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Relation of shear viscosity and self-diffusion coefficient for simple liquids

Kyunil Rah and Byung Chan Eu*
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

~Received 16 April 1999!

A Stokes-Einstein-type relation is derived for the potential part of the shear viscosity of a simple liquid by
means of statistical mechanics. The product of the shear viscosity and the self-diffusion coefficient is shown to
be expressible in terms of the pair correlation function and the intermolecular force as well as the density. The
shear viscosity formula, consisting of kinetic and potential parts and given in terms of the self-diffusion
coefficient, is tested against experimental data with regard to the temperature and density dependence of the
shear viscosity. Given the self-diffusion coefficient determined by experiment or simulations, the viscosity
formula involving the Stokes-Einstein relation obtained produces the shear viscosity of argon, krypton, and
xenon, in good agreement with experiment in the case of temperatures well away from the triple point.
However, in the neighborhood of the triple point of argon examined, a cutoff parameter, which is a measure of
the range of density variation, is needed to account for the experimental data. The applicability of the Stokes-
Einstein relation to molecular particles is assessed, and it is found to remain applicable in the range of density
and temperature examined.@S1063-651X~99!05710-4#

PACS number~s!: 66.20.1d, 05.60.2k, 05.20.Dd, 05.20.Jj
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I. INTRODUCTION

Transport coefficients of fluids constitute an importa
class of thermophysical properties necessary in materials
plications. Kinetic theories of transport processes have b
pursued for a long time in statistical mechanics for the
plicit purpose of calculating them in terms of intermolecu
forces. However, the molecular theory to calculate them
means of statistical mechanics is rather challenging a
faced with the enormous difficulty of solving many-partic
dynamics, the challenge has been increasingly met in re
years by developing various numerical simulation meth
@1–3#. Numerical simulation methods allow us to compu
some particular aspects of transport coefficients, but they
need inputs from theoretical investigations of the interre
tionships of various transport processes and accompan
transport coefficients, as well as some subtle conceptua
pects of the problems involved. Therefore theoretical stud
and some analytical results or models, if possible to obt
can be very valuable for the overall aim of endeavors
research in transport properties of matter. The work p
sented here is a contribution to that end.

There are known some simple relations between trans
coefficients, which have been experimentally verified
hold. They serve not only as means to compute one trans
coefficient from another but also as verifications of the int
nal consistency of the phenomenological theory employe
calculate them. Indeed, the solutions of the kinetic equati
of fluids employed predict certain relations between transp
coefficients in the limits of density, and it is thereby possib
to provide phenomenological relations with molecular the
foundations. For example, in Boltzmann kinetic theory t
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first order Chapman-Enskog solution of the Boltzmann eq
tion yields a relation between the shear viscosity and
thermal conductivity~which is known as the Eucken relatio
@4#!, the Nernst-Einstein relation for mobility@4#, or a rela-
tion @4# between the shear viscosity and the self-diffusi
coefficient, which are linearly proportional to each other w
a proportionality constant.

h5C~T!rD, ~1!

whereh andD are the shear viscosity and the self-diffusio
coefficient of a monatomic gas, respectively, andC(T) is a
constant weakly dependent on temperature for non-h
sphere potentials, but a simple numerical constant in the c
of hard spheres:C(T)50.831.

In the case of a hard sphere immersed in a viscous
dium, the well known Stokes-Einstein relation@5# is another
example that holds between the shear viscosity and the
fusion coefficient of the particle:

hD5
kBT

cpR
. ~2!

Here R is the hard sphere radius, which is assumed to
much larger than the solvent molecular radius and may
treated as an adjustable parameter in the case of mole
particles, andc is equal to 6 in the case of the stick bounda
condition and 4 in the case of the slip boundary conditio
This macroscopically derived relation in fact often wor
impressively even if the diffusing particle is of a size com
parable to the solvent molecule. Why this should be so
not as yet been satisfactorily explained by a molecu
theory, but will be examined in the present work. On t
other hand, there are some cases where there exist devia
from the relation in the case of some molecular fluids@6,7#
and also some evidence of sizable deviations in the cas
supercooled liquids@8–14#. See Mohanty’s paper@15# for a

t

:
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4106 PRE 60KYUNIL RAH AND BYUNG CHAN EU
review of the situation on supercooled liquids. Some
tempts@16–18# have recently been made to understand
deviations.

There have been some derivations of the Stokes-Eins
relation made by using the absolute reaction rate theory@19#,
which yields an intuitive formula involving adjustable p
rameters, generalized hydrodynamics@20#, the tagged par-
ticle kinetic theory@21#, mode coupling theory@22#, and a
kinetic theory of ellipsoidal particles@23#; however, the deri-
vations are mathematically rather involved and require
considerable amount of work even just to follow them. The
also have been derivations of a relation based@24,25# on the
autocorrelation function for the diffusion coefficient, b
they require an assumption of the relaxation time and id
tifications of the elastic and shear moduli with the longitu
nal and shear viscosities on the basis of physical argume
Therefore, it is reasonable to conclude that a statistical
chanical derivation of the relation is still an interesting su
ject of study.

On the phenomenological side of the study of the relati
in the case of polyatomic liquids a number of authors@26,27#
have suggested on empirical grounds that the Stokes-Ein
relation should be modified to the form@28#

heD5C~T!, ~3!

where the exponente is a parameter less than unity but var
ing with temperature and the nature of the solvent. In R
@26, 27# cited, this formula, with an appropriately chose
value of the parametere, was shown to correlate with exper
mental data on polyatomic molecules such as hydrocarb
tetramethylsilane, and benzene, to cite a few examples.

