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A constitutive relation describing the shear-banding transition

Jan K. G. Dhont
Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8,

3584 CH Utrecht, The Netherlands
~Received 8 February 1999!

An additional contribution to the standard expression for the shear stress must be considered in order to
describe shear banding. A possible extension of the standard constitutive relation is proposed. Its physical,
purely hydrodynamic origin is discussed. The corresponding Navier-Stokes equation is analyzed for the two-
plate geometry, where flow gradients are assumed to exist only in the direction perpendicular to the two plates.
The linearized Navier-Stokes equation is shown to be very similar to the Cahn-Hilliard equation for spinodal
decomposition, with a similar term that stabilizes rapid spatial variations. Only slowly varying flow gradients
are unstable. Just as in the initial stage of spinodal decomposition there is a most rapidly growing wavelength
in the initial stage of the shear-banding transition, leading to a predictable number of shear bands. A modified
Maxwell equal area construction is derived, which dictates the stress and the shear rates in the bands under
controlled shear conditions, and which shows that under controlled stress conditions no true shear bands can
coexist. The kinetics of the shear-banding transition is studied numerically. For the two-plate geometry it is
found that there exist multiple stationary states under controlled shear conditions, depending on the initial state
of the flow profile. Shear banding occurs not only when the system is initially unstable, but can also be induced
outside the unstable region when the amplitude of the initial perturbation is large enough. The shear-banding
transition can thus proceed via ‘‘spinodal demixing’’~from an unstable initial state! or via ‘‘condensation.’’
Under controlled stress conditions no stationary state is found. Here, coupling with flow gradients extending in
other directions, not perpendicular to the two plates, should probably be taken into account.
@S1063-651X~99!18310-7#

PACS number~s!: 83.20.Bg, 47.15.Fe
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I. INTRODUCTION

In many fluids containing mesoscopic entities, a mecha
cal instability ~or metastability! can be induced by applying
shear flow, where the system ultimately ‘‘demixes’’ in r
gions of high and low shear rates. These ‘‘bands’’ of co
stant high and low shear rates are connected by ‘‘interface
where sharp spatial changes of the local shear rate oc
This so-called shear-banding instability occurs when
stress versus the shear rate of a homogeneously sheare
tem, prior to the transition, exhibits a van der Waals–l
behavior, where there is a range of shear rates where
stress decreases with increasing shear rate. This trans
has amechanical, hydrodynamic origin.

Thermodynamically driven transitions, which also occ
in the absence of shear flow, will be affected by shear
motion. Both the kinetics of phase separation and the lo
tion of phase boundaries are changed by applying shear fl
The thermodynamic forces which drive the transition w
generally be affected by shearing motion in a way that is
from understood. If one is willing to accept the concept
local thermodynamic equilibrium in systems under sh
flow, these forces can be formulated within the framework
irreversible thermodynamics@1–3#. The forces that drive
these types of phase transitions of systems in shearing
tion have athermodynamic origin.

It is not always possible to strictly distinguish betwe
mechanical and thermodynamic instabilities. First of
these forces can be at work simultaneously, where coup
between the two may be essential for an instability to occ
Morever, shear forces may induce entirely new microstr
PRE 601063-651X/99/60~4!/4534~11!/$15.00
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tural order~for example, in surfactant systems!, which may
lead to phase transitions that are in turn driven by forces
thermodynamic nature. Here, forces of a thermodynamic
ture are put to work to drive a transition between states
can exist only under the influence of shear forces.

The aim of this paper is to introduce a physically pla
sible extension of the standard constitutive relation, and
study the demixing kinetics from an initially perturbed sta
of constant shear rate to the stationary shear-banded s
The proposed constitutive relation should be employed
describing the more complicated situation where shear fo
and thermodynamic forces are intertwined.

Shear banding has been unambiguously observed, or t
are strong indications for its occurrence, for wormlike m
celles @4–7# ~which sometimes show an isotropic-nema
phase transition in the absence of shear flow! in other sur-
factant systems@8,9# ~which exhibit a reentrant transition o
a lyotropic lamellar phase to a phase of multilayer
vesicles! and in polycrystalline colloids@10–12#. In some
cases the shear-banding transition seems to occur in th
cinity of a thermodynamic phase boundary. It may be tha
van der Waals–like behavior of the stress is enhanced
pretransitional thermodynamic phenomena.

The shear-banding instability has been analyzed for
case of flow through a cylindrical pipe by McLeishet al.
@13,14#, assuming that a single, infinitely sharp interface e
ists. The Navier-Stokes equation is then solved, impos
boundary conditions on the interface and using the stand
constitutive relation for the stress with an expression for
viscosity as derived for entangled polymer systems@15–17#.
Recently, Spenleyet al. @18# and Porteet al. @19# formulated
4534 © 1999 The American Physical Society
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PRE 60 4535CONSTITUTIVE RELATION DESCRIBING THE SHEAR- . . .
nonstandard constitutive relations for the stress, in orde
predict shear banding without having to assume the existe
of a single, infinitely sharp interface. Porteet al. use quasi-
thermodynamic arguments to construct a constitutive eq
tion, while Spenleyet al. introduce a simple constitutive re
lation that exhibits both viscoelastic behavior and nonlin
response.

In the present paper a natural extension of the stand
constitutive relation is proposed that introduces a higher
der spatial derivative of the shear rate. Such a gradient c
tribution to the stress is essential to describe the interface
is argued that this higher order derivative is of a purely h
drodynamic nature. The shear-banding transition conside
in the present paper is studied without consideration of n
local contributions from the equilibrium free energy th
couples to inhomogeneities in microstructure nor the in
vening effects of forces that may drive a phase transiti
Including such contributions in order to describe shear ba
ing gives rise to gradient contributions to the stress@2,3#,
which, however, do not depend on the local shear rate, c
trary to the purely hydrodynamic contribution. There is
very recent preprint database@20# in which ideas similar to
those in the present paper are formulated.

