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Statistical mechanics of charged polymers in electrolyte solutions: A lattice field theory approach
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The lattice field theory approach to the statistical mechanics of a classical CoulorfiR.§aoalson and
A. Duncan, J. Chem. Phy87, 5653(1992] is generalized to include charged polymer chains. Saddle-point
analysis is done on the functional integral representing the partition function of the full system. Mean-field
level analysis requires extremization of a real-valued functional which possesses a single minimum, thus
guaranteeing a unique solution. The full mean-field equations for such a coupled system are derived, as well as
the leading(one-loop fluctuation corrections. Two different numerical real-space lattice procedures are devel-
oped to implement the generalized theory; these are applied to the problem of a charged polymer confined to
a spherical cavity in an electrolyte solution. The results provide insight into the physics of confined polyelec-
trolytes.[S1063-651X%99)10709-9

PACS numbds): 36.20.Ey

[. INTRODUCTION polymer system by deriving a general convexity theorem for
the mean-field free energy. An explicit expression is also
In a recent series of papers, the application of lattice fieldlerived for the leading post-mean-field corrections due to the
theory (LFT) techniqueg1-5] to systems of mobile polar fluctuations around the saddle-point fields. This means that a
ions interacting with immobile macroions has led to a calcurecise estimate of the error in the mean-field theory is in
lational framework for extracting free energies, ionic concen-Principle possible even in systems of coupled ions and
trations, electrostatic potentials, and other physical propercharged polymer chains. Some simple illustrative applica-
ties. This formalism, which relies on a Hubbard-Stratonovichtions of the mean-field results of Sec. IV to systems possess-
transformation of a functional integral representation of theNd spherical symmetry, for which the problem can be re-
grand canonical partition function, has a number of antecegduced to the minimization of a one-dimensional functional,
ents in the literaturg6—10. In the generalization introduced are described in Sec. VI. The same systems are treated in
in Ref. [1], we were able to obtain accurate results at theS€c- VII by solving the mean-field equations on a three-
mean-field levelwith precisely computable corrections indi- dimensional lattice, an approach which can be used to study
cating the level of accuracy of the mean-field resules ~ Systems of arbitrary shape and symmetry. Section VIII sum-
systems characterized by arbitrary ionic concentration an#larizes our results and indicates areas for further research.
macromolecular shape and charge. Refer¢htéocused on
interactions between charged spherical colloid partighes Il. FUNCTIONAL FORMALISM AND LATTICE FIELD
lyballs) in electrolyte solutions. In a subsequent paper, a lig- THEORY FOR IONIC SYSTEMS

uid phase assembly of many interacting polyballs was stud- i , , .
ied [2]. The formalism of Ref[1] has been extended to A simple functional integral representation for the grand

include effects of a spatially variable dielectric profig], canonical partition func'Eion of a system of mobile ions with
the finite size of the simple mobile ions forming the electro-€electric charge density(r) is obtained by rewriting the elec-
lyte [4], and the presence of mobile dipoles in the ¢msu-  trostatic potential energy of the system via a standard func-
tion) [5]. The objective of the present paper is to extend thdional identity:
LFT approach to address the statistical mechanics of a gas of o
mobile charged ions to a system in which mobile charged B - o p(n)p(r")
: . . . PP
polymer chains are also present and interacting electrostati- €XH = 5 drdr W
cally with the mobile ions.

In Sec. Il we briefly review the functional integral repre- € . N
sentation(and lattice field theory discretization thergddr =CJ Dy ex;{ﬁj XAXdr+iJ X(r)p(r)dr}.
the grand canonical partition function introduced in Réf.

In Sec. Ill the formalism is extended to include charged (1)

polymer chains. The mean-field level solution of the full sys-

tem (ions plus polymersis then presented in Sec. IV. Our Here C is an irrelevant constar{independent op) which
results are similar to, but do not fully agree with some recenwill be neglected from now on, and the charges are im-
work of Borukhovet al. [11]. In Sec. V we justify the con- mersed in a medium of dielectric constanf12] at inverse
tour deformation introduced in Sec. IV to extract the leadingtemperature8=1/kT. For a system containing positive and
saddle-point{or mean-field theonyequations of the full ion- negative mobile ions the charge density is

1063-651X/99/6(1)/425711)/$15.00 PRE 60 4257 © 1999 The American Physical Society



4258 STEFAN TSONCHEV, ROB D. COALSON, AND ANTHONY DUNCAN PRE 60
- N . s a -
p(r)=e2k 5(r—rlf)—e2I S(r—ry). (2) Zec:f H dxﬁexp{gg XﬁAﬁnﬁXrﬁerz gieBxn
n nm n

The effect of the transformation induced by H4) is +7’—Z eie‘%]- (5
twofold. First, the long-range Coulomb potentiélhich n
makes the direct simulation of such systems by m°|eCUIa|:|ereA~~

