us to define the
notion of “neighbor” without ambiguity for any packing
fraction: two spheres are neighbor if their Voropoilyhedra
share one face.

The basic quantities we study in this paper are:

(i) the mean numbe(f) of faces of the Voronopolyhe-
dra,

(i) the varianceu, of f: w,=(f2)—(f)2,

(i) the fractionp; of faces that have i edges,

(iv) the slope of the Aboav-Weaire’s law, which describes
the topological correlation between neighbors. Leni{d ),

the average number of faces of the neighbors éffaceted
cell. We have IV. PHASE DIAGRAM

where{(Q),) is the average o), over all bonds.

Since the lowest nonzer@, in common with the icosa-

edral symmetry and cubic symmetry correspond$=t®

3], Qg can be taken as an order paramefgg. is very
1sensitive to any kind of crystallization and increases signifi-
cantly when order appears. It is important to notice here that
sinceQg is calculated on the Voronmeighbors, its value for
a compact structure is lower than that calculated with only

e nearest neighbors. For example, in the slightly disordered
@CC casd 34|, there are 12 nearest neighbors placedRt 2
and on average 14 Voronoeighborgthe 12 nearest and, on
average, 2 placed atv2R). The value ofQg calculated on
the nearest neighbors is 0.5745, whereas it is on average
0.454 on the Vorononeighbors.

Another way to measure the local order of a packing of
spheres is by way of the fractioms of i-edged faces of the
tessellation[30,21,2Q. Crystallized structures with a high
degree of icosahedral order, such as the Al5 strudigre
tungsten, have a high value gps which decreases sharply
when the melting occurf®4], while in structure where cubic
symmetry dominatespgs and p, are high and abruptly de-
crease at melting. Then the study of fiés allows us to get
an idea of the symmetry of a packing and to localize the
structural phase transition.

(f)a+ u, We have reported in Fig. 1 the phase diagram in the
_ (4) pressure-packing fraction plane. It is made of four branches:
f the fluid branch, the coexistence branch, the stable solid
branch, and the metastable branch. The fluid branch starts at
wherea is a parametefof order of 1, which depends on the =0 with the valuePV/NkT=1 which corresponds to an
nature of the foam. ideal monoatomic gas. We obtain it by performing molecular

m(f)=(f)—a+
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FIG. 1. Evolution ofPV/NKT for thermodynamically stableD)
and metastablé¢®) packings. Solid line, Carnahan and Starling
[35]; dotted line; Speedf38]; dashed line; Hal[37].

simulations on FCC and Jodrey-Tory’s packings of low
packing fraction until the pressure reaches a constant value
As the packing fraction increases, the number of coIIisions'az?
per unit of time becomes more and more important and the
pressure increases until the freezing point, which corre-
sponds to a packing fractiom;~0.495. At this point the first
order transition can occur and the branch splits into two
parts: the coexistence branch and the metastable branch.
very good approximate expression for the fluid branch has
been given by Carnahan and Starlifg@p]. The difference
between this expression and our numerical data is less the 05 y 15 210
1%. Number of collisions

In the coexistence branch the fluid and the solid coexist in
equilibrium at a given pressure until the melting point at the FIG. 2. PV/NKT as a function of the number of collisions for an

packing fractionyy,~0.545. We do not observe a constantjnisia| Jodrey-Tory's packing of packing fraction=0.558(a) and
pressure but a “Van der Waals loop” consequence of they packing fractiony=0.628(b).

