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Temporal surrogates of spatial turbulent statistics: The Taylor hypothesis revisited
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The Taylor hypothesis, which allows surrogating spatial measurements requiring many experimental probes
by time series from one or two probes, is examined on the basis of a simple analytic model of turbulent
statistics. The main points are as follovig: The Taylor hypothesis introducasystematierrors in the evalu-
ation of scaling exponentgii) When the mean wind70 is not infinitely larger than the root-mean-square
longitudinal turbulent fluctuations, the effective Taylor advection velocity,q should take the latter into
accountJ(iii) When two or more probes are employed the application of the Taylor hypothesis and the optimal
choice of the effective advecting wind,; need extra care. We present practical considerations for minimizing
the errors incurred in experiments using one or two prokies.Analysis of the Taylor hypothesis when
different probes experience different mean winds is offef8d063-651X99)14010-§

PACS numbds): 47.27—i

I. INTRODUCTION for more than one application.
The Taylor hypothesis was studied carefully in the 1950’s
Decades of research on the statistical aspects of therm@4—7], and continues to be the subject of scrutiny to this day
dynamic turbulence are based on the Taylor hypothdgis [8—10. Some of the inherent limitations implied by the Tay-
which asserts that the fluctuating velocity field measured byor hypothesis were pointed out in these studies. Our purpose
a given probe as a function of tima(t) is the same as the in this paper is to offer rational choices to minimize the
velocity u(R/VO) whereVO is the mean velocity anR is the systematic errors that_ are entailed in the standard experimen-
distance to a position “upstream” where the velocity is mea-tal procedures. To this aim we need to study the systematic

sured att=0. Sixty years after its introduction by Taylor, errors, something that can be done only by comparing spatial

this time-honored hvoothesis remains the only reall COnve_statistics to temporal statistics. Not being able to do this di-
. yp . y y rectly on the basis of the Navier-Stokes equations, we offer a
nient way to measure experimentally turbulent velocity fluc-

. ) ) . model of turbulent fluctuations advected by a “wind” of
tuations. New techniques were introduced in recent yeargagireq properties, be them homogeneous or not. The model

but so far did not make a lasting mark on the field. On theyos us to compute explicitly correlation functions or
other hand, theprgtlcal considerations of the anomalous N&ructure functions that depend on space and time. We can
ture of the statistics of turbulence have made higher anghen compare the temporal objedfsr fixed spatial posi-
higher demands on the accuracy of experimental measurgpns) with simultaneous objects that depend on varying
ments, with finer details being asked by experimentalists andcales. Having full control on the properties of the wind we
theorists alike. In light of these demands it seems necessagan analyze the relative importance of the mean wind versus
to revisit the Taylor hypothesis at this point to assess itshe rms fluctuations and the consequences of inhomogene-
consequences regarding the accuracy of measurements ités.
scaling exponents in turbulent media. In Sec. Il we present the issue, introduce the statistical
Our own motivation to study the consequences of theobjects under study, and explain the model that is analyzed
Taylor hypothesis stems from attempts to develop a deepén the rest of this paper. The model employs an advecting
understanding of the effects of anisotropy on turbulent stavelocity fieldV and an independent fluctuating fialdwhich
tistics[2,3]. In the context of this program it turned out that is advected without affecting its statistical properties. The
the interpretation of experimental signals in turbulent sysdatter are chosen to mimic those of Kolmogorov turbulence.
tems with shear poses delicate issues that call for carefdlhe most important property that affects the accuracy of the
considerations. In order to expose anisotropic features on€aylor surrogate is the effective decay time of fluctuations of
needs to analyze data pertaining to at least two probes. In theealeR. The ratio of the sweeping time across a sdlend
case of shear each probe may experience a different medinis decay time determines the applicability of the Taylor
velocity, and velocity differences between such two probesypothesis. This is made clear in Sec. Il. In Sec. Il we
(which are computed using Taylor surrogatesix spatial  explore the consequences of the Taylor hypothesis in the
and temporal dependencies. The considerations taken tase of one probe measurements. We find that the Taylor
clarify such issues are assisted by the analysis of a simplemethod introduces systematic errors in the estimated expo-
model of turbulent advection, which sheds light on how tonents of the second-order structure function. The reason for
treat systems with shear, but also can be used to improve thhis error is simply that the Taylor method improves for
understanding of the Taylor hypothesis in systems that aremall scales, where the decay time is always much longer
homogeneous and isotropic. It seems, therefore, worthwhilthan the sweeping time. Accordingly, there is a systematic
to present the model and its consequence for the benefit @ihprovement of the estimate via surrogates as the relevant
the general turbulence community, which may find it usefullength scale decreases. This appears as an apparent “expo-
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nent” in log-log plots. Nevertheless, we argue that the sysThe Taylor hypothesis is based on the idea that when the

tematic errors for the isotropic part of the second-order strucmean windV, is very high, the turbulent field is advected by
ture function are quite small for realistic choices of thea given probe as if frozen, ha\/ing hard]y any time to relax

parameters, of the order of 0.01 in the measured exponentghile being recorded by the probe. Disregarding the relax-
In the same section we discuss the relative contribution oftion of turbulent eddies of sizR, the hypothesis implies

the mean wind and the rms fluctuations to the “effective” that
advecting windV,4 employed in the Taylor hypothesis. We
find that the method works even in the absence of mean wind
(which has been noticed before, for example, in turbulent
convection[8] and in a swirling flow[9]). In general, both ) o ) )
contribute to the effective wind, with a parameter of relative©PVviously, the validity of this hypothesis depends on the
importance denotedb below, see Eq47)]. We find that the  ratio of two times scales. The first is the advection tiRi¥
optimal value ofb is larger than anticipated. that it takes to translate structures of skby the probe. The