. oo sm is the discrete lattice Laplacian operator, which
dynamics extremely difficulthas been replaced by a local may be regarded as B3 L3 matrix (see Ref[1]). The

Laplacian operator. Second, the nonlinear pairwise couplin%. i 3
) ' . . dimensionless constanis=a,Bel4m, y.=ePF=(a/\.)
of the charged ions has been replaced by a linear couplin ave been introduced to simplify the notation. In g, A

term where the ions interact only with th xiliary field. : ; . .
N ere e lons interact only e auxiliary field now represents the discrete lattice gradi@marest-neighbor

Consequently, for a fixeg field, the statistical mechanics of . . .
the ionic gas is elementary. Introducing chemical potentialfja:gﬁ:r:ggzgﬁgrator with e the electronic charge arg] the

u- for the positive and negative ions, the sum of the facto

exp( [ x(r)p(r)dr) over ion numbers and positions can be ex-

plicitly performed: IIl. FUNCTIONAL FORMALISM

FOR CHARGED POLYMER CHAINS

. The path integral representation of a polymer chain
D 1 if I dry dr eS ((fo—ieS v [13,14] is well known. We shall show below that for a sys-
i N Nyl =~ X{Tk — XU tem consisting of many monomers the leading behavior is
determined simply by the total lengt¥l (=total number of
monomers of all chains and not by the connectivity or num-
ber of the separate chains. Thus the configuration of the
polymer chaiffs) can be represented by a single function

+B(p N+ p_ny)
» dr _— dr ey X(s), where the dimensionless path length variables0
=exp e )\_36 +erts )\_39 , (3 <M. If the typical monomer separation B, (the Kuhn
* - length [13]), the partition sum for such a system may be
written

where\ .. are thermal deBroglie wavelengths for the ions. 3 u \

Inserting this result in the complete expression for the Bolt- :f Dx _ _f d ;(2 _ _f 2dr
zmann weigh{1), the full grand canonical partition function pol x(s)ex Zaf, 0 sx(s) 2 $p(r)7dr
becomes (6)

= | dsé(r—x(s)). 7
zGc=f DxeXF{SIB_:rJ XAXdF+eB"“*fe‘BBXdF/>\i Po(r) f so(r=x(s)) @)

The field ¢, is the spatial monomer density and the term

+eﬁu_f e ieBxg F/)\?’}, (4)  involving )\f¢§d? prevents the monomers from overlapping
with each otherh =0 being a measure of monomer excluded
volume. As discussed at the end of Sec. N&=B,=0¢7,
where B, is the second virial coefficient, which goes ap-
generalizations of this expressi¢h,3-6,9, have been dis- E;%@;;ilryea;gifsn;?n: n%%rn\cl)?#gqgf "FC; rlssgrnepl?gifti/d\l/\\//:
cus;ed el§ewhere 'and wil n.ot be treatedﬁhere.. For examplgha" assume initially that the polymer charge density is uni-
the inclusion of a single particle potenti(r) acting on the  form along the polymer chains, with each monomer carrying
ions _can be effected simply by the replacemenit®’X 4 et charge of pe[11] [the generalization to varying mono-
—e~'**~Vin Eq. (4). Such a potential can be usér  mer charge would simply result in an effective Satinger
example to exclude the ions from certain regions of space. Hamiltonian with a time-dependent potentisee the discus-
The functional integration indicated in E¢4) may be  sjon below]. The negative sign indicates that we have taken
made well defined by discreEizing the system on a cubicajpe polymer chain to be negatively charged, as a conse-
lattice defined by lattice points=a,(n,,ny,n,), wherea, is  quence of dissociation of positively charged counterions.
a lattice spacing taken small in comparison to the lengthThis means that Eq(2) for the total charge density now
scales over which the fielgy varies substantially, and becomeg16]
ny,Nny,n, are integers, &n,,ny,n,<L—1, for aL XL XL
lattice. We shall restrict our calculations to systems with zero
total electric charge, where the fixed charges are screened by
the mobile ones and the fields fall exponentially far from the
sources, so finite volume effects go to zero rapidly as the Repeating the argument leading from E¢(®. to (4) we
lattice sizeL a, is increased. With these notations, the latticenow find the following expression for the full partition func-
version of the transformed partition su@) becomes tion of the system:

where we have rescaled the auxiliary figtd> By. Various

p(F)=e2k 5(F—Fk+)—e2 S(r—r)—pepy(r). (8)
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R Be .3 (M - imposed at the ends of the polymer chéneven a finite but

Z:f DxD ¢,Dx(s) ex;{S—f XA xdr— —2J’ dsx?(s) fixed number of splits in the chaircorrespond to the choice
m 2a,Jo of different initial and final states in the above formula, con-
tribute to the @1) edge correction, and are subdominant for

A IR . -
— Ef ¢p(r)2dr+eﬁi’«+j e'e.B)(dr/)\:j’r IargeM.
IV. MEAN-FIELD (SADDLE-POINT APPROXIMATION )
+e/m7J e—leﬂxdr/)\g_ipeﬂj X(r)qbp(r)drl_ 9) THEORY OF COUPLED IONIC-POLYMER SYSTEM