Since the dilute gas relation@Eq. ~1!# and the relation@Eq.
~2!# holding for liquids are so different with regard to th
exponent ofD, and are in fact in an inverse relation to ea
other with regard to theD dependence, a convention
Chapman-Enskog-type solution method for a kinetic eq
tion is unlikely to produce the Stokes-Einstein relation
liquids. Such a diametrically opposite density dependenc
theh2D relation suggests that it is important to understa
how the crossover behavior enters into the kinetic theory
the relation. The derivation of such a relation, which exhib
a crossover behavior, should be interesting even for sim
liquids. Also, a generalized form of the Stokes-Einstein re
tion for complex liquids promises to be an even more int
esting and worthwhile problem in the kinetic theory of li
uids, especially because the self-diffusion coefficients are
easiest among transport coefficients to simulate on a c
puter; thus such a relation can provide a relatively sim
method of computing viscosities for complex liquids. W
therefore consider the present line of investigation to be
first step in such a direction of work.

In this paper we would like to report a simple method
deriving the Stokes-Einstein relation, or a general form o
by means of statistical mechanics in the form

hpD5C8~T,r!, ~4!

where hp is the potential part of the shear viscosity, a
C8(T,r) is given in terms of the density, the pair correlatio
function, and the intermolecular force. This method rests
the recognition of the importance of bulk density variatio
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that occur when a stress is applied to a liquid. This is
effect which has not traditionally been taken into accou
when a theory of transport processes is developed. There
despite the derivation of an old well known result, it repr
sents a fresh viewpoint on the problem. The present met
is sufficiently general as to suggest that it should be poss
to obtain a similar expression for polyatomic liquids.

In Sec. II a Stokes-Einstein relation is derived for simp
liquids subjected to shearing perturbation by using a kine
theory method. The derivation exploits the bulk dens
variation that occurs in the molecular length scale in
liquid as it is sheared. A formula similar to the Stoke
Einstein relation, which holds only for a sufficiently larg
hard sphere in a viscous medium, is obtained for the po
tial part of the shear viscosity in terms of the density, te
perature, and pair correlation function of the liquid. Th
relation can used for calculating the shear viscosity o
simple liquid from the data on the self-diffusion coefficie
of the liquid, either known experimentally or from simula
tions. The original Stokes-Einstein formula is valid if th
assumption is made that the hard sphere radius is m
larger than that of the solvent molecule, so that the solv
can be treated as a continuous medium. The formula
tained in this work does not require the usual assump
mentioned. In Sec. III the relation is applied to calculate
density and temperature dependence of the shear viscos
argon, and the density dependence of the shear viscosi
krypton and xenon. They all are in good agreement w
experiment. The applicability of the Stokes-Einstein relati
to molecular particles is also assessed in this section. A
cussion and concluding remarks are given in Sec. IV.

II. STOKES-EINSTEIN RELATION
FOR A SIMPLE LIQUID

Consider a simple liquid of molecular massm contained
in volume V at temperatureT. It will be assumed that par
ticles interact through pairwise additive potentials. A kine
theory can be developed for the fluid, and, if the system
near equilibrium and subject to a small velocity gradie
caused by a shearing perturbation, then the shear streP
has the following linear relationship@29# with the velocity
gradient:

P522h@¹u#~2!, ~5!

whereh is the shear viscosity, and@¹u# (2) is the traceless
symmetric part of the velocity gradient¹u, namely,

@¹u#~2!5 1
2 @“u1~¹u! t#2 1

3 d¹•u. ~6!

Here the superscriptt denotes the transpose of the tensor a
the symbold stands for the unit second rank tensor. T
assumption made for Eq.~5! is that i@¹u# (2)i is small in
magnitude, so that the linear relationship holds between
stress and the velocity gradient. The shear stressP is also the
traceless symmetric part of the stress~pressure! tensorP:

P5 1
2 @P1Pt#2 1

3 d TrP. ~7!
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In the kinetic theory of liquids based on the generalized B
zmann equation@29#, the shear viscosity is given in terms o
a collision bracket integral of the virial tensor,

h5
2p2g

kBT R~1!
, ~8!

where

g5S mr

2kBTD 1/2

~nd!22,

with mr andd denoting a mean mass and a mean radius
the molecules, respectively, andR(1) the collision bracket
integral defined by@30#

R~1!5
1

5n2d3~kBT!2 E dx~N!Fe
~N!

3(
j 51

N

hj
~1!d~r j2r !: i T̂ ~N!(

k51

N

hk
~1! . ~9!

Here dx(N)5dr1 ...drNdp1 ...dpN , with r i and pi denoting
the position and momentum of particlei. Other symbols in
this expression arei 5A21. Fe

(N) is the equilibrium distribu-
tion function,

T̂~N!5T~N!dS mr

2kBTD 1/2

, ~10!

with T(N) denoting the collision operator ofN particles, and
hj

(1) is the traceless symmetric part of the virial tensor:

hj
~1!5@mCjCj #

~2!2 1
2 (

lÞ j

N
@r j l r j l #

~2!

r j l
v j l8 , ~11!

v j l8 5
]v j l

]r j l
~r j l 5ur j l u5ur j2r l u!. ~12!