In Sec. IV we solve the model in the case of linear shearsecond is the lifetime-(R), which describes the typical de-
The first question analyzed is what is the effective wind thaicay time of turbulent structures of siz&. In the limit
should be taken in surrogating data that stem from twar/[V,7(R)]—0 the Taylor hypothesis becomes valid. The
probes that experience different mean winds. We show thapical time scaler(R) is inherent to the dynamics of turbu-
for linear shear the answer is simple, i.e., the mean of théent flows, and is quite independent of the mean wind, which
mean winds of the two probes. Next we solved the modelcan be eliminated by changing the coordinates to a comoving
and found the corrections to the structure functions due tdrame. Up to a factor of order unity the lifetime can be esti-
the existence of the shear. In the language of Rfthis is  mated as the turnover tinf/\S(R) whereS(R)=S,(R).
a =2 anisotropic contribution whererefers to the index of ith this estimate the Taylor hypothesis is expected to be

the irreducible representation of the &symmetry group. valid when #S(R)/VO—@. In the sequel we denote the ratio

The scaling exponent associated with this contribution is 4/ f these two time scales R). Clearly, in turbulence(R)
in the K41 framework, in agreement with measurements an creases witlR. and forR of the order ,of the outer scale of

earlier theoretical consideratiof$2,13. Last, we assessed turbulence it is largest. It is thus sufficient to have very small

the performance of the Taylor method for this contribution - -
and concluded that it is significantly worse than in the iso-Z(L) to ensure the validity of the Taylor hypothesis for all

tropic counterpart. The typical errors in estimating the expo-
nent can be as high as 0.1. Section V offers a summary aqgn
a discussion. In particular, we present arguments as to whiclti]10
aspects of our conclusions are relatively model independen[).f

S*B(R=1tVy) =T*A(t), (4)

In typical experimental conditions like atmospheric turbu-

ce,z(L) is of the order of 0.2-0.510,11. [Note that in

st experimental papers only the longitudinal component

the structure function is available; in isotropic turbulence

this is smaller tharS(R) by a factor of about 3.Accord-

Il. THE MODEL ingly, the Taylor hypothesis needs careful scrutiny. More-

over, almost all experiments are forced by anisotropic and

inhomogeneous agents, and the “mean” velocity depends on
In statistical turbulence one is interested in the statisticathe position. When more than one probe is used one needs to

properties of the turbulent velocity field(r,t) where ¢,t) is  yecide how to choosgo in Eq. (4). To allow us to answer

a space-time point in the laboratory fraitse-called Eulerian = gych guestions rationally we study the following model.
velocity). In this paper we will focus on the properties of the

second-order space-time correlation function of velocity dif- i
ferences: B. Basic model

A. Preliminaries

1. Equati f moti
F“B(R,t)E<[u”‘(0,to)—u“(R,to-f—t)] quation of motion

p 5 Consider a model turbulent velocity fieldr,t) which in
X[uf(0to) —UuP(R,to+1)]), (D) (k,) representation is defined as

where angular brackets denote averaging with respegt. to _

In this definition and throughout the paper we assume that U(k,w)=f drexd —i(r-k+wt)]Ju(r,t). (5)
the turbulence isstationaryin the sense that the statistical

ensemble is time independent. We do not assume space ho- -
mogeneity or isotropy. Fot=0 the correlation function \We propose the following model dynamics fofk, w):
F%(R,t) turns into the commonly used second-order struc-
ture functionS*4(R): dk’ dK”

87

[w+k-vo+iy(k)jﬁa(k,w)+j
S*¥(R)=F** (R,t=0). 2

XTEBVEKY UK, 0) 8(k—k —K") =Tk ),
For R=0 we have the time-dependent object, which is usu-
ally measured in single probe experiments: (6)

T%(t)=F** (R=0}). ©) ik-U(k,w)=0, 7
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wherel' %7 is the exact nonlinear vertex that stems from theonly. We will again use an economic notation and employ
Navier-Stokes equations: the symbolF*# also for the space homogeneous case:

PY=kgP (k) +k, P (k). 8) FoB(r,r' )= FPFRY). (16)