The equations determining the saddle-point configuration
The integration over polymer configurations can now be refields x. , . are obtained by setting the variational derivative
placed by an equivalent Schiinger Hamiltonian problem. of the exponent in the full functional integréll) to zero.
To facilitate this, linearize the dependence on the monome#fter rotating the fields to the negative imaginary agtise

density ¢, by introducing a second auxiliary field need for this rotation will be justified below when we discuss
the fluctuation correctionsthis exponent becomes
A - A -
ex;{——qugdr:waexp{——fwzdr [ Be \
2 2 F=f dr{%|vxc|2+ §w§+c+eﬁeXc+C_e‘BeXc
—ixj w(N¢p(dr|. (10 — MEg(Xew0)- (14)

The functional derivatives determining the saddle-point so-

Introducing this representation into and using Eq(7), .
9 P HS) 9 Ea® lution are then

one finds
N N ,BéJ' R )\f - o > I =H _ - 5
= - - —=8pe|WVy(r)|°, 15
Z JDX(r)Dw(r)exr{STr XAxdr=3 | o(r)%dr Sxel) BpeWo(r)| (15
ieBxdr —ieBxdr SE R
+c+fe dr+c_f e dr|Zsenlx, ) (17 0 W12 (16)
5wc(r)
with c. =ef#=/\% | and
1 OF N . - -
. 3 (M Be 5 <F):_T;VZXC(”+°+9&X°(”‘°e_ﬁe“(”
ZSCh,(X,w)EJ Dx(s)ex _EJO dsx“(s) Xc
’ —Mp|¥o(r)|2=0, (17)
—ipe,BJ dsx(i(s))—i)\j dsw(X(s)) 1 sF ) )
N == we(r) = M|Wo(r)|*=0. (18
(12 Sw(r)

defines a functional which is just the Feynman path integraHere the wave functio? o(r) is assumed unit normalized:
for the imaginary time evolution of a particle of masaﬁ?n

an imaginary potentidl(peBx+Aw). In fact, we shall show f |\If0(F)|2d r=1. (19)
below that the functional integr&l 1) over y and w can be

rerouted through a complex saddle pointyat —iy. and
o= —lw;Wherey. andw, are purelyreal, so that the evalu-
ation of Zg.,(x,w) at the saddle reduces to a completely
conventional three-dimensional ScHioger Hamiltonian
problem—namely, the computation of matrix elements ofon-charged polymer problem:
e "7 where the Euclidean time extent of the evolution is just

Using Eg. (18), the auxiliary field w, may be eliminated
completely, leaving the pair of coupled nonlinear equations
as the complete mean-field solution to the full interacting

T=M and 4_7Te'5)2)(c(|?):CJFE'BeXC(F)_C,e_BeXC(F)_Mp|‘l’0(r-))|2,
aZ (20)
__Heo > >
H=—€V +Aw(r)+ Bpexc(r). (13 ,
a
PE2gr () — 29 (7 (5
—Vr =AM |V W + 42
For largeM, any matrix element o& 1T has the asymptotic 6 o(r) |W ol “Wo(r)+ Bpexc(r)Wo(r)

form -
—EoWo(r). (21
In((---[e”"™]..-))=—MEg+0(1)
As mentioned previously, the inclusion of single particle po-
whereE, is the ground state eigenvalue of the Hamiltoniantentials, which can be used to enforce exclusion regions for
H [17]. Different boundary conditioné§periodic, open, etg. either the ions or the monomers, is straightforward. Using
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the notationV(r) and V,(r) for potential fields acting on In terms of these new variables the charge and number den-

the mobile ions and monomers, respectively, E86), (21)  Sity constraintg24)—(26) become
become

c i ) ) ) étJ’ rzetF(r)/rfvc(r)dr: A 3nta (33)
4 evzxc(r):C_{_eﬁe/\/c(r)*vc(r)_C_efﬁeXc(r)fvc(r) 4’7Tpa.p
o\ 2 N A
—Mp|Wo(r)[%, (22 f G(r)dr=——M=——(n,—n_). (34
, dmay 4ma,p
ag . - - - -
ngz‘I’o(fF?\M|‘I’o|2‘1’o(f)+l3pexc(f)‘1’o(f) In fact, we shall show below that the solution of the
coupled nonlinear equatiorig?),(28) is most readily accom-
—(Eq— V(1) Wo(r). (23)  plished by returning to the free energy expressidd),

which represents a functional of two scalar fielgds, w. .
Recalling that the parametecs are exponentials of the This functional will be shown to be convex and bounded
chemical potentialg - for positively and negatively charged below, with a unique minimum at the field values satisfying
ions, the numbers of these ions must be fixed by suitablfEgs. (27),(28).
adjustingc-., using the easily derived relations For nonspherically symmetric systems, a practical ap-
proach is again provided by the lattice field theory discreti-
_dIn(Zgo) zation of Ref[1]. The inclusion of the polymer terms in Eq.
=T gc. (5) is quite straightforward—discretizing E€¢L1), we obtain
(setting the single particle potentidls.,V, to zero for sim-
while the number density of monomers is given by plicity)

