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Universal long-time properties of Lagrangian statistics in the Batchelor regime
and their application to the passive scalar problem

E. Balkovsky and A. Fouxon
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We consider the transport of dynamically passive quantities in the Batchelor regime of a smooth in space
velocity field. For the case of arbitrary temporal correlations of the velocity, we formulate the statistics of
relevant characteristics of Lagrangian motion. This allows us to generalize many results obtained previously
for strain § correlated in time, thus answering a question about the universality of these results.
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INTRODUCTION sonable to separate the problems, first investigating the La-

grangian motion and next applying the results to particular

The problem of passive scalar transport by turbulent flowgproblems. For the Batchelor regime only a few degrees of

has received much attention lately. The progress achievelieedom characterize the Lagrangian dynamics, which makes
has been made possible mainly by the introduction of théhe problem solvable.

Kraichnan mode[1]. Within the model the turbulent veloc- ~ The plan of this paper is as follows. First we pass to the

ity statistics is believed to be Gaussian, scale invariant iffomoving reference frame in the equation for a passive sca-

space, ands correlated in time, which allows one to write '&f Which allows us to consider the Lagrangian mapping as

closed equations on the correlation functions of the scala@? affine transformation, characterized by a random matrix.

Such a velocity has only a few rough features in commoﬁa‘ﬂer_its probability dis_tribution functiofPDF) is found, we
with realistic flows, which are intermittent and have a finite consider several particular examples of the scalar statistics

. . . both for the decaying and forced turbulence. We show that
scale-dependent correlation time, contrary to what is as; L . i

) ) . “the statistics of the scalar can be found by integration of the
sumed in the model. Nevertheless, it seems that many inte

Histribution function with a kernel, depending on the prob-
esting properties of the statistics are inherent in the dynan]-em in question - dep 9 P
ics, rather than due to the intermittency of the velocity ’

statistics itself. Unusually for the turbulence theory, numer-

ous results have been obtained analytically using the Kraich-

nan model. Advection of a passive scalar by incompressible veloc-
Having reached an understanding of this model, it is therity field v is described by the equation

natural to generalize its results, passing to more realistic

flows. However, due to the complicated interplay between g9+ (v,V) - kVZ9=0, (1.1

spatial and temporal properties of the velocity, one encoun- . e .
ters various difficulties in introducing a meaningful velocity where is the molecular diffusivity. We shall be interested

field with a finite correlation time. The only case where this" the limit of small but finitex. In the case of continuous

was easily done is the so called Batchelor regiglewhere  niection of the scalar, one should add a soufger) into

the spatial structure of the velocity is rather simple, andh€ right-hand side of Eq1.1). . .

therefore one can separate space and time dependencies, (-6t US consider a blob of the scalar having a sizauch
appears in the limit of large Prandtl numbers, which is thesmaller than the viscous length of the v_elocny. The variation
ratio of the fluid viscosity to the diffusivity of the transported ©f the velocity on the scale of the blob is much smaller than
quantity. In studying advection below the viscous length, théN€ 1arge homogeneous velocity transferring the blob as a
correlation functions of the velocity are smooth functions ofwhole. To account for a slow variation of the form of the

space, which allows one to introduce an effective descriptior?!oP due to the relative motion of the particles, itis natural to
with v,= 0o, (t)rz [2]. In this way time and space become pass to th_e r eference frame moving with the ve_locr.cy of a

@ Tagl B particle within the blob[14,15. Since the velocity is a
completely separated.

Lo L smooth function on the scale of the blob, it can be expanded
The Batchelor limit is well studied it has a zero corre- P

lation time and its statistics is Gaussi@-13]; that is, in the In & Taylor series thus leading to the equation
framework of the Kraichnan model. Certain results have ata+gaﬁrﬁvaa_,<v219:o_ (1.2
been derived for arbitrary statistics of[1-4,13.

Our aim here is to investigate the degree of universality oHereo ,4(t) is the matrix of the velocity derivatives taken at
the passive scalar statistics for arbitrary temporal correlationthe chosen Lagrangian point. Incompressibility implieg,
of the velocity. We utilize the close relation between the=0. For turbulent flowsr should be regarded as a random
statistics of Lagrangian trajectories in a turbulent flow andmatrix, having a finite correlation time, which is the La-
the statistics of the passive scalar. Therefore, it seems regrangian correlation time of the velocity.

|. GENERAL RELATIONS
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The complete information about the Lagrangian flow, de-rate \ 4, until att~|\4| ~In(L?\y|/x) it reaches a scaley;

fined by 9,R=oR, is contained in the matrixV, satisfying = JkI[\4[, where the diffusive spreading of particles makes

_ _ further contraction impossible. Later, the smallest direction
HW=oW,  W(0)=1, will fluctuate aroundrg;. This will not affect other direc-
This generates an affine transformation of space points, s6°ns, that will continue to change according to their
that a vectoR transforms a(t) =W(t)R(0). Thevolume Lyapunov exponents. In order to ha_we a wide separation of
conservation guarantees #ét1. The motion of the par- the scaled andr g one should require a large value of the
ticles of the scalar differs from that of the space points due t&’€clet number

the nonzero diffusivity. To investigate this motion we intro- N ren
duce the “inertia tensor” of the blop14], Pe=L/rgir=LINl/x. (1.5
This ensures that the time needed to reach the diffusion scale

|aﬂzif drr ,r gO(t,r), (1.3 is large, so that the above arguments are valid.