Here P*A(k) is the transverse projection operator . .
These two functions are related to the corresponding corre-

lation functions ink,t representation by

PA(k)= 8,5~ k‘:f )
FeB(r,r’ t)=J didk DBk K texdi(k-r—K -1')]
and é, is the Kronecker symbol. This dynamics represents T (2)8 B ’
“passive vector advection” in which the “turbulent” field (17)
u(k,w) is advected by a statistically independent stationary
field V(K). In its turn, the windv(k) consist of homogeneous

dk
V, and space dependevii(k) parts: ]-""B(R,t)=J
(2m)°

DBk texpik-R). (18

V(k)=(2m)38(k)Vo+ V4K). (10

. B .
The homogeneous pavt, appears in Eq(6) as a Doppler On the other hand the functidff*” of Eq. (1) is computed as

shift to w. The inverse decay time(k) represents the eddy
viscosity, which mimics the effects of the nonlinear terms in
Navier-Stokes dynamics on the energy loss from a given
wave number. The forcing terri{k,w) represents that en-

ergy gain. 3. Choice of parameters in the model

F“B(R,t)zzf (Zd:)3éaﬁ(k,t)[l—exp(ik-R)]. (19)

2. Statistical description The advecting windin our thinking we are inspired by

experiments in the atmospheric boundary layer in which the
; ) A advecting wind may be considered as consisting of three
the correlation function of the velocity field(k,w) as fol- parts. The first component can be taken as a space-time in-

lows: dependent mean win®,, which is constant for our en-
~a TRBL! )\ — _ o Nn&e , semble. The second component is a space-time independent
(Ut )k w")=2mo(w =) (kK ,w).(ll) part that is constant on the time scale of a typical experiment
(minutes, but changes from one experimental realization in
For space-homogeneous ensemiglasour case, in the ab- the ensemble to another. We denote it\gs We will as-
sence of a shep*A(k,k’, ) is diagonal ink: sume that it fluctuates randomly between different experi-
mental realizations of the ensemble. The third part is an ex-
D Pk K, w)=(2m)38(k— k' ) DK, w). (12)  plicitly space dependent part of the mean wind denoted as
aboveV(r). Note that again we avoid proliferating the sym-
Note that in order to avoid the proliferation of symbols we bols, and we use the same symbglin k andr representa-
used the same notation for the two functich§?(k,k’,w)  tion. Accordingly, we can write

and ®*#(k,w). The same two functions ik,t representa- o o
tions are distinguished by a “hat” symbol: Vo=Vo+Vr, V;=0. (20

Correlations in(k,») and (k,t) representationintroduce

. do - : . . .
ap rov— | 2% Fap / : Since V; is considered as a random variable we need to
kKLY f 27 P (kK w)exaliot), (3 specify its probability distribution function. This is denoted
P(V+), and overlines as in Eq20) denote averages with
respect to this distribution. We will solve the correlation
functions®(k, ) for each realization 0¥/, and average the
R result with respect tdP(Vy1). The amplitude of the mean-
The time independent functionsb®?(k,k’,t=0) and square fluctuations of; are chosen such that

d*A(k,t=0) will remain undecorated:

DBk t)= J g—: DBk, w)exp(iwt).

A A Vy2=3vZ, (22)
OBk k' )=D*(kk',0), PP k)=D*F(k,0). (14
where v% is a mean-square fluctuation of the longitudinal
turbulent velocity.
The inhomogeneous part of the wind will not be random.
ue(r, OB 1)) =FB(r 1 t—t"), (15) To simplify the analytipal cglculations the space dependent
V((r) is chosen as a sinusoidal profile,
where stationarity in time is assumed. In space homogeneous
ensemblesF*A(r,r' ,t) depends on the differende=r—r’ V{(r)=nVgsin(g-r), g=qgm, (22

Correlation functions in(r,t) representation Introduce
correlation functions of the velocity filed(r,t) as follows:
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wherem andn are unit vectors in the vertical and horizontal We will show below that our conclusions are only weakly
directions respectively. The horizontal direction is the direc-affected by the precise choice of crossover behavior. This

tion of the mean windV,=nV,. In k representation Eq22) ~ completes the setup of the model.
reads:

(2 )3 I1l. SOLUTIONS OF THE MODEL WITHOUT SHEAR
o
V(k)= TVSn[ S(k—q)—8(k+q)]. (23 A. Homogeneous advection

First we analyze the situation without shest=0. The

resulting velocity fieldig(k,w) and all the other objects will
be denoted by a subscript 5 " to remind us thatVs=0. In
this case the integral in E¢6) vanishes and the solution for

Uo(k, ) immediately follows:

Note that sinusoidal profil€22) has nothing to do with the
logarithmic profile in real boundary layers. For smaqliit
mimics locally a linear shear.