This paper is organized as follows. In Sec. II it is argu
that higher order derivatives contribute to the stress. Ar
ments are based on considerations of the effect of shear
on microstructural order. A phenomenological coefficient
introduced that will be referred to as ‘‘the shear-curvatu
viscosity.’’ It is argued that the shear-curvature viscos
shear thins to 0 in the same shear rate range where the
viscosity shear thins to its high shear rate plateau value
addition, the corresponding Navier-Stokes equation and
boundary conditions under controlled shear and stress co
tions are formulated for the two-plate geometry. A modifi
Maxwell equal area construction is derived in Sec. III. Th
Maxwell construction predicts the shear rates in the high
low shear rate regions of the shear-banded structure and
stress in the stationary state. It also shows that no true sh
banded structure~where the shear rate is constant within r
gions of finite extent! can exist under controlled stress co
ditions. A linear stability analysis is given in Sec. IV, bo
under controlled shear and controlled stress conditions.
shown that in the initial stage there is a most rapidly grow
wavelength, quite analogous to the Cahn-Hilliard scena
for spinodal decomposition. It is predicted that the line
instability disappears when the system size is small enou
which would allow the measurement of the entire van
Waals looplike behavior of the stress, using for exampl
Couette geometry with a very small gap width. In Sec. V it
argued that there is no unique stationary shear-banded
for the two-plate geometry. This is confirmed in Sec. V
where the full nonlinear, time dependent Navier-Stok
equation is solved numerically. The most rapidly growi
wavelength dominates the flow pattern in the early stage
the shear-banding transition. This leads to a generic num
of interfaces in the final stationary state. It turns out th
under controlled shear conditions there exist ‘‘spinodal a
binodal shear rates’’: in certain shear rate intervals the tr
sition to the shear-banded state may occur because the i
flow is linearly unstable~‘‘spinodal decomposition’’!, or oc-
curs only due to perturbations with some minimum, fin
to
ce
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amplitude~‘‘condensation’’!. Under controlled stress cond
tions no convergence to a stationary state is found within
one-dimensional treatment of the two-plate geometry. T
possible reasons for this are discussed. Section VII is a s
mary and discussion.

II. THE CONSTITUTIVE RELATION AND THE
CORRESPONDING NAVIER-STOKES EQUATION

Consider a laminar flow between two flat plates, whe
the fluid velocityu is along thex direction parallel to the two
plates and depends only on the distancey from the lower,
stationary plate. The Navier-Stokes equation for such a fl
reads

r
]u~y,t !

]t
5

]S~y,t !

]y
, ~1!

with r the mass density andS the stress. Diffusive mas
transport will not be considered, and the mass densityr will
be taken constant in the sequel. Diffusive mass transport
under certain circumstances be important@21,22#. When one
is away from the thermodynamic spinodal region, where
effective diffusion coefficient is negative, and as long as
‘‘feedback instability’’ does not occur@21,22#, diffusive
mass transport probably does not affect the essential fea
of the shear-banding transition. It is also assumed that
shear-banding transition is sufficiently slow to neglect t
elastic contribution to the stress response. Depending on
fast the shear-banding transition occurs in comparison
typical microstructural relaxation times, one could extend
constitutive relation that is proposed in the present pape
include elastic response~for example, with a simple Maxwel
relaxation model!. Including elastic stresses would interfe
with the clarity of arguments related to the essential featu
of shear banding, so that an account of elasticity is defer
to a future work.

The standard constitutive relation for the stressS, without
elastic contributions, reads

S~y,t !5h„ġ~y,t !… ġ~y,t !, ~2!

whereġ(y,t)5]u(y,t)/]y is the local shear rate andh is the
shear viscosity. It follows from Eq.~1! that in a stationary
state we must have a constant stress throughout the sys

S~y,t !5const ~for stationary states!, ~3!

which expresses mechanical stability. As is well known, t
equation cannot be satisfied in a shear-banded state, w
h ġ exhibits a van der Waals–like behavior: in the low a
high shear rate regions this equation can be satisfied, bu
passing through an interface, the stress varies accordin
the van der Waals loop and is therefore not a constant.
standard consitutive relation~2! for the stress is therefore no
sufficient to describe shear banding.

Let us first ask for the physical meaning of the stand
constitutive equation~2!. This relation simply assumes tha
the friction force between two adjacent, sliding layers
fluid @as depicted in Fig. 1~a!# is proportional to their relative
velocity, that is, to the shear rate. The friction coefficient
two sliding layers, which is the proportionality constant b
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4536 PRE 60JAN K. G. DHONT
tween the friction force~stress! and the relative velocity
~shear rate! of the layers, is the shear viscosity. The viscos
itself is shear rate dependent, because the friction coeffic
of two adjacent layers depends on the microstructural o
in those layers. For example, in the case of a suspensio
rigid rods, the friction coefficient~shear viscosity! will be
different for an almost isotropic arrangement of the rods
compared to a highly aligned microstructural order.

Now suppose that the shear rate changes on a length
of the order of the rangej of interactions between the me
soscopic entities in the system. For example, for a sta
system of stiff, rodlike particles the range of interactions
of the order of the length of the rods. The microstructu
order is then significantly different in adjacent sliding laye
of fluid, as depicted in Fig. 1~b!. Although the average shea
rate over the two middle layers in Fig. 1~b! is the same as in
Fig. 1~a!, the friction force between these two layers will b
different from those in Fig. 1~a!, simply because the micro
structural order of the middle two sliding layers in Fig. 1~b!
is different. The effect of such differences in shear induc
microstructural order in adjacent sliding layers on the fr
tion force is clearly related to spatial derivatives of the sh
rate. The constitutive relation now contains contributio
from spatial derivatives of the shear rate.

