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Temporal surrogates of spatial turbulent statistics: The Taylor hypothesis revisited

Victor S. L’vov, Anna Pomyalov, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 10 May 1999!

The Taylor hypothesis, which allows surrogating spatial measurements requiring many experimental probes
by time series from one or two probes, is examined on the basis of a simple analytic model of turbulent
statistics. The main points are as follows:~i! The Taylor hypothesis introducessystematicerrors in the evalu-

ation of scaling exponents.~ii ! When the mean windV̄0 is not infinitely larger than the root-mean-square
longitudinal turbulent fluctuationsvT , the effective Taylor advection velocityVad should take the latter into
account.~iii ! When two or more probes are employed the application of the Taylor hypothesis and the optimal
choice of the effective advecting windVad need extra care. We present practical considerations for minimizing
the errors incurred in experiments using one or two probes.~iv! Analysis of the Taylor hypothesis when
different probes experience different mean winds is offered.@S1063-651X~99!14010-8#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

Decades of research on the statistical aspects of the
dynamic turbulence are based on the Taylor hypothesis@1#,
which asserts that the fluctuating velocity field measured
a given probe as a function of time;u(t) is the same as the

velocity u(R/V̄0) whereV̄0 is the mean velocity andR is the
distance to a position ‘‘upstream’’ where the velocity is me
sured att50. Sixty years after its introduction by Taylo
this time-honored hypothesis remains the only really con
nient way to measure experimentally turbulent velocity flu
tuations. New techniques were introduced in recent ye
but so far did not make a lasting mark on the field. On
other hand, theoretical considerations of the anomalous
ture of the statistics of turbulence have made higher
higher demands on the accuracy of experimental meas
ments, with finer details being asked by experimentalists
theorists alike. In light of these demands it seems neces
to revisit the Taylor hypothesis at this point to assess
consequences regarding the accuracy of measuremen
scaling exponents in turbulent media.

Our own motivation to study the consequences of
Taylor hypothesis stems from attempts to develop a dee
understanding of the effects of anisotropy on turbulent s
tistics @2,3#. In the context of this program it turned out th
the interpretation of experimental signals in turbulent s
tems with shear poses delicate issues that call for car
considerations. In order to expose anisotropic features
needs to analyze data pertaining to at least two probes. In
case of shear each probe may experience a different m
velocity, and velocity differences between such two prob
~which are computed using Taylor surrogates! mix spatial
and temporal dependencies. The considerations take
clarify such issues are assisted by the analysis of a sim
model of turbulent advection, which sheds light on how
treat systems with shear, but also can be used to improve
understanding of the Taylor hypothesis in systems that
homogeneous and isotropic. It seems, therefore, worthw
to present the model and its consequence for the benefi
the general turbulence community, which may find it use
PRE 601063-651X/99/60~4!/4175~10!/$15.00
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for more than one application.
The Taylor hypothesis was studied carefully in the 195

@4–7#, and continues to be the subject of scrutiny to this d
@8–10#. Some of the inherent limitations implied by the Ta
lor hypothesis were pointed out in these studies. Our purp
in this paper is to offer rational choices to minimize th
systematic errors that are entailed in the standard experim
tal procedures. To this aim we need to study the system
errors, something that can be done only by comparing spa
statistics to temporal statistics. Not being able to do this
rectly on the basis of the Navier-Stokes equations, we offe
model of turbulent fluctuations advected by a ‘‘wind’’ o
desired properties, be them homogeneous or not. The m
allows us to compute explicitly correlation functions
structure functions that depend on space and time. We
then compare the temporal objects~for fixed spatial posi-
tions! with simultaneous objects that depend on varyi
scales. Having full control on the properties of the wind w
can analyze the relative importance of the mean wind ver
the rms fluctuations and the consequences of inhomog
ities.

In Sec. II we present the issue, introduce the statist
objects under study, and explain the model that is analy
in the rest of this paper. The model employs an advect
velocity fieldV and an independent fluctuating fieldu, which
is advected without affecting its statistical properties. T
latter are chosen to mimic those of Kolmogorov turbulen
The most important property that affects the accuracy of
Taylor surrogate is the effective decay time of fluctuations
scaleR. The ratio of the sweeping time across a scaleR and
this decay time determines the applicability of the Tay
hypothesis. This is made clear in Sec. II. In Sec. III w
explore the consequences of the Taylor hypothesis in
case of one probe measurements. We find that the Ta
method introduces systematic errors in the estimated ex
nents of the second-order structure function. The reason
this error is simply that the Taylor method improves f
small scales, where the decay time is always much lon
than the sweeping time. Accordingly, there is a system
improvement of the estimate via surrogates as the rele
length scale decreases. This appears as an apparent ‘‘e
4175 © 1999 The American Physical Society
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4176 PRE 60VICTOR S. L’VOV, ANNA POMYALOV, AND ITAMAR PROCACCIA
nent’’ in log-log plots. Nevertheless, we argue that the s
tematic errors for the isotropic part of the second-order str
ture function are quite small for realistic choices of t
parameters, of the order of 0.01 in the measured expone
In the same section we discuss the relative contribution
the mean wind and the rms fluctuations to the ‘‘effectiv
advecting windVad employed in the Taylor hypothesis. W
find that the method works even in the absence of mean w
~which has been noticed before, for example, in turbul
convection@8# and in a swirling flow@9#!. In general, both
contribute to the effective wind, with a parameter of relati
importance@denotedb below, see Eq.~47!#. We find that the
optimal value ofb is larger than anticipated.

