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An additional contribution to the standard expression for the shear stress must be considered in order to
describe shear banding. A possible extension of the standard constitutive relation is proposed. Its physical,
purely hydrodynamic origin is discussed. The corresponding Navier-Stokes equation is analyzed for the two-
plate geometry, where flow gradients are assumed to exist only in the direction perpendicular to the two plates.
The linearized Navier-Stokes equation is shown to be very similar to the Cahn-Hilliard equation for spinodal
decomposition, with a similar term that stabilizes rapid spatial variations. Only slowly varying flow gradients
are unstable. Just as in the initial stage of spinodal decomposition there is a most rapidly growing wavelength
in the initial stage of the shear-banding transition, leading to a predictable number of shear bands. A modified
Maxwell equal area construction is derived, which dictates the stress and the shear rates in the bands under
controlled shear conditions, and which shows that under controlled stress conditions no true shear bands can
coexist. The kinetics of the shear-banding transition is studied numerically. For the two-plate geometry it is
found that there exist multiple stationary states under controlled shear conditions, depending on the initial state
of the flow profile. Shear banding occurs not only when the system is initially unstable, but can also be induced
outside the unstable region when the amplitude of the initial perturbation is large enough. The shear-banding
transition can thus proceed via “spinodal demixin¢ffom an unstable initial stateor via “condensation.”

Under controlled stress conditions no stationary state is found. Here, coupling with flow gradients extending in
other directions, not perpendicular to the two plates, should probably be taken into account.
[S1063-651%99)18310-1

PACS numbsds): 83.20.Bg, 47.15.Fe

[. INTRODUCTION tural order(for example, in surfactant systejmsvhich may
lead to phase transitions that are in turn driven by forces of a
In many fluids containing mesoscopic entities, a mechanithermodynamic nature. Here, forces of a thermodynamic na-
cal instability (or metastability can be induced by applying ture are put to work to drive a transition between states that
shear flow, where the system ultimately “demixes” in re- can exist only under the influence of shear forces.
gions of high and low shear rates. These “bands” of con- The aim of this paper is to introduce a physically plau-
stant high and low shear rates are connected by “interfaces,Sible extension of the standard constitutive relation, and to
where sharp spatial changes of the local shear rate occwstudy the demixing kinetics from an initially perturbed state
This so-called shear-banding instability occurs when theof constant shear rate to the stationary shear-banded state.
stress versus the shear rate of a homogeneously sheared sybe proposed constitutive relation should be employed in
tem, prior to the transition, exhibits a van der Waals—likedescribing the more complicated situation where shear forces
behavior, where there is a range of shear rates where trend thermodynamic forces are intertwined.
stress decreases with increasing shear rate. This transition Shear banding has been unambiguously observed, or there
has amechanical, hydrodynamic origin are strong indications for its occurrence, for wormlike mi-
Thermodynamically driven transitions, which also occurcelles [4-7] (which sometimes show an isotropic-nematic
in the absence of shear flow, will be affected by shearingphase transition in the absence of shear flawother sur-
motion. Both the kinetics of phase separation and the locafactant system§8,9] (which exhibit a reentrant transition of
tion of phase boundaries are changed by applying shear flova lyotropic lamellar phase to a phase of multilayered
The thermodynamic forces which drive the transition will vesicle$ and in polycrystalline colloid§10—-12. In some
generally be affected by shearing motion in a way that is facases the shear-banding transition seems to occur in the vi-
from understood. If one is willing to accept the concept ofcinity of a thermodynamic phase boundary. It may be that a
local thermodynamic equilibrium in systems under sheawan der Waals-like behavior of the stress is enhanced by
flow, these forces can be formulated within the framework ofpretransitional thermodynamic phenomena.
irreversible thermodynamicfl—3]. The forces that drive The shear-banding instability has been analyzed for the
these types of phase transitions of systems in shearing maase of flow through a cylindrical pipe by McLeigt al.
tion have athermodynamic origin [13,14), assuming that a single, infinitely sharp interface ex-
It is not always possible to strictly distinguish betweenists. The Navier-Stokes equation is then solved, imposing
mechanical and thermodynamic instabilities. First of allboundary conditions on the interface and using the standard
these forces can be at work simultaneously, where couplingonstitutive relation for the stress with an expression for the
between the two may be essential for an instability to occurviscosity as derived for entangled polymer systétts—17.
Morever, shear forces may induce entirely new microstrucRecently, Spenlegt al.[18] and Porteet al.[19] formulated
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nonstandard constitutive relations for the stress, in order tamplitude(“condensation’). Under controlled stress condi-
predict shear banding without having to assume the existend®ns no convergence to a stationary state is found within the
of a single, infinitely sharp interface. Poré¢ al. use quasi- one-dimensional treatment of the two-plate geometry. The
thermodynamic arguments to construct a constitutive equaRossible reasons for this are discussed. Section VIl is a sum-
tion, while Spenleyet al. introduce a simple constitutive re- mary and discussion.
lation that exhibits both viscoelastic behavior and nonlinear
response. Il. THE CONSTITUTIVE RELATION AND THE

In the present paper a natural extension of the standard CORRESPONDING NAVIER-STOKES EQUATION
constitutive relation is proposed that introduces a higher or-

S?br ip at'fll tc:}env;atlve 0 f the ST.e ?2 ra(ljte. S!chhts g_ratdlint €9NRe fluid velocityu is along thex direction parallel to the two
ribution to the stress is essential to describe the interfaces. It ..o 2 depends only on the distagcéom the lower,

is argued Fhat this higher order deri\(ative is .Of a purely hy's ationary plate. The Navier-Stokes equation for such a flow
drodynamic nature. The shear-banding transition con&dere,réads

in the present paper is studied without consideration of non-
local contributions from the equilibrium free energy that au(y,t)  a3(y,t)
couples to inhomogeneities in microstructure nor the inter- = ,
vening effects of forces that may drive a phase transition.
Including such contributions in order to describe shear ban

ing gives rise to gradient contributions to the stréas3], transport will not be considered, and the mass densitll

which, however, do not depend on the local shear rate, COflsg aken constant in the sequel. Diffusive mass transport may

trary fo the purel_y hydrodynam_lc cor_1tr|b_ut|on. Th?fe IS 8nder certain circumstances be importe2tt,22. When one

