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Universal long-time properties of Lagrangian statistics in the Batchelor regime
and their application to the passive scalar problem

E. Balkovsky and A. Fouxon
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 3 June 1999!

We consider the transport of dynamically passive quantities in the Batchelor regime of a smooth in space
velocity field. For the case of arbitrary temporal correlations of the velocity, we formulate the statistics of
relevant characteristics of Lagrangian motion. This allows us to generalize many results obtained previously
for straind correlated in time, thus answering a question about the universality of these results.
@S1063-651X~99!12810-1#

PACS number~s!: 47.27.Eq, 05.40.2a, 47.10.1g
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INTRODUCTION

The problem of passive scalar transport by turbulent flo
has received much attention lately. The progress achie
has been made possible mainly by the introduction of
Kraichnan model@1#. Within the model the turbulent veloc
ity statistics is believed to be Gaussian, scale invarian
space, andd correlated in time, which allows one to writ
closed equations on the correlation functions of the sca
Such a velocity has only a few rough features in comm
with realistic flows, which are intermittent and have a fin
scale-dependent correlation time, contrary to what is
sumed in the model. Nevertheless, it seems that many in
esting properties of the statistics are inherent in the dyn
ics, rather than due to the intermittency of the veloc
statistics itself. Unusually for the turbulence theory, num
ous results have been obtained analytically using the Kra
nan model.

Having reached an understanding of this model, it is th
natural to generalize its results, passing to more reali
flows. However, due to the complicated interplay betwe
spatial and temporal properties of the velocity, one enco
ters various difficulties in introducing a meaningful veloci
field with a finite correlation time. The only case where th
was easily done is the so called Batchelor regime@2#, where
the spatial structure of the velocity is rather simple, a
therefore one can separate space and time dependenc
appears in the limit of large Prandtl numbers, which is
ratio of the fluid viscosity to the diffusivity of the transporte
quantity. In studying advection below the viscous length,
correlation functions of the velocity are smooth functions
space, which allows one to introduce an effective descrip
with va5sab

(t)r b @2#. In this way time and space becom
completely separated.

The Batchelor limit is well studied ifs has a zero corre
lation time and its statistics is Gaussian@3–13#; that is, in the
framework of the Kraichnan model. Certain results ha
been derived for arbitrary statistics ofs @1–4,13#.

Our aim here is to investigate the degree of universality
the passive scalar statistics for arbitrary temporal correlat
of the velocity. We utilize the close relation between t
statistics of Lagrangian trajectories in a turbulent flow a
the statistics of the passive scalar. Therefore, it seems
PRE 601063-651X/99/60~4!/4164~11!/$15.00
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sonable to separate the problems, first investigating the
grangian motion and next applying the results to particu
problems. For the Batchelor regime only a few degrees
freedom characterize the Lagrangian dynamics, which ma
the problem solvable.

The plan of this paper is as follows. First we pass to
comoving reference frame in the equation for a passive s
lar, which allows us to consider the Lagrangian mapping
an affine transformation, characterized by a random ma
After its probability distribution function~PDF! is found, we
consider several particular examples of the scalar statis
both for the decaying and forced turbulence. We show t
the statistics of the scalar can be found by integration of
distribution function with a kernel, depending on the pro
lem in question.

I. GENERAL RELATIONS

Advection of a passive scalarq by incompressible veloc-
ity field v is described by the equation

] tq1~v,¹!q2k¹2q50, ~1.1!

wherek is the molecular diffusivity. We shall be intereste
in the limit of small but finitek. In the case of continuous
injection of the scalar, one should add a sourcef(t,r) into
the right-hand side of Eq.~1.1!.

Let us consider a blob of the scalar having a sizeL much
smaller than the viscous length of the velocity. The variat
of the velocity on the scale of the blob is much smaller th
the large homogeneous velocity transferring the blob a
whole. To account for a slow variation of the form of th
blob due to the relative motion of the particles, it is natural
pass to the reference frame moving with the velocity o
particle within the blob@14,15#. Since the velocity is a
smooth function on the scale of the blob, it can be expan
in a Taylor series thus leading to the equation

] tq1sabr b¹aq2k¹2q50. ~1.2!

Heresab(t) is the matrix of the velocity derivatives taken
the chosen Lagrangian point. Incompressibility impliessaa
50. For turbulent flowss should be regarded as a rando
matrix, having a finite correlation timet, which is the La-
grangian correlation time of the velocity.
4164 © 1999 The American Physical Society
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The complete information about the Lagrangian flow, d
fined by] tR5sR, is contained in the matrixW, satisfying

] tW5sW, W~0!51.

This generates an affine transformation of space points
that a vectorR transforms asR(t)5W(t)R(0). Thevolume
conservation guarantees detW51. The motion of the par-
ticles of the scalar differs from that of the space points due
the nonzero diffusivity. To investigate this motion we intr
duce the ‘‘inertia tensor’’ of the blob@14#,

I ab5
1

2NE drr ar bq~ t,r!, ~1.3!

whereN5*drq(t,r) is the number of particles of the scala
It is easy to check thatN is conserved by the full equatio
~1.2!. It turns out thatI contains all the necessary inform
tion, and will appear in the following sections as the result
formal calculations. The tensorI satisfies the closed dynam
cal equation

] tI 5k1sI 1IsT. ~1.4!

The initial condition depends on the form of the initial blo
generallyI ab;L2. We shall see that for problems with sp
tial isotropy it is enough to considerI ab(0)5L2dab . One
can check thatI can be expressed viaW in a way that is
nonlocal in time. SinceI is symmetric and incorporates th
diffusion, instead of working withW it will be more conve-
nient for us to work directly with Eq.~1.4!.

The dynamics of the symmetric matrixI can be separate
into the nontrivial essential dynamics of its eigenvalues a
the trivial dynamics of the angular degrees of freedom. I
thus natural to reformulate the dynamics for the eigenval
directly, excluding irrelevant angular degrees of freedo
For the case that isd correlated in time, this, can be don
exactly, resulting in the Calogero-Sutherland model@5#. We
shall show that for a finite correlation time ofs the angular
degrees of freedom can also be effectively excluded.
reason for this is that only the large-time dynamics of
eigenvalues is important for our purposes, so that in m
respects~but not all! the matrixs appears to bed correlated
in time.

