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Coefficient of restitution of colliding viscoelastic spheres
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We perform a dimension analysis for colliding viscoelastic spheres to show that the coefficient of normal
restitution e depends on the impact velocity as e=1— y,g*®+ y,g%°% - - -, in accordance with recent
findings. We develop a simple theory to find explicit expressions for coefficigngnd y,. Using these and
few next expansion coefficients feg) we construct a Padapproximation for this function which may be
used for a wide range of impact velocities where the concept of the viscoelastic collision is valid. The obtained
expression reproduces quite accurately the existing experimental depené@yicefor ice particles.
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PACS numbd(s): 45.70—n, 81.05.Rm

I. INTRODUCTION Here, ¢ is the compression of the particles during the colli-
sion é=R;+R,—|r;—r,| (R;,R, and ry,r, are the radii
The Change of relative VelOCIty of |n6|astlca”y C0|||d|ng and the posmons of the Sphe)‘ey and v are, respect|ve|y,
particles can be characterized by the coefficient of restitutiofhe Young modulus and the Poisson ratio of the particle ma-
e. The normal component of the relative velocity after aterial, R*'=R;R,/(R;+R,), and the dissipative parameter
collision g’ —v e follows from that before the collisiog A reads[25,26]

=V, € Via
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1 (1—v?)(1-2v)
3 (3m+27) '

g'=—eg,
Y12

4

wherev,,v, andv} v} are, respectively, the velocities be-
fore and after the collision, while the unit vect®® The viscous constantg,, 7, relate the dissipative stress
—r12/|r12| gives the direction of the inter-particle vector tensor to the deformation rate tend@5,26,2§. The same
r12_r1 r2 at the instant of the collision. functional dependence df ji{ ¢, g) has been obtained in
From experiments as well as from theory it is well known [29-31 using a different approach. We want to point out
that the coefficient of normal restitutionis not a constant that Eqs(3) and(4) do only hold if viscoelasticity is the only
but it depends sensitively on the impact velogity-11]. Al- dissipative process during the particle collision. For the cases
though most of the results in the field of granular gases havhere plastic deformation, brittle failure, fracture, adhesion
been derived neglecting this dependence but using 8tc. have to be considered, there are more appropriate models
velocity-independent coefficient of restitutiofe.g., [12—  for the particle contact, e.g.32].
18)), it has been shown that the impact-velocity dependence The equation of motion for inelastically colliding spheres
of the coefficient of restitution has serious consequences fdieads, therefore,
various problems in granular gas dynam(it9—24.
The equation of motion for inelastically colliding three- 3
dimensional(3D) spheres has been addressed4d4-26, §+Lﬁ(§3xz+_A\/§§):0, (5)
where the Hertz contact laj27] me 2

2Y

Fo=p&¥%  p= 3 VReT, (2 with
for the elastic inter-particle force, has been extended to ac- £(0)=0, &0)=g,
count for the viscoelasticity of the material which causes the
dissipative part of the force and with m®"=m;m,/(m;+m,)(m,,m, are the masses of
the colliding particles To obtain the dependence of the res-
= :EA \/Ef 3) titution coefficient on the impact velocity for 3D spheres, the
diss™ 5 APV equation of motion(5) was solved numerically10,24—-26
and analytically[33], where the velocity-dependent restitu-
tion coefficient has been obtained as a series in powers of
* http://summa.physik.hu-berlin.dekies/ gs:
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3 p 2/5 3 \2 p 4/5 . &
~ A - ~ O .-
e=l—C1(§A> ﬁ) g+ C, EA) ﬁ) g?® §=8&l&, &=&lg, fzgfy 9
e 6)  and recast the equation of motion into dimensionless form:

The first coefficientsC;=1.153 44 andC,=0.798 26 were “ s 14 a.
evaluated analytically and then confirmed by numerical E+6(g)E7EP+ T§“=0 (10
simulations[33].