vr(]ery f‘?ceﬂt preprint databaééo]fm WhI'Ch c;deas similar 10 s away from the thermodynamic spinodal region, where the

those In the present paper are formulated. . effective diffusion coefficient is negative, and as long as the
Th|§ paper is organlzgd as folloyvs. In Sec. Il itis argued“fe(:}db‘,:le instability” does not occuf21,22, diffusive

that higher order derivatives contribute to the stress. Argui,,qq transport probably does not affect the essential features

ments are based on considerations of the effect of shear ﬂon the shear-banding transition. It is also assumed that the
on microstructural order. A phenomenological coefficient isshear-banding transition is sufficiently slow to neglect the

introduced that will be referred to as “the shear-curvatureg,qyic contribution to the stress response. Depending on how

viscosity.” It is argued that the shear-curvature ViSCOSityfast the shear-banding transition occurs in comparison to

shear thins to 0 in the same shear rate range where the shgaki | microstructural relaxation times, one could extend the

wsg_(;_sny tsr?ear thins todl_ts h',?lh _sheg: rlfte plate?u valude.rI] onstitutive relation that is proposed in the present paper to
addition, the corresponding Navier-Stokes equation and g, e elastic respongéor example, with a simple Maxwell

boundary conditions under controlled shear and stress condia 5y ation modal Including elastic stresses would interfere

tions are formulated for the two-plate geometry. A rnOdIfIedwith the clarity of arguments related to the essential features

Maxwell equal area construction is derived in Sec. lll. ThiSo¢ shear nanding, so that an account of elasticity is deferred
Maxwell construction predicts the shear rates in the high an a future work

low shear rate regions of the shear-banded structure and the The standard constitutive relation for the strBssvithout
stress in the stationary state. It also shows that no true Sheaérastic contributions. reads

banded structuréwvhere the shear rate is constant within re- '

gions of finite extentcan exist under controlled stress con- S (y,t) = n(¥(y, 1) Yyt )
ditions. A linear stability analysis is given in Sec. IV, both Y G ¥

under controlled shear and controlled stress conditions. It igyherey(y,t) = du(y,t)/dy is the local shear rate angis the
shown that in the initial stage there is a most rapidly growingshear viscosity. It follows from Eql) that in a stationary

wavelength, quite analogous to the Cahn-Hilliard scenarigtate we must have a constant stress throughout the system,
for spinodal decomposition. It is predicted that the linear

instability disappears when the system size is small enough, 2(y,t)=const (for stationary statgs 3)
which would allow the measurement of the entire van der

Waals looplike behavior of the stress, using for example avhich expresses mechanical stability. As is well known, this
Couette geometry with a very small gap width. In Sec. V it isequation cannot be satisfied in a shear-banded state, where
argued that there is no unique stationary shear-banded flow y exhibits a van der Waals—like behavior: in the low and
for the two-plate geometry. This is confirmed in Sec. VI, high shear rate regions this equation can be satisfied, but in
where the full nonlinear, time dependent Navier-Stokegassing through an interface, the stress varies according to
equation is solved numerically. The most rapidly growingthe van der Waals loop and is therefore not a constant. The
wavelength dominates the flow pattern in the early stages aftandard consitutive relatid) for the stress is therefore not
the shear-banding transition. This leads to a generic numbesufficient to describe shear banding.

of interfaces in the final stationary state. It turns out that Let us first ask for the physical meaning of the standard
under controlled shear conditions there exist “spinodal andonstitutive equatiori2). This relation simply assumes that
binodal shear rates”: in certain shear rate intervals the tranthe friction force between two adjacent, sliding layers of
sition to the shear-banded state may occur because the initifiliid [as depicted in Fig.(®)] is proportional to their relative
flow is linearly unstabld‘spinodal decomposition), or oc-  velocity, that is, to the shear rate. The friction coefficient of
curs only due to perturbations with some minimum, finitetwo sliding layers, which is the proportionality constant be-

Consider a laminar flow between two flat plates, where

ot ay @

%ith p the mass density and the stress. Diffusive mass
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u u ever, particles are much bigger, and relatively small shear
=== T rate gradients are already sufficient to contribute to the stress.
&l = — = 7 We thus arrive at the following expression for the stress:
P R, . ~ L~ ~
= < N N —
s PN i 1t AL S
@ ® (y.t)=n(y(y,t)y(y.t) K(v(y,t))a—yz- 4

FIG. 1. (a) Sliding layers in a system of rodlike particles, where The proportionality constank is referred to here asthe
the shear rate is constant over length scales of the order of theénhear-curvature viscosify The same expression for the
length of the rods(b) Sliding layers in the same system, where the gtress has been proposed very recently in a preprint database
shear rate changes appreciably over such length scales. [20].

The shear-curvature viscosity is shear rate dependent
because a difference of the shear rate in two adjacent layers

itself is shear rate dependent, because the friction coefficie duceds a dlfferhence n thellr mllcr(;]structure Iln ahway that r'ls
of two adjacent layers depends on the microstructural ordefePendent on the average local shear rate. In the case where

in those layers. For example, in the case of a suspension (Iﬁe local shear rate is very large, so that the microstructure is
rigid rods, the friction coefficientshear viscositywill be ~ Sawrated by the shear flow in both layers, an additional

different for an almost isotropic arrangement of the rods aghangei of the sheadr rr?te In tr(;e two Iayerr']s does ?]Ot affect thglr
compared to a highly aligned microstructural order. microstructure, and hence does not change the stress. For

Now suppose that the shear rate changes on a length sczﬂ- persions of rodlike partiples, for example, the alignment
of the order of the range of interactions between the me- will be almost perfect for high local shear rates, so that the

soscopic entities in the system. For example, for a stabl ffect of a shear rate gradient hardly affects the alignment in

system of stiff, rodlike particles the range of interactions isine two layers. The_ shear-curvature contribution to the stress
of the order of the length of the rods. The microstructuralMUst ther_efore vanish for shear rates so Iarg_e Fhat th? micro-
order is then significantly different in adjacent sliding IayersSthture Is saturated by the sh_ear fqrces. This IS preqsely b
of fluid, as depicted in Fig.(b). Although the average shear shear rate where the shear viscosity reac_hes its high shear
rate over the two middle layers in Figt is the same as in plateau value. The shear-curvature viscosity therefore shear