2N Apart from the typical event described here, we shall also
need the distribution of all outcomes. This is the aim of Sec.
Il. Although it is not difficult to work with the arbitrary
dimensionality of space, we shall consider the physical di-
mensionalitiedd=2 and 3 only.

whereN = [drd(t,r) is the number of particles of the scalar.
It is easy to check thall is conserved by the full equation
(1.2). It turns out thatl contains all the necessary informa-
tion, and will appear in the following sections as the result of

formal calculations. The tensbisatisfies the closed dynami-
Il. STATISTICS OF |

cal equation
_ T To separate the angular degrees of freedom from the ra-
dl=x+tol+lo. (1.4 gial ones, it is natural to represeinas follows:
The initial condition depends on the form of the initial blob, |=RTAR. 2.1)

generallyl aB~L2. We shall see that for problems with spa-
tial isotropy it is enough to considdr,z(0)=L%3,5. One  HereRis an orthogonal matrix composed of the eigenvectors
can check that can be expressed v/ in a way that is of |, and A is a diagonal matrix with the eigenvalues
nonlocal in time. Since is symmetric and incorporates the e2r1, . . e?rd along the diagonalwe believe that the eigen-
diffusion, instead of working withW it will be more conve-  values are ordered, so that=p,= ...=p,). Equation
nient for us to work directly with Eq(1.4). (1.4) becomes

The dynamics of the symmetric mattixcan be separated
into the nontrivial essential dynamics of its eigenvalues and
the trivial dynamics of the angular degrees of freedom. It is
thus natural to reformulate the dynamics for the eigenvalues
directly, excluding irrelevant angular degrees of freedom.
For the case that i$ correlated in time, this, can be done HR=0R, Qj=—7"
exactly, resulting in the Calogero-Sutherland mddgl We ei—e
shall show that for a finite correlation time ofthe angular
degrees of freedom can also be effectively excluded. Th . . .
reason for this is that only the large-time dynamics of the gs. (2.2 and (2‘.3)' This system of equations is not very
eigenvalues is important for our purposes, so that in man .seful for analyzing the general case. However, one can no-

respectgbut not al) the matrixo appears to bé correlated ice that if during the_ evolution the elgenvalugs become
in time. widely separated, that jg;> - - - >py, the system is greatly

Before we proceed with the derivation, it is useful to un_simplified. In this case the antisymmetric matfixbecomes

derstand qualitatively the typical dynamics of a blob. If the
amplitude of the velocity fluctuations is large enoughe 0=
precise condition will be formulated belgwthe termx on 1k
the right-hand side of Edq1.4) can be disregarded during the
initial stage of the evolution. Then one can make sure lthat and, due to Eq942.2) and(2.3), the dynamics of the angular
coincides withL?WW'. According to the Oseledets theorem degrees of freedom is independent on the eigenvalues.
[16], at large enough times the logarithms of the eigenvalue3herefore, Eq(2.2) can be resolved:
of the latter matrix are asymptotically equal ta;2. The
Lyapunov exponents,, . .. A4 do not depend on a particu-
lar realization ofo hence they are important characteristics
of the system.
The above implies that the directions corresponding to v p[— J't’ R H
. . . ex 2 dt O-ii(t ) .
positive and negative Lyapunov exponents will grow or de- 0
crease correspondingly, and that the blob will become an
ellipsoid with the lengths of its main axes changing asHerep, are some constants of the order of unity that should
exp(\t). The orientation of the ellipsoid can be arbitrary. be determined by matching with the initial period of separa-
The smallest dimension will decrease exponentially with thetion of the eigenvalues.

~ K ~
opi=0ii + 5 €XH— 2pi), c=RoR’, 2.2

(2.3

e do not assume a summation over the repeating indices in

o, 1<k
- ] (2.4
— Ok » |>k,

t
1+ Ke*ZPOiJ dt’
0

to_ 1
pi:POi—"J’ dt’ oy (") + 3In
0

(2.5
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Integrals in Eq.(2.5 determine the dynamics ¢f, . We

consider times much larger thanthe correlation time oér,
which is generally less than or of the orderofThe form of
the probability distribution function op is different if we

considerr<t=<|\y ~*In Pe ort=|\4 ~*In Pe, depending on

whether the diffusion has started to be relevant or not. If the
former case is considered, one can disregard the second te[ltg

in Eq. (2.5), thus obtainingo;~ [5dt’ o;;(t"). We recognize

the case of the central limit theorem. However, the Gaussia[% N>\
distribution describes only the bulk of the most probable .
events, leaving rare events out of the domain of its validity ¢, ations

We shall need a more general expresgibf] which can be
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one can find the explicit expression 85 3 [6,13] (see also
Appendix A). The constants; are nothing but the Lyapunov
exponents, which are expressed via the statistias of the
following way (cf. Ref.[16]):
Ni=(0ii). (2.9

have a self-consistent picture, we should assume that the
spectrum of the Lyapunov exponents is nondegenerate, that
i+1. Physically nondegeneracy of the Lyapunov ex-
ponents means that a blob is unstable with respect to the
leading to a separation of the lengths of its
sides. Noticing that the Lagrangian point0 is a saddle

derived from the following considerations. The integrals Canpoint for the incompressible flow, one can easily verify that

be considered as sums of a large numbett/7 of indepen-

the strain directions corresponding to the further elongation

dent identically distributed random variables. Thus we invesof the blob prevail. Therefore, during a timeof approxi-

tigate the distribution oK given by

(2.6

n
X= 2 X -
i=1
Without loss of the generality we can assume thxat=0. If
the generating functiofexdiyx;]) of eachx is exg —s(y)],
then X has the generating function dxpngy)]. To find the

distribution function ofX, one should make the inverse Fou-
rier transform

d
P(X)= f %exp{iyx—ns(y)]-

mately constant strain, the blob will be on average further
elongated.

At t>(N\;—\;.1) ! we can disregard effects originating
from the boundaryp;=p;, 1. Equations(2.7) and (2.8) are
not valid in a narrow region near the boundary which has a
width of the order of unity. Since it is much smaller the,
we can use the step functighto model the form of the PDF
near the boundary.