In Sec. IV we solve the model in the case of linear she
The first question analyzed is what is the effective wind t
should be taken in surrogating data that stem from t
probes that experience different mean winds. We show
for linear shear the answer is simple, i.e., the mean of
mean winds of the two probes. Next we solved the mod
and found the corrections to the structure functions due
the existence of the shear. In the language of Ref.@3# this is
a j 52 anisotropic contribution wherej refers to the index of
the irreducible representation of the SO~3! symmetry group.
The scaling exponent associated with this contribution is
in the K41 framework, in agreement with measurements
earlier theoretical considerations@12,13#. Last, we assesse
the performance of the Taylor method for this contributi
and concluded that it is significantly worse than in the is
tropic counterpart. The typical errors in estimating the ex
nent can be as high as 0.1. Section V offers a summary
a discussion. In particular, we present arguments as to w
aspects of our conclusions are relatively model independ

II. THE MODEL

A. Preliminaries

In statistical turbulence one is interested in the statist
properties of the turbulent velocity fieldu(r,t) where (r,t) is
a space-time point in the laboratory frame~so-called Eulerian
velocity!. In this paper we will focus on the properties of th
second-order space-time correlation function of velocity d
ferences:

Fab~R,t ![^@ua~0,t0!2ua~R,t01t !#

3@ub~0,t0!2ub~R,t01t !#&, ~1!

where angular brackets denote averaging with respect tot0.
In this definition and throughout the paper we assume
the turbulence isstationary in the sense that the statistic
ensemble is time independent. We do not assume space
mogeneity or isotropy. Fort50 the correlation function
Fab(R,t) turns into the commonly used second-order str
ture functionSab(R):

Sab~R![Fab ~R,t50!. ~2!

For R50 we have the time-dependent object, which is u
ally measured in single probe experiments:

Tab~ t ![Fab ~R50,t !. ~3!
-
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The Taylor hypothesis is based on the idea that when
mean windV̄0 is very high, the turbulent field is advected b
a given probe as if frozen, having hardly any time to rel
while being recorded by the probe. Disregarding the rel
ation of turbulent eddies of sizeR, the hypothesis implies
that

Sab~R5tV̄0!5Tab~ t !, ~4!

Obviously, the validity of this hypothesis depends on t
ratio of two times scales. The first is the advection timeR/V̄0
that it takes to translate structures of sizeR by the probe. The
second is the lifetimet(R), which describes the typical de
cay time of turbulent structures of sizeR. In the limit
R/@V̄0t(R)#→0 the Taylor hypothesis becomes valid. Th
typical time scalet(R) is inherent to the dynamics of turbu
lent flows, and is quite independent of the mean wind, wh
can be eliminated by changing the coordinates to a comov
frame. Up to a factor of order unity the lifetime can be es
mated as the turnover timeR/AS(R) whereS(R)[Saa(R).
With this estimate the Taylor hypothesis is expected to
valid whenAS(R)/V̄0→0. In the sequel we denote the rat
of these two time scales byz(R). Clearly, in turbulencez(R)
increases withR, and forR of the order of the outer scale o
turbulence it is largest. It is thus sufficient to have very sm
z(L) to ensure the validity of the Taylor hypothesis for a
r ,L.

In typical experimental conditions like atmospheric turb
lence,z(L) is of the order of 0.2–0.5@10,11#. @Note that in
most experimental papers only the longitudinal compon
of the structure function is available; in isotropic turbulen
this is smaller thanS(R) by a factor of about 3.# Accord-
ingly, the Taylor hypothesis needs careful scrutiny. Mo
over, almost all experiments are forced by anisotropic a
inhomogeneous agents, and the ‘‘mean’’ velocity depends
the position. When more than one probe is used one need
decide how to chooseV̄0 in Eq. ~4!. To allow us to answer
such questions rationally we study the following model.

B. Basic model

1. Equation of motion

Consider a model turbulent velocity fieldu(r,t) which in
(k,v) representation is defined as

ũ~k,v!5E dr exp@2 i ~r•k1vt !#u~r,t !. ~5!

We propose the following model dynamics forũ(k,v):

@v1k•V01 ig~k!#ũa~k,v!1E dk8dk9

8p3

3Gk
abgVs

b~k8!ũg~k9,v!d~k2k82k9!5 f̃ a~k,v!,

~6!

ik•ũ~k,v!50, ~7!
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whereGk
abg is the exact nonlinear vertex that stems from t

Navier-Stokes equations:

Gk
abg5kbPag~k!1kgPab~k!. ~8!

HerePab(k) is the transverse projection operator

Pab~k!5dab2
kakb

k2
~9!

anddab is the Kronecker symbol. This dynamics represe
‘‘passive vector advection’’ in which the ‘‘turbulent’’ field
ũ(k,v) is advected by a statistically independent station
field V(k). In its turn, the windV(k) consist of homogeneou
V0 and space dependentVs(k) parts:

V~k!5~2p!3d~k!V01Vs~k!. ~10!

The homogeneous partV0 appears in Eq.~6! as a Doppler
shift to v. The inverse decay timeg(k) represents the edd
viscosity, which mimics the effects of the nonlinear terms
Navier-Stokes dynamics on the energy loss from a gi
wave number. The forcing termf(k,v) represents that en
ergy gain.