Before we proceed with the derivation, it is useful to u
derstand qualitatively the typical dynamics of a blob. If t
amplitude of the velocity fluctuations is large enough~the
precise condition will be formulated below!, the termk on
the right-hand side of Eq.~1.4! can be disregarded during th
initial stage of the evolution. Then one can make sure thI
coincides withL2WWT. According to the Oseledets theore
@16#, at large enough times the logarithms of the eigenval
of the latter matrix are asymptotically equal to 2l i t. The
Lyapunov exponentsl1 , . . . ,ld do not depend on a particu
lar realization ofs hence they are important characterist
of the system.

The above implies that the directions corresponding
positive and negative Lyapunov exponents will grow or d
crease correspondingly, and that the blob will become
ellipsoid with the lengths of its main axes changing
exp(lit). The orientation of the ellipsoid can be arbitrar
The smallest dimension will decrease exponentially with
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rate ld , until at t'uldu21ln(L2uldu/k) it reaches a scaler dif

5Ak/uldu, where the diffusive spreading of particles mak
further contraction impossible. Later, the smallest direct
will fluctuate aroundr dif . This will not affect other direc-
tions, that will continue to change according to the
Lyapunov exponents. In order to have a wide separation
the scalesL and r dif one should require a large value of th
Peclet number

Pe[L/r di f5LAuldu/k. ~1.5!

This ensures that the time needed to reach the diffusion s
is large, so that the above arguments are valid.

Apart from the typical event described here, we shall a
need the distribution of all outcomes. This is the aim of S
II. Although it is not difficult to work with the arbitrary
dimensionality of space, we shall consider the physical
mensionalitiesd52 and 3 only.

II. STATISTICS OF I

To separate the angular degrees of freedom from the
dial ones, it is natural to representI as follows:

I 5RTLR. ~2.1!

HereR is an orthogonal matrix composed of the eigenvect
of I, and L is a diagonal matrix with the eigenvalue
e2r1, . . .e2rd along the diagonal~we believe that the eigen
values are ordered, so thatr1>r2> . . . >rd). Equation
~1.4! becomes

] tr i5s̃ i i 1
k

2
exp~22r i !, s̃5RsRT, ~2.2!

] tR5VR, V i j 5
e2r is̃ j i 1e2r js̃ i j

e2r i2e2r j
. ~2.3!

We do not assume a summation over the repeating indice
Eqs. ~2.2! and ~2.3!. This system of equations is not ver
useful for analyzing the general case. However, one can
tice that if during the evolution the eigenvalues beco
widely separated, that isr1@•••@rd , the system is greatly
simplified. In this case the antisymmetric matrixV becomes

V ik5H s̃ki , i ,k

2s̃ ik , i .k,
~2.4!

and, due to Eqs.~2.2! and~2.3!, the dynamics of the angula
degrees of freedom is independent on the eigenval
Therefore, Eq.~2.2! can be resolved:

r i5r0i1E
0

t

dt8 s̃ i i ~ t8!1
1

2
lnF11ke22r0iE

0

t

dt8

3expH 22E
0

t8
dt8 s̃ i i ~ t9!J G . ~2.5!

Herer0i are some constants of the order of unity that sho
be determined by matching with the initial period of sepa
tion of the eigenvalues.
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4166 PRE 60E. BALKOVSKY AND A. FOUXON
Integrals in Eq.~2.5! determine the dynamics ofr i . We
consider times much larger thant̃, the correlation time ofs̃,
which is generally less than or of the order oft. The form of
the probability distribution function ofr is different if we
considert̃!t&uldu21ln Pe ort*uldu21ln Pe, depending on
whether the diffusion has started to be relevant or not. If
former case is considered, one can disregard the second
in Eq. ~2.5!, thus obtainingr i'*0

t dt8 s̃ i i (t8). We recognize
the case of the central limit theorem. However, the Gaus
distribution describes only the bulk of the most proba
events, leaving rare events out of the domain of its valid
We shall need a more general expression@17# which can be
derived from the following considerations. The integrals c
be considered as sums of a large numbern't/ t̃ of indepen-
dent identically distributed random variables. Thus we inv
tigate the distribution ofX given by

X5(
i 51

n

xi . ~2.6!

Without loss of the generality we can assume that^xi&50. If
the generating function̂exp@iyxi#& of eachx is exp@2s(y)#,
thenX has the generating function exp@2ns(y)#. To find the
distribution function ofX, one should make the inverse Fo
rier transform

P~X!5E dy

2p
exp@ iyX2ns~y!#.

At large n this integral can be calculated in the saddle-po
approximation. Writing the extremum condition, we see t
yextr is a function of the argumentX/n, which implies
P(X)} exp@2nS(X/n)#. For X!n one can expandS in the
Taylor series and obtainP} exp@2X2/(2nD)#. HereD is the
variation ofxi . This is nothing but the central limit theorem
On the other hand, if we increasen, keeping the ratioX/n a
constant of the order of unity, we can assert that lnP}2n.
This has a simple interpretation. IfX is of the order ofn, only
realizations where most ofxi are of the same sign contribute
Therefore we can model the situation by the binomial r
dom process, which gives just the above result.

If we replace sum~2.6! by the integral*0
t dt8x(t8) of a

random functionx over timet much larger than the correla
tion time, we should only note that the characteristic funct
of X is proportional to exp@2ts̃(y)#, and then proceed a
above. We used the fact that the characteristic function is
exponent of the cumulant generating function. The deri
tion is easily generalized for several quantities. Thus the
tribution functions ind52 and 3 are given by the formula

P} expF2tS2S r12l1t

t D Gu~r1!d~r11r2!, ~2.7!

P} expF2tS3S r12l1t

t
,
r22l2t

t D Gu~r12r2!u~r22r3!

3d~r11r21r3!. ~2.8!

HereS2(x1) andS3(x1 ,x2) are some functions dependin
on the details of the statistics ofs. In the d-correlated case
e
rm

n

.

n
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t
t

-

n

n
-

s-

one can find the explicit expression forS2,3 @6,13# ~see also
Appendix A!. The constantsl i are nothing but the Lyapunov
exponents, which are expressed via the statistics ofs in the
following way ~cf. Ref. @16#!:

l i5^s̃ i i &. ~2.9!

To have a self-consistent picture, we should assume tha
spectrum of the Lyapunov exponents is nondegenerate,
is l i.l i 11. Physically nondegeneracy of the Lyapunov e
ponents means that a blob is unstable with respect to
fluctuations, leading to a separation of the lengths of
sides. Noticing that the Lagrangian pointr50 is a saddle
point for the incompressible flow, one can easily verify th
the strain directions corresponding to the further elongat
of the blob prevail. Therefore, during a timet of approxi-
mately constant strain, the blob will be on average furth
elongated.