HereCj is the peculiar velocity of particlej defined by

Cj5
pj

m
2u, ~13!

with u denoting the fluid velocity, andv j l is the intermolecu-
lar potential of particlesj andl. The collision operatorT(N) is
the solution of the classicalN-particle Lippmann-Schwinge
equation; it may be expanded into a cluster expansion wh
reduces to the Boltzmann collision integral in the dilute g
limit. For details about theN-particle collision operator, the
reader is referred to Ref.@29#. Since it requires the solution
of many-particle collision dynamics it is not trivial to calcu
late the collision bracket integrals except for the kine
contribution—namely, the term@mCjCj #

(2) in hj
(1) which

represents the momentum transfer per unit time—in the c
of hard spheres, the problem of calculatingh remains largely
unsolved at present. We look for an alternative procedur
computing the shear viscosity.

To begin with, it is useful to observe that the shear v
cosity may be decomposed into kinetic and potential con
butions, namely,
-

f

h
s

se

of

-
i-

h5hk1hp . ~14!

Both contributions depend on densityr as well as on tem-
peratureT. However, there exists a density-independent lim

lim
r→0

h~r!5hk
0, ~15!

which is the Chapman-Enskog viscosity. It can be verifi
that this is indeed the case, if the density expansion@30# of
the collision bracket integralR(1) is calculated by using a
cluster expansion of the collision operatorT(N). To see this
we define the collision bracket integralR0

(1) for the kinetic
part by the formula

R0
~1!5

1

5n2d3~kBT!2 E dx~N!Fe
~N!

3(
j 51

N

@mCjCj #
~2!d~r j2r !: i T̂ ~N!(

k51

N

@mCkCk#
~2!.

~16!

Then it is possible to identifyhk in the form

hk5
2p2g

kBT R0
~1!

, ~17!

andhp with the statistical mechanical formula

hp5
2p2g

kBT

1

R0
~1! ~R0

~1!2R~1!!
1

R~1!
. ~18!

The leading term in the density expansion of the collisi
bracket integralR0

(1) can be shown@30# to be the Chapman
Enskog collision bracket integral of the Boltzmann kine
theory @4#. Since the density-dependent part ofhk is rela-
tively smaller than the density-dependent potential part,hk

0

may be used forhk in the lowest order approximation for th
kinetic part:

hk'hk
0~T!. ~19!

The potential contributionhp evidently has to do with the
intermolecular interactions. It depends strongly on both te
perature and density. This is the part that will be calcula
alternatively to the method using the collision bracket in
gral presented earlier. Consequently, except for showing
h is decomposable into kinetic and potential parts, the
netic theory expression forhp is not used at all in this work.
All we need from the kinetic theory of transport coefficien
is the decomposition ofh @ Eq. ~14!#, Newton’s law of vis-
cosity @Eq. ~5!#, and the Chapman-Enskog result forhk

0, as
shown below. It should be noted that on the right hand s
of Eq. ~18! there are cross terms between the kinetic a
potential parts of the virial tensorhj

(1) . Since the cross term
are generally smaller than the purely potential part, they w
be neglected in the present work.
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4108 PRE 60KYUNIL RAH AND BYUNG CHAN EU
According to the method of Irving and Kirkwood@31# the
stress tensor of a nonequilibrium inhomogeneous liquid
be calculated in terms of the dynamic pair correlation fu
tion in the form

P5Pk1Pv , ~20!

where

Pk~r ,t !5E dp mCCf ~p,r ,t !, ~21!

Pv~r ,t !52 1
2 E

0

1

dlE dr12

r12r12

r 12
v8~r 12!

3r~2!
„r2lr12,r1~12l!r12,t…. ~22!

In these expressionsp is the momentum of the particle
v8(r 12) is the derivative of the pair potential already define
r 125ur12u5ur12r2u, f (p,r ,t) is the nonequilibrium single
distribution function normalized tor,

r~r ,t !5E dp f ~p,r ,t !, ~23!

andr (2)(r1 ,r2 ,t) is the dynamic pair configuration distribu
tion function. It should be noted that if the full virial tenso
V j is used, which is defined by@32#

V j5mCjCjd~r j2r !2 1
2 E

0

1

dl

3 (
j Þk51

N r jkr jk

r jk
v8~r jk!expS 2lr jk•

]

]r D d~r k2r !; ~24!

then the stress tensor is given by the average in theN-particle
phase space

P~r ,t !5E dr ~N!E dp~N!(
j 51

N

V jF
~N!~r ~N!,p~N!,t !. ~25!

Here F (N)(r (N),p(N),t) is the dynamic distribution function
depending onN-particle position and momentum vectorsr (N)

andp(N). It obeys the generalized Boltzmann equation@29#.
Thereforehj

(1) is an approximation of the traceless symm
ric part of V j where the exponential displacement opera
exp@2lr jk•(]/]r )# in Eq. ~24! is set equal to unity:

hj
~1!d~r j2r !5@V j #

~2!~l50!. ~26!

The dynamic pair distribution function in Eq.~22! may be
written in the form

r~2!~r1 ,r2 ,t !5r~r1 ,t !r~r2 ,t !g~r1 ,r2 ,t !, ~27!

where g(r1 ,r2 ,t) is the dynamic pair correlation function
which depends on density as well as the velocity gradient
the nonequilibrium system under consideration. Therefo
there follow the expressions for the traceless symmetric
of P:

Pk~r ,t !5E dp@mCC#~2! f ~p,r ,t !, ~28!
n
-

,

-
r

r
e,
rt

Pv~r ,t !52 1
2 E

0

1

dlE dr12

@r12r12#
~2!

r 12
v8~r 12!

3r~2!
„r2lr12,r1~12l!r12,t…. ~29!