Due to the incompressibility condition the exponents sat-
isfy Eid:l)\i=0. Then, in order to have a spectrum that is
nondegenerate id=2, one should only require that >0,
which is the same as saying that trajectories diverge expo-
nentially. Ind=3, it is necessary to supply some information
about\,. If the statistics ofo- is symmetric with respect to

At large n this integral can be calculated in the saddle-pointtime reversion, them,=0 [13]. However, if this is not the
approximation. Writing the extremum condition, we see thatcase, it is generally nonzero. In Appendix B we find the

Yexr 1S @ function of the argumenX/n, which implies
P(X) < exd —ngX/n)]. For X<n one can expand in the
Taylor series and obtaiff exf —X%/(2nA)]. HereA is the
variation ofx; . This is nothing but the central limit theorem.
On the other hand, if we increasekeeping the ratiX/n a
constant of the order of unity, we can assert thaPdn—n.
This has a simple interpretation.Xfis of the order oh, only
realizations where most of are of the same sign contribute.

Therefore we can model the situation by the binomial ran- Sy(x)=~

dom process, which gives just the above result.
If we replace sum(2.6) by the integralf§dt'x(t") of a
random functiorx over timet much larger than the correla-

tion time, we should only note that the characteristic function

of X is proportional to exp-ts(y)], and then proceed as

above. We used the fact that the characteristic function is an
exponent of the cumulant generating function. The deriva-
tion is easily generalized for several quantities. Thus the disHere((- )

tribution functions ind=2 and 3 are given by the formulas

— gt
P EXF{—tSz(p — Hmpl)a(pﬁpz), 2.7
— A\t — N\t
Pox exr{—t%(pl n : ,p2 i 2 ”9(91_92)0(1)2_1)3)
X 8(prtportp3). (2.9

expression foi, if the correlation time ofr is small, which
shows that its sign is generally arbitrary.

The form of the functionsS, ; depends on particular de-
tails of the statistics otr. However, it is possible to make
two general statements about these functions. First, one can
assert that at sma¥ the expansion

x2 CpX3—2C X1 X+ Cq1X5
2C. Sa(X1,X2)~ 2
11 2(C11C,—C1y)

is valid, reproducing the central limit theorem. The constants
C;; are defined as

Cij:f dt’ (o () o5 (1))).

) stands for irreducible correlation function. The
integrals should be calculated over an interval, much larger
then the correlation time of. Note that the condition of
incompressibility ensures that'_;C;;=0.

Whenyx; are of the order of unity, the functior$; ; have
no singularities and change smoothly. The quadratic expan-
sion of S, ; is valid as long as

HereS,(x41) andS3(x4,X,) are some functions depending where7 is the correlation time of. In the 5-correlated case

on the details of the statistics of. In the 5-correlated case

it holds everywheréAppendix A).



PRE 60 UNIVERSAL LONG-TIME PROPERTIES ©. .. 4167

The normalization ofP is determined by the quadratic att>0. In the framework of the Kraichnan model the single-
part of S, 3, since most of the probability is concentrated atpoint statistics was considered by S@&j, who obtained the
[pi—Nit|~ m<t. One can find the normalization factor following long-time asymptotic behavior:

(2mCqt) 2 in d=2 and[47?t3(C1,Co—C1)] 2 in d
=3. a\ o _

Now considert=|\4|tIn Pe. The diffusion is irrelevant (1907 exp = vab), 31
for p; having a non-negative Lyapunov exponent. However, ] )
there is a finite probability, increasing withthatp, reaches Wherey, in d=3 is equal toa(6— «)D/4 for 0= <3 and
the diffusion scale. This requires an account of the last tern§D/4 otherwise D is a parameter characterizing the strength

on the right-hand side of E42.2) or Eq.(2.5). The diffusion  Of the fluctuations ofs). The same decay law has been
will not allow py to decrease much below |ng)/x). On the ~ claimed for the gradients of the scalar. Here we consider the
result, the corresponding; will be distributed stationarily ~€ration shows that due to the above-mentioned special form
around the value In¢|\). Relaxation times associated with ©f EGs-(2.110—(2.13, law (3.1) is valid for arbitrary statis-
less thent. On the other handp’s having non-negative g_radient. In thed-correlated limit we obtain a result foy,,
Lyapunov exponents are the integrals over the whole evoldifferent from that of Ref[6]. The results also show that the
the last period of evolution with duration of the order of the ~_The following qualitative picture, supported by the calcu-
relaxation time ofpy. This means that fixing their values at lations presented below, explains the decay. First, consider a
and the whole probability distribution functioR is factor- taining N particles of the scalar. As velocity stretches the
ized (cf. Refs.[3,8]). In d=2 we can write blob, the number of particles does not change, contrary to the
of the blob with negative Lyapunov exponents are frozen at
Psip2).- (2.1)  rg, while the rest keep growing exponentially, resulting in
Here Py is the stationary distribution 0p,. In d=3 the the volume is proportional toydet =expEp), one has
situation is more complicated. Whibe, is always negative, (|9]%)=(exp(-aZp;)), where the averaging should be done
will be different for these two cases. Xf,=0 «[dpP(p)exp(-aZp). The result is determined by a com-
promise between two competing factors. While the averaged
t t maximum of the probability is attained when each growing
p; is equal to\;t. Obviously, for largera the volume ac-
S, 3 are the same as in EqR.7) and(2.8). made by smaller blobs, which are less probable but have

If \, is negative, then at>|\,| tIn(]\,|/x) the distribu-  larger concentrations of the scalar. So, at smallhe devia-
In(\,l/ ) which by order of magnitude is equal to [lf/«). ~ mined by the Gaussian part of the PDF. This gives a para-
Therefore, our assumption thas> ps is incorrect. Stillp, ~ bolic dependence om. On the other hand, itx is large
variables. Then the distribution function is equal to minimal possible volume which is of the order bf. The

decay exponent is fully determined by the probability to have
~ [P1— At
P exp[ _tSB( t )]Pst(PZ’PE»)- (213 picture implies that exponential decay holds at
=|\g| "tInPe.