The lifetime of eddiesA good model fory(k) in Eq. (6)
is provided by the Kolmogorov 41 model of turbulence in
which the lifetime 14(k) is defined as the turnover time up

to an unknown dimensionlesaniversa) factor C: Uo(k, @) =Go(k, w)f(k, ), (31)
_ AT 23 Go(k w)E; (32
Y(K)=C (kL)% (24) oL w+k-Votiyk)’

HereL is the integral scale of turbulence anglis the mean ~One sees that the effect of the space homogeneous part of the

square longitudinal velocity, which in isotropic conditions advecting velocity field amounts to a Doppler shift only. Us-
equals ing definitions(11), (12), and(26) one has

vZ=1(|u(r,1]?). (29) D5 (k,w)=D*(k)|Go(k,w)|?. (33

The forcing ternf(k, »). In this paper we are interested in The equation for the simultaneous correlation function fol-
second-order turbulent statistics. Therefore, it is sufficient taows from Eq.(13):

modelf(k,») as Gaussian white noise:
~ - . i [99 ~ g _ D*P(k)
f (ko) PPk, 0"))=(27) 5(w—w’)5(k—k’)D“ﬁ(k()2.6) @ (k)—fg% (k,w)= 29K (34)

This is consistent with Eq27). The correlation function in

Since our model is linear in the turbulent velocitythere is (k,t) representation is computed straightforwardly

a simple relation between the intensity of the ndis?(k)
and the simultaneous correlation function of the turbulent R do -
velocity ®§#(k), where the subscript “0” denotes the ab- DAk t)= f 5 DA (k,w)expiwr) (35)
sence of the shear flow. The relation[snd cf. Eq.(34) &
below
] =dgP(kyexdik- Vot— y(k)t].

D*A(k)=2y(K)D§P(k). (27)

7 0 At this point we recall thalV, contains a term that is sto-
The tensorial structure obg#(k) is determined by the in- chastic, i.e.Vr, see Eq.(20). The averaging of Eq(35)

compressibility condition yields
DgP(k) =P (k) Do(k), (28) DE(K, 1) = DEE(K)explik- Vot — y(K)t—2(vkt)?}.
(36)
and what remains is to select the scalar funcdag(k). To
do this we refer again to the K41 model and choose The first term in the exponent stems from the advection by
the mean windv,. The second one is the correlation decay
B (k)= ¢ (29) due to the finite lifetime of the fluctuations. The last term in

the exponent describes the effect of decorrelation due to the
random sweeping by the random componént

with some amplitudep. In the inertial interval, i.e., fokL Using Eq.(19) we compute

>1. Equation(29) agrees with the standard Kolmogorov

scaling, ®o(k) <k~ 3 The form of Eq.(29) is not unique, dk

and other forms exhibiting different crossovers between FSB(R,t):jFQJSﬁ(k){l—exq—Z(kat)z—y(k)|t|]
power law scaling and saturation are equally acceptable. For ™

example instead of Eq29) we may also choose X cogk- R—Kk-Vyt)}. (37

[(kL)2+ 1]11/6’

B (k)= ¢ 30 The structure functiors¢?(R) is obtained from Eq(37)
o(k) TR (30) I
(kL)>">+1 by substitutingt=0:
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1.5
b (R
(R)

FIG. 1. A log-log plot of the ratio of
To(R/Vad/So(R) vs R/L for three values ofC,
C=0.25(dashed ling 0.5 (dot-dashed lineand
1 (solid line), andVy=0 (gq— ). Panel(a) cor-
responds td=/L between 1 and 1T, the blowup
in panel(b) shows the next five decades RfL
between 10° and 10°1°,

1.0

0.0001 0.001 0.01 0.1 1
R/L

dk Equation(25) allows one to expresg; in terms of®(k):
S§A(R) = f 136 (0{1-cosk- R} (39
a

w 12

1 dk k
2_ " 2\ _ =
On the other han@&#(t) is obtained by putting =0: V=3 (UMl J 12W3d>0(k) fo 372 Polk).
(45

dk
TEA() = f SR exe—2(vrk = (k)]

_ B. Assessment of the Taylor hypothesis
x cogk-Vot)}. (39 for homogeneous advection

We can compare the two expressions for any of the tensor The comparison betweeBy(R) andTo(t) is determined
components. Since we are interested in exponents, it is nat§y the two free coefficients in this moddl, of Eq. (24) and
ral to consider first the trace. In order to assess the sensitivity .

of our results to the tensorial structure we will consider then gq=v1/Vy. (46)

the longitudinal structure function:

In comparing the two functions we have freedom in defining
SR =2, SPP(R), To(t)=2, TeA (1), (40)  the effective advecting mean wind,q. In the Taylor hy-
ap ap pothesisV,4=V,, and one is supposed to identiffy(t
=|R/V,|) with Sy(R). In some applications, whevy=0 the

R,R \ X
S/ (R) =2, S¢P(R) ;25, Taylor hypothesis has been usg] with V,q=vr. In our
ap comparison we find it advantageous to employ an interpola-
—ws tion formula
VoV
To' (=2 TeP) —=-.
&b Vs Va= Vo + (bvr)?, (47

_Computlng the Frace, angltudlnal prOJect_lons and perform'with b chosen to minimize the difference between the two
ing the angular integrations we end up with

functions, Egs(41) and(42). Of course, for one probe mea-

<k2dk surement the apparestaling exponenis always indepen-
So(R)= J — D o(k){1—-Wy(kr)}, (41) dent of the choice of the effective advective wind and of the
o7 parameteb in particular. For two or several probe measure-
k2dK ments, when we face a mixture of temporal and spatial con-
%/(R): f —2<I)0(k){1—‘l'6/(kr)}, tributions to the total separation, the choicépf and of the
0o 3m parameteb become important as discussed below.

