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Based on the definition of the mesoscopic concept by Bktnkl. [Physica A174, 119 (1991); J. Noneq.
Therm.16, 67 (1991); Mol. Cryst. Lig. Cryst.204, 133(1991)] an approach to calculate the Leslie viscosity
coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor,
whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the
main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between
microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the
stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck
equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate
relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be
consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear
viscosity a,4. In the nematic phase, is shown to have two contributions: isotropic and nematic. There exists
an indication that the influence of the isotropic part is dominant over the nematic part. The so-called micro-
scopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent repre-
sentation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are
estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transfor-
mation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational
viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the
same. The difference is caused by the hindered diffusion in the affine mode[84663-651X99)11410-7

PACS numbse(s): 61.30.Cz, 66.20-d, 83.70.Jr, 83.20.Di

INTRODUCTION copic momentum. A general form of this equation, along
with the orientational balances for mass, spin, energy, and
The viscous stress tenseris a crucial part of the mac- alignment tensors, have been derived 18] in terms of the
roscopic Navier-Stokes equation that governs flow of theposition x, the microscopic directoa, and the timet vari-
medium. In the case of liquid crystals, anisotropy of the sysables. In this description the whole information about the
tem leads to numerous terms and viscosity coefficients in thisrder of the system is exclusively contained in the probabi-
tensor in order to describe flow properties. Recently there hdsstic orientational distribution functiofODF). The fact that
been much interest in calculating nematic viscosities. A comthe order parameters appear explicitly in the expressions for
mon approach uses statistical modgls-13] based on the the viscosity coefficients in the FP theories indicates that
Fokker-Planck(FP) equation approach introduced by Hess ¢™™*contains, besides ODF, components of the orientational
[14] and Doi[15]. These theories have revealed that the visvariablea. A particular form of 6™ not only would com-
cosity coefficients can be expressed as certain polynomials iplete knowledge about orientational balances but also would
local equilibrium orientational order parameters multipliedallow us to perform viscosity analysis that might lead to
by a factor depending on the particle geometry and the rotawider understanding of the mechanism, which finally gives
tional diffusion coefficient. This property has been intu- order dependence of the viscosities.
itively taken for granted in some previous theoretical and The purpose of the paper is to calculate the Leslie viscous
experimental attempts to explain viscosity phenomena. Byoefficients from the proposed general form of the mesos-
analogy to the Navier-Stokes equation, a mesoscopic coumopic stress tensos™S A theoretical paper with a similar
terpart of the stress tensof™®*is a matter of importance in purpose has been done[iti7]. In this paper the authors have
the balance equation for the orientation-dependent mesosombined features of the partially aligned systems composed
of the rigid ellipsoidal particles with the predictions from the
affine transformatiodAT) model[18]. The main idea of the

*Electronic address: achrzano@fizyk.ifpk.pk.edu.pl AT model is to relate physical properties of a perfectly
"Electronic address: m.kroeger@physik.tu-berlin.de aligned anisotropic fluid to those of a linearly viscous isotro-
*Electronic address: S.Sellers@uea.ac.uk pic fluid by the use of the affine variable transformation. As
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a result a stress tensor expressed in components of the ori-
entational variable has been obtained. This form has been
applied in[17] for the case of the partially aligned systems.
The paper provides a very good insight into the problem.
However, the predictions about the rotational viscosity are
not in accordance with the Ericksen-Leslie continuum theory
[19-21]. A rotational viscosity tensor is predicted instead of
the usual scalar rotational viscosity. Consequently, the Par-
odi relation cannot be fulfilled. This is an effect of the as-
sumed hindered particle rotations.