Finally, let us note that since the configuration spacg’€ous problem, this consideration should be slightly modi-
SO(d) of the rotation matrixR [see Eq.2.1)] is finite, and  fied. At larget, initially uncorrelated blobs are brought close
matrix is distributed uniformly over the sphere. rection, and then they overlap diffusively. Since the number

The basic result obtained above is the special scaling forrf Overlapping blobs is large, due to the central limit theorem
which lies in the origin of the results derived below. Therefore (| 3]%) = (exp(— aZpi/2)). . o

Formally, one should solve E¢l.2) with the initial con-

contrary, negativevy will prevent it from increasing. As a problem for an arbitrary correlation time of. Our consid-
this distribution are diffusion independent, and thus are mucfics of o both for the single-point value of the scalar and its
tion timet, so that their values at timeare not sensitive to PaSic assumption of Reff18] is incorrect.
time t>|\4~tInPe will not affect the distribution opy, single blob initially having a characteristic siteand con-
volume of the blob. At=|\ 4|~ tIn(]\¢{L%x) the dimensions
Pox exp{ —tSz(pl_tMt
an exponential growth of the total volume of the blob. Since
X\, can be both positive and negative. The form of the PDRwith the help of the PDF discussed above, that|i|)

P exp[—tSg(pl_)\lt,pz_)\zt)]ﬂt(pg). 212 quantity expfap) favors smaller values ofp;, the
Sincepy is independent of the rest of the is the functions quires more importance, so that the main contribution is
tion over p, will also become steady and concentrated neation from the average growtht is small, andy,, is deter-
>p, 3, and the equation fop, is separated from the other enough, the main contribution is due to the blob having a

such a blob, and hence éisindependen(3,6]. Note that this
whereS, is related t0S; by expSy) = dp, exp(Sy). If instead of a single blob one takes a spatially homoge-
since there is no preferred direction in space, at larjee 0 €ach other because of the contraction along a certain di-
of the probability density functions. It is this universal form it iS rather & which is inversely proportional to volume.
dition 9(0,r) = 9y(r). The solutions are

Ill. DECAYING TURBULENCE

As a first application, let us consider decay of a passive
scalard. The problem is posed as follows: given a random ﬁ(t,0)=f
distribution of the scalar densitff, att=0, find its statistics

dk
) aO(WT(t)k)eXF[ - Q,uvk,ukv]v (32)

77_d
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t
Q(t)=KJOdt’W(t)W_l(t’)[W(t)W_l(t’)]T. (3.3

From the qualitative arguments it is clear that the long-time
asymptotic should be independent of the particular form of
the distribution. We will take the simplest statistics, which is

Gaussian with the pair correlation function

(Do(r) 9o(r2))=x(r12), x=xoexd — r2/(8L?)].
(3.9

This particular form is chosen for further convenience. In

what follows we set_=1. It is possible to generalize the
calculation for arbitraryy and show that the results are in-
dependent of its form.

To proceed, we introduce the generating functionjof

Z(y)=(exliy 9(1,0)]),.4,. (35

Here we assume averaging over the statisticer éind the
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It is clear thatp,>t. As long as one can use the quadratic
expansion, which is valid at least at small the solution of
this equation iso;=(\;— aC14/2)t; hence

aCll)

a

2

Ya™ 2 4 (39)
At a>ag=—2S,(—\;) the value ofp; becomes much
smaller thanit; the integral(3.8) is determined by the
boundary of the integration region, and therefote,
=S,(—\,), independent ofv.

The domain of validity of Eq(3.9) depends on the value
of the parametex 7. If it is much smaller than unity, we can
use the quadratic approximation $9 everywhere. This case
effectively corresponds to the Kraichnan lirp@].

In the opposite limit 7= 1, the quadratic expansion 6§
cannot be used fot=1/(7C,,), and Eq.(3.9) is valid only

at @<1/(7C4,). The form of the intermediate region is not
universal, and depends on the particular form Sf and

initial distribution of the scalar. The simplest part is to per- hence on details of the statistics @f

form averaging over the Gaussian fielg. To do this, we
substitute Eq(3.2) into Eq. (3.5), and using the expression

B. Three-dimensional case

for the characteristic function of a Gaussian random variable

[17], obtain

_ _y_2 dk Tk e~ 2Qu K.k,
Z<y>—<exp[ 2f(%)dx(w ke

Substituting (k) =(87) ¥y, exp(—2k?) and integrating
overk, we obtain

o

Z= exr{—y—ZL . (3.6
2 Jdetl(t)]/

We used the fact that=WW' + Q, which can be verified by
writing equation onWW'+Q and comparing it with Eq.
(1.4).
Using Eq.(3.6), one can find
(|9(t,0%)=C,((detl)~*"*),,. (3.7)

HereC, is a numerical constant. Equati¢®.7) reduces the
problem to an averaging of powers of dletll exp(2),

(919 -c. ddpexp[

where P is the probability density function g discussed
above. In the large time limit this integral can be calculate

d

-5 3 p[Pte), (39
i=1

in the saddle-point approximation. The calculation is slightly

different ford=2 and 3.

A. Two-dimensional case

In d=2 integral(3.8) should be calculated only over,
since the distribution ovep, is stationary. The saddle-point

equation is
— Nt
Sé(pl t 1 )+

In d=3 the result is similar to that afl=2, though the
consideration is slightly more complicated, due to the pres-
ence of an additional degree of freedom. There are two cases
to be considered. IX,<0, thenP is given by Eq.(2.13 and
the calculation is the same as fooe=2.