The formal construction of the standard constitutive re
tion, which can be found in any textbook on hydrodynami
is based on the assumption that only first-order spatial
rivatives of the fluid flow velocity contribute to the stres
The leading order term in a formal expansion with respec
gradients in the flow velocity leads to the standard const
tive relation ~2!. As explained above, in the case of rap
spatial variation of the fluid flow velocity, the next highe
order term in this formal expansion will be important as we

There are three candidates for the next higher order c
tribution to the stress in a formal expansion with respec
gradients in the velocity :;]ġ(y,t)/]y,;@]ġ(y,t)/]y#2

and;]2ġ(y,t)/]y2. The stress changes sign when the sh
rate changes sign and is invariant under coordinate inver
~wherey is replaced by2y). The first of the above candi
dates is not invariant under coordinate inversion~note thatġ
is invariant!, while the second does not change sign when
ġ is changed in sign. The first two above mentioned deri
tives do not comply with the symmetry properties of t
stress and are therefore absent in a formal expansion o
stress with respect to spatial gradients in the velocity. T
third candidate, however, complies with both symmetry
quirements, and is therefore the relevant additional term

In molecular systems this higher order term is never c
sidered, because the range of interactions in these syste
very small. In colloidal and macromolecular systems, ho

FIG. 1. ~a! Sliding layers in a system of rodlike particles, whe
the shear rate is constant over length scales of the order o
length of the rods.~b! Sliding layers in the same system, where t
shear rate changes appreciably over such length scales.
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ever, particles are much bigger, and relatively small sh
rate gradients are already sufficient to contribute to the str

We thus arrive at the following expression for the stre

S~y,t !5h„ġ~y,t !…ġ~y,t !2k„ġ~y,t !…
]2ġ~y,t !

]y2 . ~4!

The proportionality constantk is referred to here as ‘‘the
shear-curvature viscosity.’’ The same expression for the
stress has been proposed very recently in a preprint data
@20#.

The shear-curvature viscosityk is shear rate dependen
because a difference of the shear rate in two adjacent la
induces a difference in their microstructure in a way that
dependent on the average local shear rate. In the case w
the local shear rate is very large, so that the microstructur
saturated by the shear flow in both layers, an additio
change of the shear rate in the two layers does not affect t
microstructure, and hence does not change the stress.
dispersions of rodlike particles, for example, the alignm
will be almost perfect for high local shear rates, so that
effect of a shear rate gradient hardly affects the alignmen
the two layers. The shear-curvature contribution to the str
must therefore vanish for shear rates so large that the mi
structure is saturated by the shear forces. This is precisely
shear rate where the shear viscosity reaches its high s
plateau value. The shear-curvature viscosity therefore s
thins to zero,

lim
ġ→`

k~ġ !50. ~5!

Both h and k have well defined low and high shear ra
limits. Low shear rate limiting values relate to friction be
tween sliding layers with a linearly perturbed, almost isot
pic microstructure, while the high shear rate limiting valu
relate to sliding layers with a microstructure that is satu
by the local shear rate.

Equation~3! for a stationary state now reads

h„ġ~y!…ġ~y!2k„ġ~y!…
d2ġ~y!

dy2 5Sstat , ~6!

where the time dependence is omitted andSstat is the stress
in the stationary state, which is independent ofy and t. The
question now arises whether this expression can be sati
in a stationary shear-banded state. Consider a low and
shear rate region connected by an interface, as depicte
Fig. 2~a!. Going through the interface the contributio
h(ġ)ġ to the stress traces its van der Waals loop, as depi
in Fig. 2~b! @this figure is constructed from Fig. 2~a! with the
use of the expression~33! for s that is used for numerica
computations; the shear rate dependence ofs is plotted in
Fig. 3~a!#. The third order derivative]3u(y)/]y3 is depicted
in Fig. 2~c!. This derivative has the same symmetry
h(ġ)ġ, and is thus indeed the proper candidate to ensu
constant stress throughout the suspension in the statio
shear-banded state. Note that the contribution to the t
stress is obtained by multiplying the third-order derivati
with k(ġ), which increases with increasingy in this ex-
ample, thus weighting the maximum more strongly than
minimum in Fig. 2~c!.

he
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To assure a constant stress in the stationary state,
variations in the standard stress@see Fig. 2~b!# must cancel
against the same variations resulting from the curvature
duced stress@see Fig. 2~c!#. The curve in Fig. 2~c! must be
subtractedfrom the standard stress to achieve this cance
tion. We therefore added a minus sign to the shear-curva
stress contribution in Eq.~4!: this ensures that the shea
curvature viscosity is positive.

Substitution of the extended constitutive relation~4! for
the stress into Eq.~1! yields the following Navier-Stokes
equation for the two-plate geometry:

r
]u~y,t !

]t
5

ds„ġ~y,t !…

dġ~y,t !

]ġ~y,t !

]y
2k„ġ~y,t !…

]3ġ~y,t !

]y3

2
dk„ġ~y,t !…

dġ~y,t !

]ġ~y,t !

]y

]2ġ~y,t !

]y2 , ~7!

wheres(ġ)5h(ġ)ġ is the stress in the direction of the flo
without the shear-curvature contribution. The boundary c
ditions depend on whether a given overall shear rateġ0 is
imposed or a given stresss0 is imposed. These correspon
to experiments ‘‘under controlled shear’’ and ‘‘controlle
stress,’’ respectively. The boundary conditions for the tw
plate geometry for these two cases read

FIG. 2. ~a! A low and high shear rate region, connected by
interface.~b! The variation of the stressh(ġ)ġ for the fluid flow
depicted in~a!. ~c! The variation of]3u(y)/]y3 for the fluid flow
depicted in~a!.

FIG. 3. ~a! The stresss5hġ versus the shear rate, according
Eq. ~33!, where the horizontal line corresponds to the modifi
Maxwell equal area construction~10!. ~b! The shear rate depen
dence of the shear viscosityh and the shear-curvature viscosityk
according to Eqs.~33! and ~34!, respectively.
he
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-
re
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-

u~y5 l ,t !5ġ0l ~controlled shear!, ~8!

S~y5 l ,t !5s0 ~controlled stress!, ~9!

while in both cases,u(y50,t)50. Here,l is the gap width.
The upper plate is given a prescribed, fixed velocity un
controlled shear conditions, while under controlled stre
conditions a constant force is exerted on the upper plate
both cases the velocity of the fluid at the lower plate rema
zero.