finite size of the system. This branch is obtained by perform-

ing molecular dynamics on FCC initial packings until the jization; we take for the pressure the value of the small pla-
pressure reaches a constant value. The solid branch, obtaingéy. At higher packing fractiori§ig. 2b)], the crystalliza-
with FCC initial packings, is the stable branch of the systemion becomes more difficult; the pressure decreases first
for packing fractions higher than the packing fraction of quickly because the initial packing is far from equilibrium;
melting. The pressure goes to infinity when the packing fracthen it reaches a plateau value which we take as the pressure
tion reaches the FCC value 0.7405. Our results are very C|O$ﬁ the Corresponding packing fraction for the metastable
to those of Alderet al.[36]. A very good theoretical expres- pranch because there is no evident sign of crystallization
sion for this branch is given by H&lB7]. A small part of this  (this will be confirmed by the measurement@f; see the
branch can also be obtained by crystallization of a Jodreynext section
Tory’s packing(see Sec. VI Speedy[38] proposed an empirical equation of state for
The last branch corresponds to the metastable state of thge metastable branch abowe=0.56 that fits very well our

system for packing fraction higher than the packing fractiongata. Another fit equation was given by Torquf®s].
of freezing. The corresponding packings, obtained by equili-

bration of Jodrey-Tory’s packings, are disordered and the V. GEOMETRICAL CHARACTERIZATION
pressure diverges when the packing fraction reaches the RCP '
value (=0.64). The main difficulty in determining the pres-  In this section, we study the order parame@g and

sure in this branch is to run the simulation long enough tathe topological parameter¢f), u,, and p; along the
equilibrate the packing without crystallizing it. For packing different branches of the phase diagrfifigs. 3, 4a), 4(b),
fractions between about 0.54 and 0.59, equilibration andnd 5. For thep;, we limit ourselves to the values obtained
crystallization are not well separat8B8,32: as seen in Fig. fori=4, 5, and 6.

2(a) we observe a short, slightly decreasing, plateau and then First, we note some common points in the evolution of all
a faster decrease of the pressure, consequence of the crysthlese quantities with the packing fraction. On the disordered
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metastable packingsy\), theoretical value for the slightly disor- (b)
dered FCC.
8 L -
branches, the variations are regular and we do not observe 0
notable modification of behavior when passing from the lig-
uid branch to the metastable one. On the contrary, all the & 5 T
guantities show a sharp variation between the freezing point =
and the melting pointin fact this variation begins after the L o |
freezing point and stops before the melting point; this is due
to the finite size of our systemAbove the melting point, the 0
variation is much slower. oL o i
We also note some significant features: Q%m.).
0 00OoT®
1. Qg gives really a measure of order in the packing. In 0 . . .
the disordered branches, it is a very low sign of an absence 0 0.2 0.4 0.6 08

of crystallization. It increases sharply in the coexistence Packing fraction

branch, and continues to increase more slowly above melt- £ 4 (f) (@ and, (b) vs the packing fraction for the stable

ing, sign of a progressive structuration of the packing. branches(O) and for the metastable bran¢®). In (a) the error

2. The average number of faceb) decreases with the pars are given for the points corresponding to packing for which it
packing fraction starting from the exact valuef) s difficult to distinguish between equilibration and crystallization.
=487°/35+2~15.535 for =0, obtained by Meijering For the other points, the errors are of the order of magnitude of the
[40]. For the crystallized packings, it is close to 14, the the-symbols. Forb) all the errors are smaller than the magnitude of the
oretical value for slightly disordered HCP or FCC packingssymbols.
[34]. For the random close packing,) is close to 14.2. The
evolution of u, is similar to that of(f); for the crystalline ing of spheres. However, as can be seen in Figs. 3 to 6, the

packings,u, is almost constant=£0.9). order paramete®g, which has very weak values in the dis-

3. In the liquid and metastable branches,is continu- ordered phases and much larger values in the crystalline
ously increasing withy; it is always larger thamp, and pg, phase, seems to be particularly suitable. This will be con-
sign of an important disorder in the packing. On the contraryfirmed in the next section, where we consider the transition
in the crystalline branchpg is larger thanps. from the metastable branch to the crystalline branch.