At t@(l i2l i 11)21 we can disregard effects originatin
from the boundaryr i5r i 11. Equations~2.7! and ~2.8! are
not valid in a narrow region near the boundary which ha
width of the order of unity. Since it is much smaller thanl i t,
we can use the step functionu to model the form of the PDF
near the boundary.

Due to the incompressibility condition the exponents s
isfy ( i 51

d l i50. Then, in order to have a spectrum that
nondegenerate ind52, one should only require thatl1.0,
which is the same as saying that trajectories diverge ex
nentially. Ind53, it is necessary to supply some informatio
aboutl2. If the statistics ofs is symmetric with respect to
time reversion, thenl250 @13#. However, if this is not the
case, it is generally nonzero. In Appendix B we find t
expression forl2 if the correlation time ofs is small, which
shows that its sign is generally arbitrary.

The form of the functionsS2,3 depends on particular de
tails of the statistics ofs. However, it is possible to make
two general statements about these functions. First, one
assert that at smallx the expansion

S2~x!'
x2

2C11
, S3~x1 ,x2!'

C22x1
222C12x1x21C11x2

2

2~C11C222C12
2 !

is valid, reproducing the central limit theorem. The consta
Ci j are defined as

Ci j 5E dt8Š^s̃ i i ~ t !s̃ j j ~ t8!&‹.

HereŠ^•••&‹ stands for irreducible correlation function. Th
integrals should be calculated over an interval, much lar
then the correlation time ofs̃. Note that the condition of
incompressibility ensures that( j 51

d Ci j 50.
Whenxi are of the order of unity, the functionsS2,3 have

no singularities and change smoothly. The quadratic exp
sion of S2,3 is valid as long as

ur i2l i tu!t/ t̃, ~2.10!

wheret̃ is the correlation time ofs̃. In thed-correlated case
it holds everywhere~Appendix A!.
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The normalization ofP is determined by the quadrati
part of S2,3, since most of the probability is concentrated
ur i2l i tu;ACi j t!t. One can find the normalization facto
(2pC11t)

21/2 in d52 and @4p2t2(C11C222C12
2 )#21/2 in d

53.
Now considert*uldu21ln Pe. The diffusion is irrelevan

for r i having a non-negative Lyapunov exponent. Howev
there is a finite probability, increasing witht, thatrd reaches
the diffusion scale. This requires an account of the last te
on the right-hand side of Eq.~2.2! or Eq.~2.5!. The diffusion
will not allow rd to decrease much below ln(uldu/k). On the
contrary, negativeld will prevent it from increasing. As a
result, the correspondingr i will be distributed stationarily
around the value ln(k/uldu). Relaxation times associated wit
this distribution are diffusion independent, and thus are m
less thent. On the other hand,r ’s having non-negative
Lyapunov exponents are the integrals over the whole ev
tion time t, so that their values at timet are not sensitive to
the last period of evolution with duration of the order of t
relaxation time ofrd . This means that fixing their values a
time t@uldu21ln Pe will not affect the distribution ofrd ,
and the whole probability distribution functionP is factor-
ized ~cf. Refs.@3,8#!. In d52 we can write

P} expH 2tS2S r12l1t

t D JPst~r2!. ~2.11!

Here Pst is the stationary distribution ofr2. In d53 the
situation is more complicated. Whilel3 is always negative,
l2 can be both positive and negative. The form of the P
will be different for these two cases. Ifl2>0

P} expH 2t S3S r12l1t

t
,
r22l2t

t D JPst~r3!. ~2.12!

Sincerd is independent of the rest of ther i is the functions
S2,3 are the same as in Eqs.~2.7! and ~2.8!.

If l2 is negative, then att@ul2u21ln(ul2u/k) the distribu-
tion overr2 will also become steady and concentrated n
ln(ul2u/k) which by order of magnitude is equal to ln(ul3u/k).
Therefore, our assumption thatr2@r3 is incorrect. Stillr1
@r2,3, and the equation forr1 is separated from the othe
variables. Then the distribution function is equal to

P} expH 2tS̃3S r12l1t

t D JPst~r2 ,r3!. ~2.13!

whereS̃3 is related toS3 by exp(2S̃3)}*dr2 exp(2S3).
Finally, let us note that since the configuration spa

SO(d) of the rotation matrixR @see Eq.~2.1!# is finite, and
since there is no preferred direction in space, at larget the
matrix is distributed uniformly over the sphere.

The basic result obtained above is the special scaling f
of the probability density functions. It is this universal for
which lies in the origin of the results derived below.

III. DECAYING TURBULENCE

As a first application, let us consider decay of a pass
scalarq. The problem is posed as follows: given a rando
distribution of the scalar densityq0 at t50, find its statistics
t

r,

m

h

u-

F

r

e

m

e

at t.0. In the framework of the Kraichnan model the singl
point statistics was considered by Son@6#, who obtained the
following long-time asymptotic behavior:

^uq~ t,0!ua&} exp~2gat !, ~3.1!

wherega in d53 is equal toa(62a)D/4 for 0<a,3 and
9D/4 otherwise (D is a parameter characterizing the streng
of the fluctuations ofs). The same decay law has bee
claimed for the gradients of the scalar. Here we consider
problem for an arbitrary correlation time ofs. Our consid-
eration shows that due to the above-mentioned special f
of Eqs. ~2.11!–~2.13!, law ~3.1! is valid for arbitrary statis-
tics of s both for the single-point value of the scalar and
gradient. In thed-correlated limit we obtain a result forga
different from that of Ref.@6#. The results also show that th
basic assumption of Ref.@18# is incorrect.

The following qualitative picture, supported by the calc
lations presented below, explains the decay. First, consid
single blob initially having a characteristic sizeL and con-
taining N particles of the scalar. As velocity stretches t
blob, the number of particles does not change, contrary to
volume of the blob. Att*uldu21ln(ulduL2/k) the dimensions
of the blob with negative Lyapunov exponents are frozen
r dif , while the rest keep growing exponentially, resulting
an exponential growth of the total volume of the blob. Sin
the volume is proportional toAdetI 5exp((ri), one has
^uqua&}^exp(2a(ri)&, where the averaging should be don
with the help of the PDF discussed above, that is^uqua&
}*drP(r)exp(2a(ri). The result is determined by a com
promise between two competing factors. While the avera
quantity exp(2a(ri) favors smaller values of(r i , the
maximum of the probability is attained when each growi
r i is equal tol i t. Obviously, for largera the volume ac-
quires more importance, so that the main contribution
made by smaller blobs, which are less probable but h
larger concentrations of the scalar. So, at smalla, the devia-
tion from the average growthlt is small, andga is deter-
mined by the Gaussian part of the PDF. This gives a pa
bolic dependence ona. On the other hand, ifa is large
enough, the main contribution is due to the blob having
minimal possible volume which is of the order ofLd. The
decay exponent is fully determined by the probability to ha
such a blob, and hence isa independent@3,6#. Note that this
picture implies that exponential decay holds att
*uldu21ln Pe.