If A,=0, both degrees of freedopy and p, are active
and one should use the POE.12. The saddle-point equa-
tions are

Jd X1,X
Sa(x1.X2)
X,

(¢4

ISi(xs %) @

’ Xy 2 (3.10

wherex;=(p1— Nt)/t andx,=(p,— A\, t)/t. Again, the be-
ginning of the curve is determined by the Gaussian paR,of
and vy, is parabolic:

o o
Yoa=7% |)\3|_ZC33 , (3.11

W|th p1=(7\l+aC13/2)t and p2=()\2+aC23/2)t At «
larger thana, calculated below, we have theindependent
behavior

Ya=S3(—N1,—Np). (3.12

Depending on the parameters, two different types of be-

({uavior can occur atv<ag,. First, it is possible that as

ncreasesp, will grow more slowly witht and at certainx

will become much smaller thax,t. At larger « the integra-
tion over p, will be determined by the regiop,<\,t and
one should replace systef®.10 by the single equation

dS5(X1,—Np) N a

IXq 2 =0.

(3.13
In this caseq = — 2‘9153(X1’_7‘2)|X1:—M'

The other possibility is that at certaim the difference
p1—p2 becomes much smaller tham ,. Because of the
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constraintp,> p,, for larger « integral (3.8) is determined statistics ofl is stationary. Thus the decay of the gradient is
by the boundary; = p, of the domain of integration, and the solely due to the change of the density of the scalar. More

saddle-point equation becomes formally, one has
dS(X1,X2)  IS(X1,X2) ) dk
%, + %, +a=0. (3.19 w“:'j (277)(1kaz‘}o(WT(t)k)exq—QWkMk,,].
- _ __ (3.18
Then Qo= [&1S(X1,X2)+(?25(X1,X2)] at Xl_ )\1 and

X,=—\,. Geometrically, the first case corresponds to elon-I

gated eIhpsc_)lds, and the se_zcond_one to two-dlmen5|one} g it over the initial distribution(3.4) we obtain a formula

droplets having two~largest dimensions of the same order. similar to Eq.(3.6) Then, making a Fourier transform owgr
If the parametei 7 is small enough, these changes of theye gptain the PDF ofo:

regime occur within the Gaussian part . Then one can

troducing the functionz(y)=(exdi(y,w)]), and averag-

perform a more detailed investigation. The first regime is [detl
realized if \;>\,C;3/Cp3 and C,3<0. Then, at a> 730<<(detl)d’4“’2ex;{— (w,lw)D . (3.19
—2N\5/Cy3, EQ. (3.1 should be replaced by o
a?(Ch, a Ciho| A3 Considering this expression in the eigenbasis of the méirix
Ya=g C_zz_Cll T\ M Co 2C’ we observe thaf| m|*)~ (| w4|*), sincepy is smaller than the

(3.15 rest of thep is. Recalling that the distribution overy is
stationary, we immediately obtain that
If A\,=0, Eq.(3.1) has no region of validity, and at>0
one should use Ed3.15, which becomes (IVaﬂ(t,O)|“>OC<(detl)*“’4>(,,

Yoa= 7 )\1_Z<C11_C_22

which, due to Eq(3.7), gives the same law of decay.

(3.19

. o . . . IV. FORCED TURBULENCE
In particular, within the Kraichnan model, E@.16 is valid

for 0O<a=<aq,. Substitutingh; and C;; (see Appendix A A. Single-point distribution of 9
one findsa=4, In this section we shall investigate the steady state distri-
3Da o bution of a passive scalar which occurs in the presence of a
ya=—(l— —), (3.17 stationary source. For this purpose we introduce a random
2 8 function ¢(t,r) on the right-hand side of Eq1.2), injecting

blobs of the scalar with the characteristic sizeDue to the
linearity of the problem, the scalar field at the momeént
=0 is given by a superposition of the scalar injected at ear-
lier instants of time. Each realization of can be character-
ized by a parameter, (cf. Ref.[3]), such that the smallest
dimension of blobs injected dt=—t, approaches g att

=0. The ambiguity in the definition df, is of the order of
INg| "1 which is much smaller than the typical stretching time
INg| 1In Pe. Considering the motion of the scalar injected at
—t, =t<<0 diffusion may be neglected. Then the scalar is
simply advected along Lagrangian trajectories. On the other
hand, as discussed in Sec. lll, the contribution of the scalar
injected att=<—t, is exponentially small. Thus, separates
diffusive and diffusionless regimes. One can write the fol-
PTOWing approximate formula:

for a<a andy,=3D for a>a.. Our result is different
from the one obtained in Ref6], which coincides rather
with Eq. (3.11). An exact solution forx= 2 (see Appendix C
and Ref[9]) supports Eq(3.17). The reason for the discrep-
ancy is the following. Despite the fact thajoIn(«/D), it is
impossible to ignore it completely. If this were done, the
anticorrelation betweep, andp,, existing due to the incom-
pressibility condition would lead to the growth %, thus
making the calculation inconsistent.

The second regime takes place @3>C;3 and Cy;
>Cy3\o/Nq. Then, starting from a=2(\1—\5)/(Cys
—C13), Eq. (3.12 should be replaced by another formula.
Although the dependence anis still parabolic, the coeffi-
cients are rather cumbersome, so we do not write this her

C. Gradients of the decaying scalar

0
J(0)F)|, = %f dt ¢(t,0). 4.1
In the same manner one can consider the decay of the (00]r=o —t, #1.0) @

gradients of the scalar. In analogy, we can look for the cor-

relation functions| w|“), wherew=V9(t,r)|,_o. As in the  If the correlation time of the source is much smaller than
case of single-point scalar statistics, these correlation fundor a fixed realization ofr integral(4.1) can be considered as
tions decay exponentially in time. It was claimed in Héff a Gaussian variable with zero average and the dispersion
that the decay law of the scalar and its gradient is the samgroportional tot, , so that after averaging oves, for the
within the Kraichnan model. Here we show that this is actu-single-point PDH 3] one obtains

ally the case for arbitrary correlated strain. Qualitatively it

follows from the estimate that|Vd|~d/1, where | < 1 92 >

=exp(py) is the smallest dimension of the blob. As explained P(Y)= ——eXp( - —) : (4.2
above,¥ andl can be considered as independent, while the 2T X0l 2Xot o
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where o= [dt{$(t,0)¢(0,0)). The effective Gaussianity of p(t, )< exp(—ct,), 4.7