In Fig. 1 we present a log-log plot of the ratio of
Fo(t)= fwkzdk To(RIV,9/So(R) vs RIL for three values o€,C=0.25,0.5,
o) = 201

Po(k) and 1, andVy=0 (gq—). If the Taylor hypothesis were
_ exact, this ratio would have been unity for BlIWe find that
X{1—=Wo(kVot)exd —2(vikt)2— y(k)|t]1}, in the limit R/L—0 the ratio of these two functions goes to
(42) a constant, which depends on the choicebdh Eq. (47).
This reflects the correctness of the Taylor hypothesis for
=k2dk R/L—0, which follows from the fact that the sweeping time
Tg/(t)=f ——D (k) R/V,q is negligible compared to the lifetimeR?3. The re-
0 3m lation between the units of distance and the units of time
v 2 needs to be determined. We fix the paramétday the re-
X{1=Wp" (kVot)exd — 2(vrkt)*= y(k)[t[]}, quirement thatTo(R/V,9 should equalS,(R) when R/L
(43) —0. We found that the effective wind may be approximated
by Eq. (47) with

o m

sin(x)

L O Rk

x3 X2

. (49

b~3. 1 for the modulo structure functio§y(R).
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1.5 1.5
To(R) a T(R)
So(R) S(R)

) T 10

0.0001 0.001 0.01 0.1 1 0.0001  0.001 0.01 0.1 1
R/IL R/L

5 FIG. 3. A log-log plot of the ratio ofl 4(R/V,9/So(R) vs R/L
To(R) b (solid lineg andT””(R/V,9/S;” (R) (dot-dashed linésvs R/L for
So(R) C=1. Different lines correspond t@rom the top to the bottoin

g=<, g=0.25, andg=0.01.

In order to check how our results depend on the tensorial
//ﬂ structure of the correlation functions we repeated the same
comparisons for the longitudinal structure functi®$$ and
T;”. We found that the unit fixing parametbrin this case

0.0001 0001 0.01 0.1 1 differs from the previous one:
R/L

1.0

FIG. 2. A log-log plot of the ratio off o(R/V..9/So(R) Vs R/L b~4.2 for the longitudinal structure functios;”(R).
for C=1[Panel(a)] andC=0.25[Panelgb)]. Different solid lines
correspond to valueg= 10, upper lineg=1,0.25 from top to bot-
tom; andq=0.01, the bottom solid line. Dashed line shows the In order to demonstrate that apparent corrections to the scal-

limit g— 0, when the Taylor hypothesis is exact. ing exponents are similar for different tensorial components
we plotted in Fig. 3 the ratioy(R/V,9)/So(R) (solid lineg

This fixing of the units will be of crucial importance when and Ty  (RIVad/Sy” (R) (dot-dashed lingsvs R for several

we discuss two-probe measurements below. values of_C andq. Qne sees that with the proper choicebpf

We see that the ratido(R/V,)/Sy(R) does not scale these ratios practically coincide. _

with R when many decades & are available. In most ex- . The conclusions of this part. pf the analysis are as follpws:

periments the range of availabReis much smaller, andp- (i) The best values df are S|gn|f|cantly larger than .the naive

parentscaling will result. To demonstrate this we present inchoice 3. They depend on the choice of tensorial compo-

Fig. 1(b) log-log plots of the ratio off o(R/V,J/So(R) Vs ner_1ts of the.correlathn _funct|on$||) The parametgrc,

R/L for the same values a but for R values spanning only Which determines the lifetimg(k), should be known in or-

the last five decades of scales. Clearly, the plots seem lineQf" 10 assess the systematic errors involved in the Taylor

over at least four decades. hypothesis.

In Fig. 2 we show log-log plots of the same ratio, for

=0.25 andC=1, and for values ofj ranging from 0.01 to IV. THE CASE OF SHEAR

10. We see that fo€f=1 when the mean wind is four times

larger thanv; we have up to 20% deviations in the magni-

tude of To(R/V,9)/ So(R) from unity. Forq large (the graphs In this section we seek the first-order corrections to the

almost saturate fog=10) the deviations reach the apparentsecond-order correlation functio8andT, which are caused

scaling exponent the almost linear log-log plots can easilyhy the existence of a small shedr<V,. To this aim we

deceive even an experienced researcher to conclude that thplit the velocity field into homogeneous and shear-induced

value of{ is larger than what could be measured from spatiakontributions:

differences viaSy(R). This finding is in agreement with the _ _ _

conclusion of Sreenivasan’s grolip4,15 who studied this u(k,w) =Uup(k,w) +ugk,w), (48)

issue experimentally. Within our model we can see that the

apparent scaling exponent depends on the paran@ter \yhere as beforeyiy(k,w) is the solution with zero shear

which govern the Qecay t|m¢ of fluctuations, cf. [E2¢). For given by Eq.(31), andugk,®) is induced by the shear..