The presented mesoscopic approach is consistent with the
microscopic models. Moreover, it naturally includes the iso-
tropic contribution to the shear viscosity, in the aniso-
tropic phaseAlthough a severe disagreement between theo-
retical results and the experimental data fior has already
been noticed 12], not much theoretical indication has ex-

isted so far about the role of the isotropic effect. . _ o : . .
The paper is organized as follows. Section | provides thé)rlentatlon of the grain is assumed to agree with the particle orien-
i tation and the mesoscopic potential is assumed to agree with the

necessary phenomenological definitions. Section I intro'mean-field otential acting on the individual molecule
duces the mesoscopic concept of orientational balances, ve- P 9 '
locities, and stress tensor. In Sec. Il a derivation of the mac: _ Ay e Thev determine the vi
roscopic stress tensor based on the mesoscopic descriptiond% 1= @3~ @2 an 72_6;]6 0‘5i ey de Ermlne ne V"?
presented. In Sec. IV a derivation of the total alignment limitCOUS torques acting on the mo eculg is ¢ aracteristic o

for the viscosity coefficients is given by the Kuzuu-Dmd the torque associated with the angular velocity of the director
Osipov-TerentjeWKD-OT) approaches and compared to the 2"d 72 gives the strength of the torque in the shear flow.
result of the original AT model. Special attention has beerﬁnot_her}m?]ortant bpl_arameter commonly/used ;]r_n Ey;jrody-
paid to the rotational coefficient;. In Sec. V we give a Namics Is the tumbling parametar= —y,/y;, which for

summary of the mesoscopic-approach conclusions and r@—‘|S1 Is related to the flow alignment_angle_.
sults. y pic-app The EL theory can be extended by including the effect of

external fields like magnetic, electric, or elastic deforma-
tions, in the form of the molecular field,,. In this case the
energetically favorable state is obtained according to the rule

FIG. 1. A primitive view of the mesoscopic coarse grain. The

|. PHENOMENOLOGY

Ericksen-Leslie stress tensdn the Ericksen-Lesli€EL)
theory[19—21] a unit vector, or “director”’n, is introduced 0=nX(hyo—71N—y.I"-n). (4)
to represent the macroscopic symmetry axis at each point in
space. The stress tensaris assumed to depend on the ve- Due to Eq.(4) the director has to attain such an orientation
locity gradientsVv, the directorn, and a corotational time that the effective torque, or the asymmetric part of the stress
derivative of the directoN. For an incompressible nematic tensor, vanishes. This principle of angular momentum bal-

liquid crystal, it reads ance in nematics is known as the director equation or the
second Leslie constitutive equation.
o= ann(nn:T) + anN+ azNn+ a,l’ As pointed out in the Introduction, our goal is to show
+agnl-n+ agl-nn, (1) that the viscositiesy;, v;, and A of nematic liquid cr_ystal_s
can be calculated on the basis of the mesoscopic orienta-
where we have used tional balances, thus to form a bridge between this type of

description and the Fokker-Planck theories.
r=1[Vv+(VV)'],

Q= %[VV— (VV)T], Il. MESOSCOPIC CONCEPT

A. Orientational balances

N=n+Q-n, 2) In mesoscopic hydrodynamic description a liquid crystal

is treated as an anisotropic medium requiring additional in-
glependent orientational variables in the domain of the field
quantities aghe microscopic directoa and its orientation
change velocity w(a,x,t)=da/dt, with the property
w(a,x,t)-a=0. Because in a mesoscopic grain all the mol-
ecules are assumed to be ordered due to the vegtibris
also possible to identify the microscopic director as the long
eo=nX[—y;N—y(-n)], (3)  principal axis of the moleculésee Fig. 1 Fields of physical
quantities defined on the nematic spac@=f(a,x,t) e S?
(€ is the completely antisymmetric unit tens@ontains the X R®*XR! are introduced in the mesoscopic concept. The
so-called rotational viscosity coefficienjg and y, defined second ingredient to a mesoscopic theory is the orientational

and[Q-n];=Q;;n;. As usual, the isotropic terms have been
incorporated into the pressure. The viscosity constant
aq, ...,ag are the Leslie viscosity coefficients and the
whole equation(1) is known as the first constitutive Leslie
equation.