the pumping has its limitations due to finite correlation time

of ¢ [analogously to the discussion of EqR.7) and(2.8)].  wherec is equal toS,(—\;) in d=2 andS;(—A1,—\3) in
Since we work in the comoving reference frame, this corred=3. The intermediate region is not universal and depends
lation time is very small and hence only the tail will be on the details ofr. Note that since Eq4.7) gives the prob-
affected. At the end of the section we discuss the implicaability that at large time, a blob has not yet decayed, there-
tions of this. To proceed with formal calculations, we shouldfore ¢ is equal to the limiting value of, (see Sec. I\

specify statistics otp. Here we shall takep as a Gaussian This information allows one to calculate the probability
field with the pair correlation function distribution functionP(9). If 9<In(|\y/x), it is the central

peak ofp(t,) that determines the scalar PDF:
(d(t1,r1) d(ta,12)) = x(r 1) 8(t1—15),

INgl |2 INg| 97
wherex(r) is the same as in Sec. lll. The expression for the P= 27xo N Pe exp — 2x0INPe’
generating functiorZ= (exp(yd)) follows

4.9

As we increasa’, at 3=In Pe the details of the distribution

- < ;{ y2xo (0 dt’ > w3 of t, become important. The Gaussiaregime Eq.(4.8)]

=\exg — — . . will turn into some nonuniversal asymptotic. Nonetheless, at
2 — o0 ! 1

detl (0t ]/, 9>1In Pe, due to Eq(4.7) the universality is restored:

Herel(t,t") is a matrix, satisfying Eq.1.4) with respect ta 2c

and the initial condition (t’,t")=1. Naturally, the integra- Pocexpg —\/—|9]]. (4.9

tion is performed over the initial time, summing up the blobs Xo

injected at different times. The integral in E¢.3) gives the For a s-correlateds one can find the complete function

formal definition oft, entering Eq.(4.2): P(9). ThenS, 5 is Gaussian(Appendix A), and the result

can be found in the saddle-point approximationdk2 the

t = o dt (4.4 result coincides with Ref§4,10,11. In d=3 we obtain the
* ) e deti(0t)) : formula (cf. Refs.[10,11))
2
Introducing the distribution functiop(t, ), we rewrite Eq. InPoc—3| \/In? PeJrDﬁ —InPe
(4.2) as 2x0
foo dt, ;{ 92 ) s for | %] <4+x,/D InPe, and
P(d)=| ———p(t)exp —5—|. 4.,
(%) 0 \2mxot, P(t.) 2Xotx

3D 9
InP6 InPe-4/3 In? Pet 3
Sincet, is a functional of the whole trajectony;(t,t’), Xo

one needs more information than contained in the simultagiheryise. The change of the regime is related to the fact that
neous distribution function gf. However, the following ap-  the two dimensions of the contributing blobs start to be equal
proximation, becoming exact at InPe-, reduces the prob- o . This result is different from the one presented in Ref.
lem to single-time statistics. We shall neglect the[10] The difference can be qualitatively explained as fol-
configurations for which the smallest dimension of the blobjgws. In our case the structures of the scalar making the main
starts to grow after it reachds;;. Then the realizations for - contripution to the PDF are columns, with the two smallest
whicht, is larger than som&, and those for which the blob  gimensions of the same order. They appear because of the
injected at—T hasp;(0,—T)>r, are the same, leading Us anticorrelation originating from the incompressibility condi-

to the following formulas: tion: for t, larger than a mean valugg should decrease
P slower than\ st, which by virtue of the anticorrelation leads
t )= _f d f dp,P(t, .p1.p4), to a decrease qb, faster thani,t. Staring from a certain
P(t.) gty ) P2 (il |\ 5]) PPt P1.pP2) value of ¥, both p, and p; decrease at the same rdamn

(4.6)  analogous phenomena on is described in Sec.)lIMis

J (= % % structure is different from the ansatz proposed in RE®).
P(t) =2 J dle szJm( i l)dng(t* 'P1,P2,P3)- Equation(4.2) should be modified if has a finite corre-
* J = —® Kl|Ag

lation time 7, [see the discussion leading to E¢2.7) and
(2.8)]. That is,
o]
————exp —t,f| — ,
p3>In(xl|\y)), once returns are disregarded. < 27 x ot ty "
Investigation of the above integrals shows thét,) has
the following properties. Its main body is concentrated in thewhere f(x) deviates fromx?/(2y,) at x= 1/r,. This may
vicinity of t, =|\g| !InPe, and has a width of the order of affect only the tail of P(9). If the parameterr(ﬁ\/ﬁ is
InPe. On the other hand, its tail>|\yq| "lInPe decays much smaller than unity the tail is determined completely by
exponentially, the region wherd «<x?, and one obtain the asymptotic result

Here one should substitute PDE2.7) and(2.8), sincet, is
determined by the diffusionless regime. These equations de-
fine nothing but the flux of the probability out of the region -
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(4.9). Conversely atry\xoc=1 the form off should be ac- v2xoTo

counted. Nevertheless, one can easily check that the expo- Z=\exg — 2 :
) . . ! . 2l

nential tail survives with a decrement depending on the form Tyl

of f. ) L .
Since the injection stage occurs ft=|t,|~|\g| 'InPe

B. Gradients [>>7~78] the fluctuations determining@, and| are independent
Here we briefly consider the statistics of the scalar gradi- On the averageTo~|\g ™! and I~rg:, so that(w?)
ents. Within the Kraichnan model the problem was solved in~ y,/(\ 5 'r3). Nevertheless, studying the tail of the gradi-
Ref. [7]. From the qualitative picture presented there, oneent PDF, it is necessary to take into account the large devia-
can conclude that the PDF is determined by the short-timgons of these parameters. The probability of a large value of
fluctuations ofo, and hence is nonuniversal. The following T, is related to configurations of small straisee Secs. Il

considerations support the conclusion. and IV A), and decays as exp€T). Writing
In a way, similar to the one leading to Ed8.6), (3.19),
(4.2) and(4.3), one can find Pw)~(exd = w?1?/(2xoTo) )7, 1

o I Yot)dt’
Z(y):<exp[_ YaYpXo [0 125(01)