Although in [33] a general method of derivation @il
coefficients of the expansidB) has been proposed, to obtain
these, extensive calculations have to be performed. This ap-

with

proach does not provide closed-form expressions for the co- £0)=0, &0)=1,
efficients, but rather gives them in terms of convergent series )
which are to be evaluated up to the desired precision. &(1)=0, &7o)=—e.

In the present study we show that a dimension analysis
allows one to obtain the functional form of tle¢g) depen-  In the last equatioi10) we supplemented the precollisional
dence for the elastic and dissipative forces. Within the frameinitial conditions atr=0 with the after-collisional conditions
work of this analysis we reproduce the dependei®¢@ip to  at r=r, (7 is the dimensionless time ang is the dimen-
numerical values of coefficients . A similar approach has sjonless duration of the collisioriThese follow just from the
been used by TanaK&4] to prove that the constant coeffi- definition of the restitution coefficient. We point out that all
cient of restitution is not consistent with physical realiége  dependence on the initial impact velocity on any quantity of
also [10,35). We also develop a simple approximative the problem, including: (this is just the dimensionless after-

theory, which gives a continuum fraction representation forcollisional velocity comes only through the consta
e(g) and a closed-form expression f@y, and C, with the  \which reads

same numerical values as above. Using then coefficients

C,, ...,C4 (with C; and C, evaluated in the Appendix in 1+ o\ @A+

accordance with the general scheme of RR88]), we con- o(g)=D, 2D, g2/ th (1])
struct a Padeapproximation, which reproduces fairly well

the experimental data for colliding ice particlgs. Hence,e(g) = e(5(g)). A similar result fore—0, B=1, and

a=3/2 has been obtained |87].
Il. DIMENSIONAL ANALYSIS If we assume that the restitution coefficient does not de-
To perform the general dimensional analysis we adopt thgend on the impact velocitg, then it follows that
following form for the elastic and dissipative forces: 2(y—a)+B(1+a)=0. (12)
Fa=mD,¢",

For a linear dependence of the dissipative force on the ve-
locity, i.e., for B=1 (this seems to be the most realistic for

small £), one obtains a constant restitution coefficient for the

. : following.
This general format least for smalk and &) follows from (i) the linear elastic forceE ~ £, i.e. a=1. The condi-

the fact Fhat both eIas_Uc and _d|55|pat|ve for(_:es vanisg at tion (12) implies y=0, and thus the linear dissipative force
=0 and&=0, respectively. With these notations the equa- :

F giss= me"D 257-‘5%-

i H i i I:diss"“ .
tion of motion for colliding particles reads (i) the Hertz law for 3D sphere®) a=3/2, therefore,
£+ D, £%+D,£7EP=0, (77  v=17 andFgss~ ££Y4 provides a constant restitution coeffi-
cient.
with We now ask the question: What kind efg) dependence
corresponds to the forces which act during collisions of vis-
£0)=0, &0)=g, coelastic particles? It may be generally sho{@%,26,38

that the relation
whereg has already been introduced. Now we choose as the
characteristic lengtl¥, of the problem, the maximal com- d

pression for the elastic case. It may be found from the con- Fdiss= Agg_gFe'(g) (3
dition that the initial kinetic energym®g?/2 [36] equals the
maximal elastic energmeﬁDlgf)“*l/(aJr 1), which yields between the dissipative and elastic forces with the dissipative

constantA given in Eq.(4) holds, provided the following
three conditions are m¢B9].

(i) The elastic part of the stress tensor depends linearly on
the deformation tensd28].
Choosing then the characteristic time of the problenrgs (i) The dissipative part of the stress tensor depends lin-
=¢,/9, we construct new dimensionless variables early on the deformation rate ten4@8].