The antisymmetric part of Eq1),
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distribution functionf(-). As a statistical elemerft(-)da is T=AY2, (7)
regarded as the probability of finding a particle in the surface
elementda arounda. transforms a fluid of spheres into a fluid of anisotropic par-

From the global balances of mass, momentum, anguldicles where the particles’ axes are totally ordered. The trans-
momentum, and internal energy, it is possible to derive corformation matrices are given by
respondinglocal orientational balance equationg=or in- Y 2
stance, the mass and momentum mesoscopic balances read A=Q*18+(Q 1)aal,

A '=Q 4 6+(Q?-1)aa]. (8)

0 () + Ve [p( V() ]+Vo-[p(W()], (5

=P
at It follows that the strain rates are related as

9 f:%(A_llz'VV'A1/2+A_1/2'(VV)T°A1/2). (9)
0= —-[p( V() T+ Vo [p( V() = 0ed )] _ | _
With the usual assumption for the viscous stress tensor of an
+V - [p( )W V()] (6)  incompressible isotropic fluidr=27"T, where " is the
shear viscosity of a reference fluid of spherical particles at

the same density and temperature, the mesoscujgicous

Here, the orientational mass density is given pf-) stress tensor for the anisotropic fluid becomes

=p(x,t)f(-), wheref(-) stands for the orientational distri-

bution function andp(x,t) is the macroscopic mass density 0= A2, 5 AL2
at the pointx; v(-) is the orientational material velocity ’
(barycentric velocity of all molecules, whose orientation is o= 7 (A" L. Vv.A+ V) (10)

given by the microscopic directar at positionx at timet)
and U;es(') denotes the transposed mesoscoftidenta-  (ord denotes perfectly orderedsubstituting Eq(8) into Eq.
tional) stress tensor. Orientational averages of these equ&l0) the following stress tensor in terms of the mesoscopic
tions give back, by definition, the macroscopic mass balanceariables

and the Navier-Stokes equations, and also, consequently, the

Leslie viscous stress tensor. However, with the exception of o= a‘{’daaaaFJr a?{dl”r ag“’al“-a

the Ehrentraut and Hess moddl7], such a calculation or
applications of this formalism to the description of liquid

crystals properties has been missing. Note also that the M obtained. While considering the case of the perfectly

Soscoc Concept S, b DI (0 SteronequITT i gned elipsods, one can deniy ther synmety aas
P ' P with the directorn in the Ericksen-Leslie theory. The axis

listic quantities like the dielectric relaxation processes . Q is the only adjustable parameter in the AT model.

+adT-aa+ ad%Q-a+adQ-aa (11

[ZZAZ%W words of explanation are needed about the appli—The coefficients of the perfectly aligned fluid follow
cabllllty of the wordsmesoscopiandmicroscopic for \{vhlqh o= — e(Q—-Q 12, a%%= 51— Q2),
an interchanged usage can be often met. The adjeniie

soscopidn the standard definition refers to the coarse grains o= ye(Q2-1), ad"=25"
containing a large number of molecules. As compared to the 3 ' 4 '
macroscopic scale these grains are small enough to treat the Q0= _ o ord_ ord

system as a continuum in space. In a general sense the me- 5 A

soscopic description includes more information than a mac- ord_ _ord_ _ord_ _ref/~_ ~-1\2
roscopic one, namely, the additional variable the domain v=ag ez = (QTQY

of the mesoscopic fields. In the mesoscopic description nei- ord_ _ord__ord_ _ref~—2_ 2

ther notion of the molecular potential nor diffusivity have Y2 =g —as =n7(Q QY

been used so far. On the other hand, the adjeatii@o- _ 2 A2
scopicis used in the models, which refer to an individual A=(1+QY/(1-QY). (12)

molecule’s state or properties. In view of the above, the FR, ihe ahove, in order to relate a part of the symmetric stress
and AT models can be calledicroscopic. tensor to the rotational viscosity coefficient the Parodi

relation a3+ 3= a2 2" has been used.

B. Mesoscopic stress tensor in the affine transformation model

A structure of the mesoscopic stress tensor, a viscous C. Definition of the mesoscopic stress tensor

stress tensor, which is defined on the mesoscopic variables, We follow the assumption frorfil 7] that the dependence
has appeared in consideration of the AT mddé)]. Here we  of the mesoscopic stress tensor on the mesoscopic variables
summarize the basic ideas of this model. becomes unchanged even if we allow the system to flow
A volume-preserving transformation of a sphere into anfreely. However, the expression for the mesoscopic stress
ellipsoid of revolution of the axis rati@ (Q>1 for rodlike  tensor should also contain information that the system is not
particles,Q<<1 for disclike particlesand the axis of sym- perfectly aligned. This feature can be provided by the form
metry a, of the orientational distribution function. Moreover, since the
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molecules can change their orientational positiaRes af(a,t)

should contain terms with the angular mesoscopic velocity ot L [onf(a1)]=0, 17)
U. In the following we will use the ansatz for the mesoscopic

stress tensor of the form where the mesoscopic velocit,,.s and the orientation

change velocity(-) are related as
Ored )= a®aaaaTf(-) + aQUF(-) + o®Uaf (-) g ()