2. Statistical description

Correlations in(k,v) and (k,t) representation. Introduce
the correlation function of the velocity fieldũ(k,v) as fol-
lows:

^ũa~k,v!ũ* b~k8,v8!&[2pd~v2v8!F̃ab~k,k8,v!.
~11!

For space-homogeneous ensembles~in our case, in the ab
sence of a shear! F̃ab(k,k8,v) is diagonal ink:

F̃ab~k,k8,v!5~2p!3d~k2k8!F̃ab~k,v!. ~12!

Note that in order to avoid the proliferation of symbols w
used the same notation for the two functionsF̃ab(k,k8,v)
and F̃ab(k,v). The same two functions ink,t representa-
tions are distinguished by a ‘‘hat’’ symbol:

F̂ab~k,k8,t !5E dv

2p
F̃ab~k,k8,v!exp~ ivt !, ~13!

F̂ab~k,t !5E dv

2p
F̃ab~k,v!exp~ ivt !.

The time independent functionsF̂ab(k,k8,t50) and

F̂ab(k,t50) will remain undecorated:

Fab~k,k8![F̂ab~k,k8,0!, Fab~k![F̂ab~k,0!. ~14!

Correlation functions in(r,t) representation. Introduce
correlation functions of the velocity filedu(r,t) as follows:

^ua~r,t !ub~r8,t8!&[F ab~r,r8,t2t8!, ~15!

where stationarity in time is assumed. In space homogene
ensemblesF ab(r,r8,t) depends on the differenceR5r2r8
s

y

n

us

only. We will again use an economic notation and emp
the symbolF ab also for the space homogeneous case:

F ab~r,r8,t !⇒F ab~R,t !. ~16!

These two functions are related to the corresponding co
lation functions ink,t representation by

F ab~r,r8,t !5E dkdk8

~2p!6
F̂ab~k,k8,t !exp@ i ~k•r2k8•r8!#,

~17!

F ab~R,t !5E dk

~2p!3
F̂ab~k,t !exp~ ik•R!. ~18!

On the other hand the functionFab of Eq. ~1! is computed as

Fab~R,t !52E dk

~2p!3
F̂ab~k,t !@12exp~ ik•R!#. ~19!

3. Choice of parameters in the model

The advecting wind. In our thinking we are inspired by
experiments in the atmospheric boundary layer in which
advecting wind may be considered as consisting of th
parts. The first component can be taken as a space-tim
dependent mean windV̄0, which is constant for our en
semble. The second component is a space-time indepen
part that is constant on the time scale of a typical experim
~minutes!, but changes from one experimental realization
the ensemble to another. We denote it asVT . We will as-
sume that it fluctuates randomly between different exp
mental realizations of the ensemble. The third part is an
plicitly space dependent part of the mean wind denoted
aboveVs(r). Note that again we avoid proliferating the sym
bols, and we use the same symbolVs in k and r representa-
tion. Accordingly, we can write

V05V̄01VT , V̄T50. ~20!

Since VT is considered as a random variable we need
specify its probability distribution function. This is denote
P(VT), and overlines as in Eq.~20! denote averages with
respect to this distribution. We will solve the correlatio
functionsF̃(k,v) for each realization ofV0 and average the
result with respect toP(VT). The amplitude of the mean
square fluctuations ofVT are chosen such that

V̄T253vT
2, ~21!

where vT
2 is a mean-square fluctuation of the longitudin

turbulent velocity.
The inhomogeneous part of the wind will not be rando

To simplify the analytical calculations the space depend
Vs(r) is chosen as a sinusoidal profile,

Vs~r!5nVssin~q•r!, q5qm, ~22!
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4178 PRE 60VICTOR S. L’VOV, ANNA POMYALOV, AND ITAMAR PROCACCIA
wherem andn are unit vectors in the vertical and horizont
directions respectively. The horizontal direction is the dire
tion of the mean wind:V̄05nV̄0. In k representation Eq.~22!
reads:

Vs~k!5
~2p!3

2
Vsn@d~k2q!2d~k1q!#. ~23!

Note that sinusoidal profile~22! has nothing to do with the
logarithmic profile in real boundary layers. For smallq it
mimics locally a linear shear.

The lifetime of eddies. A good model forg(k) in Eq. ~6!
is provided by the Kolmogorov 41 model of turbulence
which the lifetime 1/g(k) is defined as the turnover time u
to an unknown dimensionless~universal! factor C:

g~k!5C
vT

L
~kL!2/3. ~24!

HereL is the integral scale of turbulence andvT
2 is the mean

square longitudinal velocity, which in isotropic condition
equals

vT
25 1

3 ^uu~r,t !u2&. ~25!

The forcing termf(k,v). In this paper we are interested
second-order turbulent statistics. Therefore, it is sufficien
model f(k,v) as Gaussian white noise:

^ f̃ a~k,v! f̃ * b~k8,v8!&5~2p!4d~v2v8!d~k2k8!Dab~k!.
~26!

Since our model is linear in the turbulent velocityũ, there is
a simple relation between the intensity of the noiseDab(k)
and the simultaneous correlation function of the turbul
velocity F0

ab(k), where the subscript ‘‘0’’ denotes the ab
sence of the shear flow. The relation is@and cf. Eq.~34!
below#

Dab~k!52g~k!F0
ab~k!. ~27!