Fig. 1(a), the friction force between these two layers will be (NS 10 zero,

different from those in Fig. (&), simply because the micro- lim x(3)=0 )

structural order of the middle two sliding layers in Figb)L : Y '

is different. The effect of such differences in shear induced

microstructural order in adjacent sliding layers on the fric-Both 7 and « have well defined low and high shear rate

tion force is clearly related to spatial derivatives of the shealimits. Low shear rate limiting values relate to friction be-

rate. The constitutive relation now contains contributionstween sliding layers with a linearly perturbed, almost isotro-

from spatial derivatives of the shear rate. pic microstructure, while the high shear rate limiting values
The formal construction of the standard constitutive relatelate to sliding layers with a microstructure that is satured

tion, which can be found in any textbook on hydrodynamics,by the local shear rate.

is based on the assumption that only first-order spatial de- Equation(3) for a stationary state now reads

rivatives of the fluid flow velocity contribute to the stress.

tween the friction force(stres$ and the relative velocity
(shear ratgof the layers, is the shear viscosity. The viscosity

y—°

The leading order term in a formal expansion with respect to YY) — k(Y)) d*(y) _s ®
gradients in the flow velocity leads to the standard constitu- 7YYV = ey dy7 T stab

tive relation (2). As explained above, in the case of rapid
spatial variation of the fluid flow velocity, the next higher where the time dependence is omitted &hgl, is the stress
order term in this formal expansion will be important as well. in the stationary state, which is independenyaindt. The
There are three candidates for the next higher order comjuestion now arises whether this expression can be satisfied
tribution to the stress in a formal expansion with respect tdn a stationary shear-banded state. Consider a low and high
gradients in the velocity ~a¥(y,t)/dy,~[dy(y,t)/dy]>  shear rate region connected by an interface, as depicted in
and~ d%y(y,t)/dy2. The stress changes sign when the sheaFig. 2@). Going through the interface the contribution
rate changes sign and is invariant under coordinate inversion(y) y to the stress traces its van der Waals loop, as depicted
(wherey is replaced by—y). The first of the above candi- in Fig. 2(b) [this figure is constructed from Fig(& with the
dates is not invariant under coordinate inversioate thaty use of the expressio(83) for ¢ that is used for numerical
is invariany, while the second does not change sign when th&€omputations; the shear rate dependence @ plotted in
y is changed in sign. The first two above mentioned derivaFig. 3@]. The third order derivative®u(y)/ay* is depicted
tives do not comply with the symmetry properties of thein Fig. 2(c). This derivative has the same symmetry as
stress and are therefore absent in a formal expansion of thg(y) ¥, and is thus indeed the proper candidate to ensure a
stress with respect to spatial gradients in the velocity. The&onstant stress throughout the suspension in the stationary
third candidate, however, complies with both symmetry reshear-banded state. Note that the contribution to the total
quirements, and is therefore the relevant additional term. stress is obtained by multiplying the third-order derivative
In molecular systems this higher order term is never conwith «(7y), which increases with increasing in this ex-
sidered, because the range of interactions in these systemsaigiple, thus weighting the maximum more strongly than the
very small. In colloidal and macromolecular systems, how-minimum in Fig. Zc).
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u(y=I1,t)=%, (controlled shegr (8)

¢ durdy’

S(y=Il,t)=09 (controlled stress (9)

while in both casesy(y=0;t)=0. Here,| is the gap width.
The upper plate is given a prescribed, fixed velocity under
controlled shear conditions, while under controlled stress
conditions a constant force is exerted on the upper plate. In
both cases the velocity of the fluid at the lower plate remains
zero.
The above equations relate to the two-plate geometry. Ad-
ditional terms are found in Eq7) in case of a Couette ge-
FIG. 2. (a) A low and high shear rate region, connected by anometry, related to the curvature of the cylinders. The role of
interface.(b) The variation of the stresg(¥)¥ for the fluid flow  these additional terms will not be analyzed in the present
depicted in(a). (c) The variation ofa%u(y)/ay® for the fluid flow  paper.
depicted in(a).

@ (o) ©

y y Y

. MAXWELL EQUAL AREA CONSTRUCTION
To assure a constant stress in the stationary state, the

variations in the standard strefsee Fig. 20)] must cancel Consider a low and high shear rate phase connected
against the same variations resulting from the curvature inthrough an interface, as depicted in Figa)2When this is a
duced stres§see Fig. 20)]. The curve in Fig. &) must be stationary state, integration o_f E¢p) from y_ to Y+ (the
subtractedirom the standard stress to achieve this cancellaShear rates of the low and high shear rate regions, respec-
tion. We therefore added a minus sign to the shear-curvatufdvely) yields (see also Ref.20))

stress contribution in Eq4): this ensures that the shear-

curvature viscosity is positive. T Sy — D) —
Substitution of the extended constitutive relati@h for y- M)~ st/ () =0, (10
the stress into Eq(l) yields the following Navier-Stokes
equation for the two-plate geometry: where (with y_ andy, the location of the low and high
shear phases, respectively
au(y,t) da(y(y,t)) ay(y,) S y(y,t) - 2; )2
p - — k(YD) o f’+ -ﬂ_lf“ i(ﬂ) _
ot dy(y,t) ay ay . dyayz 2], dyay oy 0 (11
de(¥(y,1)) ax(y.t) #*¥(y,b) _ _ _
T Ty dy PV (1) is used. The last equality follows from the fact that in the low

and high shear rate phasgss constant, independent gf

h N = () is th in the directi  the fl This is a fundamental result for selectionpf and the total
whereo(y) = 7(y)y is the stress in the direction of the flow g asqin case of controlled shear conditions

without the shear-curvature contribution. The boundary con- When « is taken to be independent of the shear rate, Eq.
ditions depend on whether a given overall shear faféas (10) reduces to '
imposed or a given stress, is imposed. These correspond
to experiments “under controlled shear” and ‘“controlled Y
stress,” respectively. The boundary conditions for the two- ~ dyo(Y)=Zsad v+ — ). (12
plate geometry for these two cases read v

The stresg ¢, is equal too(y_)=o(¥.), since in the low

and high shear rate regions the shear-curvature contribution
to the stress vanishes. Therefore, E) implies stress se-
lection by a Maxwell equal area construction in the stress
versus shear rate plane.