+a®rf(.)+ af*%ar-af(- ) + T -aaf (-), Orred=BXW.)- 18
(13) Whether the two kinetic equations, Eq$5) and(17), can
be compared is a subtle problef@5]. The first equation
where describes the state of an individual molecule influenced by
_ the mean-field potential, whereas the second equation de-
U=a+Q-a (14 scribes the orientation of the whole mesoscopic coarse grain.

Here comes the most important assumption. To identify
We adopted herex® values instead of the perfect order these two distribution functions as the same object we have
viscositiesa™ in order to account for the partial alignment to introduce implicitly the notion of the molecular potential
dependence of the friction and the diffusion coefficients. Thdield into the mesoscopic description by assuming that all
quantity o™*{a,x,t) is the stress tensor of particles having molecules in the grain are perfectly ordered and reacting to
the particular orientatiora at point x in space. Note that the same mean-field potenti@ee Fig. 1L Comparison be-
ansatz(13) is such that it is in accordance with the Leslie tween the structures of Eqgl5) and(17) gives then a par-
macroscopicor [Eq. (1)], which is a special assumption. It ticular form of the mesoscopic angular veloctyes,

also fulfills the Parodi relatiom}®+ a5e°= aff*e— aff°®,

Jef me
wmeszﬂe—DrL Inf+ﬁ . (19)
IlIl. MESOSCOPIC DERIVATION B

F THE MACR PIC STRESS TENSOR ) . . .
© CROSCOPIC STRESS SO Equation(19) says that the instant effective mesoscopic an-

The macroscopic stress tenssifor the partially aligned gular velocity of the molecule is the velocity gained under
fluid can be obtained by averaging the mesoscopic stregsfluence of the macroscopic velocity gradient field dimin-
tensore™®{-) [Eq. (13)] over all orientations. The main dif- ished by the loss due to the diffusion processes of Brownian
ficulty lies in the relationship between, the angular veloc- motion in the mean-field potentigo-called driff. For rigid
ity of the microscopic directos, andN, the angular velocity €llipsoids of revolution an explicit form of2’¢f has been
of the macroscopic director. This problem can be resolved given by Jefferey26],
by considering links between the phenomenological and the Jef
mesoscopic theories. QF=Bax(I'-a)—ax(Q2-a), (20

Central to all kinetic theories is the diffusion equation for

H _ 2
the time evolution of the orientation distribution function Where B is the shape form factor usually taked=(p

f(at) —1)/(p?>+1), with p being the particle’s axial length-to-
o width ratio.
of(at) f(at) Using expressiori19) the angular velocity of the micro-
. D,L-|Lf(at)+ kB—TLme(a) scopic directoilJ reads
—L-[Q*F(at)], (15) U=wmnesxa+Q-a
which describes the orientational Brownian motion of the =(6—-ad)-|B(I'"a)—(Q-a)]
particle in the mean-field potentigl,«(a). The long axis of

the particle is given by the vect@ andL=aXxV, is the v
rotation operator, i.e., the covariant derivative on ®fe -D,|L Inf+k—"1]f Xa+Q-a (21
Q%" stands for the angular velocity gained by the particle B

_under mfluenc_e of_the exter_n_al velocity gradient field ﬁ)}_d In the above the first term on the right-hand side describes
is the rotary diffusion coefficient. Because the system is as;

sumed to be spatially homogenous, there is no position d the hydrodynamic effect of the Jefferey-type due to the par-
0€ Sp y 9 ' P Sicle rotations caused by the velocity gradient field. The sec-
pendence in Eq15).