Here the symbol@A# (2) denotes the traceless symmetric p
of tensorA as in Eq.~6!. Adding these two components, w
obtain the traceless symmetric partP of P:

P5@P#~2!5Pk1Pv . ~30!

The two components must be calculated for the correspo
ing viscosities.

A. Kinetic part hk

The kinetic part of the shear viscosity is obviously relat
to the kinetic part of the stress tensor, and this relation,
though already discussed from the viewpoint of the collis
bracket integral, can be examined from the standpoint of
stress tensors given in Eqs.~28! and~29!. This is the aim of
this subsection.

Since we are interested in the linear process occur
near equilibrium, it is sufficient to expand the singlet dist
bution function in the leading moments. It is assumed t
the temperature is uniform. Therefore, there is only the str
tensor to consider. The singlet distribution function then c
be written in the form

f 5 f 0@11mC•CA1@mCC#~2!:B#

[ f 0~w!†11kBTw•wA1kBT@ww#~2!:B‡, ~31!

where f 0 is the local equilibrium Maxwell distribution func
tion

f 05r~2pmkBT!23/2expS 2
mC2

2kBTD
5r~2pmkBT!23/2exp~2 1

2 w2!, ~32!

with the reduced peculiar velocity defined by

w5AmbC S b5
1

kBTD .

A andB are the scalar and tensor moments to be determin
Since the normalization is preserved, it follows that

r5E dp f ~p,r ,t !5E dpf 0~p!. ~33!

Multiply mC•C to f and integrate overp to obtain

TrPk5E dp mC•Cf ~p,r ,t !53rkBT115r~kBT!2A.

Therefore

A5
1

5kBT S 1

3rkBT
TrPk21D[

Dk

5r~kBT!2 . ~34!

Multiplying @mCC# (2) by f and integrating overp, we obtain
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Pk5E dp@mCC#~2! f ~p,r ,t !5E dp f 0@mCC#~2!

3@mCC#~2!:B52r~kBT!2@B#~2!.

This means that the tensor@B# (2) is given by

@B#~2!5
Pk

2r~kBT!2 . ~35!

Collecting these results, we finally obtain

f 5 f 0~w!F11w•w
Dk

5rkBT
1@ww#~2!:

Pk

2rkBTG . ~36!

There remains the problem of determiningPk in terms of the
shear rate or, more generally, the velocity gradient. For
the kinetic theory must be sought for help, and we may
expression~17!. Calculating this formula to the lowest orde
in density making use of the well established procedure
the dilute gas kinetic theory, we can obtain the results forhk

0

as follows:

Pk522hk
0@¹u#~2! ~37!

and

hk
05

3V1
~2!~2!

5V12
~1!~1!

rD0[crD0 . ~38!

HereV1
(2)(2) andV12

(1)(1) are collision bracket integrals@4#,
andD0 is the Chapman-Enskog self-diffusion coefficient@4#.
Tables for the collision bracket integrals for the Lenna
Jones potential are available in the literature@33#. From the
tabulated values for the collision bracket integrals, we fi
that the ratioV1

(2)(2)/V12
(1)(1) is approximately 1.1 for the

Lennard-Jones potential, and thusc.0.7. It must be noted
that the formula in Eq.~38! is an approximation ofhk , since
the singlet distribution functionf is not a dilute gas single
distribution function and therefore the viscosity coefficie
hk is density dependent. To take this into account we m
replaceD0 ad hoc with a density-dependent self-diffusio
coefficient, for example the full self-diffusion coefficientD,
and set

hk5crD. ~39!

However, this procedure is not firmly based on mathemat
analysis, but empirical. Nevertheless, the result may turn
to be useful.

B. Potential part hp

To calculate the potential part alternatively to the meth
of Eq. ~18!, the pair correlation function must be examin
with regard to ther12 dependence of densityr(r2lr12) and
r„r1(12l)r12…. This r12 dependence of the bulk densi
indicates that the potential part of the stress tensor va
over the length scale of intermolecular distance, and it
have a significant effect since the shearing perturbatio
accompanied by shear waves. To be specific we will cons
a plane Couette flow configuration in which flow is in thex
at
e

n
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d

t
y

al
ut

d

es
n
is
er

direction, and the velocity gradient in thez direction. They
direction is neutral. It is important to recognize that the flu
is compressible. Expansion of the bulk densities in series
lr12 yields

r~r2lr12!r„r1~12l!r12…

5r2~r !1~122l!r~r !S ]r

]r D •r122l~12l!

3F S ]r

]r D •r12G2

1O~r 12
3 !. ~40!

Since the density gradient is expected to be small, only
first order derivative terms will be retained. The dynam
pair correlation functiong(r1 ,r2 ,r,t) will be approximated
by the equilibrium pair correlation function to the lowe
order because the system is near equilibrium. Furthermor
will be evaluated at a suitable mean densityr̄, which will be
specified later. The main reason for this approximation i
practical one because otherwise it will be necessary to s
an integral equation forg(r1 ,r2 ,r) where the density varies
in space, but such an integral equation is impractical to so
because it involves three-dimensional integrals requiring
large computational resources. In any case, it does
change so rapidly with regard to the density in the de
liquid regime, and the approximation is reasonable. By us
expansion~40! and the approximate pair correlation functio
g(r1 ,r2 ,r̄), we obtain thexzcomponent ofPv necessary for
the plane Couette flow configuration in the following form

Pvxz5
1

12E dr12

x12z12

r 12
v8~r 12!g~r 12,r̄ !r12r12:

]r

]r

]r

]r

5
1

6 E dr12

~x12z12!
2

r 12
v8~r 12!g~r 12,r̄ !

