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Statistical mechanics of charged polymers in electrolyte solutions: A lattice field theory approach
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The lattice field theory approach to the statistical mechanics of a classical Coulomb gas@R.D. Coalson and
A. Duncan, J. Chem. Phys.97, 5653~1992!# is generalized to include charged polymer chains. Saddle-point
analysis is done on the functional integral representing the partition function of the full system. Mean-field
level analysis requires extremization of a real-valued functional which possesses a single minimum, thus
guaranteeing a unique solution. The full mean-field equations for such a coupled system are derived, as well as
the leading~one-loop! fluctuation corrections. Two different numerical real-space lattice procedures are devel-
oped to implement the generalized theory; these are applied to the problem of a charged polymer confined to
a spherical cavity in an electrolyte solution. The results provide insight into the physics of confined polyelec-
trolytes.@S1063-651X~99!10709-8#

PACS number~s!: 36.20.Ey
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I. INTRODUCTION

In a recent series of papers, the application of lattice fi
theory ~LFT! techniques@1–5# to systems of mobile pola
ions interacting with immobile macroions has led to a cal
lational framework for extracting free energies, ionic conce
trations, electrostatic potentials, and other physical prop
ties. This formalism, which relies on a Hubbard-Stratonov
transformation of a functional integral representation of
grand canonical partition function, has a number of antec
ents in the literature@6–10#. In the generalization introduce
in Ref. @1#, we were able to obtain accurate results at
mean-field level,with precisely computable corrections ind
cating the level of accuracy of the mean-field results, for
systems characterized by arbitrary ionic concentration
macromolecular shape and charge. Reference@1# focused on
interactions between charged spherical colloid particles~po-
lyballs! in electrolyte solutions. In a subsequent paper, a
uid phase assembly of many interacting polyballs was s
ied @2#. The formalism of Ref.@1# has been extended t
include effects of a spatially variable dielectric profile@3#,
the finite size of the simple mobile ions forming the elect
lyte @4#, and the presence of mobile dipoles in the gas~solu-
tion! @5#. The objective of the present paper is to extend
LFT approach to address the statistical mechanics of a ga
mobile charged ions to a system in which mobile charg
polymer chains are also present and interacting electros
cally with the mobile ions.

In Sec. II we briefly review the functional integral repr
sentation~and lattice field theory discretization thereof! for
the grand canonical partition function introduced in Ref.@1#.
In Sec. III the formalism is extended to include charg
polymer chains. The mean-field level solution of the full sy
tem ~ions plus polymers! is then presented in Sec. IV. Ou
results are similar to, but do not fully agree with some rec
work of Borukhovet al. @11#. In Sec. V we justify the con-
tour deformation introduced in Sec. IV to extract the lead
saddle-point~or mean-field theory! equations of the full ion-
PRE 601063-651X/99/60~4!/4257~11!/$15.00
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polymer system by deriving a general convexity theorem
the mean-field free energy. An explicit expression is a
derived for the leading post-mean-field corrections due to
fluctuations around the saddle-point fields. This means th
precise estimate of the error in the mean-field theory is
principle possible even in systems of coupled ions a
charged polymer chains. Some simple illustrative appli
tions of the mean-field results of Sec. IV to systems poss
ing spherical symmetry, for which the problem can be
duced to the minimization of a one-dimensional function
are described in Sec. VI. The same systems are treate
Sec. VII by solving the mean-field equations on a thre
dimensional lattice, an approach which can be used to st
systems of arbitrary shape and symmetry. Section VIII su
marizes our results and indicates areas for further resea

II. FUNCTIONAL FORMALISM AND LATTICE FIELD
THEORY FOR IONIC SYSTEMS

A simple functional integral representation for the gra
canonical partition function of a system of mobile ions wi
electric charge densityr(rW) is obtained by rewriting the elec
trostatic potential energy of the system via a standard fu
tional identity:

expF2
b

2eE drWdrW8
r~rW !r~rW8!

urW2rW8u
G

5CE Dx expF e

8pbE xDxdrW1 i E x~rW !r~rW !drW G .
~1!

Here C is an irrelevant constant~independent ofr) which
will be neglected from now on, and the charges are i
mersed in a medium of dielectric constante @12# at inverse
temperatureb51/kT. For a system containing positive an
negative mobile ions the charge density is
4257 © 1999 The American Physical Society
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r~rW !5e(
k

d~rW2rWk
1!2e(

l
d~rW2rW l

2!. ~2!

The effect of the transformation induced by Eq.~1! is
twofold. First, the long-range Coulomb potential~which
makes the direct simulation of such systems by molec
dynamics extremely difficult! has been replaced by a loc
Laplacian operator. Second, the nonlinear pairwise coup
of the charged ions has been replaced by a linear coup
term where the ions interact only with the auxiliary fiel
Consequently, for a fixedx field, the statistical mechanics o
the ionic gas is elementary. Introducing chemical potent
m6 for the positive and negative ions, the sum of the fac
exp(i*x(rW)r(rW)drW) over ion numbers and positions can be e
plicitly performed:

(
nk ,nl

1

nk!