C=1 we find an increase in the apparent expongnbe- .~ Lo~

tween 0.01 and 0.03 depending on the valued,ofarying IO find us, we use Eq.(6) with u(k,w) from Eq. (48),

from 0.1 to=. For C=0.25 the increase is depressed by alo(K,w) from Eq.(31), andV(k) from Egs.(10) and(23) to

factor of 3. The lesson is that for experimental applications iget

is very advisable to achieve a good estimate of the inherent

decay time of fluctuations of sizR. Ug(k, ) =Ug(K,0) —U_q(k,o), (49)

A. Solution for linear shear
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Ut (k@) =3VPPI(k-n) S5, +1°q7]

X Go(k,0)Go(kTq,0)F?(k¥0q). (50
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exdi(k-R—k'-R")]=explik, - Ryexfi(k—k') - ro].

Here R=R—R’ is the separation between probes and
=1(R+R’) is a mean position of the probes. Now it is

Having defined the velocity field we return to the correlationcustomary to introduce a mixed ( ,rq,t) representation in
function Eq.(11) and split®*?(k,k’,w) into isotropic and  which one integrates with respect tb{k’) only:

anisotropic, shear-induced, contributions:

DLk k' w)=(27)38(k— k") D (k,0) + DL (KK, w).
(51)

Here®2P(k, ) is given by Eq(33). According to Eqs(48)

and (50) and definition(11) the equation for®ZA(k,k’, )

may be presented as a sum:
DKk 0)=DIF(K K, 0) - DKk K w)

+ B P(K k) — B EK ko),

(52
where
DiP (kK 0)=(2m)%8(k—q—K')VGo(k, )
X P*3(K)[(k-n)85,+n°q"]
X1Im{Gy(K', )} DIA(K"). (53

In k,t representation the last equations take the form
DA (kK t)~(2m)38(k—q—k' Frove P“’S(k)

X[(k-n)é&s,+n qy]cbgﬁ(k’)

X eXF[(| k+ VO 'y+) ] (54)
where we introduced
=3(k+k), y(ky)=ys. (59

Having in mind the approximation of the linear shear we

are either
g-independent or linear irg. Correspondingly, we may

keep in ®P(kk',w) only terms that

present Eq(54) as

3

N T Vg .
D (kK 1)~ P S(k—qg—k"exf (ik, - Vo—
+

y)t]

2k, -n+qg-n+(k.-n)

X(Paﬁ(h)

X(q-k) +2P*7(k, )n"q°PgF(k, )

J
k, ok,

q°kf — gPk

+(K, -n) “Hog(ky).  (56)

+

To compute?-‘gﬁ(R,R’,t) we need to use Fourier transform

(17), which involves the integrationgk dk’ =dk, d(k—k")
and expi(k-R—k’-R']. The latter may be presented as

R d(k—K’
CFgﬂ(kﬂro,t):fﬁ

xexi(k—k')-rol. (57)

Together with Egs(52) and (56) this gives

DA (kK1)

Feb(krg,t)=5——expl[ik-Vo— y(k) ]t}

1
2y(k)

2K-V(rg) +

aV(ro) k7k%)
&I’g kok

aVI(re) aVIro)|
+ P&A(k
ar° ar? | ° o

X Dg(k), (58)

x[ PA(k)

+P7(k)

where we redefinet, —k and used explicit form(22) of
Vs(rO)-

Solution (58) contains a term that is proportional to the
value of the sheak, V(ry) computed at the position,
between the two probes. This is just a first-order term, rep-
resenting the first correction to the homogeneous velagjty
due to the sweeping effect. If we were to compute higher-
order sweeping corrections and were to sum them all up, we
would find a renormalized sweeping velocity in the expo-
nent:Vo—Vy+V(rg). Thus instead of Eq58) one writes

FeB(k,ry,t)= 5 (k)exp{lk [Vo+Vy(ro) Jt— y(k)t}
S
(7Vsy(;o)+07Vs(ro) P"B(k)kyk‘s(? o(k)
ar ar” 9%k
+Pe7(k) PﬁB( K)®o(K) |- (59

We should comment at this point that the calculation resulted
in an intuitively pleasing rule: effective Taylor wind should
be taken as the mean wind at the point midway between the
two probes. Also, we see that the magnitude of the shear-
induced part is proportional to the shear midway between the
probes. Of course, this simple rule is a result of the assump-
tion of linear shear. Nevertheless, as long as the shear profile
is not too nonlinear on the scale of the separation between
the two probes, this simple rule can be taken as a rule of
thumb for experimental applications.