]r

]x

]r

]z

5
2p

45 E
0

`

dr r 5v8~r !g~r ,r̄ !
]r

]x

]r

]z
. ~41!

Since the bulk density variation is expected to be limited t
range of distance of the order of intermolecular force
most, it is appropriate to insert a cutoff factor defined by

z~j2ur12u!512u~j2ur12u!,

whereu(j2ur 12u) is the Heaviside step function:

u~x!5 H1
0

for x>0
for x,0.

Herej is the cutoff distance which can be as small as ab
2s in the low temperature regime, and as large as the in
molecular force ranger max at higher temperatures. Thus w
finally obtain

Pvxz5
1

3
v~r!

]r

]x

]r

]z
, ~42!

where

v~r!5
2p

15 E
0

`

dr r 5v8~r !g~r ,r̄ !z~j2ur u!. ~43!
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4110 PRE 60KYUNIL RAH AND BYUNG CHAN EU
In the case of a single component fluid under consid
ation, the velocityu* of the diffusing tracer particle is re
lated to the density gradient in the following manner@34#:

ru* ~r !52D
]r

]r
, ~44!

whereD is the self-diffusion coefficient. This tracer partic
velocity is opposite to the velocity of the bulk fluid again
which the diffusing tracer particle moves, that is,

u* ~r !52u~r !. ~45!

This means that

ru~r !5D
]r

]r
. ~46!

Therefore, if the density variation withr is small so that the
second derivative is negligible, then the velocity gradient
the Couette flow is given by

]ux

]z
5

]

]z
D

]r

]x
'2

2D

r2

]r

]x

]r

]z
, ~47!

for which we have used the property ofD'D8/r, whereD8
is approximately independent ofr. The removal of this as-
sumption does not basically change the essential result. S
for the plane Couette flow configuration

Pvxz52hp

]ux

]z
, ~48!

use of Eq.~47! yields Pvxz in the form

Pvxz5
2hpD

r2

]r

]x

]r

]z
. ~49!

This result should be compared with Eq.~42!. We thus ob-
tain the potential part of the shear viscosity in the form

hp5
r2v~r!

6D
. ~50!

Since the density in this expression changes over the ra
of 2j this formula should be averaged over the distan
Thus we obtain

^hp&5
1

2j E2j

j

djhp„r~j!…. ~51!

By the mean value theorem there exists ajm for which

^hp&5hp„r~jm!…. ~52!

Since the density variation in the interval of 2j is small and
around the bulk density valuer, the densityr(jm) at j
5jm satisfying the mean value theorem should be practic
the same as the bulk density to a good approximation. T
suggests that we taker̄5r(jm).r. Thus it is permissible to
take
r-

r

ce

ge
.

ly
is

^hp&5hp„r~jm!….hp~r!5
r2v~r!

6D
. ~53!

This relation is similar to the Stokes-Einstein relation exc
for the factorr2v(r) which depends on density, temper
ture, and intermolecular potential parameters. By combin
the kinetic and potential parts@Eqs.~39! and~53!#, we finally
obtain the shear viscosity of the fluid in the form

h5crD01
r2v~r!

6D
. ~54!

In the limit of vanishing density, this formula gives rises
the Chapman-Enskog viscosity of the gas which is indep
dent of density, whereas in the limit of high densities in t
liquid regime it takes the Stokes-Einstein form since the s
ond term on the right is dominant over the Chapman-Ens
contribution. Therefore formula~54! explains how the
Chapman-Enskog prediction of theh2D relation crosses
over to the Stokes-Einstein form of theh2D relation as the
density increases from the dilute gas regime to the liq
regime. We see that in the dilute gas regime the momen
relaxation dominates, since the intermolecular part of
stress relaxes faster than the momentum transfer rate~mo-
mentum flux! owing to frequent collisions of relatively long
mean free paths, whereas in the liquid density regime
stress arising from the intermolecular interactions domina
since it relaxes more slowly than the momentum transfer
owing to the more constrained configuration of the partic
at a liquid density.

The formula derived suggests that if there are data,
perimental or simulation, available forD, then the shear vis-
cosity can be calculated from Eq.~54!. Since the self-
diffusion coefficient is much easier to simulate than the sh
viscosity, formula~54! can be quite useful in practice, pro
vided it is sufficiently reliable. The utility of the formula is
tested against experimental data in the following.

We examine the Stokes-Einstein relation forhp in some
detail. First, expressed in reduced quantitiesx5r /s, v*
5v/kBT, and%* 5ps3r/6, ther2v(r) factor can be given
in the form

1

6
r2v~r!5

4

5
%* 2v̂~%* !

kBT

ps
, ~55!

where

v̂~%* ,T* !5E
0

`

dx x5
dv*

dx
g~x,%* !z~ ĵ2uxu!, ~56!

with ĵ5j/s. Therefore the numerical factorc in the Stokes-
Einstein relation is replaced by a density- and temperatu
dependent factor

c21⇒ 4R

5s
%* 2v̂~%* ,T* !. ~57!

That is,

hpD5
kBT

pR F4R

5s
%* 2v̂~%* ,T* !G . ~58!
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Because the particle diffusing through the medium is
same molecule as the molecules comprising the medium
non-numerical factor depending onT* and%* in Eq. ~58! is
understandable. The factor in the square brackets in Eq.~58!
replaces 621 in the case of the stick boundary condition, a
421 in the case of the slip boundary condition, in th
d
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Stokes-Einstein relation.