1

nl !
E )

drWk

l1
3

drW l

l2
3

expF ie(
k

x~rWk!2 ie(
l

x~rW l !

1b~m1nk1m2nl !G
5expFebm1E drW

l1
3

eiex1ebm2E drW

l2
3

e2 iexG , ~3!

wherel6 are thermal deBroglie wavelengths for the ion
Inserting this result in the complete expression for the B
zmann weight~1!, the full grand canonical partition functio
becomes

ZGC5E Dx expF be

8pE xDxdrW1ebm1E eiebxdrW/l1
3

1ebm2E e2 iebxdrW/l2
3 G , ~4!

where we have rescaled the auxiliary fieldx→bx. Various
generalizations of this expression@1,3–6,9#, have been dis-
cussed elsewhere and will not be treated here. For exam
the inclusion of a single particle potentialV(rW) acting on the
ions can be effected simply by the replacemente6 iebx

→e6 iebx2V in Eq. ~4!. Such a potential can be used~for
example! to exclude the ions from certain regions of spac

The functional integration indicated in Eq.~4! may be
made well defined by discretizing the system on a cub
lattice defined by lattice pointsrW5al(nx ,ny ,nz), whereal is
a lattice spacing taken small in comparison to the len
scales over which the fieldx varies substantially, and
nx ,ny ,nz are integers, 0<nx ,ny ,nz<L21, for a L3L3L
lattice. We shall restrict our calculations to systems with z
total electric charge, where the fixed charges are screene
the mobile ones and the fields fall exponentially far from t
sources, so finite volume effects go to zero rapidly as
lattice sizeLal is increased. With these notations, the latt
version of the transformed partition sum~4! becomes
r
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ZGC5E )
nW

dxnW expH a

2 (
nW mW

xnWDnW mW xmW 1g1(
nW

eiebxnW

1g2(
nW

e2 iebxnWJ . ~5!

Here DnW mW is the discrete lattice Laplacian operator, whi
may be regarded as aL33L3 matrix ~see Ref.@1#!. The
dimensionless constantsa[albe/4p, g6[ebm6(al /l6)3

have been introduced to simplify the notation. In Eq.~5!, D
now represents the discrete lattice gradient~nearest-neighbor
difference operator!, with e the electronic charge andal the
lattice spacing.

III. FUNCTIONAL FORMALISM
FOR CHARGED POLYMER CHAINS

The path integral representation of a polymer ch
@13,14# is well known. We shall show below that for a sy
tem consisting of many monomers the leading behavio
determined simply by the total lengthM ~5total number of
monomers! of all chains and not by the connectivity or num
ber of the separate chains. Thus the configuration of
polymer chain~s! can be represented by a single functi
xW (s), where the dimensionless path length variable 0<s
<M . If the typical monomer separation isap ~the Kuhn
length @13#!, the partition sum for such a system may
written

Zpol5E DxW~s!expF2
3

2ap
2E0

M

dsxẆ2~s!2
l

2E fp~rW !2drWG ,

~6!

fp~rW !5E dsd„rW2xW~s!…. ~7!

The field fp is the spatial monomer density and the te
involving l*fp

2drW prevents the monomers from overlappin
with each other,l>0 being a measure of monomer exclud
volume. As discussed at the end of Sec. IV,l.B2.s3,
where B2 is the second virial coefficient, which goes a
proximately as the monomer volume~i.e., s is the effective
hard-sphere radius of a monomer! @15#. For simplicity we
shall assume initially that the polymer charge density is u
form along the polymer chains, with each monomer carry
a net charge of –pe@11# @the generalization to varying mono
mer charge would simply result in an effective Schro¨dinger
Hamiltonian with a time-dependent potential~see the discus-
sion below!#. The negative sign indicates that we have tak
the polymer chain to be negatively charged, as a con
quence of dissociation of positively charged counterio
This means that Eq.~2! for the total charge density now
becomes@16#

r~rW !5e(
k

d~rW2rWk
1!2e(

l
d~rW2rW l

2!2pefp~rW !. ~8!

Repeating the argument leading from Eqs.~2! to ~4! we
now find the following expression for the full partition func
tion of the system:
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Z5E DxDfpDxW~s! expF be

8pE xDxdrW2
3

2ap
2E0

M

dsxẆ 2~s!

2
l

2E fp~rW !2drW1ebm1E eiebxdrW/l1
3

1ebm2E e2 iebxdrW/l2
3 2 ipebE x~rW !fp~rW !drWG . ~9!

The integration over polymer configurations can now be
placed by an equivalent Schro¨dinger Hamiltonian problem
To facilitate this, linearize the dependence on the mono
densityfp by introducing a second auxiliary field

expF2
l

2E fp
2drW G5E Dv expF2

l

2E v2drW

2 ilE v~rW !fp~rW !drW G . ~10!