The tensorial structure ofF0
ab(k) is determined by the in-

compressibility condition

F0
ab~k!5Pab~k!F0~k!, ~28!

and what remains is to select the scalar functionF0(k). To
do this we refer again to the K41 model and choose

F0~k!5
f

@~kL!211#11/6
, ~29!

with some amplitudef. In the inertial interval, i.e., forkL
@1. Equation~29! agrees with the standard Kolmogoro
scaling,F0(k)}k211/3. The form of Eq.~29! is not unique,
and other forms exhibiting different crossovers betwe
power law scaling and saturation are equally acceptable.
example instead of Eq.~29! we may also choose

F0~k!5
f

~kL!11/311
. ~30!
-

o

t

n
or

We will show below that our conclusions are only weak
affected by the precise choice of crossover behavior. T
completes the setup of the model.

III. SOLUTIONS OF THE MODEL WITHOUT SHEAR

A. Homogeneous advection

First we analyze the situation without shear,Vs50. The
resulting velocity fieldũ0(k,v) and all the other objects wil
be denoted by a subscript ‘‘0 ’’ to remind us thatVs50. In
this case the integral in Eq.~6! vanishes and the solution fo
ũ0(k,v) immediately follows:

ũ0~k,v!5G0~k,v! f̃~k,v!, ~31!

G0~k,v![
1

v1k•V01 ig~k!
. ~32!

One sees that the effect of the space homogeneous part o
advecting velocity field amounts to a Doppler shift only. U
ing definitions~11!, ~12!, and~26! one has

F̃0
ab~k,v!5Dab~k!uG0~k,v!u2. ~33!

The equation for the simultaneous correlation function f
lows from Eq.~13!:

F0
ab~k!5E dv

2p
F̃0

ab~k,v!5
Dab~k!

2g~k!
. ~34!

This is consistent with Eq.~27!. The correlation function in
(k,t) representation is computed straightforwardly,

F̂0
ab~k,t !5E dv

2p
F̃0

ab~k,v!exp~ ivt! ~35!

5F0
ab~k!exp@ ik•V0t2g~k!t#.

At this point we recall thatV0 contains a term that is sto
chastic, i.e.,VT , see Eq.~20!. The averaging of Eq.~35!
yields

F̂0
ab~k,t !5F0

ab~k!exp$ ik•V̄0t2g~k!t22~vTkt!2%.
~36!

The first term in the exponent stems from the advection
the mean windV̄0. The second one is the correlation dec
due to the finite lifetime of the fluctuations. The last term
the exponent describes the effect of decorrelation due to
random sweeping by the random componentVT .

Using Eq.~19! we compute

F0
ab~R,t !5E dk

4p3
F0

ab~k!$12exp@22~vTkt!22g~k!utu#

3cos~k•R2k•V̄0t !%. ~37!

The structure functionS0
ab(R) is obtained from Eq.~37!

by substitutingt50:
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FIG. 1. A log-log plot of the ratio of
T0(R/Vad)/S0(R) vs R/L for three values ofC,
C50.25 ~dashed line!, 0.5 ~dot-dashed line! and

1 ~solid line!, andV̄050 (q→`). Panel~a! cor-
responds toR/L between 1 and 1025, the blowup
in panel~b! shows the next five decades ofR/L
between 1025 and 10210.
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S0
ab~R!5E dk

4p3
F0

ab~k!$12cos~k•R!%. ~38!

On the other handT0
ab(t) is obtained by puttingr 50:

T0
ab~ t !5E dk

4p3
F0

ab~k!$12exp@22~vTkt!22g~k!utu#

3cos~k•V̄0t !%. ~39!

We can compare the two expressions for any of the ten
components. Since we are interested in exponents, it is n
ral to consider first the trace. In order to assess the sensit
of our results to the tensorial structure we will consider th
the longitudinal structure function:

S0~R!5(
a,b

S0
ab~R!, T0~ t !5(

a,b
T0

ab~ t !, ~40!

S0
l l ~R!5(

a,b
S0

ab~R!
RaRb

R2 ,

T0
l l ~ t !5(

a,b
T0

ab~ t !
V̄0

aV̄0
b

V̄0
2

.

Computing the trace, longitudinal projections and perfor
ing the angular integrations we end up with

S0~R!5E
0

`k2dk

p2 F0~k!$12C0~kr !%, ~41!

S0
l l ~R!5E

0

`k2dk

3p2 F0~k!$12C0
l l ~kr !%,

T0~ t !5E
0

`k2dk

p2 F0~k!

3$12C0~kV̄0t !exp@22~vTkt!22g~k!utu#%,

~42!

T0
l l ~ t !5E

0

`k2dk

3p2 F0~k!

3$12C0
l l ~kV̄0t !exp@22~vTkt!22g~k!utu#%,

~43!

C0~x!5
sin~x!

x
, C0

l l ~x!53Fsin~x!

x3 2
cos~x!

x2 G . ~44!
or
tu-
ity
n

-

Equation~25! allows one to expressvT in terms ofF0(k):

vT
25

1

3
^uu0~r!u2&5E dk

12p3
F0~k!5E

0

` k2dk

3p2
F0~k!.

~45!