The mesoscopic counterpart of kinetic equaticis) ond term takes into account the diffusional reorientation ef-

originates from the balance law for mass den&y[16] fects. Although in the AT model internal free rotations are
9 disallowed, there may still exist nonzero audnd this effect

(LYo TV ()T Vo TWC (- is mirrored by the last part of Eq21). All these contribu-
0=t () + Vo LV()T() ]+ Var [W()T ()] tions are equally important.
+f()[d+V(-)-Vy]Iinp(x,t). (16) The angular velocity of the form as in E21) has been

applied to the evaluation of mesoscopic stress teii&8y
Assuming that the system is uniform and incompressible(see Appendix Similarly to Eqg.(21) in the stress tensor one
i.e., all gradients vanish except f&v, which is notx de-  can also distinguish three qualitative parts. The first part fol-
pendent, Eq(16) gives the equatioh24] lows the structure, which is present in the original AT model.
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The second part gives the contribution connected with théerms of the molecular mean-field potential, which originally
Jefferey angular motion and the third part takes into accourthas been introduced by Dp15] through the considerations
the diffusional effects. All three parts contain symmetric ve-on the change of the free-energy caused by the external ve-
locity gradients, whereas the antisymmetric velocity gradi-ocity field. It is not completely obvious on what grounds the
ents may occur only in the third diffusional term. It turns out, results based on the free energy considerations coincide with
as compared to the KD-OT theory results, that evaluation othe FP equation model. However, concluding from the cal-
only the diffusional term can already give the whole stressculation details it can be stated that the standard Brownian
tensor. From this argumentation it emerges that the affinediffusion term relates to the change in the orientational en-
type stress and the Jefferey-type stress act as opposite @fepy, whereas the mean potential drift relates to the change
fects, canceling each other. in the interaction term of the free energy.

A resultant expression for the stress tensor reads Summing up the above considerations one can also arrive

at another conclusive observation. Since the starting and the

o™ )= —{(-)D,| a free Inf(.)+ Vit ) final expression' have the form of statistical averages, both
d kgT averaged quantities are the same. Thus the olbjguatr .,
which contains the microscopic stress tensor, can be re-
+afree d (Inf( )+ Vit free[uf(.) garded as the mean-field representation of the mesoscopic
da Kg T)@ stress tensor.

In order to obtain explicit expressions for the Leslie vis-
(22 L . .
cosities one can follow now the calculation of the Osipov-
and the following relations for the mesoscopic viscositiesTerentjev approachd,12). The main point of this model is
hold: the form of the distribution function. Since the flow breaks
the cylindrical symmetry of a nematic, it has been suggested,
Bylee= — yfiee_, \free=p, within the assumption of low-velocity gradients, that the per-
turbationh should consist of all the combinatiofithere are
a=B(al®+ a1%9), four of them) of the velocity gradient and the components of
the directorn and the azimuth vectag multiplied with ap-
B(al®+ a9 = — (afieet offee), (23)  propriate probabilistic functions. With this assumption it is
possible to solve kinetic equatidd5) almost completely in
Using Eq.(22) the symmetric and antisymmetric parts of the an analytical way and, next, calculate the macroscopic vis-

macroscopic stress tensor can be calculated as cous stress tensor. Since the KD and OT approaches have
been proven to lead to the equivalent resyiltg] for the
prEE f foh o™ a, expressions for the viscosity coefficients, we prefer the easier
mic Kuzuu-Doi-like formulation to the convoluted integrals of
the Osipov-Terentjev-type. The results for the viscosity co-
oI e f o3, (24 efficients are
where ay=a]*S,
1 1 dv, dv, _free 1
asym_ _— free mf mf A=y (1+/J« )Sz.
Ome T 2\%ga  da 80 @
and az=ai(1-uYS,,
1 1 dV dv
T ryqeea[sksnaa— d+5 d;f + T:fa 4= af®+ Y1*B?5(7-5S5,-2S,),
(26)
B
In the aboveh is the perturbation of the distribution function as= age{7(332+ 4S,)+ S|,

f="fo(1+h) linear in the velocity gradients and the equilib-
rium ODF is assumed afy=exp(—Vyi/kgT). In Eq. (26)

we have also used the relation (ai®®+ aff*® = y*B
which comes from the Parodi relation imposed on conditions
(23). Also, since Eq.(25) relates to the molecular torque,
which contains only the terms with the mean field potentials,

the property

B
a6=age{7(3sz+4s4)—sz},

free -1
Y1= S,

D,y1®=kgT (27) y,= yle

is expected to hold.