Introducing this representation into Eq.~9! and using Eq.~7!,
one finds

Z5E Dx~rW !Dv~rW !expF be

8pE xDxdrW2
l

2E v~rW !2drW

1c1E eiebxdrW1c2E e2 iebxdrWGZSchr~x,v! ~11!

with c65ebm6/l6
3 , and

ZSchr~x,v![E DxW~s!expF2
3

2ap
2E0

M

dsxẆ 2~s!

2 ipebE dsx„xW~s!…2 ilE dsv„xW~s!…G
~12!

defines a functional which is just the Feynman path integ
for the imaginary time evolution of a particle of mass 3/ap

2 in
an imaginary potentiali (pebx1lv). In fact, we shall show
below that the functional integral~11! over x andv can be
rerouted through a complex saddle point atx52 ixc and
v52 ivc wherexc andvc are purelyreal, so that the evalu-
ation of ZSchr(x,v) at the saddle reduces to a complete
conventional three-dimensional Schro¨dinger Hamiltonian
problem—namely, the computation of matrix elements
e2HT where the Euclidean time extent of the evolution is ju
T5M and

H[2
ap

2

6
¹W 21lvc~rW !1bpexc~rW !. ~13!

For largeM, any matrix element ofe2HT has the asymptotic
form

ln~^•••ue2HMu•••&!.2ME01O~1!

whereE0 is the ground state eigenvalue of the Hamiltoni
H @17#. Different boundary conditions~periodic, open, etc.!
-

er

l

f
t

imposed at the ends of the polymer chain~or even a finite but
fixed number of splits in the chain! correspond to the choice
of different initial and final states in the above formula, co
tribute to the O~1! edge correction, and are subdominant f
largeM.

IV. MEAN-FIELD „SADDLE-POINT APPROXIMATION …

THEORY OF COUPLED IONIC-POLYMER SYSTEM

The equations determining the saddle-point configurat
fieldsxc ,vc are obtained by setting the variational derivati
of the exponent in the full functional integral~11! to zero.
After rotating the fields to the negative imaginary axis~the
need for this rotation will be justified below when we discu
the fluctuation corrections!, this exponent becomes

F5E drWH be

8p
u¹W xcu21

l

2
vc

21c1ebexc1c2e2bexcJ
2ME0~xc ,vc!. ~14!

The functional derivatives determining the saddle-point
lution are then

dE0

dxc~rW !
5bpeuC0~rW !u2, ~15!

dE0

dvc~rW !
5luC0~rW !u2, ~16!

1

be

dF

dxc~rW !
52

e

4pe
¹W 2xc~rW !1c1ebexc(rW)2c2e2bexc(rW)

2MpuC0~rW !u250, ~17!

1

l

dF

dvc~rW !
5vc~rW !2M uC0~rW !u250. ~18!

Here the wave functionC0(rW) is assumed unit normalized

E uC0~rW !u2drW51. ~19!

Using Eq. ~18!, the auxiliary fieldvc may be eliminated
completely, leaving the pair of coupled nonlinear equatio
as the complete mean-field solution to the full interacti
ion-charged polymer problem:

e

4pe
¹W 2xc~rW !5c1ebexc(rW)2c2e2bexc(rW)2MpuC0~rW !u2,

~20!

ap
2

6
¹W 2C0~rW !5lM uC0u2C0~rW !1bpexc~rW !C0~rW !

2E0C0~rW !. ~21!

As mentioned previously, the inclusion of single particle p
tentials, which can be used to enforce exclusion regions
either the ions or the monomers, is straightforward. Us
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the notationVc(rW) and Vm(rW) for potential fields acting on
the mobile ions and monomers, respectively, Eqs.~20!, ~21!
become

e

4pe
¹W 2xc~rW !5c1ebexc(rW)2Vc(rW)2c2e2bexc(rW)2Vc(rW)

2MpuC0~rW !u2, ~22!

ap
2

6
¹W 2C0~rW !5lM uC0u2C0~rW !1bpexc~rW !C0~rW !

2„E02Vm~rW !…C0~rW !. ~23!

Recalling that the parametersc6 are exponentials of the
chemical potentialsm6 for positively and negatively charge
ions, the numbers of these ions must be fixed by suita
adjustingc6 , using the easily derived relations

n65c6

] ln~ZGC!

]c6
5c6E e6bexc2VcdrW ~24!

while the number density of monomers is given
M uC0(rW)u2 which clearly integrates to the total number
monomersM. Charge neutrality follows from integrating Eq
~22! over all space~correct either for periodic boundary con
ditions or for an electric field falling to zero at the syste
boundaries!:

05E ¹W 2xc~rW !drW⇒05n12n22Mp ~25!

⇒n1e5n2e1Mpe. ~26!

For systems of spherical symmetry, the equations~22!,
~23! reduce to a pair of coupled nonlinear ODEs:

h
d2F

dr2
5r ~j1eF(r )/r 2Vc(r )2j2e2F(r )/r 2Vc(r )!2

1

r
G~r !2,

~27!