4 )= /detl(0t")

> one can average ovéai, and find
o P(w)~(exd —|wll(2¢/x0) "))

(4.10
To average ovel one notes that the taliksr 4 of the prob-
the gradierﬁ‘bi“ty distribution function ofl is related to the tail of

field att=0 is given by a superposition of contributions of Psi(pa) [se(_a Eqs(2.11-(2.13] _v_ia | =exppg). Indeed, b.Oth
blobs injected at earlier moments of time. We observe thafi'® determined by the probability of a strong and rapid con-

the contribution of each blob inte?=(V §)? is determined ~taction fromr gy to I <rg;. Hence

by two factors: the value of the scalar density(detl) %2

and the inverse size of the blob contained 1;}. Not all the P(w)~f dIPg(Inhexd —|w|l(2¢/x0)Y?]. (4.12
blobs make a contribution to E¢4.10. Indeed, the size of

the blobs injected dt’|<|t, | (wheret, was defined in Sec. wjithin the Kraichnan model Iy —1~2 (see Appendix A

IV A) is much larger thamg;, and therefore the value of the and the result IP(w) o — |w|? of Ref.[7] easily follows. In
gradient will be small. On the other hand, the scalar injectedyeneral the fluctuations of the smallest dimension take place

at [t'[>|t,| has an exponentially small density and henceat times of ordetr neart=0, and therefore are related to the
does not contribute. Thus the distributionwfis determined single-time distribution ofr, which is nonuniversal.

by the blobs injected &' ~ —t, which have the minimum  \ye conclude that the gradient statistics is nonuniversal
possible size provided the diffusion is still ineffective tat and cannot be predicted unless some specific information is

=0. L . supplied. For example, if the distribution bfalls off very
Each realization ofr can thus be roughly characterized 55t ot small, the distribution ofw will have an exponential

by two relevant parameters. The first one is the lateral diaj| ot very largew. In particular, this can explain the results
mensionl of the thinnest blobs, for which the diffusion can of numerical simulation$3,19], where a cutoff can be due

still be neglected at<<0. This is related to the very last stage gither to the grid step or imposed by haig]. If the tail of
of the evolution, when blobs of the smallest size of the orderpSt behaves according to[IR(1)]<—1", the tail of P(w)

of r 4+ may undergo a strong rapid contraction, increasing thg,5 4 stretched exponential formfMfw)]e — | w| /(¢ + 1),
gradient without dissipating the scalar. Let us stress that the
fluctuation should be short lived in order to suppress the
diffusive spreading of the particles.

The other parameter is the duratidig of the injection We considered a passive scalar advected by a random
stage for these blobs, showing how many blobs approgch large-scale velocity field. Our purpose was to establish the
att~0. There is no average strain during this period, so thatlegree of universality of the scalar statistics for an arbitrary
blobs injected at-t, —To<t'<—t, all have a size of the correlated velocity. The investigation can be reduced to the
orderL att~—t, . Since att>—t, the blobs move in the statistics of different Lagrangian characteristics of the
same velocity field, they all have approximately the samesmooth flow. In the limit of a large Peclet number, part of the
size att=0. Formally, the number of relevant blobs is ex- relevant information is contained in the long-time asymptotic
pressed by the formulg.f. Eq. (4.1)] properties of the Lagrangian statistics, which is shown to

possess a universal form. The scalar quantities related to
—t, long-time evolution thus manifest universal statistical fea-

ﬁwf dt’ ¢(t’,0). (4.1)  tures. Generally, these are the central part and the tail of the

“To corresponding PDF. We considered several particular ex-

amples of such quantities: the decay of the scalar density and

Writing the estimation for the gradieni~ /1 we can re- its gradient, and the scalar density in the forced case. Con-

place Eq.(4.10 by Z=(explyd/l)), . Averaging overp,  versely the statistics of the gradients in the forced case re-
we obtain quires information about short-time fluctuations of the veloc-

Analogously to the case of the scalar density,

V. CONCLUSION
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ity, and is thus sensitive to its details. P(t,p1,p2,P3)
The application of the Lagrangian statistics established
here is not only restricted to the above examples. One can 1 ;{ [(p1—3Dt)2+(py—3Dt)p,+ p3]
slightly modify the procedure to consider many-point corre- = exg —
lation functions of the scalar, say the PDF of the scalar dif- 2\/§7TDt 3Dt
ference at two point$10], correlation functions out of the X 0(py— pa) B pp— ps) S pr+ pat pa). (A2)

convective interval[12], and other problems. A similar
scheme could be applied to other passive quantities, like vec- As explained in the main text, these formulas are valid at

tors[20] and tensor$21]. times 1D<t<1/D In(DL%x) and the form of the PDF near
the boundary can be modeled by the step function. At times
ACKNOWLEDGMENTS t>1/D In(DL?%«) one should also calculate the stationary

, . . PDF ofpq. They are readily found from the one-dimensional
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APPENDIX A: THE KRAICHNAN MODEL