The above equations relate to the two-plate geometry.
ditional terms are found in Eq.~7! in case of a Couette ge
ometry, related to the curvature of the cylinders. The role
these additional terms will not be analyzed in the pres
paper.

III. MAXWELL EQUAL AREA CONSTRUCTION

Consider a low and high shear rate phase conne
through an interface, as depicted in Fig. 2~a!. When this is a
stationary state, integration of Eq.~6! from ġ2 to ġ1 ~the
shear rates of the low and high shear rate regions, res
tively! yields ~see also Ref.@20#!

E
ġ2

ġ1

dġ@s~ġ !2Sstat#/k~ġ !50, ~10!

where ~with y2 and y1 the location of the low and high
shear phases, respectively!

E
ġ2

ġ1

dġ
]2ġ

]y2 5
1

2 Ey2

y1

dy
]

]y S ]ġ

]y D 2

50 ~11!

is used. The last equality follows from the fact that in the lo
and high shear rate phasesġ is constant, independent ofy.
This is a fundamental result for selection ofġ6 and the total
stress~in case of controlled shear conditions!.

Whenk is taken to be independent of the shear rate,
~10! reduces to

E
ġ2

ġ1

dġs~ġ !5Sstat~ ġ12ġ2!. ~12!

The stressSstat is equal tos(ġ2)5s(ġ1), since in the low
and high shear rate regions the shear-curvature contribu
to the stress vanishes. Therefore, Eq.~12! implies stress se-
lection by a Maxwell equal area construction in the stress
versus shear rate plane.

As discussed before, there are compelling reasons for
shear-thinning behavior ofk in the same shear rate rang
whereh shear thins. Therefore the assumption of a cons
value fork, independent of the shear rate, is wrong, so tha
reality the equal area construction does not apply. Stress
lection under controlled shear conditions is described by
~10!, not by the equal area construction~12!. The result in
Eq. ~10! will be referred to hereafter as ‘‘the modified Max
well equal area construction.’’

Notice that under controlled stress conditions the to
stressSstat has a prescribed value. This implies that und
controlled stress conditions the system either attains a
tionary state with a constant shear rateġ such thats(ġ)
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4538 PRE 60JAN K. G. DHONT
5Sstat, or that there exists a ‘‘blurred’’ shear-banded stru
ture, where there are no regions in which the shear rate
true constant.

IV. LINEAR STABILITY ANALYSIS

Let du(y,t) denote the small deviation from a flow profi
with a spatially constant shear rateġ0 and the corresponding
stresss05s(ġ0). Linearization of Eq.~7! with respect to
the small perturbation gives

r
]du~y,t !

]t
5

ds~ġ0!

dġ0

]2du~y,t !

]y2 2k~ġ0!
]4du~y,t !

]y4 .

~13!

The constraints under which this equation of motion must
solved are different for controlled shear and stress co
tions. The limiting stability points of Eq.~13! will be estab-
lished below, both under controlled shear and stress co
tions.

A. Controlled shear conditions

The solution of the equation of motion~13! can be written
as a Fourier series on the interval@0,l #, with l the distance
between the two plates. The constraint that the velocity at
lower plate is equal to zero, that is,du(y50,t)50, can be
taken into account by extending the solution antisymme
cally to the interval@2 l ,l #. Without loss of generality, the
solution can thus be written as a sine-series expansion on
interval @2 l ,l #,

du~y,t !5 (
n51

`

an~ t ! sin$kny%, ~14!

where the wave numberskn are equal to

kn5
pn

l
, n51,2,3, . . . . ~15!

The solution ~14! also satisfies the constraintdu(y5 l ,t)
50 that is imposed under controlled shear conditions. S
stitution into Eq.~13! thus immediately leads to

du~y,t !5 (
n51

`

an sin$kn y%

3expS 2Fds~ġ0!

dġ0
1k~ġ0!kn

2G kn
2t

r D . ~16!

The coefficientsan[an(t50) determine the initial pertur
bationdu(y,t50).

It is clear from Eq.~16! that a velocity profile with a
constant shear rate is unstable whends(ġ0)/dġ0
,2k(ġ0)p2/ l 2,0. In that case all Fourier modes with
wave number less than the critical wave numberkcrit ,

kcrit5A2
ds~ġ0!/dġ0

k~ġ0!
, ~17!
-
a

e
i-

i-

e

i-

he

b-

grow exponentially in time~remember thatk.0, as dis-
cussed in sec. II!. Fourier modes with a wave number larg
than kcrit are stable and decrease exponentially fast in a
plitude.

Note that s is equal to the total stress only when th
system is homogeneously sheared, that is, when the s
rate is a constant throughout the gap. Hence, the nega
slope ofs versusġ refers to the measured stress in a hom
geneously sheared system, before the shear-banding tr
tion occurred. In experiments the actually measured stres
that of a shear-banded state, which is different from
stresss.

The interpretation of the part of the curve ofs versusġ
whereds(ġ)/dġ,2k(ġ)p2/ l 2 is as follows. A flow with
constant shear rateġ will remain stable, even ifds(ġ)/dġ
,2k(ġ)p2/ l 2, when the gap widthl is smaller than the
critical wavelengthlcrit52p/kcrit . In that case all the un-
stable wavelengths are larger than the gap width, and
shear banding occurs. For such small gap widths the stres
is well defined for all shear rates: that part of the van d
Waals loop whereds(ġ)/dġ,2k(ġ)p2/ l 2 is the stress tha
one would measure by standard means, with a rheom
where the gap width is so small that the unstable wa
lengthsln52p/kn ‘‘do not fit into the gap.’’

The most rapidly growing wave number is the wave nu
ber closest to the wave numberkmax,

kmax5A2
ds~ġ0!/dġ0

2 k~ġ0!
5

kcrit

&
. ~18!

The fact that there is a most rapidly growing waveleng
renders the state of the system in the initial stage of
shear-banding transition relatively insensitive to the init
state, provided that the initial amplitude of the perturbation
small. The number of bands in the initial stage of demixi
is then equal tol /lmax, with lmax52p/kmax. The positions
of the bands, however, depend sensitively on the structur
the initial perturbation.