1

6

d2G

dr2
5

p

r
F~r !G~r !1

1

r 2
G~r !32@E02Vm~r !#G~r !,

~28!

where the rescaled radial functionsF,G are defined as

F~r !5berxc~r !, ~29!

G~r !5AlMrC0~r !. ~30!

The radial variable in Eqs.~27!, ~28! is measured in units o
the monomer sizeap , and we have defined dimensionle
variables

h5
le

4pbpe2ap
2

, ~31!

j65
lc6

p
. ~32!
ly

In terms of these new variables the charge and number
sity constraints~24!—~26! become

j6E r 2e6F(r )/r 2Vc(r )dr5
l

4ppap
3

n6 , ~33!

E G~r !2dr5
l

4pap
3

M5
l

4pap
3p

~n12n2!. ~34!

In fact, we shall show below that the solution of th
coupled nonlinear equations~27!,~28! is most readily accom-
plished by returning to the free energy expression~14!,
which represents a functional of two scalar fieldsxc ,vc .
This functional will be shown to be convex and bound
below, with a unique minimum at the field values satisfyi
Eqs.~27!,~28!.

For nonspherically symmetric systems, a practical
proach is again provided by the lattice field theory discre
zation of Ref.@1#. The inclusion of the polymer terms in Eq
~5! is quite straightforward—discretizing Eq.~11!, we obtain
~setting the single particle potentialsVc ,Vm to zero for sim-
plicity!

Z5E )
nW

dxnWdvnW expH a

2 (
nW mW

xnWDnW mW xmW 2
l

2
al

3(
nW

vnW
2

1g1(
nW

eiebxnW1g2(
nW

e2 iebxnW2ME0~xnW ,vnW !J ,

~35!

whereE0 is the ground state energy of the associated disc
Hamiltonian matrix

HmW nW52
ap

2

6al
2
DmW nW1 ilvnW1 ibpexnW . ~36!

Of course, at the complex saddle point of the integral~35!,
x52 ixc and v52 ivc with xc ,vc real fields, so the
Hamiltonian matrix~36! is real symmetric, with well-defined
real ground state energy. After the rotation to the imagin
axis, we find the following expression for the discretized fr
energy functional@corresponding to the continuum expre
sion given in Eq.~14!#:

F52
a

2 (
mW nW

xmW DmW nWxnW1
l

2
al

3(
nW

vnW
2
1g1(

nW
ebexnW

1g2(
nW

e2bexnW2ME0~xnW ,vnW !, ~37!

where we have dropped the subscriptc indicating the saddle-
point ~mean-field! value for the fields to avoid notationa
overload. Now the ground state energy, as promised,
perfectly real number, namely, the lowest eigenvalue of
matrix

HmW nW52
ap

2

6al
2
DmW nW1lvnW1bpexnW . ~38!
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For a long Gaussian polymer chain in a confined reg
and subjected to anexternalpotentialW(rW), it is well known
@13# that the ground state of the three dimensional Sch¨-
dinger operator

Ĥ52
ap

2

6
¹W 21bW~rW ! ~39!

determines the equilibrium properties of the polymer cha
In particular, ifC0(rW) is the unit-normed ground state eige
function associated with Hamiltonian~39! ~with C050 on
the confining boundary surface! then uC0(rW)u2 is the unit
normalized monomer density. Equivalently, if there areM

monomers in the polymer system thenM uC0(rW)u2 is the
number density of monomers in the system. Comparing
~39! to Eqs. ~38!, ~18! above, we see that in our proble
there is aneffectivepotential

W~rW !5kTlM uC0~rW !u21pexc~rW !.

Since both terms in this potential are functions~explicitly or
implicitly ! of C0, our effective potentialW is evidently a
mean-fieldpotential. Specifically, the electric potentialxc
depends on the monomer charge density~henceC0) accord-
ing to Eq. ~20!. The other contribution to the effective po
tential, i.e.,kTlM uC0(rW)u2, is due to short-range exclude
volume interactions between monomers. Its origin and fo
can be understood as follows. LetU(rW) be a short range
repulsive potential via which all monomer pairs intera
Then, if there is a distributionnm(rW) of monomers in the
system, the repulsive potential~call this W, suppressing the
electrostatic contribution! experienced by a test monomer i
serted at pointrW is

W~rW !5E drW8U~rW2rW8!nm~rW8! ~40!

>nm~rW !E drWU~rW !. ~41!

The second line follows from the first under the assumpt
that the pair potentialU is short range compared to the leng
scale on which the monomer densitynm varies. Using the
connection~noted above! that M uC0(rW)u25nm(rW), we im-
mediately identify the parameterl as

l5bE U~rW !drW. ~42!

This can in turn be connected to the second virial coeffici
B2, which can be used to ascribe an effective ‘‘hard sphe
radiuss to the monomer@15#:

bE U~rW !drW>2E drW@e2bU(rW)21#52B2>4ps3/3.