Equations(25) and (26) with Eq. (27) give the so-called S, f 28)
microscopic stress tensf27]—a stress tensor expressed in m= oPa"5g" (90
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wherep, is one of the four components bfdetermined by

the differential equation The second rotational coefficient; is more problematic.

The common result of the OT and KD approaches is the
integral

Pa
d?

d0  si2g KeT dO Vi
(29 lej fOPaWd cog 6), (32

+|cotfo+ —— —F—

keT d6

1 def) dpa Pa 1 dViy

For more details, s€fe,12]. In the above we have used con- for which one cannot check the limit without solving the

ditions (23) to show the relation betweem and «[™®. kinetic equation for the functiop,. Both, Egs.(29) and
The presented analysis, which starts from the mesoscopi@2), require knowledge of the particular mean-field poten-

background, coincides with the way of the microscopictial. It has been noticed that the functipg can also occur in

KD-OT theory, with the exception of4. The main differ- the expression for,+ @5 in the OT formulation, which

ence is that the mesoscopic approach naturally includes theads[12]

isotropic contributiona/i®® to the shear viscosity,. So far,

the existence of this contribution has not attracted enough Vit

attention. However, the importance is significant. There ex«a,+ a3=Bf fopa<3kBT sin(20) + 40 cog26)|dcog9).

ists an indication that the isotropie/®® might be about ten 33)

times larger than the nematic part@f [12]. Also, sincea,

enters all the viscosity values measured in the Miesowic

H ee
experiment, the lack of any molecular theory e prac- right-hand side of Eq.(33 can be estimated as

tically desists the KD-OT theory from successful application, ~ . ;
to analyze the experimental data for the Miesowicz coeffi-( KgT/D)S,. This result imposes the property

cients[28]. To avoid this problem one should consider such
differences between the Miesowicz coefficients in which the [cog 0)= 1]5V
coefficienta, is eliminated. Pa

%Jsing Eq.(30) the perfect-order limit of the integral on the

mf T
EY; [cog0)=1]=1, (39

where the perfect alignment equilibrium distribution function
IV. PERFECT ALIGNMENT LIMIT fo has been taken in the delta-function fod(cos@)—1).
Applying Eqg.(34) to Eq.(32) the total alignment limit of the

Formulas(28) with respect to _proper_tie(;ZS? and (27)  jntegral fory, is obtained regardless the mean-field potential
present exactly the KD expressiofisesidesa;*). They  considerations,

should remain valid also in the special case of total align-
ment. Using the fact that all the order parameters are equal to
unity in perfectly ordered systems the symmetric viscosities ord_ kT (35)

can be easily predicted, L pord’
o keT The relevant tumbling parameter reads
@ = pord~ ’
' \°M=B, (36)
kaT It can be useful to compare the obtained results, BB,
ord, ord B . . . .
ay taz = ord B (31, (35), and(36), to the viscosity coefficients predicted by
r AT model (12). Introducing the formula for the rotational
diffusion coefficientD, ,
kgT
d d_"B R2
agr + agr —mB ) ord__ kBTQ2 (37)
r ro nref(QZ_,_l)Z’
d_ . L . . . .
ag=0. (30 one obtains the symmetric viscosities take identical forms in

the affine, mesoscopic, or KD-OT theories, as already no-
ticed in[9]. As far as the rotational coefficient; and the
tumbling parametex=— vy, /y, are concerned, the KD-OT
model and the AT model lead to different predictions. The
most illustrative is the result for the tumbling parameter,
keT which in the KD-OT model ish =B, whereas in the AT

o] =3 (31)  model, predicts\=B~1. Due to this disagreement the AT
Dy model cannot be applied to the description of the asymmetric