B. Assessment of the Taylor hypothesis
for homogeneous advection

The comparison betweenS0(R) andT0(t) is determined
by the two free coefficients in this model,C of Eq. ~24! and

q[vT /V̄0 . ~46!

In comparing the two functions we have freedom in defini
the effective advecting mean windVad. In the Taylor hy-
pothesis Vad5V̄0, and one is supposed to identifyT0(t
5uR/V̄0u) with S0(R). In some applications, whenV̄050 the
Taylor hypothesis has been used@8# with Vad5vT . In our
comparison we find it advantageous to employ an interpo
tion formula

Vad5AV̄0
21~bvT!2, ~47!

with b chosen to minimize the difference between the t
functions, Eqs.~41! and~42!. Of course, for one probe mea
surement the apparentscaling exponentis always indepen-
dent of the choice of the effective advective wind and of t
parameterb in particular. For two or several probe measur
ments, when we face a mixture of temporal and spatial c
tributions to the total separation, the choice ofVad and of the
parameterb become important as discussed below.

In Fig. 1 we present a log-log plot of the ratio o
T0(R/Vad)/S0(R) vs R/L for three values ofC,C50.25,0.5,
and 1, andV̄050 (q→`). If the Taylor hypothesis were
exact, this ratio would have been unity for allR. We find that
in the limit R/L→0 the ratio of these two functions goes
a constant, which depends on the choice ofb in Eq. ~47!.
This reflects the correctness of the Taylor hypothesis
R/L→0, which follows from the fact that the sweeping tim
R/Vad is negligible compared to the lifetime}R2/3. The re-
lation between the units of distance and the units of ti
needs to be determined. We fix the parameterb by the re-
quirement thatT0(R/Vad) should equalS0(R) when R/L
→0. We found that the effective wind may be approximat
by Eq. ~47! with

b'3. 1 for the modulo structure functionS0~R!.
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4180 PRE 60VICTOR S. L’VOV, ANNA POMYALOV, AND ITAMAR PROCACCIA
This fixing of the units will be of crucial importance whe
we discuss two-probe measurements below.

We see that the ratioT0(R/Vad)/S0(R) does not scale
with R when many decades ofR are available. In most ex
periments the range of availableR is much smaller, andap-
parentscaling will result. To demonstrate this we present
Fig. 1~b! log-log plots of the ratio ofT0(R/Vad)/S0(R) vs
R/L for the same values ofC but for R values spanning only
the last five decades of scales. Clearly, the plots seem li
over at least four decades.

In Fig. 2 we show log-log plots of the same ratio, forc
50.25 andC51, and for values ofq ranging from 0.01 to
10. We see that forC51 when the mean wind is four time
larger thanvT we have up to 20% deviations in the magn
tude ofT0(R/Vad)/S0(R) from unity. Forq large~the graphs
almost saturate forq510) the deviations reach the appare
scaling exponent the almost linear log-log plots can ea
deceive even an experienced researcher to conclude tha
value ofz is larger than what could be measured from spa
differences viaS0(R). This finding is in agreement with th
conclusion of Sreenivasan’s group@14,15# who studied this
issue experimentally. Within our model we can see that
apparent scaling exponent depends on the parameteC,
which govern the decay time of fluctuations, cf. Eq.~24!. For
C51 we find an increase in the apparent exponentz2 be-
tween 0.01 and 0.03 depending on the value ofd, varying
from 0.1 to`. For C50.25 the increase is depressed by
factor of 3. The lesson is that for experimental application
is very advisable to achieve a good estimate of the inhe
decay time of fluctuations of sizeR.

FIG. 2. A log-log plot of the ratio ofT0(R/Vad)/S0(R) vs R/L
for C51 @Panel~a!# andC50.25 @Panels~b!#. Different solid lines
correspond to valuesq510, upper line;q51,0.25 from top to bot-
tom; andq50.01, the bottom solid line. Dashed line shows t
limit q→0, when the Taylor hypothesis is exact.
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In order to check how our results depend on the tenso
structure of the correlation functions we repeated the sa
comparisons for the longitudinal structure functionsS0

l l and
T0

l l . We found that the unit fixing parameterb in this case
differs from the previous one:

b'4.2 for the longitudinal structure functionS0
l l ~R!.

In order to demonstrate that apparent corrections to the s
ing exponents are similar for different tensorial compone
we plotted in Fig. 3 the ratiosT0(R/Vad)/S0(R) ~solid lines!
andT0

l l (R/Vad)/S0
l l (R) ~dot-dashed lines! vs R for several

values ofC andq. One sees that with the proper choice ofb,
these ratios practically coincide.

The conclusions of this part of the analysis are as follow
~i! The best values ofb are significantly larger than the naiv
choiceA3. They depend on the choice of tensorial comp
nents of the correlation functions.~ii ! The parameterC,
which determines the lifetimeg(k), should be known in or-
der to assess the systematic errors involved in the Ta
hypothesis.

IV. THE CASE OF SHEAR

A. Solution for linear shear

In this section we seek the first-order corrections to
second-order correlation functionsSandT, which are caused
by the existence of a small shearUs!V̄0. To this aim we
split the velocity field into homogeneous and shear-indu
contributions:

ũ~k,v!5ũ0~k,v!1ũs~k,v!, ~48!

where as before,ũ0(k,v) is the solution with zero shea
given by Eq.~31!, and ũs(k,v) is induced by the shearVs.
To find ũs, we use Eq.~6! with ũ(k,v) from Eq. ~48!,
ũ0(k,v) from Eq. ~31!, andV(k) from Eqs.~10! and~23! to
get

ũs~k,v!5ũq~k,v!2ũ2q~k,v!, ~49!