If instead of a single blob one takes a spatially homo
neous problem, this consideration should be slightly mo
fied. At larget, initially uncorrelated blobs are brought clos
to each other because of the contraction along a certain
rection, and then they overlap diffusively. Since the num
of overlapping blobs is large, due to the central limit theore
it is rather q2 which is inversely proportional to volume
Therefore,̂ uqua&}^exp(2a(ri/2)&.

Formally, one should solve Eq.~1.2! with the initial con-
dition q(0,r)5q0(r). The solutions are

q~ t,0!5E dk

~2p!d
q0„W

T~ t !k…exp@2Qmnkmkn#, ~3.2!
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Q~ t !5kE
0

t

dt8W~ t !W21~ t8!@W~ t !W21~ t8!#T. ~3.3!

From the qualitative arguments it is clear that the long-ti
asymptotic should be independent of the particular form
the distribution. We will take the simplest statistics, which
Gaussian with the pair correlation function

^q0~r1!q0~r2!&5x~r 12!, x5x0 exp@2r 2/~8L2!#.
~3.4!

This particular form is chosen for further convenience.
what follows we setL51. It is possible to generalize th
calculation for arbitraryx and show that the results are in
dependent of its form.

To proceed, we introduce the generating function ofq:

Z~y!5^exp@ iyq~ t,0!#&s,q0
. ~3.5!

Here we assume averaging over the statistics ofs and the
initial distribution of the scalar. The simplest part is to pe
form averaging over the Gaussian fieldq0. To do this, we
substitute Eq.~3.2! into Eq. ~3.5!, and using the expressio
for the characteristic function of a Gaussian random varia
@17#, obtain

Z~y!5K expF2
y2

2 E dk

~2p!d
x~WTk!e22QmnkmknG L

s

.

Substituting x(k)5(8p)d/2x0 exp(22k2) and integrating
over k, we obtain

Z5K expF2
y2

2

x0

AdetI ~ t !
G L

s

. ~3.6!

We used the fact thatI 5WWT1Q, which can be verified by
writing equation onWWT1Q and comparing it with Eq.
~1.4!.

Using Eq.~3.6!, one can find

^uq~ t,0!ua&5Ca^~detI !2a/4&s . ~3.7!

HereCa is a numerical constant. Equation~3.7! reduces the
problem to an averaging of powers of detI 5) exp(2ri),

^uqua&5CaE ddr expF2
a

2 (
i 51

d

r i GP~ t,r!, ~3.8!

whereP is the probability density function ofr discussed
above. In the large time limit this integral can be calcula
in the saddle-point approximation. The calculation is sligh
different for d52 and 3.

A. Two-dimensional case

In d52 integral~3.8! should be calculated only overr1,
since the distribution overr2 is stationary. The saddle-poin
equation is

S28S r12l1t

t D1
a

2
50.
e
f

-

le

d

It is clear thatr1}t. As long as one can use the quadra
expansion, which is valid at least at smalla, the solution of
this equation isr15(l12aC11/2)t; hence

ga5
a

2 S l12
aC11

4 D . ~3.9!

At a.acr522S28(2l1) the value ofr1 becomes much
smaller thanl1t; the integral ~3.8! is determined by the
boundary of the integration region, and thereforega
5S2(2l1), independent ofa.

The domain of validity of Eq.~3.9! depends on the value
of the parameterlt̃. If it is much smaller than unity, we can
use the quadratic approximation toS2 everywhere. This case
effectively corresponds to the Kraichnan limit@6#.

In the opposite limitlt̃*1, the quadratic expansion ofS2

cannot be used fora*1/(t̃C11), and Eq.~3.9! is valid only
at a!1/(t̃C11). The form of the intermediate region is no
universal, and depends on the particular form ofS2 and
hence on details of the statistics ofs.

B. Three-dimensional case

In d53 the result is similar to that ofd52, though the
consideration is slightly more complicated, due to the pr
ence of an additional degree of freedom. There are two ca
to be considered. Ifl2,0, thenP is given by Eq.~2.13! and
the calculation is the same as ford52.

If l2>0, both degrees of freedomr1 and r2 are active
and one should use the PDF~2.12!. The saddle-point equa
tions are

]S3~x1 ,x2!

]x1
1

a

2
50,

]S3~x1 ,x2!

]x2
1

a

2
50, ~3.10!

wherex15(r12l1t)/t andx25(r22l2t)/t. Again, the be-
ginning of the curve is determined by the Gaussian part oP,
andga is parabolic:

ga5
a

2 S ul3u2
a

4
C33D , ~3.11!

with r15(l11aC13/2)t and r25(l21aC23/2)t. At a
larger thanacr calculated below, we have thea-independent
behavior

ga5S3~2l1 ,2l2!. ~3.12!

Depending on the parameters, two different types of
havior can occur ata,acr . First, it is possible that asa
increases,r2 will grow more slowly with t and at certaina
will become much smaller thanl2t. At largera the integra-
tion over r2 will be determined by the regionr2!l2t and
one should replace system~3.10! by the single equation

]S3~x1 ,2l2!

]x1
1

a

2
50. ~3.13!

In this caseacr522]1S3(x1 ,2l2)ux152l1
.

The other possibility is that at certaina the difference
r12r2 becomes much smaller thanr1,2. Because of the
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constraintr1.r2, for larger a integral ~3.8! is determined
by the boundaryr15r2 of the domain of integration, and th
saddle-point equation becomes

]S~x1 ,x2!

]x1
1

]S~x1 ,x2!

]x2
1a50. ~3.14!