~43!

In this way we can connectl with the effective size of a
monomer.
n

.

q.

.

n

t
’’

V. CORRECTIONS TO MEAN-FIELD THEORY—
CONVEXITY OF THE FREE ENERGY

In the preceding section we claimed that the functio
integral ~11! is dominated by a complex saddle point whe
the fieldsx,v take pure imaginary values2 ixc ,2 ivc . To
justify this assertion, we need to ensure that the deforma
of the contour of the field integrations is such that the in
gral passes through a proper saddle-point, with a maxim
of the real part of the exponent, and that the saddle chose
the dominant one globally. A rigorous discussion presu
poses that the functional integral~11! has been made wel
defined, say by discretization as in Eq.~35!. As a conse-
quence we may be sure that the contour deformation is p
sible in the first place as a result of the analyticity ofZSchr
5Tre2MH(xnW ,vnW ) as a function of the variablesxnW , vnW for an
arbitrary finite-dimensional matrixH. We remind the reade
that the resultZSchr5Tre2MH holds for closed polymer
chains but that different boundary conditions induce s
dominant edge effects of order O~1/M! for long chains with
M monomers@see the discussion following Eq.~13!#. The
analyticity of the remaining part of the integrand in Eq.~35!
is obvious.

For simplicity we shall temporarily return to continuum
notation, although the reader is warned that ultimately
functional integral being discussed must be explicitly defin
by a cutoff procedure. Writing

x~rW !52 ixc~rW !1x̂~rW !,

v~rW !52 ivc~rW !1v̂~rW !, ~44!

we may expand the integrand of the functional integral~11!
keeping terms up to second order in the fluctuation fie
x̂,v̂:

Z5eFE Dx̂~rW !Dv̂~rW ! expH 2E drWF be

8p
u¹W x̂~rW !u2

1
l

2
v̂~rW !21

b2e2

2
~c1ebexc1c2e2bexc!x̂~rW !2G J

3expH 2ME drWdrW8@lv̂~rW !1bpex̂~rW !#Gc~rW,rW8!

3@lv̂~rW8!1bpex̂~rW8!#J , ~45!

where the prefactoreF contains the entire mean-field resu
~14!, and the ‘‘one-loop’’ fluctuation corrections to mean
field are contained in the remaining Gaussian functional
tegral over the fluctuation fieldsx̂,v̂. The crucial point is
that this integral is convergent as a consequence of the p
tivity of the Green’s functionGc(rW,rW8) giving the second
order variation withx̂,v̂ of the ground state eigenvalueE0

of the Hermitian Hamiltonian~13!. Let Cn(rW) be a complete
orthonormal set of eigenfunctions ofH, with the correspond-
ing ordered eigenvaluesEn ,En<Em for n,m. Then stan-
dard second order perturbation theory gives, as a co
quence of Eq.~44!,
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E0~x,v!.E0~xc ,vc!1E drWdrW8@lv̂~rW !

1bpex̂~rW !#Gc~rW,rW8!@lv̂~rW8!1bpex̂~rW8!#,

Gc~rW,rW8!5C0~rW !C0~rW8! (
nÞ0

Cn~rW !Cn~rW8!

En2E0
~46!

through terms of second order in the fluctuation fields. N
that the first order perturbation shift inE0 is canceled at the
saddle-point by the first order variation in the exponent
Eq. ~11!. Furthermore, the positivity~strictly speaking, posi-
tive semidefiniteness! of Gc is manifest. To see this, not
that a necessary and sufficient condition forGc to be positive
semidefinite is

E drWE drW8 f ~rW !Gc~rW,rW8! f ~rW8!>0 ~47!

for any functionf (rW). Using the definition given in Eq.~46!,

E drWE drW8 f ~rW !Gc~rW,rW8! f ~rW8!

5 (
nÞ0

F E drWC0~rW ! f ~rW !Cn~rW !G2

En2E0
. ~48!

Since the denominator of each term on the right-hand sid
positive and the numerator is non-negative the condition
positive semidefiniteness~47! is satisfied.

It should be emphasized that the positivity of the full flu
tuation kernel in Eq.~45! holds for arbitrary real fields
xc ,vc—it is not essential that they satisfy the saddle-po
equations~20!, ~21! ~although we shall, of course, eventual
demand that they do!. The value of this observation is that
is equivalent to a statement of convexity of the free ene
functional F(xc ,vc) in Eq. ~14! for arbitrary values of its
a
it

io
e

is
r

t

y

field arguments, as the exponent in the fluctuation integ
~45! is essentially the second functional derivative ofF. The
functionalF(xc ,vc) is clearly bounded below@as the lowest
eigenvalue ofH in Eq. ~13! can grow at most linearly with
xc or vc#. If it is everywhere convex, it must have aunique
minimum at exactly the field valuesxc ,vc satisfying Eqs.
~20!, ~21!. Thus the stable minimization procedures e
ployed in Ref.@1# for solving the lattice field theory of sys
tems of polyballs and mobile ions are guaranteed to w
here also, in the presence of long charged polymer cha
provided an efficient numerical technique is employed.