By virtue of the Parodi relation the limit for the rotational
coefficienty, follows

ord__
o=
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viscosity in the systems where the reorientational processesver, it has been observed that the symmetric contribution to
are expected to be governed by the diffusion processes. Thibe stress tensor obtained from the diffusional mean-field
conclusion does not concern symmetric viscosity. The conmodel coincides with the results of the AT models. This fact
sistency between the results for the symmetric part of thdas led to the incorrect conclusion that the AT model, which
stress tensor in the AT model and the perfect alignment limigoes not take into account the possible reorientation of par-
of the KD-OT theory may be also the source of the informa-ticles, holds in general.

tion about the nature of the isotropic contributimﬁee. Explicit Leslie viscosities can be calc_ulated by the use of
Since the viscosity of the reference isotropic fluiéff by ~ e KD-OT technique$12]. The conclusions of the mesos-
definition should remain indifferent to the strength of order,fOptIC iﬂdﬂt‘he FP o?gm r?lcr:osc;])plc approa}che'\_j,l are ctonS|s-
of the anisotropic counterpart system, the AT model valu ent wi e exception of the shear viscosity. More at-

Gention should be paid to this fact. In th i
ord . p paid to this fact. In the mesoscopic
ag*= 27 can be considered as a general formugf° ap- approach it is clearly seen that the isotropic contribution to

pearing in Eq.(28). This suggestion can be tested by the , "eyen in the nematic phase, is relevant. From the prelimi-

computer simulations. nary assessmeffil2] it might be ten times larger than the
theoretically obtained nematic contribution. Because of this
V. DISCUSSION AND SUMMARY OF RESULTS fact certain restrictions should be imposed on the comparison

between the theories and the experimental data. For instance,

The idea of the aligned hard-rod system as simplificatiorin the Miesowicz experiment where all the measured viscosi-
of freely rotating rods is quite common. It has led to a num-ties containa,, one has to consider such combinations of the
ber of interesting predictions like stable transition from nem-data coefficients that do not includg in order to be able to
atic to smecticA phase[29-31], depletion-driven nematic- apply the theoretical models for the data description. Alter-
nematic demixing transitiof32], stable nematic columnar natively, the need for separate measurements of the indi-
phase transition in binary mixtures of long and short rodsvidual Leslie coefficients appears.
[33], or S, dependence of the anisotropy of the diffusion On the basis of viscosity expressioi®8) we have calcu-
constant[34]. Following this trend we have also used the lated their total alignment limits and concluded about the
conclusion of the AT model concerning the mesoscopic@nisotropy shape form factors associated with the particular
stress tensof18,17), which is indispensable in the orienta- ViScosities in Sec. IV. Special attention has been paighto
tional balance equations for the analysis of the viscosity irft tUrns out that the comparison for the symmetric viscosities
the partially oriented systems with free particle rotationsca! D€ resolved in a consistent way with respect to an appro-

(Sec. Il). The form of the stress tensor predicted by the ATPYIat€ perfect order limit for diffusion coefficiet87). As far
model is completed with the terms responsible for the inter?vietgr? tLOeta,R'?'nrilogrec;p;rzgeti:‘rlgDC-(())n'? ehrgse db ed elsnag:)?ﬁtrggn(;[utt)e-
nal free rotations of the particles. The orientation distribution.l.he presented analysis in Secs. Il and IV highlights the.
function ;Ehat r\]/velghts thﬁ AfT'I'ge exfprﬁssmn Is assumed 1Q,,resnondence between the total alignment approaches and
account for the strength of order of the Systelu. (13].  ine free particle rotations’ models. So far, this relationship
Moreover, for the mesoscopic viscosities we ha_lved adoptefias remained unknown leaving the impression that the men-
a;*° values instead of the perfect order viscositi§5" (as  tioned theories are contradictory.

used in the original and modified AT approachiesorder to- To sum up, we have presented a mesoscopic approach to
account for the order degree of the friction and diffusionthe viscosity theory of nematic liquid crystals, which is con-
coefficients in the case of partial alignment. As for the me-sjstent with the microscopic descriptions[®12]. Our con-
soscopic velocity we have used the deviation of the diffu-sigerations show the necessity of further research on the na-

sional rotation velocity from the average angular velocitytyre of the rotational diffusion coefficients and the isotropic

with which the particles rotate under influence of the externaliscosity «/*® in the nematic phase. We hope that our results

velocity gradient field. An expression for this velocity can beyjj help in future theoretical investigations of these proper-
obtained from the FP equatidig. (19)]. In order to obtain  {jeg.