3/2
K
- | — _ o 72p3
Here we consider Eg$2.2) and(2.3) within the Kraich- Psi(pa) 8\/;( D) exp{ 3ps 4D € ) (A4)
nan model, when the matri# has a zero correlation time
and is Gaussian with the pair correlation funct{dn APPENDIX B: SMALL + EXPANSION
(0ap(1)0,,(0))=D[(d+1) 6,35, In this section we assume that the correlation timnef o
8,48, — 808, ]8(1) is small, namely,Dr<1, where D={(tr[dto"(0)o(t))
apTuy - CavChu ' characterizes the amplitude of the fluctuationsrofWe in-
The tensor structure is fixed by the incompressibility condi-vestigate the effect of the finite correlation time on the
tion. The zero correlation time allows one to write the LyPunov spectrum. lu=2 there are no essential changes
Fokker-Planck equation for the probability distributionfef ~ With respect to thes-correlated case, since bokh and\,
and A. Integrating out the angular degrees of freedom, ong™ —\4 receive small corrections in, leaving all qualitative
can see that the equation obtained is equivalent to the Lang&atures unchanged. Howeverdr=3, one can ask whether

vin dynamics[5] A will shift from its zero value atr=0, and whether the
correction is positive or negative at finite We demon-
Dd & P strated already that the first order correctionrigenerally
0tpi=7 E coth(2p;—2p;) + &+ Eexp(—Zpi), leads to a nonzero value af, in d=3, which can be both
1#1 positive and negative.

Here it is more convenient to parameterize the angular
degrees of freedom &/ W' by the eigenvectors instead of
matrix R [see Egs(2.2) and(2.3)], given bye{'=R,, . If the
eigenvalues are separatéthat is, p1>p,>p3), the equa-
tions for p, and corresponding to it eigenvecigrdecouple:

where ¢; are random Gaussiaf-correlated processes with
the following correlation functions:

(&(DE())=Cyd(t—t'), C;=D(ds&;—1).

Let us now consider a typical evolution of the eigenvalues.
At t=0 all the eigenvaluep; are equal to zero. Then, during
a short initial period of time, alp is start to differ. We can  The same is true fop,; ande;:

always arrange thg’s so thatp;>p,>--->py4. We then

observe that the ballistic ternicoth(2p—2p;) are arranged dip3=(63,08;), i€&=— 0 e3+e5(€3,06;). (B2)

in the same order, so that the eigenvalues will continue to

separate, and at-D ! the following inequalities will hold: ~ This system implies that under the transformation — o™
p1>p,>- - ->py. If this is the case, we can substitute the the eigenvalues are transformed\as;— — N3 ;. In the cal-
hyperbolic cotangents by 1, and obtain the equations culation it is convenient to deal with symmetric matrices,
which is achieved by decomposing into symmetric and
antisymmetric parts-=s+ » and introducings; = Mn, with

dip1=(€1,0€), & =0e—el(e,oe). (Bl

K Dd .
opi=N+ &+ EeXF(_Zpi)l ?\i=7(d—2| +1).
AM=wM, M(0)=1,
This simplified dynamics can be easily turned into the prob-sO that
ability density functions op [13,6]:
A;=((n,sn)), dn=sn—n(n,sn),
1

1 (p1—Dt)?
P(t!pl!pZ):meX _Z—ma(Pl)a(P1+P2),

with s=MTsM. To find the first order correction th; we
(A1) integrate the above differential equation from ,tand then
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iterate the obtained expression once. After averaging ovewith the solution of Eq. (C1) given by f(t,k)
the directions oi(0) we find =[dk'g(t,k,k")x(k"). Next we should make the inverse

5 1 Laplace transform of(E,k,k"):
)\lng'Odtl

wheret> 7. The expression fot \ 5 is obtained by changing
s— —s in this formula. Then, using,=—X\;— A3, we find

- 3t
tr<S(t)s(t1)>+7f dtp tr(s(t)s(ty)s(tz)) |,
0

1 (b+ix
g(r,k,k’)zz—ﬂ_ifbiiwdEeETg(E,k,k’). (C4

Hereb>0 is arbitrary. One may deform the integration con-
12 [t [t tour in Eq. (C4) until a singularity of the integrand is en-
Np=-— 3—5f J dtydty tr(s(t)s(ty)s(ty)), countered. The first singularity appearsEat —d?/4, which
070 is the branch point of. Therefore, the integration should be
performed along the real axis ato<E<—d?/4 on both
sides of the cut. Making the change of variatile= —x?
—d?/4, we obtain

which is generally nonzero and has no definite sign.

APPENDIX C: PAIR CORRELATION FUNCTION

In this appendix we calculate the time decay of the pair 2 i s
correlation functionf (t,r)=(®(t,r)9(t,0)) within the Kra-  9(7,k.k’")=— k™ Tk'T 7”07
ichnan model. It satisfies the equatid m

af=Kop(r)V,V f+26V2,  fli_o=x(r), xf dx e ¥ sinh mx) K, (keY?)K (K’ €Y?).
0
d+1 )
Kap=D 2 Sapl “—Tal g |- If one is interested in the single-point statistics, one should

integrate this expression ovkr
Making the Fourier transform overand passing to spherical
coordinates, we obtain B
J dk K~ tg( 7.k, k")
9, F=K232f + (d+ 1)k, f — ek®f,
D(d—1) . (Cy) B odi2-1 ~dia

€= —

t) . - k/d/2—1e—d27/4
2 D(d—1) T

T

Next, making the Laplace transform overwe obtain Xf dx e 7y sinh( mO) K (K’ €¥2)
0

K2f"+ (d+1)kf — (E+ ek?)f=— x(k). (C2
2
Two linearly independent solutions of the homogeneous x|
equation are expressed via modified Bessel functions of the
orderv=\E+d?%4. The branch of the square root should be
picked up so that it has a cut along the semidiis — d?/4
and takes positive values &> —d?/4. Using these func-
tions one can find the Green functigfE,k,k’) of Eq. (C2)

4 2

d ix)

At large 7 the integral is determined by a narrow vicinity of
x=0. After a simple calculation we obtain

satisfying the correct boundary condition (97(1)) = C Péﬂzex% B dz(d—l)Dt} 5
- 312 8 '
g(E,k,k’)= kfd/2k/d/27l[| V(kelIZ)Kv(kr 61/2) e(k/ _ k) (Dt)
+ K, (ke (k' €¥?) o(k—k")], (C3  whereC is a y-dependent constant.
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