As discussed before, there are compelling reasons for the
shear-thinning behavior ok in the same shear rate range
where n shear thins. Therefore the assumption of a constant
value fork, independent of the shear rate, is wrong, so that in
reality the equal area construction does not apply. Stress se-
, lection under controlled shear conditions is described by Eq.
vis] © ! 1 100 1000 (10), not by the equal area constructi¢h?). The result in

vis] Eq. (10) will be referred to hereafter as “the modified Max-

FIG. 3. (a) The stressr= 5 versus the shear rate, according to Well equal area construction.”

Eq. (33), where the horizontal line corresponds to the modified Notice that under controlled stress conditions the total
Maxwell equal area constructiofl0). (b) The shear rate depen- StressXq,; has a prescribed value. This implies that under
dence of the shear viscosity and the shear-curvature viscosity ~ controlled stress conditions the system either attains a sta-
according to Eqs(33) and (34), respectively. tionary state with a constant shear ratesuch thato (%)

60

[Pa] fPas]

10
30H

(a)

0 30
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=3t OF that there exists a “blurred” shear-banded struc-grow exponentially in time(remember thatk>0, as dis-
ture, where there are no regions in which the shear rate is @ussed in sec. JI Fourier modes with a wave number larger

true constant. thank,,; are stable and decrease exponentially fast in am-
plitude.
IV. LINEAR STABILITY ANALYSIS Note thato is equal to the total stress only when the

system is homogeneously sheared, that is, when the shear

Let du(y,t) denote the small deviation from a flow profile rate is a constant throughout the gap. Hence, the negative
with a spatially constant shear ragg and the corresponding slope ofo versusy refers to the measured stress in a homo-

stressoy=0(Yy). Linearization of Eq.(7) with respect to geneously sheared system, before the shear-banding transi-

the small perturbation gives tion occurred. In experiments the actually measured stress is
that of a shear-banded state, which is different from the
asu(y,t)  do(¥o) d%ou(y,t) ~a%su(y,t) stresso.
Pt T dy, P (o) YA The interpretation of the part of the curve @fversusy

(13)  Wheredo(%)/dy<—«(¥)m*/1% is as follows. A flow with
constant shear ratg will remain stable, even iflo(y)/dy

The constraints under which this equation of motion must be< — «(¥)7*/I2, when the gap widtH is smaller than the
solved are different for controlled shear and stress condicritical wavelengthi cii=2m/keyit . In that case all the un-
tions. The limiting stability points of Eq(13) will be estab-  stable wavelengths are larger than the gap width, and no

lished below, both under controlled shear and stress condghear banding occurs. For such small gap widths the stress
tions. is well defined for all shear rates: that part of the van der

Waals loop wherelo()/dy<— k() m?/1? is the stress that

one would measure by standard means, with a rheometer

where the gap width is so small that the unstable wave-
The solution of the equation of motida3) can be written  |engths\,,= 2#/k,, “do not fit into the gap.”

as a Fourier series on the intery&l|], with | the distance The most rapidly growing wave number is the wave num-

between the two plates. The constraint that the velocity at thger closest to the wave numbley, .,

lower plate is equal to zero, that isu(y=0,t)=0, can be

taken into account by extending the solution antisymmetri-

cally to the interval —1,1]. Without loss of generality, the [ do(yo)/dyy Kerit

solution can thus be written as a sine-series expansion on the Kmax= "\ ~ T%): o (18)

interval[ — 1,17,

A. Controlled shear conditions

o

_ . The fact that there is a most rapidly growing wavelength
5u(y’t)_,§1 an(t) sinfkny}, (14 renders the state of the system in the initial stage of the
shear-banding transition relatively insensitive to the initial
where the wave numbeks, are equal to state, provided that the initial amplitude of the perturbation is
small. The number of bands in the initial stage of demixing
P is then equal td/\ a5, With N yax= 27/ Kmax. The positions
kn=|—- n=123... . (15 of the bands, however, depend sensitively on the structure of
the initial perturbation.
) o ] There is a strong analogy between the above initial de-
The solution (14) also satisfies the constraidu(y=1,t)  mixing scenario for shear banding and spinodal demixing
=0 that is imposed under controlled shear conditions. Subginetics. The Cahn-Hilliard equation of motion for the den-
stitution into Eq.(13) thus immediately leads to sity of a thermodynamically unstable syst¢®8,24 has the
same structure as the linearized Navier-Stokes equét®n
. The last term in the Navier-Stokes equatidB) corresponds
5u(y,t)=n§1 an sinfk, y} to the “square-gradient contribution” to the free energy in
the Cahn-Hilliard equation. This term stabilizes concentra-
do (%) o kﬁt tion variations of small wavelength, corresponding to large
Xexp — dye + k(Yo)Kq 7 . (18 density gradients. Such rapid spatial concentration variations
give rise to a relatively large increase in the free energy and
are therefore stable as compared to long wavelength density
variations. Similarly, the last term in the Navier-Stokes equa-
tion (13) stabilizes rapid spatial variations of the flow since
these contribute relatively much to the stress.

©

The coefficientse,= a,(t=0) determine the initial pertur-
bation su(y,t=0).

It is clear from Eq.(16) that a velocity profile with a
constant shear rate is unstable whedho(7yg)/dyg
<—k(¥0)m?/12<0. In that case all Fourier modes with a
wave number less than the critical wave numkgy; , B. Controlled stress conditions

do(oTd: Under controlled stress conditions the most general form
_M (17) of Su(y,t), which satisfies the constrairdu(y=0t)=0

Kerit= - ,
et k(o) reads
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su(y,t)= 5'y<t>y+n§1 an(t) sinfkay}, (19)

N| -

d o

a2, A= 2 CnZ| BV
where the wave numbers are given in E§5). The differ-

ence with the form(14), appropriate under controlled shear

conditions, is the termsy(t)y, where 5y(t)=y(t)— v, is * )
the difference between the actual overall shear rate and the nZO (=1)"BnCy
initial shear rate, the difference of which is generally nonzero — +(_ 1)"B,,C
under controlled stress conditions. Differentiation of Ef) S ¢
with respect toy yields 5 i
o (26)
5'7()/,'[):”2::0 Bn(t) cogkay}, (200 The system is unstable if and only ififdt) =;_,B82(t)>0.