In fact, sinceR is generally a parameter that can be d
ferent from the radius of the molecule if the Stokes-Einst
relation is applied to particles of a molecular size, one m
infer a molecular expression forR from Eq. ~58! if one in-
sists it be the Stokes-Einstein relation
s

2R
5

12

5
%* 2v̂~%* ,T* ! for the stick boundary condition

5
8

5
%* 2v̂~%* ,T* ! for the slip boundary condition. ~59!

If the Stokes-Einstein relation is obeyed, the right hand side should be equal to unity. Ifh is used instead ofhp , then we find,
from Eq. ~54!

s

2R
5

3ps

kBT
crD0D1

12

5
%* 2v̂~%* ,T* ! for the stick boundary condition

5
2ps

kBT
crD0D1

8

5
%* 2v̂~%* ,T* ! for the slip boundary condition. ~60!
that
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Here one may replacecrD0 with hk
0. These relations will be

assessed to see if the Stokes-Einstein relation is obeye
molecules.

Formula~54! is reminiscent of the one derived by Kirk
wood, Buff, and Green@35#, who obtained it by using a
different method which requires solutions for the hierarc
of kinetic equations for Brownian particles. These kine
equations are Fokker-Planck equations that Kirkwood
rived in his earlier paper@36# for reduced distribution func-
tions for particles immersed in their own kind of particl
which are treated as a continuous medium bombarding
particles of interest. In fact, their equation can be given
same form as Eq.~54! if an approximate form is taken for th
c2 factor appearing in their equation except for the differe
numerical coefficients emerging thereby. For example, if
lowest order approximation is taken forc2 , namely, c2
'r 2/2 @see Eq.~31! of Ref. @35##, then from Eq.~10! of Ref.
@35# we have the viscosity formula

h5
1

2
rD1

r2vKBM~r!

6D
, ~61!

where

vKBM~r!5
p

5 E
0

`

drr 5v8~r !g~r ,r!. ~62!

This must be compared with Eq.~43!. We thus find that,
apart from the cutoff factor, there holds the following rel
tion for the multiplicative factors:

v~r!5
2

3
vKBM~r!. ~63!
for

y

-

e
e

t
e

It is remarkable that this relation arises despite the fact
the method of Kirkwood, Buff, and Green is quite differe
from the present method. This suggests that the Kirkwo
Buff-Green method seems to merit a more careful investi
tion. In this connection it should be noted that the Ric
Allnatt theory @37# also gives formulas for viscosities i
terms of a hard sphere friction constant in forms reminisc
of the viscosity formula presented here, but they are m
complicated than either Eqs.~54! or ~61!.

In the derivation of formula~54! the coupling between the
momentum transfer part@mCjCj #

(2) and the virial part
@mr i j r i j #

(2)v i j8 /r i j of the tensorhj
(1) has been neglected. Nea

equilibrium, the contribution from the coupling of thes
terms is negligible, but it may become non-negligible in t
supercooled liquid regime. In such a case Eq.~54! may re-
quire a correction. Since investigation of this aspect also
quires an improved method of computing the pair correlat
function beyond the Percus-Yevick integral equation used
this work, it will be deferred to a future work.

III. COMPARISON WITH EXPERIMENT

A. Shear viscosity

To see the utility of the formula presented, we calcula
the shear viscosity of argon with regard to its density a
temperature dependence as well as the density dependen
krypton and xenon, and compare the results with experim
tal data available in the literature. The temperature dep
dence for krypton and xenon is not calculated because of
absence of experimental data to compare with. The value
the self-diffusion coefficientD are computed with either the
formula obtained by fitting the Naghizadeh-Rice data@38# to
a mathematical form or the formula proposed by Heyes@39#
on the basis of the molecular dynamics simulation resu
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The pair correlation function appearing in the expression
v~r! was obtained from the numerical solution of the Perc
Yevick integral equation@40# for the pair correlation func-
tion. With the so obtained pair correlation function, the in
gral is numerically evaluated at different temperatures
densities.

In Fig. 1~a! the shear viscosity of argon atT5273.0 K is
plotted against the density, and the density dependenc
compared with that predicted by the Haynes formula@41#,
which was obtained by fitting his experimental data. T
potential parameters for argon ares53.40 Å and e/kBT
5119.8 K @33#. The dotted curve is the prediction by th
Haynes formula. The solid and broken curves are the th
retical values of the present theory, which have been c
puted with the values ofD by using the Heyes formula an
the Naghizadeh-Rice formula, respectively. TheD values ob-
tained by the former will be calledDHeyes, and those ob-
tained by the latter will be calledDNaghizadeh-Rice. In all of the
calculations for this figure the experimental value of the
lute gas viscosity has been used forhk

05crD0 . The reason
for not using the Chapman-Enskog value forhk

0 is that it is
about 10% lower than the experimental value atT
5273.0 K, and 4–5% in the range ofT5240– 250 K,
whereas it agrees well with the experimental values aro
the triple point. Since the principal aim here is to test t
formula for the excess shear viscosityhp , the part obeying
the Stokes-Einstein form, we feel it appropriate to remo
the uncertainty in the kinetic part ofh, namely,hk

0. The
filled circles are the experimental values of Ref.@42#. In this
case, the value of the parametera is taken to be equal to
unity, which implies that the range of density variation
equal to or larger than the intermolecular force ranger max