Finally, we remember that the space homogeneous part of

the windV, has a fluctuating componenity= VO+ V1. One

has to average therefore the result using the Gaussian distri-
bution P(V+). The final answer in analogy with E¢36)
reads
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FP(kro,t) = FeP(krolexplik-[Vo+ Vro) It f 7 g = TSSO
ST
(0t -2(vkt)?), ° 7
ddy(k
F (ko) o) 2Pk (k- (K )a@o(k) x[ -2 d‘l’((z ) cog 0+ Dy(k)(1+cosh) |,
o) = @ -n)(k-m
s o 2y(k) 9%k
(66)
+P(K)(N"M°+n’m?) P2 (k) Dy (K) |, where co®=n-k/k. Having this in mind and performing in
Eq. (62) the 6 integration we end up with
(60) )
where in agreement with Eq22) we introduced a “shear SY(R)= — f ——{ D(K)[1—FY (kr)]
” ; 572Jo y(K)
frequency” wg(r) according to
2
Ve (ro) _KEdPo(k) s
= amB = 1-v7(kr)]y¢, 6
pw: =wyro)n*me. (61) 3 4K [ ¢ (kr)] (67)
.. . 2
Examining Eq.(60) we see that the scaling exponent ex- _. .. ®s ka dk ot/
pected forF2#(k,ry) is determined by the scaling dfq(k) Ts (U= 2o y(K) Po(k){1=¥s (kVad)
and y(k) with the choices specified in Eq&24) and (29)
FeP(Kk,rg)ock 133 or R for the second-order structure ) k? ddo(k)
function. This is consistent with the expected scaling in the Xexpl —2(vrkt) = (Kt - 3 d K2
anisotropic sector characterized py:-2, see[3] for more
details. _
Note that in the case linear shear the frequesgy) is r X{1=WY (kVod)exd — 2(vikt) 2= y(K)t]} ¢,
independent. Similarly to Eq$38) and (39) one computes
the shear-induced additions &E#(R) and TZA(t) to the (68)
usual and Taylor-computed structure functid®(R) and
TeA(t): v 6-x* X-2
W¥g (X)=5] —,— cosx+3—— sinx
X X
dk
SUGE f —FeP(k){1-cogk-R)}, (62 5y
am =1-—, (69
42
T2A(t)= f ﬁJf"lﬁ(k){l—exp[—z(kat)?—«y(k)|t|] — 12— x? 5x2—12 5x2
° 47% ° \Ifts/(x)=1€[ G COSX+ ——— sinx|=1———.
X X

x costk-[Vo+V(ro) It} o . _
) ) Formally expansion ofY (x) and¥Y (x) at smallx begin
In experimental measurements we can isolate the sheag;ty 1/x4 terms, but due to double cancellation it actually

induced contribution at the expense of the isotropic contrigiarts from 1. We analyzed numerically E®7)—(69) in the
bution by considering a mixed, transverse-longitudinal StrUCTollowing subsection.

ture function, taking the separatidR along the windR,

=n(R-n). For example, B. Discussion of the case of shear

Y (RI=SA(RHM™E, TV ()=TZA(t)m™nP. (63) The first difference between Eq&7)—(69) for the aniso-
tropic contribution to the structure functiog’ anths/ and
he corresponding structure functio®’ andT¢# is in their
scaling behavior. In integral$41)—(44) for S§#, TP the

These functions may be obtained from equations similar t
Eq. (62) with the replacement

F(K)— FY = FB(kym*np (64)  function ®o(k)eck '3 These integrals converge, and the
main contribution comes from the regi@&Rk~ 1. Both quan-
ws (k-n)2(k-m)2 deby(k) tities scale according t&5°(R)<R?® and Tg#(R)=R?? in
= ®) - 5 > the limit R/L—0, as expected. In contrast to that, the inte-
Y k dk grands in Egs.(67)—(69) have an additional factor(k)
1 (k-)? (k-m)? «k?? in the denominator. This changes the scaling behavior
1= 1 1— Ddo(k)p. (65  t0SY(R)=xR¥TY (R)=xR* The second difference is in the
2 k? k? rates of the convergence. The integrals $§f and T§” be-

have in the region okL<1 like [ k**dk while the integrals
Integrating this ovewp, the azimuthal angle df around the for Sts/ and TTS/ behave in the region of smak like
direction ofn, one has Jok™3dk. One sees that the latter integrands have an inte-
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) FIG. 5. On the top panel, a log-log plot of the ratios
FIG. 4. A log-log plot of the ratio 0fSo(R)/R*® vs R/L (top TY(RIV,/SY (R) vs R/L for C=0.25 and different values af

pane) andS‘S/_(R)/R“’?’ (bottom panelvs R/L. Different lines cor-  _°; (upper fing: q=1, 0.5, and 0.25 from top to bottom aug
respond to dlfferent choice29) and (30) of the power spectrum =0.1, the bottom line. The bottom panel represents the ratios for
®o(k). Dashed line denotes level 0.95. C=1. The top line corresponds =10, the bottom line corre-