A constraint stabilizes a system, since it diminishes the space

of admissible solutions for the equation of motion, or it has
with Bo(t)=6y(t) and B.(t)=k,a(t). The equation of no stabilizing effect when the unstable solutions of the un-
motion for §y(y,t)=ddu(y,t)/dy is the same as for constrained equation of motion are also unstable under the
su(y,t). This follows simply by differentiation of both sides constrained motion. The unconstrained equation of motion is

of Eq. (13) with respect toy, unstable if and only ifC;>0, as was shown in Sec. IVA.
Hence, if we can show that the constrained equation of mo-
. . 2o 4 tion is unstable whef ;> 0, it follows that the constraint has
96y(y,D = da(_YO) J 5Y(2y’t) — k(¥0) J 57(y t . no stabilizing effect, and the stability criterion is exactly the
Jt dyo ay ay* (21) same as for the unconstrained system. W@gm 0 the fol-

lowing choice for the coefficients is unstablg; #0, B,

=0 for n>1, while 8, should be chosen to satisfy the con-

Substitution of the cosine-series expansigf) yields straint (23). To see that this choice is an unstable one, we
find from Eq.(26) (note thatk,=0)

2

G K 0. (22 ) ci
n p n k 1_ % . (27)

dBo() _ )
D IR
=0

dt

do (o)
d¥o

N| =
Q.lQ_

The linearized constrain®) under controlled stress condi-
tions in terms of the cosine-Fourier coefficients(t) is  The term between the square brackets is positive, so that the
found from Egs(4) and(20), time derivative is indeed positive whe®y,>0. The stability
criterion for controlled stress experiments is therefore the
same as for controlled shear experiments.

- (?’o)

Z “Bn(t)[ +r(¥)K2|=0. (23

n=0 Yo V. LACK OF UNIQUE SHEAR-BANDED STRUCTURE
FOR THE TWO-PLATE GEOMETRY

It is shown in the Appendix that the equation of motion that

incorporates the constraint is given by The Navier-Stokes equatidid) is a fourth-order differen-
tial equation inu(y,t) [third order iny(y,t)] with only two
(—1)™MC,C boundary conditiong8) or (9), andu(y=0,)=0. This im-
dBn(t) < k2| Snm— SE— plies that many stable stationary states efdsino stationary
—= Z Chn— 2 Bm(), state exists at all and the stationary shear-banded structure
dt m=0 P Z C]

is therefore not uniquely determined. The stationary state
(24)  thatis selected is determined by the initial conditions to the
equation of motion(7). A specific stationary shear-banded
structure depends on the initial conditions, and can only be
found by time integration of the full nonlinear equation of
motion (7), subject to the boundary conditiof8) or (9),
do (o) which specifies either controlled shear or controlled stress
"= Tdy ———+&(¥)K3|. (25  conditions. The final shear-banded state thus depends on the
particular initial state of the system.
Intuitively this degeneracy can be understood as follows.
The last term between the square brackets in (Bd) de-  When a particular interface between two bands satisfies the
scribes the coupling between coefficients due to the imposeMavier-Stokes equation, one is free to connect bands by such
constraint. Multiplying both sides of E¢24) with 8,(t) and  an interface in any way possible, provided the constraints are
summing ovem yields satisfied. A shear-banded structure may be constructed by

with g;; the Kronecker delta and
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connecting these “building blocks(interface and bands of stress conditions it is more convenient to solve the Navier-
constant shear raten the many possible ways that satisfy Stokes equation for the local shear rate, which is found from
the constraints. Eq. (7) by differentiation of both sides with respect jo
The degeneracy may be a special feature of the two-platErom the sine Fourier representati(#8) for the velocity, it
geometry. In a Couette geometry there are additional termfollows that the shear rate is of the form
in the equation of motion, which may drive interfaces in a
particular direction. This would ultimately lead to a unique o
shear-banded structure with a single interface. The two-plate ¥y,H= > Ba(t)cogkay}, (31)
geometry is an idealized mathematical conception. It may n=0
well be that additional terms in the Navier-Stokes equation in
the case of real geometries may drive the system towardswith 34(t) equal to the overall shear rajt). In solving the
unique stationary state. This will be a subject for furtherNavier-Stokes equatiof¥), one must insist on the constraint
study. (30), which now reduces to
When the initial state includes Fourier components close
to the most rapidly growing mode with wave number,,, *
the flow will have a generic structure after some time, where (r( E (— 1)“,8n(t)) -0
the number of bands is of the ordé\ ., With A ax n=0

=2m/Knax- The most rapidly growing Fourier mode will o o
dominate the structure after some time, and thus selects the +x| > (— 1)”,8n(t)) > (- 1)"B(t)k2=0.
particular shear-banded structure that will exist at later times. n=0 n=1

The degeneracy of the stationary state is now the result of (32)
different positions of the bands in the initial stage. There are

th”? many different initial conditions that will give ri_se to It is shown in the Appendix how to implement this constraint
similar stationary shear-banded structure. The nonuniqueness " i ol solution of the Navier-Stokes equation

of the final shear-banded structure implies that stationary We shall have to specify as a function ofy. The most

states are not stable in the sense that each perturbation,. . . .
changes the details of a stationary state. %at|sfy|ng approach would be to derive the shear rate depen-

The above discussion will be made more explicit in thedence of the shear viscosity from microscopic consider-

; . . A ations, as is done in Ref§25,26 for entangled polymer
following section, where the equation of motion is integrated . S

. . X . : systems. Here we shall construct a simple constitutive equa-
numerically. Notice that integration of the full equation of

motion is the onlv wav to predict the final state of the s S_tion for o, which mimics experimental results. The generic
tem ywaytop YS*form exhibits a van der Waals—like behavior. Since the shear

viscosity z is an even function of the shear rate, probably the

most simple form reads
VI. NUMERICAL INTEGRATION OF THE EQUATION

OF MOTION .
Mo+ an.y?