M|¥o(r)|? which clearly integrates to the total number of
monomerdvl. Charge neutrality follows from integrating Eq. Z:f 1—[ dysdw: ex a 2 Yl ﬁasg w2
(22) over all spacécorrect either for periodic boundary con- ; neen 2 & AnTamAm o 9 H & Fn
ditions or for an electric field falling to zero at the system

cif e*BexeVedr (24)

boundarie o o
g +y. 2 €PNty D e e~ MEq(xn,0p) ¢
n n
= _)2 " r = —_ —_
0 f Vxc(r)dr=0=n,—n_—Mp (25 (35)
=n,e=n_e+Mpe. (26) whereE, is the ground state energy of the associated discrete
Hamiltonian matrix
For systems of spherical symmetry, the equati@®,
(23) reduce to a pair of coupled nonlinear ODEs: as ] .
Han=— @Arﬁﬁ-l—l)\wﬁ-l-lﬂpexﬁ. (36
d’F 1 |

” :r(§+eF(r)/r—VC(r)_g_e—F(r)/r—VC(r))__G(r)zy ) )
dr? r Of course, at the complex saddle point of the inte8&),

27 x=—lix. and o= —iw; with x.,w. real fields, so the
Hamiltonian matrix(36) is real symmetric, with well-defined
1d°G p 1 5 real ground state energy. After the rotation to the imaginary
e TFOG()+ r_zG(r) —[Eo=Vm(r)]G(r), axis, we find the following expression for the discretized free
energy functionalcorresponding to the continuum expres-

(28) sion given in Eq(14)]:
where the rescaled radial functioRsG are defined as N N
= — A4 —ad 2y Bexn
F(r)=Berx(r), (29 P2 2 Xelinkit 52 0t 72 @
G(r):\/)\Mr\Po(r). (30) +'}/—2 e_ﬁexﬁ—MEo(Xﬁ,wﬁ), (37)
n

The radial variable in Eq$27), (28) is measured in units of
the monomer size,, and we have defined dimensionless where we have dropped the subscadpdicating the saddle-

variables point (mean-field value for the fields to avoid notational
overload. Now the ground state energy, as promised, is a
B e (31 perfectly real number, namely, the lowest eigenvalue of the
n 477,8pe2a[2)’ matrix
a‘2
AC. Hin= — —2=Aqi+ Nws+ Bpex; (39)
&= = (32 mn 661|2 mn n Xn -
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For a long Gaussian polymer chain in a confined region V. CORRECTIONS TO MEAN-FIELD THEORY—
and subjected to aexternalpotentialW(r), it is well known CONVEXITY OF THE FREE ENERGY
[13] that the ground state of the three dimensional Sehro |, the preceding section we claimed that the functional
dinger operator integral (11) is dominated by a complex saddle point where

2 the fieldsy,» take pure imaginary valuesiy.,—iw.. TO
f=— %€2+BW( F) (39) justify this assertion, we need to ensure that the deformation
6 of the contour of the field integrations is such that the inte-

gral passes through a proper saddle-point, with a maximum
determines the equilibrium properties of the polymer chainof the real part of the exponent, and that the saddle chosen is
In particular, ifWo(r) is the unit-normed ground state eigen- the dominant one globally. A rigorous discussion presup-
function associated with Hamiltonia(@9) (with ¥,=0 on  poses that the functional integréll) has been made well
the confining boundary surfacehen | ¥ ()| is the unit ~defined, say by discretization as in E@S). As a conse-
normalized monomer density. Equivalently, if there ae ~duénce we may be sure that the contour deformation is pos-
monomers in the polymer system them|\Po(F)|2 is the sible in the first place as a result of the analyticityZ§,,

number density of monomers in the system. Comparing Eq; Tre M o) as a function of the variableg;, w; for an
(39 to Egs.(38), (18) above, we see that in our problem rbitrary finite-dimensional matrikl. We remind the reader

; , . that the resultZg.,=Tre MH holds for closed polymer
there is areffectivepotential chains but that different boundary conditions induce sub-
dominant edge effects of order{@M) for long chains with
M monomers[see the discussion following EqLl3)]. The
analyticity of the remaining part of the integrand in E85)
is obvious.

For simplicity we shall temporarily return to continuum
notation, although the reader is warned that ultimately the
functional integral being discussed must be explicitly defined
by a cutoff procedure. Writing

W(r)=kTAM|¥o(r)|2+ pex(r).