[ i ibuti ; ds to-q=0.1.
grable singularity. The contribution of the nonuniversal en-SPoNes o7 d

ergy containing regiokRL~ 1 is much more pronounced than

in the corresponding integralok®dk. As a consequence Mean wind (=), reaching+0.13. Ford=0.25 the correc-
one needs to consider much smaller valueRif to see the tions are about-0.1 and ford=0.1 they are about-0.06.
asymptotic scaling of the functior&” andTY compared to ~ The bottom panel shows the ratio for=1 andd= (upper

the case o8BS and TS . This is illustrated in Fig. 4. The top line) andd=0.1 (lower line). The corrections to the apparent
panel shows log-log plots @,(R)/R¥2 vs R/L for choices scaling _exp.onents.are 0.21 and=0.15, respectlvgly. The
(29) and (30) of cutoff functions®,. The two lines almost Cconclusion is that in the absence of the mean wide- ¢)
coincide and reach a level of 0.95 Bt=L/3. The bottom ©N€ has to be weary of using the Taylor surrogate instead of

panel exhibits the corresponding log-log plot§§/f(R)/R4’3 direct measurements in space. If the mean wind is relatively
vs R/L. The plots reach the level 0.95 at much smaker Iarge(say,d<0.1, as s quite commc)nh'e gxpec.te'd error in
values(aboutR=L/10), as expected. However, the two plots the scalm_g exponent s about 0.1. This is def|_n|tely a large
are significantly different only when there is no scaling be-EMOr but Itis substanhally smaller_ than the difference be-
havior (for R>L/3). We thus propose that our main findings tween the isotropic and the ghear—lnduced exponents for the
are independent of the choice of the crossover behavior osfecond-order structure functio@'3).
the power spectrurd® (k) (within reason.

As mentioned above, for small mean winds the Taylor

method is problematic for large values Rfbut it improves In this paper we presented an exactly soluble model of an
for smaller values. Therefore, the significantly more pro-qgyected field whose fluctuations are chosen to mimic as
nounced contribution of the large scale eddies for the sheagipsely as possible those of turbulence with K41 spectra. The
induced part of the structure functiofis comparison with  5im was to assess the accuracy of the Taylor surrogate struc-
the isotropical on)/ehas to lead to larger deviations of the {,re function by solving exactly for the space-dependent and
Taylor surrogatd’y (R) from the directly measured structure the time-dependent second-order structure functions and to
functionSY (R). This is illustrated by the log-log plots of the compare between them. Clearly, the most important consid-
ratio Tts/(R)/StS/(R) vs. R/L in Fig. 5. The top panel repre- eration is the decay time of correlations of sRe&ompared
sents this ratio foc=0.25 and for values of the parameter to the rate of sweeping acro$s The parameteC in our
ranging betweerd=0.1 (lower ling), d=0.25,0.5,1, andl model determines the ratio of the turnover time to the decay
=oo (upper ling. In contrast to the isotropic case we havetime, and is free in our model.

here two regimes, one with negative apparent correction to The main results of the analysis are as follows.

the scaling exponeriin the region 103L<R<0.3L) and a (a) For data extracted from a single probe in isotropic
second with a positive correctigfor R<10 3L). The larg-  flows the error introduced by the Taylor method is system-
est possible corrections are obtained in the absence of thadic, always leading to an overestimate in the scaling expo-

V. SUMMARY AND DISCUSSION
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nent of the second-order structure function. This is in agreeizing the different sectors. An example of such an approach
ment with the conclusions of Sreenivsan and co-workersan be found irf13].
who studied this issue experimentali4,15. Even though these results are found on the basis of a
(b) The error in the isotropic scaling exponent, which is Simple model, there are aspects that appear relatively model
introduced by the Taylor method, is typically small, reachingindependent. The source of error in the Taylor method is the
0.01 in the most adverse situation. finite lifetime of the fluctuations and the paramet@rthat
(c) The rms velocity is an important contribution to the @Ppears in the model, the ratio of this to the sweeping time is

effective wind, and should not be left out. Equati@T) is a  90ing to appear in a similar fashion in any other model or
simple recipe that can be followed, withchosen to mini- €XPeriment. The relative improvement of the Taylor esti-
: pates with decreasing scales is also model independent. The

need for a “unit fixer” like b is generic as well, especially
(d) For data extracted from two probes in anisotropicWhen we mix spatial and temporal distances, as is the case

fields the best rule of thumb is to use the mean velocity ané{\’ith d"_"ta measured by two probes. We thus hope that th_e
mean rms of the two probes. The best valueboor the analysis presented above would be of some use for assessing
model treated above is=3.8 experimental data as long as the Taylor surrogates have not

(e) The errors introduced by the Taylor method in aniso—been replaced by direct methods of measurements.
tropic fields are considerably larger than those found in iso-
tropic flows. In the most adverse situation errors in the scal-
ing exponents can reach 0.15. Worse, they are not This work has been supported in part by the Israel Science
systematic, tending from positive errors for smaller scales td~oundation administered by the Israel Academy of Sciences
negative errors for larger scales. and Humanities, the German-Israeli Foundation, the Euro-

(f) Nevertheless, the errors are significantly smaller thaqppean Commission under the TMR program, the Henri
the difference between the exponents in the different sectoiGutwirth Fund for Research, and the Naftali and Anna
of the symmetry group. Thus, the Taylor approach can b&ackenroth-Bronicki Fund for Research in Chaos and Com-
used(with care to extract the universal exponents characterplexity.

errors withb~3.1.
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