Then acr52@]1S(x1 ,x2)1]2S(x1 ,x2)# at x152l1 and
x252l2. Geometrically, the first case corresponds to el
gated ellipsoids, and the second one to two-dimensio
droplets having two largest dimensions of the same orde

If the parameterlt̃ is small enough, these changes of t
regime occur within the Gaussian part ofS3. Then one can
perform a more detailed investigation. The first regime
realized if l1.l2C13/C23 and C23,0. Then, at a.
22l2 /C23, Eq. ~3.11! should be replaced by

ga5
a2

8 S C12
2

C22
2C11D 1

a

2 S l12
C12l2

C22
D1

l2
2

2C22
.

~3.15!

If l250, Eq. ~3.11! has no region of validity, and ata.0
one should use Eq.~3.15!, which becomes

ga5
a

2 Fl12
a

4 S C112
C12

2

C22
D G . ~3.16!

In particular, within the Kraichnan model, Eq.~3.16! is valid
for 0<a<acr . Substitutingl1 and Ci j ~see Appendix A!
one findsacr54,

ga5
3Da

2 S 12
a

8 D , ~3.17!

for a,acr and ga53D for a.acr . Our result is different
from the one obtained in Ref.@6#, which coincides rather
with Eq. ~3.11!. An exact solution fora52 ~see Appendix C
and Ref.@9#! supports Eq.~3.17!. The reason for the discrep
ancy is the following. Despite the fact thatr2} ln(k/D), it is
impossible to ignore it completely. If this were done, t
anticorrelation betweenr1 andr2, existing due to the incom
pressibility condition would lead to the growth ofr2, thus
making the calculation inconsistent.

The second regime takes place ifC23.C13 and C23
.C13l2 /l1. Then, starting from a52(l12l2)/(C23
2C13), Eq. ~3.11! should be replaced by another formul
Although the dependence ona is still parabolic, the coeffi-
cients are rather cumbersome, so we do not write this h

C. Gradients of the decaying scalar

In the same manner one can consider the decay of
gradients of the scalar. In analogy, we can look for the c
relation functionŝ uvua&, wherev5¹q(t,r)ur 50. As in the
case of single-point scalar statistics, these correlation fu
tions decay exponentially in time. It was claimed in Ref.@6#
that the decay law of the scalar and its gradient is the s
within the Kraichnan model. Here we show that this is ac
ally the case for arbitrary correlated strain. Qualitatively
follows from the estimate thatu¹qu'q/ l , where l
5exp(rd) is the smallest dimension of the blob. As explain
above,q and l can be considered as independent, while
-
al

s

e.

he
r-

c-

e
-
t

e

statistics ofl is stationary. Thus the decay of the gradient
solely due to the change of the density of the scalar. M
formally, one has

va5 i E dk

~2p!d
kaq0~WT~ t !k!exp@2Qmnkmkn#.

~3.18!

Introducing the functionZ(y)5^exp@i(y,v)#&, and averag-
ing it over the initial distribution~3.4! we obtain a formula
similar to Eq.~3.6! Then, making a Fourier transform overy,
we obtain the PDF ofv:

P}K ~detI !d/411/2expF2
AdetI

x0
~v,I v!G L

s

. ~3.19!

Considering this expression in the eigenbasis of the matrI,
we observe that̂uvua&;^uvdua&, sincerd is smaller than the
rest of ther is. Recalling that the distribution overrd is
stationary, we immediately obtain that

^u¹aq~ t,0!ua&}^~detI !2a/4&s ,

which, due to Eq.~3.7!, gives the same law of decay.

IV. FORCED TURBULENCE

A. Single-point distribution of q

In this section we shall investigate the steady state dis
bution of a passive scalar which occurs in the presence
stationary source. For this purpose we introduce a rand
functionf(t,r) on the right-hand side of Eq.~1.2!, injecting
blobs of the scalar with the characteristic sizeL. Due to the
linearity of the problem, the scalar field at the moment
50 is given by a superposition of the scalar injected at e
lier instants of time. Each realization ofs can be character
ized by a parametert* ~cf. Ref. @3#!, such that the smalles
dimension of blobs injected att'2t* approachesr dif at t
50. The ambiguity in the definition oft* is of the order of
uldu21 which is much smaller than the typical stretching tim
uldu21ln Pe. Considering the motion of the scalar injected
2t* &t,0 diffusion may be neglected. Then the scalar
simply advected along Lagrangian trajectories. On the ot
hand, as discussed in Sec. III, the contribution of the sc
injected att&2t* is exponentially small. Thust* separates
diffusive and diffusionless regimes. One can write the f
lowing approximate formula:

q~0,r!ur 50'E
2t

*

0

dt f~ t,0!. ~4.1!

If the correlation time of the source is much smaller thant* ,
for a fixed realization ofs integral~4.1! can be considered a
a Gaussian variable with zero average and the disper
proportional tot* , so that after averaging overf, for the
single-point PDF@3# one obtains

P~q!5K 1

A2px0t*
expS 2

q2

2x0t*
D L

s

, ~4.2!
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wherex05*dt^f(t,0)f(0,0)&. The effective Gaussianity o
the pumping has its limitations due to finite correlation tim
of f @analogously to the discussion of Eqs.~2.7! and ~2.8!#.
Since we work in the comoving reference frame, this cor
lation time is very small and hence only the tail will b
affected. At the end of the section we discuss the impli
tions of this. To proceed with formal calculations, we shou
specify statistics off. Here we shall takef as a Gaussian
field with the pair correlation function

^f~ t1 ,r1!f~ t2 ,r2!&5x~r 12!d~ t12t2!,

wherex(r ) is the same as in Sec. III. The expression for
generating functionZ5^exp(iyq)& follows

Z5K expF2
y2x0

2 E
2`

0 dt8

AdetI ~0,t8!
G L

s

. ~4.3!

HereI (t,t8) is a matrix, satisfying Eq.~1.4! with respect tot
and the initial conditionI (t8,t8)51. Naturally, the integra-
tion is performed over the initial time, summing up the blo
injected at different times. The integral in Eq.~4.3! gives the
formal definition oft* entering Eq.~4.2!:

t* 5E
2`

0 dt8

AdetI ~0,t8!
. ~4.4!

Introducing the distribution functionp(t* ), we rewrite Eq.
~4.2! as

P~q!5E
0

` dt*
A2px0t*

p~ t* !expS 2
q2

2x0t*
D . ~4.5!