The velocity can be expanded in a sine series on the in- (y)= 1+ay*
terval[ —1,l] as

(33

o where the zero- and high shear rate limiting viscositigs
uy,H)=y(y+ > an(t)sink.y}, (28)  and 7., are introduced, and wheweis a parameter that can
n=0 be chosen such that typical experimental data are repro-
duced. Here we usg@,=20Pas,7..=1Pas, andr=3;5
where the wave numbers are given in Etp). This general  This choice leads to a functional form of the shear stiess
form incorporates the boundary conditiify=0t)=0 at  versus shear rate that is quite similar to experimental results

the lower plate. The additional conditiof), (9) imply for wormlike micelles[6], and is plotted in Fig. @). The
_ ) horizontal line corresponds to the modified Maxwell equal
() =70, (29 area constructiofiL0).

. We also have to specify the shear-curvature viscosig
) n a function ofy. Like the shear viscosity is an even func-
7(t)+nzl (=) an(Dky tion of the shear rate. There are so far no experimental or
theoretical values known fot. Here, we will assume that no

o

~ - shear banding occurs when the gap width is reduced by a
+ K '7('[)+2 (_1)nan(t)kn)2 (— 1) ay()k; factor of 10, implying that /K. =\¢i;=1/10. For a
et =t given overall shear ratg,, Eq.(17) then specifies the value
=0o=0(%p). (30) of k(y="7y). We need not specify the gap width in the nu-

merical solution of the equation of motion whenis ex-
The first condition applies under controlled shear conditionspressed in units of. The typical number of shear bands in
the second under controlled stress conditions. the initial stage is now found to be equal ltb\ ,5,=7. As
Under controlled shear conditions the contrai@®) is discussed in Sec. Il, the shear-curvature viscogitgnds to
trivially accounted for by simply replacing the overall shearzero for shear rates where the shear viscosity tends to its high
rate y(t) in Eqg. (28) by the constanty,. Under controlled shear limit. Sincec is an even function of the shear rate, and
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FIG. 4. The flow velocityAu(y,t)=u(y,t) — ¥y divided by the
gap widthl in units of seconds as a functionyfl for various times
in case of controlled shear conditioria) 7=0, (b) 7=0.4, and(c)
the stationary state. The initial profiles {g) are randomly gener-
ated.

FIG. 5. Same as in Fig. 4. The solid line (@ is an initial state
with a large amplitude; the dotted line is an initial state with the
same wavelength but a much smaller amplitud€b)rthe states are
shown forr=0.4. The stationary states are given(@.

. . times. The overall shear rate is equal #9=10s . The
shear thins to zero in the same shear rate range as the sh?ar I luti f doml d initial
viscosity, the simplest form fok is x~7(¥)— 7. and temporal evolution of two randomly generated initial states

' 0 is depicted. The initial states are given in Figa}4 In gen-
hence, ) L . o

erating these initial states, the Fourier coefficieats are
randomly chosen in the interval 0.01h, where division by
(34 n ensures an equal average contribution of each Fourier

mode to the stress(t=0). The two initial states are seen to

where ko= k(¥—0). In the casey,=10s %, we have sta- be quite different. In Fig. &) the state forr=0.4 is de-

bility on decreasing the gap width by a factor of 10 for picted. As can be seen, the most rapidly growing Fourier
Ko/12=1.688< 10 3N's. A plot of the shear-curvature vis- mode dominates the state of the system at this time. The

cosity « is given in Fig. 3b). stationary states are depicted in Figc)4the stationary state

Note that the numerical value of(’yo) is usually is typically attained forr7~6-8). Coexistence between

small in comparison tdd(¥,)/d,|, o that the instability _bands v_vith a constant shear rate i§ found. The shear yates
criterion do(e)/dye< — k(o) #2/12 virtually amounts to in the high and low shear rate regions and the constant stress

do(,)/d¥,<0. The stability limiting shear rates are there- >stat &€ in accordance with the modified Maxwell equal
fore almost equal to the shear rates wherén Fig. 3(@) area constructiofiL0). The number of bands in the stationary
exhibits extremum values. states are approximately the same due to dominance of the

The number of Fourier modes used in all calculations igMOSt rapidly growing Fourier mode in the initial stages of

50. Adding more Fourier components does not change ﬂovgemixirjg, as deP‘Cted in Fig.l(ld). Note that the number of
velocities or shear rates to within a percent. The dimension: a“ds_"? _the stationary state is less than_ the numb_er of bands
less timer=t7,/pl? will be used in the sequel, which is the " the initial stage. The nonlinear terms in the Navier-Stokes

time in units of the typical relaxation time towards a homo- equation thus tend to reduce the number of bands that are

geneously sheared state in the case where the system Wodmﬂa”y formed. Typically one finds 6 to 7 interfaces.
have been stable.

The number of bands in the initial stage is determined by
the most rapidly growing Fourier mode only when this mode
has the opportunity to become dominant. When another
wavelength is dominant right from the start, the number of

Numerical results for the differencAu(y,t)=u(y,t) bands in the stationary state is determined by the wavelength
— oy are given in Fig. 4 as a function of for different  of that mode. This is depicted in Fig. 5. The solid line in Fig.

Ko

K(7)=1+—a-yz,

2/| 2

A. Controlled shear conditions
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(b)

1o} /

40
Y

FIG. 6. The solid line is the functiofy, in Eqg. (36), while the dotted line is the functiofy, in Eq. (37). The points of intersection give
the overall shear rates for which the constrdB®) is satisfied. There are generally three intersection points due to the van der Waals-like
behavior off ;, as depicted ita). Whenf, andf, are tangential in a point, sé€k), there are only two intersection points. This happens when
two constraint branches cross. (i) there is only a single overall shear rate that satisfies the constraint.