FIG. 1. ~a! Density dependence of shear viscosity atT
5273.0 K. The dotted curve is the prediction by the Haynes f
mula. The solid and dashed curves are the theoretical shear vis
ties calculated withDHeyes and DNaghizadeh-Rice, respectively. The
experimental value ofhk

0 is used in place of the Chapman-Ensk
shear viscosity. The filled circles~d! are the experimental value
reported in Ref.@42#. ~b! Temperature dependence ofDh5h2hk

0

at r50.9 g/cm3. The solid curve is for the theoretical excess sh
viscosities calculated withDHeyes, and the dotted and broken curve
are the experimental temperature dependence computed with
empirical formulas of Haynes@41# and Younglove and Hanley@43#,
respectively. The value of parametera in this case is equal to unity
r
-

-
d

is

e

o-
-

-

d
e

e

[ur12umax. Thus the viscosity values computed are free fro
parameters other than potential parameters. Agreement
experiment is good. In Fig. 1~b! the temperature dependenc
of the shear viscosity atrm5mr50.9 g/cm3 is presented for
the temperature range indicated. The solid curve is for
excess viscosity calculated withDHeyes, the dotted curve is
computed by the empirical formula reported by Haynes@41#,
and the dash-dotted curve is obtained with the formula
ported by Younglove and Hanley@43#. The latter two curves
are therefore experimental. In this case, the value ofa is
equal to unity. The temperature dependence by the pre
theory shows a negative temperature derivative ofDh, as do
the Younglove-Hanley formula and molecular dynam
simulation data@44#, whereas the Haynes formula@41#
shows a positive temperature derivative. On physi
grounds the temperature gradient ofDh is expected to be
negative.

The critical density and temperature of argon are, resp
tively, rc50.533 g/cm3 andTc5151 K, whereas at the triple
point r51.42 g/cm3 and T585 K. The empirical value of
the viscosity at the triple point is 0.289 mPa s according
the Younglove-Hanley formula and 0.282 mPa s according
the Haynes formula. As the temperature approaches the t
point of argon, the value of parametera is found to be less
than unity. For Figs. 2~a! and 2~b! we have chosena
50.175, which approximately corresponds to the cutoff p
rameter valuej'2s. In Fig. 2~a! the temperature depen
dence of the shear viscosity of argon atrm51.408 g/cm3 is
shown. The solid curve is the theoretical shear viscos

-
si-

r

the

FIG. 2. ~a! Temperature dependence of shear viscosity ar
51.408 g/cm3. The solid curve is the theoretical shear viscos
calculated withDNaghizadeh-Rice@38#. In this case, the Chapman
Enskog shear viscosity was used for the kinetic part ofh. The
dotted and dash-dotted curves are the experimental temperatur
pendence calculated with the empirical formulas of Haynes@41#
and Younglove and Hanley@43#. The filled circles~d! are experi-
mental values as reported in Ref.@45# whose authors obtained them
by interpolating/extrapolating the data reported in Refs.@46–48#.
~b! Density dependence of shear viscosity atT590.0 K. The mean-
ings of the curves are the same as in~a!. The symbols represent th
following datas from Ref. @49#, * from Ref. @50#, 3 from Ref.
@51#, andd from Ref.@45#. The value of parametera in this case is
equal to 0.175, which corresponds to the cutoff parameter valuj
'2s.
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TABLE I. Ratio of hb to h at T5273.0 K.

rm

h ~mPa s! hb ~mPa s! hb /h

DN-R
a DHeyes Expt.b Expt.c DN-R DHeyes Expt.b DN-R DHeyes Expt.b

0.508 0.032 0.028 0.0365 0.033 0.009 0.0066 0.009 0.28 0.24 0
~0.033!

0.694 0.052 0.043 0.051 0.044 0.022 0.016 0.029 0.42 0.31 0
~0.044!

0.812 0.071 0.056 0.060 0.054 0.035 0.025 0.033 0.49 0.45 0
~0.055!

0.896 0.087 0.068 0.067 0.063 0.046 0.033 0.044 0.53 0.49 0
~0.065!

0.958 0.10 0.078 0.073 0.071 0.055 0.040 0.048 0.55 0.51 0
~0.074!

1.008 0.11 0.086 0.08 0.079 0.063 0.045 0.056 0.57 0.52 0
~0.083!

aDN-R is DNaghizadeh-Rice. The columnsDN-R andDHeyesrepresent the theoretical values of viscosities computed withDN-R andDHeyesfor the
self-diffusion coefficient. The viscosities quoted are in the units of mPa s. The viscosities computed with the Younglove-Hanley and
formulas are experimental.
bExperimental values reported in Ref.@53#.
cThe Younglove-Hanley formula. The numbers in parentheses are from Haynes’ formula.
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are
computed with DNaghizadeh-Rice and the Chapman-Ensko
shear viscosity is used for the kinetic part ofh, namely,hk

0

5hChapman-Enskog. As mentioned in connection with Fig. 1
the Chapman-Enskog shear viscosity at the temperature
interest here agrees well with experiment. BecauseDHeyes
was considered inapplicable in the temperature range con
ered here, the viscosity was not calculated with it. The do
~¯! and dash-dotted~-•-! curves are computed with th
Haynes@41# and Younglove-Hanley formulas@43#, respec-
tively, which are empirical. The filled circles~d! are the
experimental data as quoted in Ref.@45#, whose authors, to
obtain them, either interpolated or extrapolated the data
ported in Refs.@46#, @47#, @48#. The slopes of the shear vis
cosity are seen to be negative, that is, the temperature de
tive of h is negative as expected. The qualitative behavio
the theoretical prediction shows a correct tendency. In F
2~b! the density dependence of the shear viscosity aT
590.0 K is presented. The meanings of the curves are
same as in Fig. 2~a!. The symbols represent experimen
data:s from Ref. @49#, * from Ref. @50#, 3 from Ref. @51#,
and d from Ref. @45#. The theoretical prediction, with on
adjustable parameter, agrees well with experiment in
density range where experimental values are available. It
be shown@52# that the bulk viscosityhb also obeys a Stokes
Einstein relation similar to the potential part ofh presented
in this work:

hb5
r2v~r!