Since both terms in this potential are functiqegplicitly or
implicitly) of ¥, our effective potentiaWV is evidently a
mean-fieldpotential. Specifically, the electric potentigl
depends on the monomer charge dend@ignceW¥ ;) accord-
ing to Eq.(20). The other contribution to the effective po-

tential, i.e.,kT)\M|\I'0(F) 2 is due to short-range excluded
volume interactions between monomers. Its origin and form
can be understood as follows. LEIt(F) be a short range
repulsive potential via which all monomer pairs interact.
Then, if there is a distributiormm(F) of monomers in the
system, the repulsive potenti@all this W, suppressing the
electrostatic contributiorexperienced by a test monomer in-

serted at poinf is

X(1)=—=ixc(r)+x(r),
o(r)=—iwyr+o(r), (44)

we may expand the integrand of the functional integtd)
keeping terms up to second order in the fluctuation fields
X, 0:

W(r)= | dr'u(r—r")ny,(r’ 40 el .
(r) f FUr =1 )ng(r’) (40) ZzeFf D)((r)Dw(l’)eXp{—fdr[g—;WX(rﬂz

2,2

;nm(ﬂdeU(F). (41)
2

Ao oo ~ o
+ Ew(r)2+ (c.ePexc+ ceBeXc)X(r)zn
The second line follows from the first under the assumption . . .
that the pair potentidl is short range compared to the length X exp{ -M f drdr'[New(r)+ Bpex(r)]Gq(r,r’")
scale on which the monomer density, varies. Using the

connection(noted abovg that M|W(r)|2=n,(r), we im- ~ - ~
mediately identify the parametar as X[ho(r')+Bpex(r')], (45)
_ e where the prefactoe™ contains the entire mean-field result
}\_BJ U(rdr. (42 (14), and the “one-loop” fluctuation corrections to mean-

field are contained in the remaining Gaussian functional in-
This can in turn be connected to the second virial coefficiengegrm over the fluctuation field,% ®. The crucial point is

B2, which can be used to ascribe an effective “hard sphere’inat this integral is convergent as a consequence of the posi-
radiuso to the monomef15]: tivity of the Green’s functionG.(r,r') giving the second
o ) ) order variation withy,w of the ground state eigenvali®
ﬁf U(r)drs—f drfe” PN —1]=2B,=4m0°/3. of the Hermitian Hamiltoniari13). Let ¥,,(r) be a complete
(43 orthonormal set of eigenfunctions B with the correspond-
ing ordered eigenvalue§, ,E,<E,, for n<m. Then stan-

In this way we can connect with the effective size of a dard second order perturbation theory gives, as a conse-
monomer. guence of Eq(44),
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e field arguments, as the exponent in the fluctuation integral
Eo(x,w)=Eo(xc ,wc)+j drdr'[Ne(r) (45) is essentially the second functional derivativeFofThe
functionalF (x.,w.) is clearly bounded belojas the lowest
+Bpex(N1G(r.r)[Aa(r’)+Bpex(r)], eigenvalue oM in Eq. (13) can grow at most linearly with
Xc OF w¢]. If it is everywhere convex, it must haveuaique
v (NWP(r) minimum at exactly the field valueg.,w. satisfying Egs.

GC<F,F’>:%<F>%<F’>§

" E,—E, (46)  (20), (21). Thus the stable minimization procedures em-
n 0

ployed in Ref.[1] for solving the lattice field theory of sys-

through terms of second order in the fluctuation fields. Notd®M$ Of polyballs and mobile ions are guaranteed to work
that the first order perturbation shift B is canceled at the N€re also, in the presence of long charged polymer chains,
saddle-point by the first order variation in the exponent inProvided an efficient numerical technique is employed.

Eq. (11). Furthermore, the positivitgstrictly speaking, posi- I We now return to the task of gvaluatir;]g the ﬁ‘a“fssl':ja”
tive semidefinitenessof G, is manifest. To see this, note fluctuation integral43). It is convenient to change the fie

that a necessary and sufficient condition@rto be positive ipt(égration variables by replacing the excluded volume field
semidefinite is wo(r) with the linear combination

J de dr'f(r)G(r,r)H(r')=0 47 a(r)=\o(r)+ppex(r) (49

R so that the fluctuation integral in E¢45) becomes
for any functionf(r). Using the definition given in Eq46),

I - .| Be, ~n -
B Fi= | Dx(r)D p[— d{—V 2
K ERGGERNG 1= | DNt Ien - [ af| g ITi)

1 - .
2 JR— _ 2
“ drw o(F)F(r)W(r) + oy Lo(r)—Bpex(r)]
=2 (49 20
n#0 En_Eo +Te(C+e’BeXC+CeBeXC)i\((F)ZH

Since the denominator of each term on the right-hand side is
positive and the numerator is non-negative the condition for
positive semidefinitenegd?) is satisfied.