5(a) is an example of a large initial perturbation that remainsmay happen that there are only two solutipsse Fig. )]
dominant for all times. In the initial stage in Fig(tB, where  or even a single solutiofsee Fig. 6c)]. A typical temporal
7= 0.4, the most rapidly growing Fourier mode does turn upgevolution of these three constraint branches is given in Fig.
but does not become dominant. In the stationary state in Figl, where the thick solid line is the actual overall shear rate,
5(c) there are only two interfaces, in accordance with theand the thin solid lines are the remaining shear rates that
symmetry of the initial state. A perturbation with the samesatisfy the constraint. When two branches cross, the two
wavelength but with a much smaller amplituftbe dotted functionsf; andf, are tangential at an intersection point, as
line in Fig. 5a)] evolves quite differently in time. Now the depicted in Fig. &). The surprising thing now is that no
most rapidly growing Fourier mode dominates the structureconvergence to a stationary state is found. The actual shear
in the initial stage, as depicted in Fig(bp, and the final rate always remains on a branch that does not lead to a
stationary state in Fig.(6) exhibits the typical 6 to 7 inter- proper stationary state where the stress is constant through-
faces as in Fig. @&). These results comply with the remarks out the gap, equal to the imposed stress at the upper plate.
in Sec. V on the degeneracy of the stationary state in thénstead, what we find is that after some time the stress be-
two-plate geometry. comes equal to the modified Maxwell equal area stress
It is also found that the shear-banding transition can occuthroughout the gap, except very close to the upper plate,
outside the range of unstable shear rates, provided that tlwvehere the stress very rapidly adjusts to match the imposed
amplitude of the initial perturbation is large enough. One carstress. The most rapidly varying Fourier mode that is used
therefore probably distinguish between spinodal shear ratedetermines the width of the region near the upper plate where
(which are the linear stability limiting shear rateend bin-  the stress changes from the modified Maxwell equal area
odal shear rateavhich are the shear rates beyond which thestress to the imposed stress. The conclusion is therefore that

transition cannot occir there is no convergence to a proper stationary state under
controlled stress conditions. One way out of this dilemma
B. Controlled stress conditions could be to introduce a fluctuating term to the stress. This is

. . . . hysically plausible, since the shear-curvature contribution
The constraint32) is most conveniently written as phy yp

f1(y)="1a(y), (39 40
with y -//\‘
- [s']
fl(;)/):(r .74—21 (_1)nﬂn)_0-0! (36) 204 i
°C “ N
fa(%)= —K( YO+ 2, <—1>”,8n<t>)nZl (—1)"Bn(DK3.
(37 0. ]
For a given set of3,'s with n>0, the intersection points of

f, andf, as functions ofy= B, thus give the overall shear 0 2 T 4
ratesy for which the constraint is satisfied. A typical plot of

these functions is given in Fig. 6. Due to the van der Waals— FIG. 7. The temporal evolution of the actual overall shear rate
like behavior of o there are generally three overall shear (thick solid line and the other overall shear rates that satisfy the
rates that satisfy the constraifgee Fig. 6], although it  constraint(32) (thin lines.
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to the stress is the result of the variation of shear rates oveare essential under controlled stress conditions.
microstructural length scales. These fluctuations may cause The above findings raise a few questions that should be
the shear rate to change to another branch when twoonsidered in future work:

branches cross. Without fluctuations, switching to another (a) There are additional terms in the Navier-Stokes equa-
branch is impossible due to the continuous differentiabilitytion for a Couette geometry. These terms could lead to a
of y(t) as a function of time. For example, changing to an-preferred drift velocity of interfaces and thereby ultimately
other branch at=~0.35 in Fig. 7 implies a jump discontinu- lead to a single, unique shear-banded state with just a single
ity of dy(t)/dt. When adding fluctuations to the equation of interface.

motion, however, again nonconvergence is found, with the (b) What is the mechanism that makes flow variations
same features as before without fluctuations. The inevitablalong the flow- and vorticity directions in the two-plate ge-
conclusion is that the simple one-dimensional equation obmetry essential to reach a stationary state? A feature of the
motion is insufficient to describe shear banding under conene-dimensional flow considered here is thatVu=0.
trolled stress conditions. Flow inhomogeneities in the twoSinceVu is large within the interfaces, a small contribution
other dimensiongalong the flow and vorticity directions of u along the flow- or vorticity directions can lead to appre-
must be incorporated. The only paths that lead to a propetiable contributions to the three-dimensional Navier-Stokes
stationary state are those with flow gradients in the flowequation. It might be that the additional terms to the Navier-
and/or vorticity direction. The full three-dimensional Navier- Stokes equation in a Couette geometry make such flow varia-
Stokes equation should be investigated for shear banding utions redundant for obtaining a proper stationary state. In any
der controlled stress conditions. The simplest generalizationase it seems worthwhile to study the three-dimensional
of the constitutive relatiori4) to three dimensions that one Navier-Stokes equation, since this is the equation that should

can use in such an investigation is probably be used to studythermodynamically drivenphase transi-
. _ tions under shear flow.
() =[n((r,1) = k(¥(r,1))V?] (c) Where are the binodal shear rates located and how do

the minimum amplitude and the optimum wavelength of the
initial perturbation, leading to demixing outside the unstable

. 1 H I)
where the superscripi stands for “the transpose of.” The region, vary with the shear rate?

analysis of the full three-dimensional Navier-Stokes equatior(I: ur(\(/ja?ltt\:\r/:i[isac:)esi:heofarcet;?ls nsli;nrﬁgcglnga#;svsC(:ntﬂeb:hrﬁgg_
is a subject for future work. y y '

sured? One might be able to probe the wavelength of the
most rapidly growing Fourier mode or its growth rate, or to

VIl. SUMMARY AND DISCUSSION measure the interfacial width in the stationary state. In order

In order to describe shear banding, an additional term 140 obtain the shear-curvature vi;cosity from such data, one
the total stress is introduced. This term relates to shear irF—1ISO n(_ae_ds to measure _the entire van der Waals loop of
duced spatial variations in the microstructure on length/€rsusy in & geometry with a gap width that is smaller than

scales of the order of the microstructural correlation lengthth€® Smallest unstable wavelength. It will depend on actual

The corresponding proportionality constant is referred tc,values of the shear-curvature viscosity whether this is fea-

here asthe shear-curvature viscosjtywhich is shown to sible.