There is a strong analogy between the above initial
mixing scenario for shear banding and spinodal demix
kinetics. The Cahn-Hilliard equation of motion for the de
sity of a thermodynamically unstable system@23,24# has the
same structure as the linearized Navier-Stokes equation~13!.
The last term in the Navier-Stokes equation~13! corresponds
to the ‘‘square-gradient contribution’’ to the free energy
the Cahn-Hilliard equation. This term stabilizes concent
tion variations of small wavelength, corresponding to lar
density gradients. Such rapid spatial concentration variati
give rise to a relatively large increase in the free energy
are therefore stable as compared to long wavelength den
variations. Similarly, the last term in the Navier-Stokes eq
tion ~13! stabilizes rapid spatial variations of the flow sin
these contribute relatively much to the stress.

B. Controlled stress conditions

Under controlled stress conditions the most general fo
of du(y,t), which satisfies the constraintdu(y50,t)50
reads
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du~y,t !5dġ~ t !y1 (
n51

`

an~ t ! sin$kny%, ~19!

where the wave numbers are given in Eq.~15!. The differ-
ence with the form~14!, appropriate under controlled she
conditions, is the termdġ(t)y, wheredġ(t)5ġ(t)2ġ0 is
the difference between the actual overall shear rate and
initial shear rate, the difference of which is generally nonz
under controlled stress conditions. Differentiation of Eq.~19!
with respect toy yields

dġ~y,t !5 (
n50

`

bn~ t ! cos$kny%, ~20!

with b0(t)5dġ(t) and bn(t)5knan(t). The equation of
motion for dġ(y,t)5]du(y,t)/]y is the same as fo
du(y,t). This follows simply by differentiation of both side
of Eq. ~13! with respect toy,

r
]dġ~y,t !

]t
5

ds~ġ0!

dġ0

]2dġ~y,t !

]y2 2k~ġ0!
]4dġ~y,t !

]y4 .

~21!

Substitution of the cosine-series expansion~20! yields

dbn~ t !

dt
52Fds~ġ0!

dġ0
1k~ġ0! kn

2G kn
2

r
bn~ t !. ~22!

The linearized constraint~9! under controlled stress cond
tions in terms of the cosine-Fourier coefficientsbn(t) is
found from Eqs.~4! and ~20!,

(
n50

`

~21!nbn~ t !Fds~ġ0!

dġ0
1k~ġ0!kn

2G50. ~23!

It is shown in the Appendix that the equation of motion th
incorporates the constraint is given by

dbn~ t !

dt
5 (

m50

`

Cm

km
2

r F dnm2
~21!n1mCnCm

(
j 50

`

Cj
2 Gbm~ t !,

~24!

with d i j the Kronecker delta and

Cn[2Fds~ġ0!

dġ0
1k~ġ0!kn

2G . ~25!

The last term between the square brackets in Eq.~24! de-
scribes the coupling between coefficients due to the impo
constraint. Multiplying both sides of Eq.~24! with bn(t) and
summing overn yields
he
o

t

ed

1

2

d

dt (n50

`

bn
2~ t !5 (

m50

`

Cm

km
2

r F bm
2 ~ t !

2

(
n50

`

~21!nbnCn

(
j 50

`

Cj
2

~21!mbmCmG .

~26!

The system is unstable if and only if (d/dt) (n50
` bn

2(t).0.
A constraint stabilizes a system, since it diminishes the sp
of admissible solutions for the equation of motion, or it h
no stabilizing effect when the unstable solutions of the u
constrained equation of motion are also unstable under
constrained motion. The unconstrained equation of motio
unstable if and only ifC1.0, as was shown in Sec. IV A
Hence, if we can show that the constrained equation of m
tion is unstable whenC1.0, it follows that the constraint ha
no stabilizing effect, and the stability criterion is exactly th
same as for the unconstrained system. WhenC1.0 the fol-
lowing choice for the coefficients is unstable:b1Þ0, bn
50 for n.1, while b0 should be chosen to satisfy the co
straint ~23!. To see that this choice is an unstable one,
find from Eq.~26! ~note thatk050)

1

2

d

dt (n50

`

bn
2~ t !5C1

k1
2

r
b1

2F 12
C1

2

(
j 50

`

Cj
2G . ~27!

The term between the square brackets is positive, so tha
time derivative is indeed positive whenC1.0. The stability
criterion for controlled stress experiments is therefore
same as for controlled shear experiments.

V. LACK OF UNIQUE SHEAR-BANDED STRUCTURE
FOR THE TWO-PLATE GEOMETRY

The Navier-Stokes equation~7! is a fourth-order differen-
tial equation inu(y,t) @third order inġ(y,t)# with only two
boundary conditions~8! or ~9!, andu(y50,t)50. This im-
plies that many stable stationary states exist~or no stationary
state exists at all!, and the stationary shear-banded struct
is therefore not uniquely determined. The stationary st
that is selected is determined by the initial conditions to
equation of motion~7!. A specific stationary shear-bande
structure depends on the initial conditions, and can only
found by time integration of the full nonlinear equation
motion ~7!, subject to the boundary condition~8! or ~9!,
which specifies either controlled shear or controlled str
conditions. The final shear-banded state thus depends o
particular initial state of the system.

Intuitively this degeneracy can be understood as follow
When a particular interface between two bands satisfies
Navier-Stokes equation, one is free to connect bands by s
an interface in any way possible, provided the constraints
satisfied. A shear-banded structure may be constructed
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connecting these ‘‘building blocks’’~interface and bands o
constant shear rate! in the many possible ways that satis
the constraints.

The degeneracy may be a special feature of the two-p
geometry. In a Couette geometry there are additional te
in the equation of motion, which may drive interfaces in
particular direction. This would ultimately lead to a uniqu
shear-banded structure with a single interface. The two-p
geometry is an idealized mathematical conception. It m
well be that additional terms in the Navier-Stokes equation
the case of real geometries may drive the system towar
unique stationary state. This will be a subject for furth
study.