We now return to the task of evaluating the Gauss
fluctuation integral~45!. It is convenient to change the fiel
integration variables by replacing the excluded volume fi
v̂(rW) with the linear combination

s~rW ![lv̂~rW !1bpex̂~rW ! ~49!

so that the fluctuation integral in Eq.~45! becomes

eF15E Dx̂~rW !Ds~rW !expF2E drWH be

8p
u¹W x̂~rW !u2

1
1

2l
@s~rW !2bpex̂~rW !#2

1
b2e2

2
~c1ebexc1c2e2bexc!x̂~rW !2J G

3expF2ME drWdrW8s~rW !Gc~rW,rW8!s~rW8!G ~50!

whence

F152
1

2
ln DetK, ~51!

whereK is the kernel
K5S 2
be

8p
D1

b2p2e2

2l
1

b2e2

2
~c1ebexc1c2e2bexc! 2

bpe

2l

2
bpe

2l
MGc1

1

2l

D .
rix

of

no-
l

This determinant must be rendered well defined by
explicit cutoff procedure, such as the lattice. On a lattice w
N points, we then have the problem of evaluating a 2N
32N determinant. If the polymer is restricted to a subreg
of Np points, the lower right handN3N block in K is non-
sparse only in aNp3Np subblock of the kernelGc . The
evaluation ofGc is facilitated by the observation that

(
nÞ0

Cn~rW !Cn~rW8!

En2E0
5 lim

h→0
S ~H2E0!

1

~H2E0!21h2D ~rW,rW8!

~52!
n
h

n

with the required inversion involving only a sparse mat
(H2E0)21h2.

VI. MEAN-FIELD RESULTS
FOR SPHERICALLY SYMMETRIC SYSTEMS

For spherically symmetric systems, the extremization
the functionalF in Eq. ~14! is much simplified. It is conve-
nient to express all distances in units of the effective mo
mer size~Kuhn length! ap , and to define rescaled radia
functions f (r ),g(r ) as follows:
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f ~r !5bexc~r !, ~53!

g~r !5rC0~r !. ~54!

It is also convenient to rescale the auxiliary fieldvc to a
dimensionless one,h(r )[vc(r )ap

3 . Introducing dimension-
less parametersh, j6 , andz,

h[
eap

2be2
, ~55!

j6[4pc6ap
3 , ~56!

z[4p
l

ap
3

, ~57!

the saddle-point functional can be written in terms of a o
dimensional integral

F5E H hS d f

dr D
2

1
1

2
zh~r !21j1ef1j2e2 f J r 2dr2ME0 ,

~58!

where the radial wave functiong(r ) of the associated Schro¨-
dinger Hamiltonian~13! satisfies

1

6

d2g

dr2
5S z

4p
h~r !1p f~r !2E0Dg~r !. ~59!

The rescaled activity coefficientsj6 must be constrained b
the appropriately rescaled versions of Eq.~33!:

j65
n6

E e6 f r 2dr

. ~60!

We have devised the following efficient procedure for t
minimization ofF in Eq. ~58!. The arguments of the preced
ing section establish the convexity ofF, implying a unique
minimum. After discretizing ther variable, the rescaled elec
trostatic potential functionf (r ) and polymer density function
h(r ) become finite arrays which can be updated alterna
by the following procedure, which at each step takes
closer to the unique global extremum ofF:

~1! Choose a reasonable starting value for the fieldsf ,h.
~2! Define a new fields(r )[zh(r )/4p1p f(r ), so that

E0 in ~58! is the lowest eigenvalue of the operatorH
52 1

6 (d2/dr2)1s(r ). Once r is discretized,H becomes a
tridiagonal matrix. For the rest of the calculation, we min
mize with respect tof (r ) ands(r ).

~3! Minimize F with respect tos(r ) for each discrete
value ofr. This requires a rapid calculation ofE0 as a func-
tion of s(r ). The ground state eigenvalue of a tridiagon
matrix ~indeed, any ordinally located eigenvalue! can be
readily extracted by Sturm sequence methods@18#, and the
functional F minimized quickly with respect tos(r ) by
golden section bracketing@19#. The latter approach is fool
proof as we have a strictly convex dependence ons(r ) for
all r.
-

ly
s

l

~4! Minimize F with respect tof (r ) for each discrete
value of r. This is trivial as the dependence ofF on f (r ) is
explicit.

~5! Iterate untilF stabilizes at a minimum to some prea
signed tolerance and/or the saddle-point equations are s
fied to a desired degree of accuracy.