1/(1+a)

a+l
92/(14-01). (8)

=\ 2D,
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(i) The conditions of quasistatic motion are provided
i.e., g<<c, 7,i<7.[25,26 (herec is the speed of sound in
the material of particlesr,;s is relaxation time of viscous
processes in its bulk

From this follows tha{3=1, y=a—1, and thus the con-
stant restitution coefficient may be observed only for colli- -
sions of cubic particles with su)r/faces normal to th)e direction &~ V1- (& &) (20
of collision. We wish to emphasize that this conclusion
comes from the general analysis of viscoelastic collisions. which also gives vanishing velocrglat the turning point,.

Let us discuss now collisions between spheres with elastifategration in Eq(18) may be performed yielding
and dissipative forces as given by E@8) and (3), respec-
tively. For these we haven®D,;=p, «=3/2, andm®*"D, g, 1 o
=3Ap, y=1/2, andB=1 which yields the functional de- 250 T 5~ —6d & (21)
pendence fo(g) and e(g), respectively:

'The velocity vanishes at the turning poit=1. For inelas-

tic collisions the maximal compressigy is smaller than 1,
therefore, one can write an approximation relation for the
inelastic case:

where we take into account thaE(Z,)=3£5?, E(0)

3(5\3 [ 25 5 1 ond introd
— 1/5 == =z
5= 5(2) A Ff g's, (14) 5&(0)=3, and introduce a constant
(3]
e=elA %f) glis (15 d= f xV2\[1—x5= (22)
m srl%)

[skipping the prefactor of(g) in the last equatiohin accor-

dance with Eq(6) as found previously. Consider now the inverse collision, which is defined as a

collision which starts with velocitgg and ends with veloc-
ity g. According to the concept of the inverse collision intro-
ll. RESTITUTION COEFFICIENT FOR SPHERES duced in[33] (which is a useful auxiliary modglit is char-
R R acterized by a negative dampirtthe energy is “pumped”
Using d/dt=¢(d/d£) it is convenient to write the equa- into the system during the collisipnThe maximal compres-

tion of motion for a collision in the form sion &, is the same in both collisions, the direct and the
. inverse.
2, Lasio 5n1p, OE(E) Rescaling equation of motion for the inverse collision in
§ § — 0&¢ :d—é’ the very same way as for the direct collision yields
dE(&) -
~ X ) 1/2'
€0)=0; k0)=1, (16 ¢
where we introduce the mechanical ener N 5
¥ H0)=0, ¥0)=e. (23
1, Lagp . . o L hoa
E=5&7+ 5877 (17)  This suggests the following approximative relation #gg)
during the inverse collision:
To find the energy losses in the first stage of the collision, P RN
which starts with zero compression and ends in the turning §(&)~eV1—(&/60)™% (24)

point with maximal compressiogy, with the additional prefactoe, which is the initial velocity in

the inverse collision.
j 9E j3— _ 124 18 Integration of the energgain for the first stage of the
o di &= 0 §67dE, (18) inverse collision(which equals up to its sign the energy loss
in the second stage of the direct collisi8]) may be per-
formed in just the same way as for the direct collision, yield-
one needs to know the dependence of the compressmg rateng the result

as a function of the compressign 1 5
. S . R €
For the case of elastic collisions, the maximal compres- - g/z_ c _ +65d§3’2 (25)

sion is %0= 1, according to the definition of our dimension- 2 2

less variables. Hence, the depende&@ follows from the

h &% andE €%. Multiply-
conservation of energy: where we again usE(Z;) = andE(0) = Py

ing Eq.(21) by € and summmg it up with Ec(25) we obtain
) a simple approximative relation between the restitution coef-
{H=\1-8"2 (19 ficient and the(dimensionlessmaximal compression:
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TABLE |. Coefficients of the Padérmula (35) as derived from the coefficients, .

do=a,—2a;—a3+3a,— 1

d;=[1—a,+az—2a,+(a,—1)(3a,—2az)]dy* =2.5839
d2:[(a3—a2)(1—2a2)—a4]dal =3.5839
dy=[as+as(a,—1)—a(a,+1)]dy* =2.9839
ds=[as(as— 1)+ (a3~ az)(a5—2as)]dy* =1.1487
ds=[2(a3—a)(as—aas) — (a,—a3)*—as(ag—aj)1dy* =0.3265
= %g/z_ (26) or, respectively,
C;=-0.483582, C,=0.285279. (39