the macroscopic stress tensor an orientational average of
o** has been taken. This average can be transformed into ACKNOWLEDGMENTS

another expression, also of a form of the statistical average, o
which contains the so-called microscopic stress tensor—a A-C. thanks DAAD for the possibility to start the collabo-

stress tensor expressed in terms of the molecular mean-fiefgtion with the Technical University of Berlin. The authors

potential. These two averages are equivalent and may prébank Wolfgang Muschik, Christina Papenfuss, and Harald
vide an interpretation of the microscopic stress tensor as Ehrentraut for very fruitful discussions.

mean-field representation of the mesoscopic stress tensor.
Calculation of the macroscopic stress involves three qualita-

tive effects(Appendix. The first effect includes the stresses  Using the expression for the angular velocity of the mi-
as considered in the standard AT model. The second effegfoscopic director

represents the stresses due to the diffusion process and the

third effect corresponds to the reaction of the particles to the U=B(I'-a)—(Q-a)—aB(I:aa)

velocity gradient field. The first and the latter contributions

act in opposite ways. They cancel themselves leaving the

diffusion effect mainly responsible for the viscosity. This —D,
calculation allows us also to obtain the particular values of

the mesoscopic viscositias{’ee, Egs.(23) and (27). How-  the mesoscopic stress tensor effectively will read

APPENDIX

V
Inf+ o

L kT

Xa+Q-a, (A1)
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xXa

BI'-a—aBI:aa—D [

Vi
Inf+ —
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B
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In the above expression the antisymmetric velocity gradient
tensor may appear only in the diffusional term. We will
evaluate this term in the first order. We will be using the
representation of the orientation varialal@nd its derivative
d/da as

d(foa d(fpa;
IdiffDr_:L:J dah|:agee (d(;J I) +agee—(d(;1- l)

- 2J dafohaa;(ai*e+ f®

a=ncosfd+esind,

d nxed
=(ecosf— nS|n0)—+— (A3)

da sind de’

dfg dfy

=fdah fz“aea,d + ol % fa }
da

free free” 1
fdafh 05" 4o, + i

—Zf dafohaiaj(a;’eeJr age

where e is the azimuthal unit vector perpendicular to the = dahfo afie® free, dimf

. a 0 al a3 ] d
director n; axXL=-d/da; daj/da=46;—aa; and kBT d &
da;/da;=2. The reference frame is chosen in a way that the free, e
components of the needed unit vectors regef cose, ey dafoh(az ™+ a3™) (4~ aiay)
=sine, e,=0, n, , andn,=1. A nontrivial formula for
the integration by parts follows -2 J dafghaa;(a3®*+ af*). (A8)

f daG

fdaF—+2f daGFa;, (A4)

where da=ded cosd. The diffusional part of the macro-

scopic stress tensog reads(see Eq(A2)]

Vit
|diﬁ:—DrJf(.) a;reed |nf+kB—mT)
\%
free mf
+ag ia Inf+kBT alda. (A5)

Keeping only relevant terms linear in the velocity gradients

like f="fo(1+h) and

me
Inf=|nf0+ln(1+h)=—ﬁ+h, (AB6)
B

expressionA5) will look like

Idiff: f daf

By the use of Eq(A4) |4 can be evaluated as follows:

dh dh
free free
a g ——+ay 33l (A7)

Splitting into the symmetric and antisymmetric parts
gives

D
1= — L (gfieey free)Jolahf [kBT(sa aj— &)

kgT
2\ da I da
- J dac ", (A9)
D 1| dVv dVv,
asym_ _ " . free_ fre S, 2 YmE P Vmf
Idlff kBT a3 a5 e)f dahf02 a| daj aJ dai
- f dag e @ £ (A10)

Formulas(A9) and (A10) agree with the stress tensor defi-
nition used in the KD-OT theory. This fact indicates that the
AT model contribution to the stress is balanced by the Jef-
ferey effect in expressiofA2) and the relations

free__ free
B =72

free B ( f2ree 1o fre
B(afzree+ free)_ ( gree+ fre (All)

must hold. In this case both different models are consistent.
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