shear thin to zero at the same shear rate where the shear (€ SO far there have been no theoretical predictions for
viscosity attains its high shear limiting value. Under con-the shear-curvature viscosity. Since this coefficient relates to

trolled shear conditions the extended constitutive relatiorf®"Y rapid spatial microstructural changes, such calculations

leads to a modified Maxwell equal area construction thaf'ill Probably be more complex than shear viscosity calcula-

gives the shear rates in the low and high shear bands togeth%?ns'

with the stress as attained in the stationary state. The consti-

tutive relation that includes the shear-curvature induced ACKNOWLEDGMENTS

stress gives rise to shear bqnding in the 'gqu-plate geometry Recently ideas similar to those discussed in the present
under contrplled shegr condlthns. In the |q|t|al stage of thepaper were formulated in a preprint databf2@]. Dr. Paul
shear-banding transition there is a most rapidly growing FOUy,.n qer Schoot is acknowledged for pointing me to that da-

rier mode that determines the number of shear bands in thepase This work has benefited from discussions with Pro-
stationary state. Both the number of bands and the width lessor Wim Briels.

the bands are determined by the shear-curvature viscosity
and shear viscosity characteristics. The stationary state in the
two-plate geometry is not uniquely determined, but depends
on the initial unstable perturbation. When the amplitude of |n this appendix it is shown how to construct the solution
the initial perturbation is very large, the number of bands isof equations of motion under a constraint. Consider an equa-
dictated by the characteristic wavelength of the initial statetion of motion of the form

The shear-banding transition can also occur outside the re-

gion of unstable shear rates, when the amplitude of the initial dx

perturbation is large enough. Under controlled stress condi- a=f(x), (A1)
tions no stable stationary state could be found, even when

fluctuating terms were added to the Navier-Stokes equatiorwherex is anN-dimensional vector. For our purposeis the
Probably flow variations in the flow- and vorticity directions vector (8y,81, - . .) of the Fourier amplitudes in Eq31)

X[ (Vu(r,t))+ (Vu(r, )], (38)

APPENDIX



4544 JAN K. G. DHONT PRE 60

for the shear raté(y,t). The fieldf is a(linear or nonlinear dx |~ [VO(X)][VDP(X)]
vector field ofx, whose explicit form follows from the cosine at | [V (x)[?
Fourier expansion of the right-hand side of the Navier-
Stokes equatiofi7) in the rangey e[ — 1, +1], after first hav-
ing differentiated with respect tp. Let

£(x). (Ad)

This is the equation of motion that can be solved without any
further constraint, and ensures that the constr@a) is sat-
®(x)=0 (A2) sfied. . . |

In the linear stability analysis in Sec. IV B, the equation of
be a scalar constraint to the equation of motiat). For our  motion (22) reads
purpose the scalar field is the function given in Eq(32).
The vectordx/dt is tangential to the hypersurface spanned
by the constrain{A2). Since V& is perpendicular to that

hypersurface, we have th&td(x)-dx/dt=0. Let| denote

the unit tensor. Multiplying both sides of EGA1) with the

projection operator, with C,, given by Eq.(25). Furthermore, the vectdf® fol-
lows directly from Eq.(23) as

dBa(t) ki
dt  "p’

(A5)

[VO(X)][VP(X)]
. A3
[VO(x)|* (83) V. o=(-1)""1C,. (A6)

this operator projects a vector onto the hypersurface and thus
leaves the left-hand side of the equation of motidd) un-  Substitution of these forms into EGA4) yields the equation

P=i—

changed, so that of motion (24).
[1] S. Hess, Z. Naturforsch. 80, 728 (1979; 30, 1224 (1975; Phys.24, 1735(1986.
31, 1507(1976. [14] T.C.B. McLeish, J. Polym. Sci., Part B: Polym. Phg§, 2253
[2] P.D. Olmsted and P.M. Goldbart, Phys. Rev.44, 4578 (1987.
(1990; 46, 4966(1992. [15] M. Doi and S.F. Edwards, J. Chem. Soc., Faraday Trafig, 2
[3] P.D. Olmsted and C.-Y.D. Lu, Phys. Rev.56, 55 (1997. 1802(1978; 74, 1818(1978; 75, 38 (1979.
[4] V. Schmitt, F. Lequeux, A. Pousse, and D. Roux, Langmuir[16] M. Doi, J. Polym. Sci., Polym. Phys. Ed9, 229 (1981).
10, 955(1994). [17] H. Kuzuu, M. Doi, J. Phys. Soc. JpB2, 3486(1983.
[5] J.-F. Berret, D.C. Roux, and G. Porte, J. Phys4J11261  [18] N.A. Spenley, X.F. Yuan, and M.E. Cates, J. Phys5,I651
(1994). (1996.
[6] P.T. Callaghan, M.E. Cates, C.J. Rofe, and J.B.A.F. Smeul{19] G. Porte, J. Berret, and J. Harden, J. Phyg, W59 (1997.
ders, J. Phys. 16, 375 (1996. [20] P.D. Olmsted and C.-Y.D. Lu, preprint cond-mat/9901226.
[7] P. Boltenhagen, Y. Hu, E.F. Matthys, and D.J. Pine, Phys[21] P. Nozieres and D. Quemada, Europhys. L2tt129 (1986.
Rev. Lett.12, 2359(1997). [22] V. Schmitt, C.M. Marques, and F. Lequeux, Phys. Re\a2E
[8] O. Diat, D. Roux, and F. Nallet, J. Phys.3) 1427(1993; D. 4009 (1995.
Roux, F. Nallet, and O. Diat, Europhys. Le?4, 53 (1993. [23] J.W. Cahn and J.E. Hilliard, J. Chem. Phg8, 258 (1958;
[9] D. Bonn, J. Meunier, O. Greffier, A. Al-Kahwaji, and H. 31, 688(1959.
Kellay, Phys. Rev. E58, 2115(1998. [24] J.K.G. Dhont, J. Chem. Phy405 5112 (1996. This paper
[10] A. Imhof, A. van Blaaderen, and J.K.G. Dhont, Langmi; discusses a microscopic derivation of the Cahn-Hilliard equa-
3477(1994). tion for colloidal systems.
[11] S. von Hiberbein, M. Wuth, and T. Palberg, Prog. Colloid [25] N.A. Spenley, M.E. Cates, and T.C.B. McLeish, Phys. Rev.
Polym. Sci.100, 241(1996. Lett. 71, 939(1993.
[12] T. Palberg and M. Widh, J. Phys. 16, 237 (1996 [26] M.E. Cates, T.C.B. McLeish, and G Marrucci, Europhys. Lett.

[13] T.C.B. McLeish and R.C. Ball, J. Polym. Sci., Part B: Polym. 21, 451(1993.