4. According to the Aboav-Weaire’s law, the variations of
the quantityf m(f ) with f can be flttEd, with a gOOd apprOXi' VI. TRANSITION FROM THE METASTABLE BRANCH

mation, by a straight line for each packing fractignHow- TO THE STABLE BRANCH
ever, the slopec=(f)—a of those lines depends on, as _ _ _ _
already noted by Ogeat al.[20]. From the variations of the In this section we study the evolution of the geometrical

topological quantities, we expect the Aboav-Weaire’s law toquantities when a Jodrey-Tory packing with packing fraction
be affected also by the degree of order in the packing. This ibetweenn=0.545 andn=0.6 [Fig. 7(a)] crystallizes[Fig.
indeed the case as shown in Fig. 6. The variations of th@(b)].

slope « are similar to those of the other quantities we have

studied. A. Crystallization of the Jodrey-Tory’s packings

From above, it can be deduced that all the quantities we The effects of the molecular dynamics algorithm on the
have considered can be used to characterize order in a packedrey-Tory’s packings depend strongly on the packing frac-
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tion p, (O), p5(<), ps (O). Open symbols: stable branches; closed
symbols: metastable branch.

tion #. If one starts with a packing withy between 7;
=0.495 andn,=0.545 we do not observe crystallization,
even after an important number of collisions { D@llisions;
the system is a metastable fluithe same behavior has been
observed by Speedp1]). Betweeny,, and ngcp, an in-

crease of packing fraction is synonymous of an increase of

the difference of entropy between the ordered and the diso

dered state. So, one may think that the higher the packing
fraction, the higher the propensity to crystallize. But, this
propensity depends also on the free volume of the spheres.

Indeed, if the spheres are very close to each other, at
high packing fractioh their moves are very small and the

structural reorganization very slow. The system is in a
“quenched” state. This means that the competition between

entropy and free volume governs the crystallization.

We have reported in Fig. 8 the evolution@§ versus the
packing fraction for initial Jodrey-Tory's packings after a
given number of collisions (£9 and in Fig. 9 the corre-
sponding values ofy;. For comparison we have also re-
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FIG. 6. Slope offm(f) vs the packing fraction for the stable
brancheqgO) and for the metastable bran¢®).
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FIG. 7. Crystallization of an initially disordered packing of
spheres with a packing fractiop~0.558. (a) part of the initial
packing, (b) part of the packing after £0collisions.

ported the values dQ¢ for the stable branch and the values
of p; for the disordered packings. These figures clearly show
that crystallization occurs only in a limited range of packing
fractions. Moreover, in that range, tlig; values show that
crystallization is not fully achieved after 1@ollisions, al-
though the pressure valuésot shown and thep; values
(compare Figs. 5 and) @re close to their values in the crys-
talline branch. Here still, parameté); is a better measure of
order than the other quantities. The propensity to crystallize
is maximum for a packing fraction close tg=0.58. It is
interesting to notice that it is very close to the value of the
liquid-glass transition packing fraction determined numeri-
cally [42—44. Furthermore, Fig. 8 shows that the structure
of a crystallized hard sphere system is FCC.

As said above, at high packing fraction, the spheres can-
not move easily and the crystallization cannot occur in rea-
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FIG. 10. Evolution of Qg with the number of collisions for
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=0.576(—), and =0.585(A).

FIG. 8. Values ofQg for stable packing$O) and for initially
metastable packing®) after 1§ collisions.

sonable times. Figure (B) illustrates our purpose fom i i ) ) )

=0.628: the pressure reaches rapidly a plateau then délmulatlons seem to show the existence at high packing frac-

creases very slowly with time. After a very long time it could oS of & metastable glassy state.

reach the value for the stable packing at the same packing

fraction. The question of the existence of a glassy state for a B Evolution of the geometry of the packing with packings

packing of hard spheres is controver$z$,32,45,43 Using belonging initially to the metastable branch

the parameteQg, Rintoul and Torquatd32] found that, We have studied the evolution of all the geometrical

even at packing fraction as high as that of the RCP, smalyyantities defined previously, with the number of collisions

amounts of crystallization occur and the corresponding sysfor Jodrey-Tory’s packings with packing fraction allowing

tem is not in a glassy state. o ~ partial crystallization. We have reported in Fig. 10 the evo-
We do not find clear sign of crystallization on packings |ution of Qg with the number of collisions for 4 values of the

corresponding to our “glassy” systems. We are then inpacking fraction. We observe th&g increases with the

agreement with a lot of previous authd#2,38,41,43 In-  pymper of collisions, sign of a crystallization. At some

deed, the values d® for these packings during all the dy- times, the evolution 0f4 can be very sharp corresponding
namics do not vary significantly. Furthermore the examinayo strong and global reorganizations.