Substituting this into Eq(21) we arrive at an equation for

the restitution coefficient Hence, we observe that while the first two coefficieats

e+25d e35=1. (27) =1 anda,=3/5 are correctly obtained from the approxima-
tive theory, the next approximated coefficieiats,a, differ
The formal solution to this equation may be written as afrom the exact ones.
continuum fraction(which does not diverge in the limi For practical applications, such as molecular dynamics
—00): simulations, however, the expansi8®) is of limited value,
due to its divergence for high impact velocitigs;>>. Ac-
e '=1+25d(1+25d(1+--)?5.)?5 (28)  cording to the velocity distribution function there is a certain
, e . probability that the relative velocitg of colliding particles
Another way of representing the restitution coefficient oy .aeds the limit of applicability of Eq32). Therefore, we
is a series expansion in terms &fFor practical applications ;s the obtained coefficients to construct a Paggroxima-
it is convenient to return to dimensional units. We define thg;n, for €(g), which reveals the correct limits of the bound-
characteristic velocitg™ such that ary conditions(0)=1 ande()=0. Since the dependence

1 1/5 €(g) is expected to be a smooth, monotonically decreasing
5= _(i) (29) function, we choose a “1-4” Padapproximation:
2d|g* o1
with d being defined in Eq(22). Using the definition(14) 1+d; —*)
together with Eq(22) we find for the characteristic velocity — .— 9
g 1/5 9 2/5 9 3/5 g 4/5-
25 +do| —| +d3| —| +ds|—| +ds|—
(g*)—llsz ‘/; &/5) §A P (30) ! dz( g* d g*) da g*) d5( g*)
Evaluating the numerical prefactor finally yields Standard analysis yields the coefficiedsin terms of the
o5 coefficientsa, [40] (see Table)l
B 3 p Using the characteristic velocity* =0.32 cm/s for ice as
(g*) ¥P=1.15344-A|| — (3D e : -
' 2 meff a fitting parameter we could reproduce fairly well the experi-

mental dependence of the restitution coefficient of ice as a

Note that the numerical constant 1.153 44 has to be equal f¢nction of the impact velocityg in the whole range of
C, in Eq. (6). (Fig. 1. The discrepancy with the experimental data at small

With this new notation the restitution coefficient reads 9 follows from the fact that the extrapolation expressien,
=0.32H%2% used in[5] has an unphysical divergence gt
( 9 )1’5 9 )2’5 ( g )3’5 ( 9 )4’5 —0 and does not imply the fail of the theory for this region.
e=l-ay| —| “+ap| —| —as| - ag| — The scattering of the experimental data presentefb]jns
9 9 9 9 large for small impact velocity according to experimental
+..., (320  complications, hence the fit formula ¢5] cannot be ex-
pected to be accurate enough for too small velocities. More-
with a;=1, a,=3/5 (which are exact valugsa;=6/25 over, in the region of very small velocity, it is possible that
=0.24,a,=7/125=0.056 . .. (which deviate from the cor- something other than viscoelastic interactions might influ-
rect ones; see belowComparing Eq(32) with Eq. (6), we  ence the collision behavior, e.g., adhesion. Similarly, for
conclude that our simple approximative theory reproducesery high velocities, effects such as brittle failure, fracture,

exactly the coefficient€,; andC,, which were found before and others may contribute to dissipation.
using extensive analys[83].