It should be emphasized that the positivity of the full fluc-
tuation kernel in Eq.(45) holds for arbitrary real fields whence
Xcw.—it is not essential that they satisfy the saddle-point
equationg20), (21) (although we shall, of course, eventually
demand that they doThe value of this observation is that it
is equivalent to a statement of convexity of the free energy
functional F(x.,w¢) in Eq. (14) for arbitrary values of its whereK is the kernel

xex;{—MjdFdF’a(F)GC(F,F’)U(F’)} (50)
1
Fi=— Eln DeiK, (57

Be  p*p%e® p%e’ Bpe
[ - .Be)(c _:Be)(c -
877A+ X + 5 (c.e +c_e ) N
K:
__Bpe MG.+ —
2\ € 2N

This determinant must be rendered well defined by arwith the required inversion involving only a sparse matrix
explicit cutoff procedure, such as the lattice. On a lattice with(H— E )2+ 72.
N points, we then have the problem of evaluating Id 2
X 2N determinant. If the polymer is restricted to a subregion
of N, points, the lower right hantl>XN block in K is non- VI. MEAN-FIELD RESULTS
sparse Only in d\lpx Np subblock of the kerneGC. The FOR SPHERICALLY SYMMETRIC SYSTEMS

evaluation ofG. is facilitated by the observation that
For spherically symmetric systems, the extremization of

- -, the functionalF in Eq. (14) is much simplified. It is conve-
a()Wa(r’) _ ! - ient t Il dist in units of the effecti -
T im | (H=Eg)—————— | (F.,F") nient to express all distances in units of the effective mono

nz0  En—Ep 70 (H—Eg)?+ 5? mer size(Kuhn length a,, and to define rescaled radial

(520 functionsf(r),g(r) as follows:



PRE 60 STATISTICAL MECHANICS OF CHARGED POLYMERS ... 4263

f(r)=Bex(r), (53
3x104
g(r)=rwo(r). (54)
It is also convenient to rescale the auxiliary field to a
dimensionless onm(r)zwc(r)ag. Introducing dimension-  «. 2x10° |
less parametersg, ¢, and(, =
_ €q, (55 %10 |-
7 2pe?’
— 3 0 | | | 1 ‘I
§x=4mc.2,, (56) 0 2 4 6 8 10
r
(= 47%, (57) FIG. 1. Monomer distribution for varying.
a

(4) Minimize F with respect tof(r) for each discrete

the saddle-point functional can be written in terms of a onevalue ofr. This is trivial as the dependence Bfon f(r) is

dimensional integral explicit. _ - N
(5) Iterate untilF stabilizes at a minimum to some preas-

df\?2 5 " o, signed tolerance and/or the saddle-point equations are satis-
F:f Mg TN +éeti e ridr—ME,, fied to a desired degree of accuracy.
(58) This algorithm was applied to a system consisting of a

charged polymer with 1000 monomer subunits trapped in a
where the radial wave functiag(r) of the associated Schro Spherical cavity of radius H), with each monomer carrying
dinger Hamiltonian(13) satisfies a charge—0.1e. The ions 6, =200 positive anch_ =100

negative iongare free to move in a larger spherical region of
{ radius 10@,,. The parameter; was taken to be unity. The
2, N +pf(r)— Eo)g(r). (59)  results shown correspond to 1000 iterations, after which the
free energy is stabilized to five significant figufssich a run
takes a few minutes on a 400 MHz Pentium processdre
effect of variation of the excluded volume parametem the
monomer densitylfg(r) is shown in Fig. 1. As for the case
n of the uncharged polymer, increasing the excluded volume
fo=—— (60)  Parameter results in a flattening of the distribution near the
f et fr2dr origin. However, in the presence of charge, we now find that
(at least for the parameter range studied héine electro-
static repulsion sufficiently counteracts the tendency of the
We have devised the following efficient procedure for themonomers to crowd into the central region to produadipa
minimization ofF in Eq. (58). The arguments of the preced- in the distribution for smalt. The mean-field rescaled elec-
ing section establish the convexity Bf implying a unique  tric potentialf(r) is nearly constant over this variation of
minimum. After discretizing the variable, the rescaled elec- as shown in Fig. 420,21]. The exponential screening out-

trostatic potential functiof(r) and polymer density function  sjde the cavity of radius H) confining the polymer is evi-
h(r) become finite arrays which can be updated alternatelyent.

by the following procedure, which at each step takes us
closer to the unique global extremum ef
(1) Choose a reasonable starting value for the fié¢ltis 5
(2) Define a new fieldo(r)=¢h(r)/47+pf(r), so that
Ey in (58 is the lowest eigenvalue of the operatbr 4
=—1(d?/dr?)+o(r). Oncer is discretizedH becomes a
tridiagonal matrix. For the rest of the calculation, we mini- _ 3
mize with respect td(r) and o(r). =
(3) Minimize F with respect too(r) for each discrete
value ofr. This requires a rapid calculation &% as a func-
tion of o(r). The ground state eigenvalue of a tridiagonal
matrix (indeed, any ordinally located eigenvaluean be
readily extracted by Sturm sequence methpt, and the
functional F minimized quickly with respect tar(r) by oL ‘ . . : .
golden section bracketind9]. The latter approach is fool-
proof as we have a strictly convex dependences¢n) for
all r. FIG. 2. Electric potentiaf(r) for varying ¢.