Since t* is a functional of the whole trajectoryr i(t,t8),
one needs more information than contained in the simu
neous distribution function ofr. However, the following ap-
proximation, becoming exact at ln Pe→`, reduces the prob
lem to single-time statistics. We shall neglect t
configurations for which the smallest dimension of the b
starts to grow after it reachesGdif . Then the realizations fo
which t* is larger than someT, and those for which the blob
injected at2T hasr3(0,2T).r dif , are the same, leading u
to the following formulas:

p~ t* !5
]

]t*
E

2`

`

dr1E
ln(k/ul2u)

`

dr2P~ t* ,r1 ,r2!,

~4.6!

p~ t* !5
]

]t*
E

2`

`

dr1E
2`

`

dr2E
ln(k/ul3u)

`

dr3P~ t* ,r1 ,r2 ,r3!.

Here one should substitute PDF’s~2.7! and~2.8!, sincet* is
determined by the diffusionless regime. These equations
fine nothing but the flux of the probability out of the regio
r3. ln(k/uldu), once returns are disregarded.

Investigation of the above integrals shows thatp(t* ) has
the following properties. Its main body is concentrated in
vicinity of t* 5uldu21ln Pe, and has a width of the order o
Aln Pe. On the other hand, its tailt* @uldu21ln Pe decays
exponentially,
-

-

e

-

e-

e

p~ t* !} exp~2ct* !, ~4.7!

wherec is equal toS2(2l1) in d52 andS3(2l1 ,2l3) in
d53. The intermediate region is not universal and depe
on the details ofs. Note that since Eq.~4.7! gives the prob-
ability that at large timet* a blob has not yet decayed, ther
fore c is equal to the limiting value ofga ~see Sec. III!.

This information allows one to calculate the probabili
distribution functionP(q). If q! ln(uld /k), it is the central
peak ofp(t* ) that determines the scalar PDF:

P5S uldu
2px0 ln PeD

1/2

expF2
ulduq2

2x0 ln PeG . ~4.8!

As we increaseq, at q* ln Pe the details of the distribution
of t* become important. The Gaussian@regime Eq.~4.8!#
will turn into some nonuniversal asymptotic. Nonetheless
q@ ln Pe, due to Eq.~4.7! the universality is restored:

P} expS 2A2c

x0
uqu D . ~4.9!

For a d-correlateds one can find the complete functio
P(q). Then S2,3 is Gaussian~Appendix A!, and the result
can be found in the saddle-point approximation. Ind52 the
result coincides with Refs.@4,10,11#. In d53 we obtain the
formula ~cf. Refs.@10,11#!

ln P}23FAln2 Pe1
Dq2

2x0
2 ln PeG

for uqu,4Ax0 /D ln Pe, and

ln P}6 ln Pe24A3 ln2 Pe1
3Dq2

8x0

otherwise. The change of the regime is related to the fact
the two dimensions of the contributing blobs start to be eq
to r dif . This result is different from the one presented in R
@10#. The difference can be qualitatively explained as f
lows. In our case the structures of the scalar making the m
contribution to the PDF are columns, with the two smalle
dimensions of the same order. They appear because o
anticorrelation originating from the incompressibility cond
tion: for t* larger than a mean value,r3 should decrease
slower thanl3t, which by virtue of the anticorrelation lead
to a decrease ofr2 faster thanl2t. Staring from a certain
value of q, both r2 and r3 decrease at the same rate~an
analogous phenomena on is described in Sec. III B!. This
structure is different from the ansatz proposed in Ref.@10#.

Equation~4.2! should be modified iff has a finite corre-
lation time tf @see the discussion leading to Eqs.~2.7! and
~2.8!#. That is,

P5K 1

A2px0t*
expF2t* f S q

t*
D G L

s

,

where f (x) deviates fromx2/(2x0) at x*1/tf . This may
affect only the tail ofP(q). If the parametertfAx0c is
much smaller than unity the tail is determined completely
the region wheref }x2, and one obtain the asymptotic resu
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~4.9!. Conversely attfAx0c*1 the form off should be ac-
counted. Nevertheless, one can easily check that the e
nential tail survives with a decrement depending on the fo
of f.

B. Gradients

Here we briefly consider the statistics of the scalar gra
ents. Within the Kraichnan model the problem was solved
Ref. @7#. From the qualitative picture presented there, o
can conclude that the PDF is determined by the short-t
fluctuations ofs, and hence is nonuniversal. The followin
considerations support the conclusion.

In a way, similar to the one leading to Eqs.~3.6!, ~3.19!,
~4.2! and ~4.3!, one can find

Z~y!5K expF2
yaybx0

4 E
2`

0 I ab
21~0,t8!dt8

AdetI ~0,t8!
G L

s

.

~4.10!

Analogously to the case of the scalar density, the grad
field at t50 is given by a superposition of contributions
blobs injected at earlier moments of time. We observe t
the contribution of each blob intov2[(“q)2 is determined
by two factors: the value of the scalar densityx0(detI )21/2

and the inverse size of the blob contained inI ab
21 . Not all the

blobs make a contribution to Eq.~4.10!. Indeed, the size o
the blobs injected atut8u!ut* u ~wheret* was defined in Sec
IV A ! is much larger thanr dif, and therefore the value of th
gradient will be small. On the other hand, the scalar injec
at ut8u@ut* u has an exponentially small density and hen
does not contribute. Thus the distribution ofv is determined
by the blobs injected att8'2t* which have the minimum
possible size provided the diffusion is still ineffective att
50.

Each realization ofs can thus be roughly characterize
by two relevant parameters. The first one is the lateral
mensionl of the thinnest blobs, for which the diffusion ca
still be neglected att,0. This is related to the very last stag
of the evolution, when blobs of the smallest size of the or
of r dif may undergo a strong rapid contraction, increasing
gradient without dissipating the scalar. Let us stress that
fluctuation should be short lived in order to suppress
diffusive spreading of the particles.

The other parameter is the durationT0 of the injection
stage for these blobs, showing how many blobs approachr dif
at t'0. There is no average strain during this period, so t
blobs injected at2t* 2T0&t8&2t* all have a size of the
orderL at t'2t* . Since att.2t* the blobs move in the
same velocity field, they all have approximately the sa
size att50. Formally, the number of relevant blobs is e
pressed by the formula@c.f. Eq. ~4.1!#

q'E
2T02t

*

2t
* dt8f~ t8,0!. ~4.11!

Writing the estimation for the gradientv'q/ l we can re-
place Eq.~4.10! by Z5^exp(iyq/l)&f,s . Averaging overf,
we obtain
o-

i-
n
e
e

nt

at

d
e

i-

r
e
e

e

t

e

Z5K expS 2
y2x0T0

2l 2 D L
T0 ,l

.