This algorithm was applied to a system consisting o
charged polymer with 1000 monomer subunits trapped i
spherical cavity of radius 10ap , with each monomer carrying
a charge20.1e. The ions (n15200 positive andn25100
negative ions! are free to move in a larger spherical region
radius 100ap . The parameterh was taken to be unity. The
results shown correspond to 1000 iterations, after which
free energy is stabilized to five significant figures~such a run
takes a few minutes on a 400 MHz Pentium processor!. The
effect of variation of the excluded volume parameterz on the
monomer densityC0

2(r ) is shown in Fig. 1. As for the cas
of the uncharged polymer, increasing the excluded volu
parameter results in a flattening of the distribution near
origin. However, in the presence of charge, we now find t
~at least for the parameter range studied here! the electro-
static repulsion sufficiently counteracts the tendency of
monomers to crowd into the central region to produce adip
in the distribution for smallr. The mean-field rescaled elec
tric potential f (r ) is nearly constant over this variation ofz,
as shown in Fig. 2@20,21#. The exponential screening ou
side the cavity of radius 10ap confining the polymer is evi-
dent.

FIG. 1. Monomer distribution for varyingz.

FIG. 2. Electric potentialf (r ) for varying z.
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The effect of varying monomer chargep ~with the ex-
cluded volume parameterz held fixed at 20.0! is illustrated
in Figs. 3 and 4. In particular, asp→0 we recover the dis-
tinctive flat behavior at smallr characteristic of uncharge
polymers~Fig. 3!. In these plots, the negative ion number
held constant at 100, with the number of positive ions
justed to give charge neutrality.

Finally, we may also study the effect of varying salt co
centrations. Increasing the background ion density result
higher screening of the electrostatic potential, so the ef
on the monomer distribution is similar to that obtained
varying the average monomer chargep. In Figs. 5 and 6 we
show the monomer distribution and electrostatic poten
f (r ) for fixed z510 and p50.1, varying the number o
negative mobile ionsn2 , with n15n21100 for charge
neutrality.

VII. MEAN-FIELD RESULTS USING
THREE-DIMENSIONAL LATTICE FIELD THEORY

In the previous section we showed how the theory dev
oped in this paper can be applied to the problem of a char
polymer confined to a spherical cavity and immersed in
electrolyte solution. We now present the solution of the sa
problem using three-dimensional~3D! lattice field theory,
which does not hinge on special symmetry properties of
system, and thus illustrate a numerical procedure for dea

FIG. 3. Monomer distribution for varyingp.

FIG. 4. Electric potentialf (r ) for varying p.
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with systems of arbitrary shape and complexity. Colloid
suspensions in polyelectrolyte solutions, which may be u
ful for for a variety of technological applications, such
new optical materials and devices~e.g., narrow-band optica
rejection filters, pump-probe laser apparati, optical disp
panels, etc.@22,23#!, are systems of this type.

We will solve the discretized versions of equations~22!
and ~23! simultaneously on a 3D lattice. It is convenient
multiply equation~22! by al

3 , whereal is the lattice spacing,

and to rescale according tof (rW)→bexc(rW), C0(rW)
→al

3/2C0(rW). Thus, all variables and parameters become
mensionless and the two discretized equations are

a(
mW

DnW mW f mW 5g1ef nW 2VnW2g2e2 f nW 2VnW2MpCnW
2 , ~61!

ap
2

6al
2 (

mW
DnW mW CmW 5

lM

al
3

CnW
2
CnW1p fnWCnW2E0CnW , ~62!

where

a5
«al

4pbe2
, ~63!

FIG. 5. Monomer distribution for varyingn2 .

FIG. 6. Electric potentialf (r ) for varying n2 .
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g65
n6

(
nW

e6 f nW

, ~64!

and the wave function is dimensionless and normalized
cording to

(
nW

CnW
2
51. ~65!

We solve Eqs.~61! and ~62! simultaneously using the
following procedure. First, Eq.~62! is solved forf nW50 and
ignoring the nonlinear~monomer repulsion! term. The result-
ing CnW ~wave function for a free particle in a sphere! is given
to Eq. ~61!, which is solved at each lattice point by th
Newton-Raphson method. The process is repeated and
coefficientsg6 are updated after each iteration with the cu
rent field, until a predetermined desired accuracy is achie
Then the resultingf nW is fed into Eq.~62! which is solved for
a newCnW to be given to Eq.~61!. Equation~62! is solved to
a predetermined desired accuracy by the Lanczos appro
which is appropriate for a large sparse matrix such as the
representing our Hamiltonian. This method of computation
very well suited for implementation on massively paral
platforms which should make it possible to study even v
large lattices with this approach. From then on, the poten
f nW to be given to Eq.~62! for the next iteration is update
slowly by adding a small fraction of the newf nW to the old
one, obtained from the previous iteration. The same re
ation procedure is used for updatingCnW

2 in the nonlinear term
of the Schro¨dinger equation~62!. Such a gradual iteration
procedure is necessary in order to avoid an unstable bifu
tion between two unphysical states~which is commonly en-
countered when solving nonlinear differential equation!,
and it converges to the simultaneous solution of the t
equations. We have shown above that the functional in
~14! has an unique minimum, the condition for which
given by the two equations,~61! and ~62!. Therefore, once
we have converged to a solution of these two equations,
are guaranteed to have reached the unique mean-field
tion of the problem.