When the initial state includes Fourier components cl
to the most rapidly growing mode with wave numberkmax,
the flow will have a generic structure after some time, wh
the number of bands is of the orderl /lmax, with lmax
52p/kmax. The most rapidly growing Fourier mode wi
dominate the structure after some time, and thus selects
particular shear-banded structure that will exist at later tim
The degeneracy of the stationary state is now the resu
different positions of the bands in the initial stage. There
thus many different initial conditions that will give rise t
similar stationary shear-banded structure. The nonunique
of the final shear-banded structure implies that station
states are not stable in the sense that each perturb
changes the details of a stationary state.

The above discussion will be made more explicit in t
following section, where the equation of motion is integrat
numerically. Notice that integration of the full equation
motion is the only way to predict the final state of the sy
tem.

VI. NUMERICAL INTEGRATION OF THE EQUATION
OF MOTION

The velocity can be expanded in a sine series on the
terval @2 l ,l # as

u~y,t !5ġ~ t !y1 (
n50

`

an~ t !sin$kny%, ~28!

where the wave numbers are given in Eq.~15!. This general
form incorporates the boundary conditionu(y50,t)50 at
the lower plate. The additional conditions~8!, ~9! imply

ġ~ t !5ġ0 , ~29!

sS ġ~ t !1 (
n51

`

~21!nan~ t !knD
1kS ġ~ t !1 (

n51

`

~21!nan~ t !knD (
n51

`

~21!nan~ t !kn
3

5s05s~ġ0!. ~30!

The first condition applies under controlled shear conditio
the second under controlled stress conditions.

Under controlled shear conditions the contraint~29! is
trivially accounted for by simply replacing the overall she
rate ġ(t) in Eq. ~28! by the constantġ0 . Under controlled
te
s

te
y
n
a

r

e

e

he
s.
of
e

ss
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ion

d

-

n-

;

r

stress conditions it is more convenient to solve the Nav
Stokes equation for the local shear rate, which is found fr
Eq. ~7! by differentiation of both sides with respect toy.
From the sine Fourier representation~28! for the velocity, it
follows that the shear rate is of the form

ġ~y,t !5 (
n50

`

bn~ t !cos$kny%, ~31!

with b0(t) equal to the overall shear rateġ(t). In solving the
Navier-Stokes equation~7!, one must insist on the constrain
~30!, which now reduces to

sS (
n50

`

~21!nbn~ t !D 2s0

1kS (
n50

`

~21!nbn~ t !D (
n51

`

~21!nbn~ t !kn
250.

~32!

It is shown in the Appendix how to implement this constra
in a numerical solution of the Navier-Stokes equation.

We shall have to specifys as a function ofġ. The most
satisfying approach would be to derive the shear rate dep
dence of the shear viscosity from microscopic consid
ations, as is done in Refs.@25,26# for entangled polymer
systems. Here we shall construct a simple constitutive eq
tion for s, which mimics experimental results. The gene
form exhibits a van der Waals–like behavior. Since the sh
viscosityh is an even function of the shear rate, probably t
most simple form reads

h~ġ!5
h01ah`ġ2

11aġ2 , ~33!

where the zero- and high shear rate limiting viscositiesh0
andh` are introduced, and wherea is a parameter that ca
be chosen such that typical experimental data are re
duced. Here we useh0520 Pa s,h`51 Pa s, anda5 1

20 s2.
This choice leads to a functional form of the shear stress
versus shear rate that is quite similar to experimental res
for wormlike micelles@6#, and is plotted in Fig. 3~a!. The
horizontal line corresponds to the modified Maxwell equ
area construction~10!.

We also have to specify the shear-curvature viscosityk as
a function ofġ. Like the shear viscosity,k is an even func-
tion of the shear rate. There are so far no experimenta
theoretical values known fork. Here, we will assume that no
shear banding occurs when the gap width is reduced b
factor of 10, implying that 2p/kcrit5lcrit5 l /10. For a
given overall shear rateġ0 , Eq. ~17! then specifies the value
of k(ġ5ġ0). We need not specify the gap width in the n
merical solution of the equation of motion wheny is ex-
pressed in units ofl . The typical number of shear bands
the initial stage is now found to be equal tol /lmax57. As
discussed in Sec. II, the shear-curvature viscosityk tends to
zero for shear rates where the shear viscosity tends to its
shear limit. Sincek is an even function of the shear rate, a
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shear thins to zero in the same shear rate range as the
viscosity, the simplest form fork is k;h(ġ)2h0 , and
hence,

k~ġ !5
k0

11aġ2 , ~34!

wherek05k(ġ→0). In the caseġ0510 s21, we have sta-
bility on decreasing the gap width by a factor of 10 f
k0 / l 251.68831023 N s. A plot of the shear-curvature vis
cosity k is given in Fig. 3~b!.

Note that the numerical value ofk(ġ0)p2/ l 2 is usually
small in comparison toud(ġ0)/dġ0u, so that the instability
criterion ds(ġ0)/dġ0,2k(ġ0)p2/ l 2 virtually amounts to
ds(ġ0)/dġ0,0. The stability limiting shear rates are ther
fore almost equal to the shear rates wheres in Fig. 3~a!
exhibits extremum values.

The number of Fourier modes used in all calculations
50. Adding more Fourier components does not change fl
velocities or shear rates to within a percent. The dimens
less timet5th0 /r l 2 will be used in the sequel, which is th
time in units of the typical relaxation time towards a hom
geneously sheared state in the case where the system w
have been stable.