Since the injection stage occurs atutu*ut* u'uldu21ln Pe
@ t̃, the fluctuations determiningT0 and l are independen
@7,8#.

On the averageT0;uldu21 and l;r dif , so that ^v2&
;x0 /(ld

21r dif
2 ). Nevertheless, studying the tail of the grad

ent PDF, it is necessary to take into account the large de
tions of these parameters. The probability of a large value
T0 is related to configurations of small strain~see Secs. III
and IV A!, and decays as exp(2cT0). Writing

P~v!;^exp@2v2l 2/~2x0T0!#&T0 ,l ,

one can average overT0 and find

P~v!;^exp@2uvu l ~2c/x0!1/2#& l .

To average overl one notes that the taill !r dif of the prob-
ability distribution function of l is related to the tail of
Pst(rd) @see Eqs.~2.11!–~2.13!# via l 5exp(rd). Indeed, both
are determined by the probability of a strong and rapid c
traction fromr dif to l !r dif . Hence

P~v!;E dlPst~ ln l !exp@2uvu l ~2c/x0!1/2#. ~4.12!

Within the Kraichnan model lnPst}2 l 22 ~see Appendix A!
and the result lnP(v)}2uvu2/3 of Ref. @7# easily follows. In
general the fluctuations of the smallest dimension take p
at times of ordert neart50, and therefore are related to th
single-time distribution ofs̃, which is nonuniversal.

We conclude that the gradient statistics is nonuniver
and cannot be predicted unless some specific informatio
supplied. For example, if the distribution ofl falls off very
fast at smalll, the distribution ofv will have an exponential
tail at very largev. In particular, this can explain the resul
of numerical simulations@3,19#, where a cutoff can be due
either to the grid step or imposed by hand@3#. If the tail of
Pst behaves according to ln@Pst( l )#}2 l 2a, the tail ofP(v)
has a stretched exponential form: ln@P(v)#}2uvua/(a11).

V. CONCLUSION

We considered a passive scalar advected by a ran
large-scale velocity field. Our purpose was to establish
degree of universality of the scalar statistics for an arbitr
correlated velocity. The investigation can be reduced to
statistics of different Lagrangian characteristics of t
smooth flow. In the limit of a large Peclet number, part of t
relevant information is contained in the long-time asympto
properties of the Lagrangian statistics, which is shown
possess a universal form. The scalar quantities relate
long-time evolution thus manifest universal statistical fe
tures. Generally, these are the central part and the tail of
corresponding PDF. We considered several particular
amples of such quantities: the decay of the scalar density
its gradient, and the scalar density in the forced case. C
versely the statistics of the gradients in the forced case
quires information about short-time fluctuations of the velo
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ity, and is thus sensitive to its details.
The application of the Lagrangian statistics establish

here is not only restricted to the above examples. One
slightly modify the procedure to consider many-point cor
lation functions of the scalar, say the PDF of the scalar
ference at two points@10#, correlation functions out of the
convective interval@12#, and other problems. A simila
scheme could be applied to other passive quantities, like
tors @20# and tensors@21#.
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APPENDIX A: THE KRAICHNAN MODEL

Here we consider Eqs.~2.2! and ~2.3! within the Kraich-
nan model, when the matrixs has a zero correlation tim
and is Gaussian with the pair correlation function@1#

^sab~ t !smn~0!&5D@~d11!damdbn

2dabdmn2dandbm#d~ t !.

The tensor structure is fixed by the incompressibility con
tion. The zero correlation time allows one to write th
Fokker-Planck equation for the probability distribution ofR
and L. Integrating out the angular degrees of freedom, o
can see that the equation obtained is equivalent to the La
vin dynamics@5#

] tr i5
Dd

2 (
j Þ i

d

coth~2r i22r j !1j i1
k

2
exp~22r i !,

where j i are random Gaussiand-correlated processes wit
the following correlation functions:

^j i~ t !j j~ t8!&5Ci j d~ t2t8!, Ci j 5D~dd i j 21!.

Let us now consider a typical evolution of the eigenvalu
At t50 all the eigenvaluesr i are equal to zero. Then, durin
a short initial period of time, allr is start to differ. We can
always arrange ther ’s so thatr1.r2.•••.rd . We then
observe that the ballistic terms(coth(2ri22rj) are arranged
in the same order, so that the eigenvalues will continue
separate, and att@D21 the following inequalities will hold:
r1@r2@•••@rd . If this is the case, we can substitute t
hyperbolic cotangents by61, and obtain the equations

] tr i5l i1j i1
k

2
exp~22r i !, l i5

Dd

2
~d22i 11!.

This simplified dynamics can be easily turned into the pr
ability density functions ofr @13,6#:

P~ t,r1 ,r2!5
1

A2pDt
expF2

~r12Dt !2

2Dt Gu~r1!d~r11r2!,

~A1!
d
an
-
f-

c-

.
ts.

-

e
e-

.

to

-

P~ t,r1 ,r2 ,r3!

5
1

2A3pDt
expF2

@~r123Dt !21~r123Dt !r21r2
2#

3Dt G
3u~r12r2!u~r22r3!d~r11r21r3!. ~A2!

As explained in the main text, these formulas are valid
times 1/D!t!1/D ln(DL2/k) and the form of the PDF nea
the boundary can be modeled by the step function. At tim
t@1/D ln(DL2/k) one should also calculate the stationa
PDF ofrd . They are readily found from the one-dimension
Fokker-Planck equations

Pst~r2!5
k

4D
expS 22r22

k

2D
e22r2D , ~A3!

Pst~r3!5
1

8Ap
S k

D D 3/2

expS 23r32
k

4D
e22r3D . ~A4!

APPENDIX B: SMALL t EXPANSION

In this section we assume that the correlation timet of s
is small, namely, Dt!1, where D5^tr *dtsT(0)s(t)&
characterizes the amplitude of the fluctuations ofs. We in-
vestigate the effect of the finite correlation time on t
Lyapunov spectrum. Ind52 there are no essential chang
with respect to thed-correlated case, since bothl1 and l2
52l1 receive small corrections int, leaving all qualitative
features unchanged. However ind53, one can ask whethe
l2 will shift from its zero value att50, and whether the
correction is positive or negative at finitet. We demon-
strated already that the first order correction int generally
leads to a nonzero value ofl2 in d53, which can be both
positive and negative.