FIG. 3. A log-log plot of the ratio ofT0(R/Vad)/S0(R) vs R/L
~solid lines! andTl l (R/Vad)/S2

l l (R) ~dot-dashed lines! vs R/L for
C51. Different lines correspond to~from the top to the bottom!
q5`, q50.25, andq50.01.
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ũ6q
a ~k,v!5 1

2 VsP
ab~k!@~k•n!dbg1nbqg#

3G0~k,v!G0~k7q,v! f̃ g~k7q!. ~50!

Having defined the velocity field we return to the correlati
function Eq.~11! and splitF̃ab(k,k8,v) into isotropic and
anisotropic, shear-induced, contributions:

F̃ab~k,k8,v!5~2p!3d~k2k8!F̃0
ab~k,v!1F̃s

ab~k,k8,v!.
~51!

HereF̃0
ab(k,v) is given by Eq.~33!. According to Eqs.~48!

and ~50! and definition~11! the equation forF̃s
ab(k,k8,v)

may be presented as a sum:

F̃s
ab~k,k8,v!5F̃q

ab~k,k8,v!2F̃2q
ab~k,k8,v!

1F̃q*
ba~k8,k,v!2F̃2q* ba~k8,k,v!,

~52!

where

F̃q
ab~k,k8,v!5~2p!3d~k2q2k8!VsG0~k,v!

3Pad~k!@~k•n!ddg1ndqg#

3Im$G0~k8,v!%F0
gb~k8!. ~53!

In k,t representation the last equations take the form

F̂q
ab~k,k8,t !'~2p!3d~k2q2k8!

Vs

4ig1
Pad~k!

3@~k•n!ddg1ndqg#F0
gb~k8!

3exp@~ ik1•V02g1!t#, ~54!

where we introduced

k15 1
2 ~k1k8!, g~k1!5g1 . ~55!

Having in mind the approximation of the linear shear w
keep in F̃s

ab(k,k8,v) only terms that are eithe
q-independent or linear inq. Correspondingly, we may
present Eq.~54! as

F̂q
ab~k,k8,t !'

p3Vs

ig1
d~k2q2k8!exp@~ ik1•V02g1!t#

3H Pab~k1!F2k1•n1q•n1~k1•n!

3~q•k!
]

k1]k1
G12Pag~k1!ngqdP0

db~k1!

1~k1•n!
qak1

b 2qbk1
a

k1
2 J F0~k1!. ~56!

To computeF s
ab(R,R8,t) we need to use Fourier transfor

~17!, which involves the integrationsdk dk85dk1d(k2k8)
and exp@i(k•R2k8•R8#. The latter may be presented as
exp@ i ~k•R2k8•R8!#5exp~ ik1•R!exp@ i ~k2k8!•r0#.

Here R5R2R8 is the separation between probes andr0
5 1

2 (R1R8) is a mean position of the probes. Now it
customary to introduce a mixed (k1 ,r0 ,t) representation in
which one integrates with respect to (k2k8) only:

ĈFq
ab~k1 ,r0 ,t !5E d~k2k8!

~2p!3
F̂q

ab~k,k8,t !

3exp@ i ~k2k8!•r0#. ~57!

Together with Eqs.~52! and ~56! this gives

F̂ s
ab~k,r0 ,t !5

1

2g~k!
exp$@ ik•V02g~k!#t%

3H Pab~k!F2k•Vs~r0!1
]Vs

g~r0!

]r 0
d

kgkd]

k]k G
1Pag~k!F ]Vs

g~r0!

]r d
1

]Vs
d~r0!

]r g GP0
db~k!J

3F0~k!, ~58!

where we redefinedk1→k and used explicit form~22! of
Vs(r0).

Solution ~58! contains a term that is proportional to th
value of the sheark, Vs(r0) computed at the positionr0
between the two probes. This is just a first-order term, r
resenting the first correction to the homogeneous velocityV0
due to the sweeping effect. If we were to compute high
order sweeping corrections and were to sum them all up,
would find a renormalized sweeping velocity in the exp
nent:V0→V01Vs(r0). Thus instead of Eq.~58! one writes

F̂ s
ab~k,r0 ,t !5

1

2g~k!
exp$ ik•@V01Vs~r0!#t2g~k!t%

3F ]Vs
g~r0!

]r d
1

]Vs
d~r0!

]r g GF Pab~k!kgkd
]F0~k!

]2k

1Pag~k!Pdb~k!F0~k!G . ~59!

We should comment at this point that the calculation resu
in an intuitively pleasing rule: effective Taylor wind shou
be taken as the mean wind at the point midway between
two probes. Also, we see that the magnitude of the sh
induced part is proportional to the shear midway between
probes. Of course, this simple rule is a result of the assu
tion of linear shear. Nevertheless, as long as the shear pro
is not too nonlinear on the scale of the separation betw
the two probes, this simple rule can be taken as a rule
thumb for experimental applications.