We also performed rigorous but elaborated calculations IV. CONCLUSION
according to the general scheme [88] to find the exact ) _ _ ) )
coefficients(details are given in the Appendix We developed a dimensional analysis for the inelastic col-

lision of spherical particles. We could show that for 3D
a;=0.315119, a,=0.161167, (33 spheres the functional form fefg) agrees with that derived
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06 - - - - - - - - tion is based on the collection of terms with different depen-
' dence on the initial velocity, it is convenient to use a scal-
i 1 - Bridges et al. [5] ing, somewhat different from that used before for the
05 i1 2 - Pade approximant 1 dimensional analysis. Namely, we rescale the timet'as

‘ =(p/mgx)?°gY™ and the length ag= (p/myx)?°¢ to recast
Eq. (5) into the form[41]

055 H

Xr/+agfll5xr\/;+972/5x3/2:0’ (A1)

with a=2A(p/mex)?®, and using all the notations intro-

duced previously. The initial conditions for the rescaled Eq.

(A1) now readx(0)=0 andx’(0)=g*®. For simplicity of

notations we will keep, in what followg, for the rescaled

o5 1 1s 2 25 3 35 4 45 s time. As it was shown if33], the trajectory may be ex-
Normal Impact Velocity (cny/s) panded in terms Of/f as

FIG. 1. Dependence of the normal restitution coefficient on the
impact velocity for ice particles. Solid line, experimental data of

Normal Restitution Coefficient

X(1) = bt Y2+ byt + bat32+ b,yt? + bgt¥2+ bet3+ bt 72

[5]; dashed line, the Padapproximation(35) with the constants +o (A2)
given in the table and with the characteristic velocity for ge
=0.32 cm/s. Clearly, bothb,; andbs should be zero to avoid divergence

of velocity and acceleration at=0. At the same timeb,

previously[33], using a much more complicated approach.=g45 andb,=0, due to the equation of motion at vanishing
Using a simple approximative theory we found a continuum-compression. This yields
fraction representation far(g) and obtained explicit expres-
sions for the coefficients of the series expansion of the res- X(t) =gt + bgt¥2+ bgt3+ bt 2+ . . . (A3)
titution coefficient in terms of the impact velocity. The first
two coefficients in this series coincide with that found pre-From Eq.(A3) one obtain’(t) andx”(t) which are to be
viously by numerical evaluation. Next, we also report on asubstituted into the equation of motigAl). One also needs
few coefficients which we have derived within the generalyx andx®? the expansions for these in terms (f read
approach of a previous studi$3]. Using the first four coef-
ficients of this series expansion we constructed a Rade
proximation for e(g). It reproduces fairly well the experi-
mental data for colliding ice particles.

The restitution coefficient as a function of the impact ve- 5,4
locity contains the parametg® which depends on the elas-
tic and viscous material properti¢gsee Egs.(30),(2), and 3 3
(4)]. If these properties are knowg; is univocally deter- x¥2= 96/5t3/2+592/5b5t3+ 592/5b6t7/2+ <. (AD)
mined. Otherwiseg* can be determined experimentally; if
the restitution coefficien¢ is known for one specified impact Inserting the expansions fo¢' (t), X"(t), JX, andx®?2 into
velocity, one can determing” and the full functione(g) is  gq. (A1), and collecting the orders of we obtain
known. The obtained relation for the restitution coefficient
may be used for a wide range of the impact velocities, pro-
vided that the energy loss during a collision is attributed to 0=
viscoelasticity and that all the other dissipative processes
(plastic deformation, fragmentation of partidlesay be ig-

b,

b b
. t2+ . 2 2/5
g

292/5 292/

\/;:gz/stl/2+ t3+... (Ad)

5/2
U

15

_ 3/2
2 t

35
bs+ ag“5) 12+ 6bgt + ( 2 b+l

63 7
nored. +(120g+3ag g t2+ Zb9+ Eagl/sbs) £5/2.
(A6)
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APPENDIX 4
by=— 35’ (A9)

The general method of derivation of the expansion coef-
ficientsC, has been given if83]. Here we briefly sketch the
main lines of derivation and provide some details for the b= a?g?® (A10)
particular cases of; andC,. Since the method of deriva- 8
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bg=0, (A11) (tS) (5)2’5
\2)7\3
so that the solution for the trajectory finally reads
" | 654 For a viscoelastic collisioty,,, certainly differs frorrtglz,
x(t)=g*— 15019t ~ 359 R = 15 a?got - SO thatt,=t/2+ 8t. If the dissipation parameter is not