Here it is more convenient to parameterize the angu
degrees of freedom ofWWT by the eigenvectorsei instead of
matrix R @see Eqs.~2.2! and~2.3!#, given byei

a5Ria . If the
eigenvalues are separated~that is, r1@r2@r3!, the equa-
tions forr1 and corresponding to it eigenvectore1 decouple:

] tr15~e1 ,se1!, ] te15se12e1~e1 ,se1!. ~B1!

The same is true forr3 ande3:

] tr35~e3 ,se3!, ] te352sTe31e3~e3 ,se3!. ~B2!

This system implies that under the transformations→2sT

the eigenvalues are transformed asl1,3→2l3,1. In the cal-
culation it is convenient to deal with symmetric matrice
which is achieved by decomposings into symmetric and
antisymmetric partss5s1v and introducinge15Mn, with

] tM5vM , M ~0!51,

so that

l15^~n,s̃n!&, ] tn5 s̃n2n~n,s̃n!,

with s̃5MTsM. To find the first order correction tol1 we
integrate the above differential equation from 0 tot, and then
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iterate the obtained expression once. After averaging o
the directions ofn(0) we find

l15
2

5E0

t

dt1F tr ^ s̃~ t !s̃~ t1!&1
3

7E0

t

dt2 tr ^s~ t !s~ t1!s~ t2!&G ,
wheret@t. The expression for2l3 is obtained by changing
s→2s in this formula. Then, usingl252l12l3, we find

l252
12

35E0

tE
0

t

dt1dt2 tr ^s~ t !s~ t1!s~ t2!&,

which is generally nonzero and has no definite sign.

APPENDIX C: PAIR CORRELATION FUNCTION

In this appendix we calculate the time decay of the p
correlation functionf (t,r )5^q(t,r )q(t,0)& within the Kra-
ichnan model. It satisfies the equation@1#

] t f 5Kab~r !¹a¹b f 12k¹2f , f u t505x~r !,

Kab5DS d11

2
dabr 22r ar bD .

Making the Fourier transform overr and passing to spherica
coordinates, we obtain

]t f 5k2]k
2f 1~d11!k]kf 2ek2f ,

~C1!

t5
D~d21!

2
t, e5

4k

D~d21!
.

Next, making the Laplace transform overt, we obtain

k2f 91~d11!k f82~E1ek2! f 52x~k!. ~C2!

Two linearly independent solutions of the homogeneo
equation are expressed via modified Bessel functions of
ordern5AE1d2/4. The branch of the square root should
picked up so that it has a cut along the semiaxisE,2d2/4
and takes positive values atE.2d2/4. Using these func-
tions one can find the Green functiong(E,k,k8) of Eq. ~C2!
satisfying the correct boundary condition

g~E,k,k8!5k2d/2k8d/221@ I n~ke1/2!Kn~k8e1/2!u~k82k!

1Kn~ke1/2!I n~k8e1/2!u~k2k8!#, ~C3!
,

tt.

E

er

ir

s
e

with the solution of Eq. ~C1! given by f (t,k)
5*dk8g(t,k,k8)x(k8). Next we should make the invers
Laplace transform ofg(E,k,k8):

g~t,k,k8!5
1

2p i Eb2 i`

b1 i`

dEeEtg~E,k,k8!. ~C4!

Hereb.0 is arbitrary. One may deform the integration co
tour in Eq. ~C4! until a singularity of the integrand is en
countered. The first singularity appears atE52d2/4, which
is the branch point ofn. Therefore, the integration should b
performed along the real axis at2`,E,2d2/4 on both
sides of the cut. Making the change of variableE52x2

2d2/4, we obtain

g~t,k,k8!5
2

p2
k2d/2k8d/221e2d2t/4

3E
0

`

dx e2x2tx sinh~px!Kix~ke1/2!Kix~k8e1/2!.

If one is interested in the single-point statistics, one sho
integrate this expression overk:

E dk kd21g~t,k,k8!

5
2d/221e2d/4

p2
k8d/221e2d2t/4

3E
0

`

dx e2x2tx sinh~px!Kix~k8e1/2!

3UGS d

4
1

ix

2 D U2

.

At large t the integral is determined by a narrow vicinity o
x50. After a simple calculation we obtain

^q2~ t !&5
C Ped/2

~Dt !3/2
expF2

d2~d21!Dt

8 G , ~C5!

whereC is a x-dependent constant.
y,
@1# R.H. Kraichnan, Phys. Fluids11, 945 ~1968!.
@2# G.K. Batchelor, J. Fluid Mech.5, 113 ~1959!.
@3# B.I. Shraiman and E.D. Siggia, Phys. Rev. E49, 2912~1994!.
@4# M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev

Phys. Rev. E51, 5609~1995!.
@5# D. Bernard, K. Gawedzki, and A. Kupianen, J. Stat. Phys.90,

519 ~1998!.
@6# D.T. Son, Phys. Rev. E59, R3811~1999!.
@7# M. Chertkov, G. Falkovich, and I. Kolokolov, Phys. Rev. Le

80, 2121~1998!.
@8# M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev.

56, 5483~1997!.
@9# A. Fouxon, Phys. Rev. E58, 4019~1998!.
@10# I. Kolokolov, V. Lebedev, and M. Stepanov, Zh. E´ksp. Teor.

Fiz. 115, 920 ~1999!; @Sov. Phys. JETP88, 506 ~1999!#.
@11# M. Chertkov, A. Gamba, and I. Kolokolov, Phys. Lett. A192,

435 ~1994!.
@12# E. Balkovsky, G. Falkovich, V. Lebedev, and M. Lysiansk

Phys. Fluids11, 2269~1999!.
@13# R.H. Kraichnan, J. Fluid Mech.64, 737 ~1974!.
@14# H. Tennekes, J. Lumley,A First Course in Turbulence~MIT

Press, Cambridge, MA, 1972!.
@15# A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics

~MIT Press, Boston, 1975!, Vol. 2



a,

4174 PRE 60E. BALKOVSKY AND A. FOUXON
@16# I. Goldhirsch, P-L. Sulem, and S.A. Orszag, Physica D27, 311
~1987!.

@17# U. Frisch,Turbulence: the Legacy of A. N. Kolmogorov~Cam-
bridge University Press, New York, 1995!.

@18# Ya.G. Sinai and V. Yakhot, Phys. Rev. Lett.63, 1962~1989!.
@19# E. Balkovsky, A. Dyachenko, and G. Falkovich~unpublished!.
@20# M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassol

preprint, chao-dyn/9906030.
@21# J.L. Lumley, Symp. Math.9, 315 ~1972!.