We have applied the procedure described above to a
tem of a negatively charged polymer of 1000 monomer un

FIG. 7. Monomer distribution for varying lattice size.
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confined to a spherical cavity of radius 20ap , which is im-
mersed in an electrolyte solution confined to a larger sph
of radius 40ap . The Kuhn lengthap has been chosen to be
Å. To illustrate the stability and accuracy of the procedu
we compare some of the 3D results with the ones obtai
through the one-dimensional~1D! calculation of Sec. VI,
which are practically exact. In Fig. 7 we show how the 3
results forC0

2(rW) approach the exact 1D result as the numb
of the lattice points on the side of the 3D cube containing
systemL is increased from 40 to 60 and 80, for the followin
parameters:z515, p50.1, andn256, where n2 is the
number of the negative ions in the system, while the num
of the positive ions is adjusted so that electroneutrality
preserved, and the relationship betweenz andl @in Eq. ~62!#
is given in Eq.~57!. The rest of the 3D calculations~the
results of which are presented in Figs. 8 through 13! are
performed on a cube with 60 lattice points on each side
Fig. 8 we show the effect of variation ofz on the probability
distribution C0

2(rW). For comparison we have included tw
results obtained by the 1D method of Sec. VI. The results
analogous to the ones in Fig. 1. Similarly, the rescaled e
trostatic potentialf (rW) varies little withz, as shown in Fig. 9.
In Figs. 10 and 11 we present results forC0

2(rW) and f (rW) for
varying monomer chargep, fixing z515. In these plots the
number of negative ions isn256. And finally, in Figs. 12
and 13 we illustrate the effect of varying the number of im

FIG. 8. Monomer distribution for varyingz.

FIG. 9. Electric potentialf (r ) for varying z.
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purity ions on the monomer distribution and the poten
f (rW). Here, again, we compare the 3D results with the o
obtained by the 1D method of Sec. VI. Clearly, the agr
ment between the two approaches is good.

VIII. DISCUSSION

We have derived the mean-field equations for a coup
ionic-polymer system by performing a saddle-point analy
on a functional integral representing the partition function
the system, Eq.~11!. This analysis shows that all mean-fie
level thermodynamical properties are obtained by extrem
ing an appropriate real-valued functional~14!. Moreover, we
have shown that the functional~14! possesses a single extr
mum, which is a minimum, thus guaranteeing a unique
lution of the coupled mean-field equations. We have a
described two different numerical procedures for finding
mean-field solution, and have applied them to the problem
a charged polymer confined to a spherical cavity and
mersed in an electrolyte solution.

Although our calculations were intended as an illustrat
of the advantages of the approach, they have yielded s
interesting insight into the physics of confined polyelect
lytes. It has been suggested that materials consisting
spherical voids imbedded in a polymer gel can be used
‘‘entropic trapping devices,’’ in which macromolecules~e.g.,
polymers and DNA! could be trapped and separated@24#.

FIG. 10. Monomer distribution for varyingp.

FIG. 11. Electric potentialf (r ) for varying p.
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Therefore, these materials may have important applicati
in specific biochemical trapping, or even as microreactors
applications in organic, bioengineering and combinato
synthesis@24#.

It has been hypothesized@25–28# that such trapping is a
result of the higher conformational entropy ‘‘enjoyed’’ b
the polymer in the large spherical void, as compared to
narrow channels connecting the voids within the gel. O
calculations reveal another important aspect of the trapp
phenomenon—namely, from our results it becomes clear
electrostatic interactions also play a very important role in
From Figs. 3, 5, 10, and 12 it is seen that polymers with h
monomer chargep, or in dilute electrolyte solution, have
distribution function with a peak near the edge of the sph
cal cavity, while polymers with low monomer charge or
concentrated electrolyte solution~where the monomers ar
highly screened by the impurity ions, thus experienci
weaker electrostatic repulsion from each other!, have a more
flattened distribution, and are more likely to be found ne
the center, rather than the edge of the cavity. In additi
highly charged monomers would possess higher energ
the voids, due to the stronger repulsion from each othe
they are brought closer together in the folded polym
Therefore, we expect that polymers with relatively low ave
age monomer charge or in a concentrated electrolyte solu
would be easier to trap in spherical voids. Usually the mo
mer charge is approximately constant, and it is the impu
ion concentration that can be varied in the laboratory. W

FIG. 12. Monomer distribution for varyingn2 .

FIG. 13. Electric potentialf (r ) for varying n2 .
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suggest that experiments be performed to investigate p
mer trapping dependence on electrolyte concentration.
also expect that the lattice field theory approach to the
tistical mechanics of charged polymers in electrolyte solut
J.
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which has been developed in the present work will be use
for studying low symmetry systems involving complex liq
uids, such as colloidal suspensions in polyelectrolyte so
tions.
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