(A12) large, the deviationst is presumably small; therefore, we
expandx’ (tma) =X’ (t22+ 6t) in terms of 6t:
In order to get the higher orders, which is conceptionally

simple but requires extensive calculus, we wrote a program 0 0\ st2 0
[42], that by formula manipulations, performs exactly the g~ (tma)=|X5| = | + OtXG| = | + = Xo| | +---
steps we described above and which is able to find the tra- 2 2 2 2
jectory up to any desired order. to t°
Generally, it is convenient to write the solution as a se- +ag¥¥ xj| = |+ 6tx ”(—C)
ries: 2 2
stz (12
X(1) =g (xo(t) + ag "y (1) + a?g?p() + - - ). x| 2]+
(A13) 2712
Here xq(t) is a “zero-order” trajectory, which refers to + 02029 %! § £ Sty § 4.
the case of undamped collision, the “first-order” trajectory, 9% 2 2\ 2
X41(t), accounts for damping in lineawith respect toa) o
approximation, the “seconQ—orqer” tzrajectoryg(t), corre- ta g3’5 )|+ =0, (A17)
sponds to the next approximaticha®, etc. Here we give 2

our results for these H-order” trajectories up ton=3, ob-

tained using the above mentioned program up to the ordaghere we use representati¢Al13) for the trajectory. The

th deviationét vanishes atv=0 and, thus, suggests the expan-
sion in terms ofa:

4 1
Xo=t— —t724 —_t6_ 17124 1
0 35 1750 104125 8017 628 St=ra+ 102+ T30 - - . (A18)
Xq = — its/z+ its 713 152, 61216 10 Substitutingét, given by Eq.(A18), into Eq.(A17) and col-
! 15 70 238 87é " 22639 18'} lecting terms of the same order afyields
1 937 871 Yo+ aY,+a?Yo+a®Y,+...=0 (A19)
— A 132 9 oraf;Ta YTary )
X%2=15" " 75078 ' gogso0 @ A
with the abbreviations
o 38 L, 43043 1184627 ,,
3772475 13513500 3594591000 Q)
Yo=Xg >
To proceed we need to find the maximal compression
Xmax» Which is reached at timg, . The point of maximal
. . . . . 0 O
compression is a turning point of the trajectory, where the _ te 1,5)(, C
velocity is zero. Therefore, the condition Y1=71Xo| 5 | T 9 2
Xr;1a>&tmax) =0 (A15) 0 2 {0 {0 {0
_ n| _C _1 m| € 1/5 n| _C 2/5,1| _©
holds at this point. With the above expression for the trajec- Vo= 7Xo| 5 | T %0 | O 5] Y %(2( 2)’
tory [Egs. (A13) and (Al4)], the last equatiotAl5) is an (A20)
equation to determing,,,, which may be then used to find
Xmax- This equation, however, is a high-order algebraic equa- 0 t(c) 3 0 2
tion for v, Which is not generally solvable. On the other Y3= 73Xg 2 + T1ToXg 5 gx"'é > +91/57'2X1< 2)
hand, for the undamped collisiot},,, equals one half of the
collision duration tg and both quantities of interest are f 0 0’ t(c’/
known [28]: +gll5 X! > °| +g257 X 5 +g¥%, <.
2\ (1 _
t° 4 asl r 5 The conditionsY,=0 for k=0, ... ,3,together with Eq.
o _c_ (2| = 7 Al6 (A20), allows us to express the constamgs 7o, T3, €IC. in
tmax ! ( ) . . .
2 \5 zr(g) terms of functionsx;(t), X,(t), Xs(t), etc., and their time
10 derivatives taken at timet{/2):
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(A21)