Ld_

6 dr2

The rescaled activity coefficiens. must be constrained by
the appropriately rescaled versions of E8Q3):

o
-
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n
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FIG. 3. Monomer distribution for varying. FIG. 5. Monomer distribution for varying_ .

The effect of varying monomer charge (with the ex-  with systems of arbitrary shape and complexity. Colloidal
cluded volume parameter held fixed at 20.Dis illustrated  suspensions in polyelectrolyte solutions, which may be use-
in Figs. 3 and 4. In particular, gs—0 we recover the dis- ful for for a variety of technological applications, such as
tinctive flat behavior at small characteristic of uncharged new optical materials and devicés.g., narrow-band optical
polymers(Fig. 3). In these plots, the negative ion number is rejection filters, pump-probe laser apparati, optical display
held constant at 100, with the number of positive ions adpanels, etc[22,23), are systems of this type.
justed to give charge neutrality. We will solve the discretized versions of equatid2®)

Finally, we may also study the effect of varying salt con-and (23) simultaneously on a 3D lattice. It is convenient to
c_entrations. In_creasing the backgro_und ion Qensity results imultiply equation(22) by a®, wherea, is the lattice spacing,
higher screening of th_e e!ectr_ostgtl(_: potential, so the effectnd to rescale according td(F)HBeXc(F), \I'O(F)
on the monomer distribution is similar to that obtained by 329 1) Th I iabl d ters b di-
varying the average monomer chamedn Figs. 5 and 6 we —ar o(r). Thus, a variables and parameters become di
show the monomer distribution and electrostatic potentia[nenSIOnIeSS and the two discretized equations are
f(r) for fixed (=10 andp=0.1, varying the number of
negative mobile ions_, with n,=n_+100 for charge

YA TRV 2
neutrality. aErﬁ Ajafa=y, e Vn—y_ e fn"Va—MpW¥;, (61)

VII. MEAN-FIELD RESULTS USING 52 M
; P e 20t o - -
THREE-DIMENSIONAL LATTICE FIELD THEORY S AiiW = WAL plW - By, (62)

. . 6a a
In the previous section we showed how the theory devel- bem !

oped in this paper can be applied to the problem of a charged
polymer confined to a spherical cavity and immersed in arwhere
electrolyte solution. We now present the solution of the same
problem using three-dimension&BD) lattice field theory,

. . . . £q
which does not hinge on special symmetry properties of the a= > (63
system, and thus illustrate a numerical procedure for dealing 4mpe
51 ;
~ = p=0.05 S
\_\ ey p=0.10 Vi e n.=50, n,=150
A p=0.20 4NNE e n.=400, n,=500
T N T T n.=900, n,=1000
4} Vi = ————— n.=1900, n,=2000
_ Vi N ——m n.=9900, n,=10000
= \ = n.=39900, n,=40000
2
2
0 0 --\u 1 ]
60 80 100

FIG. 4. Electric potentiaf(r) for varying p. FIG. 6. Electric potentiaf (r) for varyingn_ .
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FIG. 8. Monomer distribution for varying.

confined to a spherical cavity of radius&Q which is im-
mersed in an electrolyte solution confined to a larger sphere
of radius 4@, . The Kuhn lengtra, has been chosen to be 5
A. To illustrate the stability and accuracy of the procedure,
we compare some of the 3D results with the ones obtained

and the wave function is dimensionless and normalized agnrough the one-dimensiondlD) calculation of Sec. VI,

cording to

> wi=1,

n

We solve Egs.(61) and (62) simultaneously using the
following procedure. First, Eq62) is solved forf;
ignoring the nonlineagmonomer repulsionterm. The result-
ing ¥ ; (wave function for a free particle in a spherggiven

(65

0 and

which are practically exact. In Fig. 7 we show how the 3D

results for\Ifg(F) approach the exact 1D result as the number
of the lattice points on the side of the 3D cube containing the
systemL is increased from 40 to 60 and 80, for the following
parameters=15, p=0.1, andn_=6, wheren_ is the
number of the negative ions in the system, while the number
of the positive ions is adjusted so that electroneutrality is
preserved, and the relationship betwéeand\ [in Eq. (62)]

is given in Eq.(57). The rest of the 3D calculationghe

to Eq. (61), which is solved at each lattice point by the results of which are presented in Figs. 8 through a8
Newton-Raphson method. The process is repeated and tierformed on a cube with 60 lattice points on each side. In
coefficientsy.. are updated after each iteration with the cur-Fig. 8 we show the effect of variation gfon the probability

rent field, until a predetermined desired accuracy is achievegjisiripution \Pg(F). For comparison we have included two