A. Controlled shear conditions

Numerical results for the differenceDu(y,t)[u(y,t)
2ġ0y are given in Fig. 4 as a function ofy for different

FIG. 4. The flow velocityDu(y,t)[u(y,t)2ġ0y divided by the
gap widthl in units of seconds as a function ofy/ l for various times
in case of controlled shear conditions:~a! t50, ~b! t50.4, and~c!
the stationary state. The initial profiles in~a! are randomly gener-
ated.
ear

s
w
n-

-
uld

times. The overall shear rate is equal toġ0510 s21. The
temporal evolution of two randomly generated initial sta
is depicted. The initial states are given in Fig. 4~a!. In gen-
erating these initial states, the Fourier coefficientsan are
randomly chosen in the interval60.01/n, where division by
n ensures an equal average contribution of each Fou
mode to the stresss(t50). The two initial states are seen t
be quite different. In Fig. 4~b! the state fort50.4 is de-
picted. As can be seen, the most rapidly growing Fou
mode dominates the state of the system at this time.
stationary states are depicted in Fig. 4~c! ~the stationary state
is typically attained fort'6 – 8). Coexistence betwee
bands with a constant shear rate is found. The shear rateġ6

in the high and low shear rate regions and the constant s
Sstat are in accordance with the modified Maxwell equ
area construction~10!. The number of bands in the stationa
states are approximately the same due to dominance o
most rapidly growing Fourier mode in the initial stages
demixing, as depicted in Fig. 4~b!. Note that the number o
bands in the stationary state is less than the number of b
in the initial stage. The nonlinear terms in the Navier-Stok
equation thus tend to reduce the number of bands that
initially formed. Typically one finds 6 to 7 interfaces.

The number of bands in the initial stage is determined
the most rapidly growing Fourier mode only when this mo
has the opportunity to become dominant. When anot
wavelength is dominant right from the start, the number
bands in the stationary state is determined by the wavele
of that mode. This is depicted in Fig. 5. The solid line in F

FIG. 5. Same as in Fig. 4. The solid line in~a! is an initial state
with a large amplitude; the dotted line is an initial state with t
same wavelength but a much smaller amplitude. In~b! the states are
shown fort50.4. The stationary states are given in~c!.
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FIG. 6. The solid line is the functionf 1 in Eq. ~36!, while the dotted line is the functionf 2 in Eq. ~37!. The points of intersection give
the overall shear rates for which the constraint~32! is satisfied. There are generally three intersection points due to the van der Waal
behavior off 1 , as depicted in~a!. Whenf 1 and f 2 are tangential in a point, see~b!, there are only two intersection points. This happens wh
two constraint branches cross. In~c! there is only a single overall shear rate that satisfies the constraint.
in

up
Fi
th

e

ur

s
th

cu
t t
a

at

he

f
r
f
ls
a

ig.
te,
that
two
as

hear
to a
ugh-
late.
be-
ess
ate,
sed
sed
ere
rea
that

nder
a

s is
ion

ate
the
5~a! is an example of a large initial perturbation that rema
dominant for all times. In the initial stage in Fig. 5~b!, where
t50.4, the most rapidly growing Fourier mode does turn
but does not become dominant. In the stationary state in
5~c! there are only two interfaces, in accordance with
symmetry of the initial state. A perturbation with the sam
wavelength but with a much smaller amplitude@the dotted
line in Fig. 5~a!# evolves quite differently in time. Now the
most rapidly growing Fourier mode dominates the struct
in the initial stage, as depicted in Fig. 5~b!, and the final
stationary state in Fig. 5~c! exhibits the typical 6 to 7 inter-
faces as in Fig. 4~c!. These results comply with the remark
in Sec. V on the degeneracy of the stationary state in
two-plate geometry.

It is also found that the shear-banding transition can oc
outside the range of unstable shear rates, provided tha
amplitude of the initial perturbation is large enough. One c
therefore probably distinguish between spinodal shear r
~which are the linear stability limiting shear rates! and bin-
odal shear rates~which are the shear rates beyond which t
transition cannot occur!.

B. Controlled stress conditions

The constraint~32! is most conveniently written as

f 1~ ġ !5 f 2~ ġ !, ~35!

with

f 1~ ġ !5sS ġ1 (
n51

`

~21!nbnD 2s0 , ~36!

f 2~ ġ !52kS ġ~ t !1 (
n51

`

~21!nbn~ t !D (
n51

`

~21!nbn~ t !kn
2 .

~37!

For a given set ofbn’s with n.0, the intersection points o
f 1 and f 2 as functions ofġ5b0 thus give the overall shea
ratesġ for which the constraint is satisfied. A typical plot o
these functions is given in Fig. 6. Due to the van der Waa
like behavior of s there are generally three overall she
rates that satisfy the constraint@see Fig. 6~a!#, although it
s

,
g.
e

e

e

r
he
n
es

–
r

may happen that there are only two solutions@see Fig. 6~b!#
or even a single solution@see Fig. 6~c!#. A typical temporal
evolution of these three constraint branches is given in F
7, where the thick solid line is the actual overall shear ra
and the thin solid lines are the remaining shear rates
satisfy the constraint. When two branches cross, the
functionsf 1 and f 2 are tangential at an intersection point,
depicted in Fig. 6~b!. The surprising thing now is that no
convergence to a stationary state is found. The actual s
rate always remains on a branch that does not lead
proper stationary state where the stress is constant thro
out the gap, equal to the imposed stress at the upper p
Instead, what we find is that after some time the stress
comes equal to the modified Maxwell equal area str
throughout the gap, except very close to the upper pl
where the stress very rapidly adjusts to match the impo
stress. The most rapidly varying Fourier mode that is u
determines the width of the region near the upper plate wh
the stress changes from the modified Maxwell equal a
stress to the imposed stress. The conclusion is therefore
there is no convergence to a proper stationary state u
controlled stress conditions. One way out of this dilemm
could be to introduce a fluctuating term to the stress. Thi
physically plausible, since the shear-curvature contribut

FIG. 7. The temporal evolution of the actual overall shear r
~thick solid line! and the other overall shear rates that satisfy
constraint~32! ~thin lines!.
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to the stress is the result of the variation of shear rates o
microstructural length scales. These fluctuations may ca
the shear rate to change to another branch when
branches cross. Without fluctuations, switching to anot
branch is impossible due to the continuous differentiabi
of ġ(t) as a function of time. For example, changing to a
other branch att'0.35 in Fig. 7 implies a jump discontinu
ity of dġ(t)/dt. When adding fluctuations to the equation
motion, however, again nonconvergence is found, with
same features as before without fluctuations. The inevita
conclusion is that the simple one-dimensional equation
motion is insufficient to describe shear banding under c
trolled stress conditions. Flow inhomogeneities in the t
other dimensions~along the flow and vorticity directions!
must be incorporated. The only paths that lead to a pro
stationary state are those with flow gradients in the fl
and/or vorticity direction. The full three-dimensional Navie
Stokes equation should be investigated for shear banding
der controlled stress conditions. The simplest generaliza
of the constitutive relation~4! to three dimensions that on
can use in such an investigation is probably

S~r ,t !5@h„ġ~r ,t !…2k„ġ~r ,t !…¹2#

3@„“u~r ,t !…1„“u~r ,t !…T#, ~38!

where the superscriptT stands for ‘‘the transpose of.’’ The
analysis of the full three-dimensional Navier-Stokes equa
is a subject for future work.