12 tg " tg to to ’ tg

- X1 EXO E Xl 2 Xl 2 X5 E
=07 — o O 7o |

=

2 2 2
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To calculate the coefficient of restitution, one has to use
the concept of inverse collision, as was introduced3g]
and discussed in previous chapters of the present study. One
obtains the solution of this inverse collision by replacing
— eg for the initial velocity anda— — « for the dissipative
coefficient. In particular, this applies to the maximal com-
pression of the inverse coIIisiow'n’}‘;X—xmaX(gﬂeg, a—
— a). For consistency one has to require the maximum com-
pressions for direct and inverse collision to be equal, i.e.,

inv _
Xmax Xmaxv

(A28)

We do not write the expression feg since, due to the spe- or using Eq.(A23),

cial properties of the problem,
x4(t%2)=0, the valuer; is not needed for calculation af
up to fourth order ofx. The functions¢(t), X,(t), andxx(t)
are known and given by Eq8A14), so that the constants
and 7, may be found explicitly.

Writing the maximal compression as

0

C
o| 5+t

tO
+ agllsxl E

— 405
Xmax— 9 + 6t

0
+5t

o
+ ot

te
+ ag2/5X2

+a 93/5X

(A22)

and expanding this in terms @, using then representation
of 6t asdt=ar+a’r,+---, with 7,7, from Eq. (A21)
and collecting terms of the same orderaafwe obtain

Xmax= 97(yo+ ag®y,+ a?g?Py,+ a’g®ys),

(A23)
whereyyg, .. .,y3 are pure numbers:
to
Vo= x0< 2) 1.093 362, (A24)
0
y1=x1(5c) = —0.504 455, (A25)
0
12 t
9 1% (2)
Y2 X2<2) 2# =0.260542, (A26)
3
’ tg ’ tg 12 tg " tg
) (tg lz)elz) 112/
y3 X3 2 4 tg E " tg
{0
1)<
- ——|=-0.136 769, A27
173(t0/2) ( )

and where we use expressiof#sl4) for x4(t), x,(t), and
X3(t).

i.e., due to the fact that

64/594/5()/0— ael/Sgl/5y1+ a2 2/5, 2/5y _ a3€3/593/w3+ .. )
= ¥y agiy, + a2g?y,+ alg st ). (A29)

Equation(A29) is, in fact, an algebraic equation fet’®,
which may not be generally solved. For this reason we write
€ as an expansion afg'®, which is the only combination in
which both parameters appear:

=1+ Clagl/5+ CZ( agl/5)2+ Cg(agl/5)3+ C4( a,gl/5)4
o (A30)

and substitute Eq(A30) into Eq. (A29). Collecting orders
we find

4 2
~ £YoCa+2ys|agt®+ || = £Cot 52 C

YO+y1C1}

X a292/5+

4c+ c,C 4(:3
T 5Tt 1op 1Yo

6
+y,1Co— 53/2(31Jr 2y;3|ag?®
C 2(:2 2C,C ch 1104
+ 5 4+2_5( 212C,C3)— 125 2t 6251
3 7
XYot+Yy1Cs+| — gcz_ 2_501 Yo+ §y3cl
X a*g¥®=0. (A31)
The last equatiortA31) yields the final result for the co-
efficients:
Sy
Cy== —=—1.153449, (A32)
2y,
15(y;\% 3 ,
CZ_Z(E) —501—0.798267,
95(3/1)3 15y,y; 53
Cy=—|—| ———== —=-0.483582,
ST16ly,) 4 2 2y,
315(y.|* 105 2 35
= Ya) o 109 YY1 Y3Y1 YY1 _ a5 979,
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Using (@*) " Y®=C,«, we obtain for coefficients, in ex- a,=C,/C*=0.161167. (A36)
pansion(32):
a;=1, (A33) Note that although the general method given in this ap-
pendix allows one to evaluate up to a desired precialbrin
a,=C,/C}=3/5, (A34)  principle, coefficientsC,, it does not provide the closed-
3 form expression foC, as the simple approximate approach
ag=C3/C7=0.315119 (A35)  given in the main text does.
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