Then the resultindg; is fed into Eq.(62) which is solved for
a newV to be given to Eq(61). Equation(62) is solved to
a predetermined desired accuracy by the Lanczos approa
which is appropriate for a large sparse matrix such as the on

C

results obtained by the 1D method of Sec. VI. The results are
analogous to the ones in Fig. 1. Similarly, the rescaled elec-

tgbstatic potentiaf(F) varies little with, as shown in Fig. 9.

representing our Hamiltonian. This method of computation idn Figs. 10 and 11 we present results f§(r) andf(r) for
very well suited for implementation on massively parallel Varying monomer chargp, fixing {=15. In these plots the
platforms which should make it possible to study even verynumber of negative ions is_=6. And finally, in Figs. 12
large lattices with this approach. From then on, the potentiaind 13 we illustrate the effect of varying the number of im-

f; to be given to Eq(62) for the next iteration is updated
slowly by adding a small fraction of the nefy, to the old
one, obtained from the previous iteration. The same relax-
ation procedure is used for updatiﬂg% in the nonlinear term
of the Schrdinger equation62). Such a gradual iteration
procedure is necessary in order to avoid an unstable bifurca
tion between two unphysical statéshich is commonly en-
countered when solving nonlinear differential equatjpns =
and it converges to the simultaneous solution of the two
equations. We have shown above that the functional in Eq.
(14) has an unigue minimum, the condition for which is
given by the two equation$61) and (62). Therefore, once
we have converged to a solution of these two equations, we
are guaranteed to have reached the unique mean-field solt
tion of the problem.

We have applied the procedure described above to a sys-
tem of a negatively charged polymer of 1000 monomer units,

eiiedinginpint ity LY
2 \
\,
\
\
A
15 \
\
----.z=5 \
L AR £=10 \
—me t=15 \
05 | \
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~
~.
\\
0L, ) | | B
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FIG. 9. Electric potentiaf(r) for varying ¢.
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FIG. 10. Monomer distribution for varying.

A L . Therefore, these materials may have important applications
pupty lons on t.he monomer distribution and thg IOOtentIalin specific biochemical trapping, or even as microreactors for
f(r). Here, again, we compare the 3D results with the onegppications in organic, bioengineering and combinatorial
obtained by the 1D method of Sec: VI. Clearly, the agreesynthesig 24].
ment between the two approaches is good. It has been hypothesizd@5-2§ that such trapping is a
result of the higher conformational entropy “enjoyed” by
VIII. DISCUSSION

the polymer in the large spherical void, as compared to the
We have derived the mean-field equations for a couple(ﬁ‘arrow channels connecting the voids within the gel. Our

ionic-polymer system by performing a saddle-point analysiscalculations reveal another important aspect of the trapping
on a functional integral representing the partition function ofPh€nomenon—namely, from our results it becomes clear that
the system, Eq(11). This analysis shows that all mean-field electrostatlc interactions als_o _play a very important rqle in it.
level thermodynamical properties are obtained by extremizETom Figs. 3, 5,10, and 12 it is seen that polymers with high
ing an appropriate real-valued functioria¥). Moreover, we ~Monomer charge, or in dilute electrolyte solution, have a
have shown that the functionél4) possesses a single extre- distribution function with a peak near the edge of the spheri-
mum, which is a minimum, thus guaranteeing a unique socal cavity, while polymers with low monomer charge or in
lution of the coupled mean-field equations. We have alsgoncentrated electrolyte solutidwhere the monomers are
described two different numerical procedures for finding thehighly screened by the impurity ions, thus experiencing
mean-field solution, and have applied them to the problem ofveaker electrostatic repulsion from each othbave a more
a charged polymer confined to a spherical cavity and imflattened distribution, and are more likely to be found near
mersed in an electrolyte solution.

the center, rather than the edge of the cavity. In addition,
Although our calculations were intended as an illustrationhighly charged monomers would possess higher energy in

of the advantages of the approach, they have yielded somnthe voids, due to the stronger repulsion from each other as
interesting insight into the physics of confined polyelectro-they are brought closer together in the folded polymer.
lytes. It has been suggested that materials consisting dfherefore, we expect that polymers with relatively low aver-
spherical voids imbedded in a polymer gel can be used asge monomer charge or in a concentrated electrolyte solution
“entropic trapping devices,” in which macromoleculésg.,  would be easier to trap in spherical voids. Usually the mono-
polymers and DNA could be trapped and separate®#].  mer charge is approximately constant, and it is the impurity

ion concentration that can be varied in the laboratory. We
3 .
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FIG. 11. Electric potentiaf(r) for varyingp.

FIG. 13. Electric potentiaf(r) for varyingn_ .
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suggest that experiments be performed to investigate polywhich has been developed in the present work will be useful
mer trapping dependence on electrolyte concentration. Wor studying low symmetry systems involving complex lig-
also expect that the lattice field theory approach to the stadids, such as colloidal suspensions in polyelectrolyte solu-
tistical mechanics of charged polymers in electrolyte solutiortions.
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