tion of Figs. 8, 9, and @) shows clearly the existence of a e have reported in Fig. 11 the evolution of

system which has the local structure of a liquid and whichfy with the number of collisions for a packing withy

reorganizes itself very slowly with time. So our numerical — 558. After a sharp initial variatiof) decreases slowly
with the number of collisions from 14.38 to 14.08, which is

0.45 . . .
14.4 . . . -
1 143 1
)
6
<
- A
p £ 142 1
141 + 1
0.15 : ' :
0 0.2 0.4 06 0.8
14 '

Packing fraction

FIG. 9. Values ofp, (O), ps (¢), andpg (O) for disordered
packings(open symbolsand for initially metastable packings after

10° collisions (closed symbol

0.2

0.4

Number of collisions

0.6

FIG. 11.(f) vs the number of collisions for the crystallization of
a Jodrey-Tory’s packing with a packing fraction of 0.558.
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_ . tions. We see thapg is rapidly close to its final value,
very close to the corresponding value of the crystallingyhereas at this moment the value@g is almost four times
branch. The evolution ofx, is very similar: it decreases |gwer than its final value.
from 1.27 t0 0.93. _ As is shown in Fig. 14, the slope of the Aboav-Weaire's

The evolution ofpy, ps, and ps with the number of |5y , decreases slightly with the number of collisions. In
collisions is represented in Fig. 12 fgr=0.558. We observe  fact the difference between the valuesdbr disordered and
a short variation and then a steady statet="0 we have a o1 ordered packings is wealFig. 15. So, the modification

large number of five-edged faces=43%), whereas the of the Aboav-Weaire’s law during crystallization is very
number of four and six-edged faces are lowespectively  \yeak.

~18% and 28% When crystallization occurs the number of
disclinations increases, and the number of pentagonal faces VIl. CONCLUSION
decreases.

The topological parametefand also the pressure, which ~ We have studied the phase diagram of hard-sphere sys-
is not shown reach rapidly steady values, close to their val-tems not only from a thermodynamical point of view, but
ues in the crystalline branch. In the same tifQg,continues also from a geometrical point of view. This was done by
to increasgFig. 10. One more time, we are led to the con- combining the Voronotessellation and classical hard-sphere
clusion thatQg is a more precise measure of the configura-molecular simulations. The different topological properties
tion of the spheres. To illustrate this purpose, we have refor the four branches of the hard-sphere phase diagram are
ported in Fig. 13 the evolution ofg with pg during the presented in detail. We have shown that many of these prop-
relaxation of Jodrey-Tory packings at different packing frac-erties are characteristic of the “state” of the packing. In
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FIG. 13. pg vs Qg at different times during the Event-Driven FIG. 15. fm(f) for a packing of 16384 spheres of packing
simulation. =0.576(CJ), »=0.548(@). fraction »~0.558.(®) after 10 collisions,(O) after 10 collisions.
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particular, the average coordination number is lower for thdion is only possible for a given range of packing fraction.
crystallized branch than for metastable disordered brancBelow this range we obtain a metastable fluid and above this
and the fraction of five-edged faces is higher for the metarange we obtain a glassy state.

stable branch than for the crystallized branch. We have also
considered the evolution of the Voronparameters during
the crystallization. They are good tools to investigate the
order to disorder phase transition. But a more precise mea- We would like to thank James T. Jenkins for stimulating
sure of order is given by the order paramefgy. The study discussions. We acknowledge the financial support from the
of the evolution of theQg with time shows that crystalliza- CNRS and the NSF under Contract No. CNRS/NSF 409617.
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