Finally, we remember that the space homogeneous pa
the windV0 has a fluctuating component,V05V̄01VT . One
has to average therefore the result using the Gaussian d
bution P(VT). The final answer in analogy with Eq.~36!
reads
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F̂ s
ab~k,r0 ,t !5F s

ab~k,r0!exp$ ik•@V̄01Vs~r0!#t

2g~k!t22~vTkt!2%,

F s
ab~k,r0!5

vs~r0!

2g~k! F2Pab~k!~k•n!~k•m!
]F0~k!

]2k

1Pag~k!~ngmd1ndmg!Pdb~k!F0~k!G ,

~60!

where in agreement with Eq.~22! we introduced a ‘‘shear
frequency’’ vs(r) according to

]Vs
a~r0!

]r b
[vs~r0!namb. ~61!

Examining Eq.~60! we see that the scaling exponent e
pected forF s

ab(k,r0) is determined by the scaling ofF0(k)
and g(k) with the choices specified in Eqs.~24! and ~29!
F s

ab(k,r0)}k213/3, or R4/3 for the second-order structur
function. This is consistent with the expected scaling in
anisotropic sector characterized byj 52, see@3# for more
details.

Note that in the case linear shear the frequencyvs(r) is r
independent. Similarly to Eqs.~38! and ~39! one computes
the shear-induced additions ofSs

ab(R) and Ts
ab(t) to the

usual and Taylor-computed structure functionsSab(R) and
Tab(t):

Ss
ab~R!5E dk

4p3
F s

ab~k!$12cos~k•R!%, ~62!

Ts
ab~ t !5E dk

4p3
F s

ab~k!ˆ12exp@22~vTkt!22g~k!utu#

3cos$k•@V̄01Vs~r0!#t%‰.

In experimental measurements we can isolate the sh
induced contribution at the expense of the isotropic con
bution by considering a mixed, transverse-longitudinal str
ture function, taking the separationR along the windRl

5n(R•n). For example,

Ss
tl ~R![Ss

ab~Rl !manb, Ts
tl ~ t ![Ts

ab~ t !manb. ~63!

These functions may be obtained from equations simila
Eq. ~62! with the replacement

F s
ab~k!→F s

tl [F s
ab~k!manb ~64!

5
vs

g~k! H 2
~k•n!2~k•m!2

k2

dF0~k!

dk2

1
1

2 F12
~k•n!2

k2 GF12
~k•m!2

k2 GF0~k!J . ~65!

Integrating this overf, the azimuthal angle ofk around the
direction ofn, one has
e

ar-
i-
-

o

E
0

2p

dfF s
tl 5

pvssin2u

g~k!

3H 22
d F0~k!

d k2
cos2u1F0~k!~11cos2u!J ,

~66!

where cosu5n•k/k. Having this in mind and performing in
Eq. ~62! the u integration we end up with

Ss
tl ~R!5

vs

5p2E0

`k2dk

g~k! H F0~k!@12Cs
tl ~kr !#

2
k2

3

dF0~k!

d k2
@12C̄s

tl ~kr !#J , ~67!

Ts
tl ~ t !5

vs

5p2E0

`k2dk

g~k! H F0~k!$12Cs
tl ~kVadt !

3exp@22~vTkt!22g~k!t#%2
k2

3

dF0~k!

d k2

3$12C̄s
tl ~kVadt !exp@22~vTkt!22g~k!t#%J ,

~68!

Cs
tl ~x!55F62x2

x4
cosx13

x222

x5
sinxG

.12
5x2

42
, ~69!

C̄s
tl ~x!515F122x2

x4
cosx1

5x2212

x5
sinxG.12

5x2

14
.

Formally expansion ofCs
tl (x) andC̄s

tl (x) at smallx begin
with 1/x4 terms, but due to double cancellation it actua
starts from 1. We analyzed numerically Eqs.~67!–~69! in the
following subsection.

B. Discussion of the case of shear

The first difference between Eqs.~67!–~69! for the aniso-
tropic contribution to the structure functionsSs

tl andTs
tl and

the corresponding structure functionsS0
ab andT0

ab is in their
scaling behavior. In integrals~41!–~44! for S0

ab ,T0
ab the

function F0(k)}k211/3. These integrals converge, and th
main contribution comes from the regionkR;1. Both quan-
tities scale according toS0

ab(R)}R2/3 and T0
ab(R)}R2/3 in

the limit R/L→0, as expected. In contrast to that, the in
grands in Eqs.~67!–~69! have an additional factorg(k)
}k2/3 in the denominator. This changes the scaling behav
to Ss

tl (R)}R4/3,Ts
tl (R)}R4/3. The second difference is in th

rates of the convergence. The integrals forS0
ab andT0

ab be-
have in the region ofkL!1 like *0k1/3dk while the integrals
for Ss

tl and Ts
tl behave in the region of smallk like

*0k21/3dk. One sees that the latter integrands have an in
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grable singularity. The contribution of the nonuniversal e
ergy containing regionkL;1 is much more pronounced tha
in the corresponding integral*0k1/3dk. As a consequence
one needs to consider much smaller values ofR/L to see the
asymptotic scaling of the functionsSs

tl andTs
tl compared to

the case ofS0
ab andT0

ab . This is illustrated in Fig. 4. The top
panel shows log-log plots ofS0(R)/R2/3 vs R/L for choices
~29! and ~30! of cutoff functionsF0. The two lines almost
coincide and reach a level of 0.95 atR.L/3. The bottom
panel exhibits the corresponding log-log plots ofSs

tl (R)/R4/3

vs R/L. The plots reach the level 0.95 at much smallerR
values~aboutR.L/10), as expected. However, the two plo
are significantly different only when there is no scaling b
havior ~for R.L/3). We thus propose that our main finding
are independent of the choice of the crossover behavio
the power spectrumF0(k) ~within reason!.