VII. SUMMARY AND DISCUSSION

In order to describe shear banding, an additional term
the total stress is introduced. This term relates to shear
duced spatial variations in the microstructure on len
scales of the order of the microstructural correlation leng
The corresponding proportionality constant is referred
here asthe shear-curvature viscosity, which is shown to
shear thin to zero at the same shear rate where the s
viscosity attains its high shear limiting value. Under co
trolled shear conditions the extended constitutive relat
leads to a modified Maxwell equal area construction t
gives the shear rates in the low and high shear bands tog
with the stress as attained in the stationary state. The co
tutive relation that includes the shear-curvature indu
stress gives rise to shear banding in the two-plate geom
under controlled shear conditions. In the initial stage of
shear-banding transition there is a most rapidly growing F
rier mode that determines the number of shear bands in
stationary state. Both the number of bands and the width
the bands are determined by the shear-curvature visco
and shear viscosity characteristics. The stationary state in
two-plate geometry is not uniquely determined, but depe
on the initial unstable perturbation. When the amplitude
the initial perturbation is very large, the number of bands
dictated by the characteristic wavelength of the initial sta
The shear-banding transition can also occur outside the
gion of unstable shear rates, when the amplitude of the in
perturbation is large enough. Under controlled stress co
tions no stable stationary state could be found, even w
fluctuating terms were added to the Navier-Stokes equat
Probably flow variations in the flow- and vorticity direction
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are essential under controlled stress conditions.
The above findings raise a few questions that should

considered in future work:
~a! There are additional terms in the Navier-Stokes eq

tion for a Couette geometry. These terms could lead t
preferred drift velocity of interfaces and thereby ultimate
lead to a single, unique shear-banded state with just a si
interface.

~b! What is the mechanism that makes flow variatio
along the flow- and vorticity directions in the two-plate g
ometry essential to reach a stationary state? A feature of
one-dimensional flow considered here is thatu•“u50.
Since¹u is large within the interfaces, a small contributio
of u along the flow- or vorticity directions can lead to appr
ciable contributions to the three-dimensional Navier-Sto
equation. It might be that the additional terms to the Navi
Stokes equation in a Couette geometry make such flow va
tions redundant for obtaining a proper stationary state. In
case it seems worthwhile to study the three-dimensio
Navier-Stokes equation, since this is the equation that sho
be used to study~thermodynamically driven! phase transi-
tions under shear flow.

~c! Where are the binodal shear rates located and how
the minimum amplitude and the optimum wavelength of t
initial perturbation, leading to demixing outside the unsta
region, vary with the shear rate?

~d! What are the actual numerical values of the she
curvature viscosity of real systems, and how can it be m
sured? One might be able to probe the wavelength of
most rapidly growing Fourier mode or its growth rate, or
measure the interfacial width in the stationary state. In or
to obtain the shear-curvature viscosity from such data,
also needs to measure the entire van der Waals loop os
versusġ in a geometry with a gap width that is smaller tha
the smallest unstable wavelength. It will depend on act
values of the shear-curvature viscosity whether this is f
sible.

~e! So far there have been no theoretical predictions
the shear-curvature viscosity. Since this coefficient relate
very rapid spatial microstructural changes, such calculati
will probably be more complex than shear viscosity calcu
tions.
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APPENDIX

In this appendix it is shown how to construct the soluti
of equations of motion under a constraint. Consider an eq
tion of motion of the form

dx

dt
5f~x!, ~A1!

wherex is anN-dimensional vector. For our purpose,x is the
vector (b0 ,b1 , . . . ) of theFourier amplitudes in Eq.~31!
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for the shear rateġ(y,t). The fieldf is a ~linear or nonlinear!
vector field ofx, whose explicit form follows from the cosin
Fourier expansion of the right-hand side of the Navi
Stokes equation~7! in the rangeyP@2 l ,1 l #, after first hav-
ing differentiated with respect toy. Let

F~x!50 ~A2!

be a scalar constraint to the equation of motion~A1!. For our
purpose the scalar fieldF is the function given in Eq.~32!.
The vectordx/dt is tangential to the hypersurface spann
by the constraint~A2!. Since ¹F is perpendicular to tha
hypersurface, we have that¹F(x)•dx/dt50. Let Î denote
the unit tensor. Multiplying both sides of Eq.~A1! with the
projection operator,

P[ Î2
@¹F~x!#@¹F~x!#

u¹F~x!u2
. ~A3!

this operator projects a vector onto the hypersurface and
leaves the left-hand side of the equation of motion~A1! un-
changed, so that
ui

eu

ys

.

.

-

us

dx

dt
5F Î2

@¹F~x!#@¹F~x!#

u¹F~x!u2 G•f~x!. ~A4!

This is the equation of motion that can be solved without a
further constraint, and ensures that the constraint~A2! is sat-
isfied.

In the linear stability analysis in Sec. IV B, the equation
motion ~22! reads

dbn~ t !

dt
5Cn

kn
2

r
, ~A5!

with Cn given by Eq.~25!. Furthermore, the vector¹F fol-
lows directly from Eq.~23! as

¹nF5~21!n11Cn . ~A6!

Substitution of these forms into Eq.~A4! yields the equation
of motion ~24!.
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