As mentioned above, for small mean winds the Tay
method is problematic for large values ofR but it improves
for smaller values. Therefore, the significantly more p
nounced contribution of the large scale eddies for the sh
induced part of the structure functions~in comparison with
the isotropical one! has to lead to larger deviations of th
Taylor surrogateTs

tl (R) from the directly measured structur
functionSs

tl (R). This is illustrated by the log-log plots of th
ratio Ts

tl (R)/Ss
tl (R) vs. R/L in Fig. 5. The top panel repre

sents this ratio forc50.25 and for values of the parameterd
ranging betweend50.1 ~lower line!, d50.25,0.5,1, andd
5` ~upper line!. In contrast to the isotropic case we ha
here two regimes, one with negative apparent correction
the scaling exponent~in the region 1023L,R,0.3L) and a
second with a positive correction~for R,1023L). The larg-
est possible corrections are obtained in the absence o

FIG. 4. A log-log plot of the ratio ofS0(R)/R2/3 vs R/L ~top
panel! andSs

tl (R)/R4/3 ~bottom panel! vs R/L. Different lines cor-
respond to different choices~29! and ~30! of the power spectrum
F0(k). Dashed line denotes level 0.95.
-

-

of

r

-
r-

to

he

mean wind (d5`), reaching60.13. Ford50.25 the correc-
tions are about60.1 and ford50.1 they are about60.06.
The bottom panel shows the ratio forc51 andd5` ~upper
line! andd50.1 ~lower line!. The corrections to the apparen
scaling exponents are60.21 and60.15, respectively. The
conclusion is that in the absence of the mean wind (d5`)
one has to be weary of using the Taylor surrogate instea
direct measurements in space. If the mean wind is relativ
large~say,d,0.1, as is quite common! the expected error in
the scaling exponent is about 0.1. This is definitely a la
error but it is substantially smaller than the difference b
tween the isotropic and the shear-induced exponents for
second-order structure functions~2/3!.

V. SUMMARY AND DISCUSSION

In this paper we presented an exactly soluble model o
advected field whose fluctuations are chosen to mimic
closely as possible those of turbulence with K41 spectra.
aim was to assess the accuracy of the Taylor surrogate s
ture function by solving exactly for the space-dependent
the time-dependent second-order structure functions an
compare between them. Clearly, the most important con
eration is the decay time of correlations of sizeR compared
to the rate of sweeping acrossR. The parameterC in our
model determines the ratio of the turnover time to the de
time, and is free in our model.

The main results of the analysis are as follows.
~a! For data extracted from a single probe in isotrop

flows the error introduced by the Taylor method is syste
atic, always leading to an overestimate in the scaling ex

FIG. 5. On the top panel, a log-log plot of the ratio
Ts

tl (R/Vad)/Ss
tl (R) vs R/L for C50.25 and different values ofq

510 ~upper line!; q51, 0.5, and 0.25 from top to bottom andq
50.1, the bottom line. The bottom panel represents the ratios
C51. The top line corresponds toq510, the bottom line corre-
sponds to2q50.1.
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nent of the second-order structure function. This is in agr
ment with the conclusions of Sreenivsan and co-work
who studied this issue experimentally@14,15#.

~b! The error in the isotropic scaling exponent, which
introduced by the Taylor method, is typically small, reachi
0.01 in the most adverse situation.

~c! The rms velocity is an important contribution to th
effective wind, and should not be left out. Equation~47! is a
simple recipe that can be followed, withb chosen to mini-
mize the errors. We found that our model yields the smal
errors withb'3.1.

~d! For data extracted from two probes in anisotrop
fields the best rule of thumb is to use the mean velocity
mean rms of the two probes. The best value ofb for the
model treated above isb53.8.

~e! The errors introduced by the Taylor method in anis
tropic fields are considerably larger than those found in i
tropic flows. In the most adverse situation errors in the sc
ing exponents can reach 0.15. Worse, they are
systematic, tending from positive errors for smaller scale
negative errors for larger scales.

~f! Nevertheless, the errors are significantly smaller th
the difference between the exponents in the different sec
of the symmetry group. Thus, the Taylor approach can
used~with care! to extract the universal exponents charact
d

e-
s

st

d

-
-
l-
ot
to

n
rs
e
-

izing the different sectors. An example of such an appro
can be found in@13#.

Even though these results are found on the basis o
simple model, there are aspects that appear relatively m
independent. The source of error in the Taylor method is
finite lifetime of the fluctuations and the parameterC that
appears in the model, the ratio of this to the sweeping tim
going to appear in a similar fashion in any other model
experiment. The relative improvement of the Taylor es
mates with decreasing scales is also model independent.
need for a ‘‘unit fixer’’ like b is generic as well, especially
when we mix spatial and temporal distances, as is the c
with data measured by two probes. We thus hope that
analysis presented above would be of some use for asse
experimental data as long as the Taylor surrogates have
been replaced by direct methods of measurements.
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