9D
5

2

3
hp . ~64!

Therefore, it is possible to calculate the ratiohb /h. The
value of this ratio in the neighborhood of the triple point
found to be about 0.77, whereas the experimental values
on the average 0.85 from Ref.@45#, 0.78 from Ref.@49#, 0.56
from Ref. @50#, and 0.69 from Ref.@51#. Therefore, the the-
oretical value is comparable to the mean value 0.72 of
experimental values. On the other hand, atT5273.0 K its
of
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value changes from 0 to;0.6 as the density increases from
to 1.0 g/cm3, as indicated by some of the higher dens
values shown in Table I. The ratio clearly vanishes as
density vanishes sincehb;r3 asr→0.
These comparisons of the ratiohb /h indicate the formulas
obtained for the viscosities in the present theory have qu
tatively correct and mutually consistent properties, and the
fore are reliable. Note that because of the kinetic contribut
to h, the values of the ratiohb /h are a little lower than the
ratio of hb to hp , which is 2/3.

To ascertain the applicability of the shear viscosity fo
mula to other simple fluids we have calculated the den
dependence of krypton atT5298.1 K and of xenon atT
5373.1 K. The results are presented in Figs. 3~a! and 3~b!.

FIG. 3. ~a! The density dependence ofh of krypton at T
5298.1 K (T* 51.74). The solid curve is theoretical and the fille
circles are the experimental values reported by Trappenierset al.
@54#. ~b! The density dependence ofh of xenon atT5373.1 K
(T* 51.69). The solid curve is theoretical and the open circles
the experimental values reported by Reynes and Thodos@55#.
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The potential parameters for krypton ares53.60 Å and
e/kB5171 K, whereass54.10 Å ande/kB5221 K in the
case of xenon. The values of the potential parameters w
taken from Refs.@33, 50#. These parameters give rise to th
reduced temperature atT* 51.74 for krypton andT* 51.69
for xenon. Therefore, the two fluids are at comparable
duced temperatures. For the calculation of the shear visc
ties of these fluids, the value of the parametera is set equal
to unity. Therefore, the viscosity formula involves the pote
tial parameters only. The density dependence of the s
viscosity is presented for krypton in Fig. 3~a!, where the
solid curve is the theoretical density dependence wherea
filled circles are the experimental values reported by Trap
niers et al. @54#. The Chapman-Enskog shear viscosity
used for the kinetic part ofh, which was found to agree we
with experiment. In Fig. 3~b! the density dependence of th
shear viscosity of xenon is presented, where the solid cu
is the theoretical density dependence calculated with
Chapman-Enskog shear viscosity for the kinetic part ofh,
and the open circles are the experimental values reporte
Ref. @55#. In this case the Chapman-Enskog shear visco
was found to underestimate the experimental viscosi
slightly at low densities. Agreement with experiment a
theory is not as good as for the case of krypton at interm
diate densities, but the density dependence is found to
qualitatively correct. Since the law of corresponding sta
was reported@56,57# to be obeyed by simple fluids such a
argon, krypton, and xenon examined here, agreement
tween experiment and theory in the case of krypton and
non could have been expected. Nevertheless, the compa
presented for krypton and xenon assures us of the reliab
of the viscosity formula derived in this work, and verifies t
law of corresponding states for the fluids considered.

B. Assessment of the Stokes-Einstein relation

The viscosity formula@Eq. ~54!# does not appear to be
Stokes-Einstein relation at first glance. Nevertheless, it
account for the experimental density and temperature de
dence of simple fluids, and thus is useful in practice. It w
be useful to see if the Stokes-Einstein relation~2! can be
understood for molecular particles in terms of the formu
For this we examine the relations given in Eqs.~59! and~60!.
If s/2R remains constant with regard to temperature a
density, and is equal to unity, then it is possible to conclu
that the Stokes-Einstein relation is valid even for particles
a molecular size comparable to the solvent molecules.
assessment of the relation will be made for argon. In Fig
the values of 2R/s are plotted against density and tempe
ture in panel~a! and~b! respectively. The broken~- - -! and
dotted ~¯! lines are results computed for slip and sti
boundary conditions with the formulas in Eq.~59!, respec-
tively, and the solid~—! and dash-dotted~- • -! lines are the
results computed for slip and stick boundary conditions w
the formulas in Eq.~60!, respectively. The density depen
dence is computed for argon atT5273.0 and the temperatur
dependence is computed atrm51.0 g/cm3. The value of pa-
rametera is unity for the figures. The density dependence
2R/s is almost absent if the full viscosityh is used for the
Stokes-Einstein relation, although the values for the differ
boundary conditions used differ by an almost constant fac
re
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On the other hand, the Stokes-Einstein relation forhp shows
a density dependence, but has no temperature dependen
Fig. 5 the density and temperature dependences of 2R/s are
examined in the case of argon near the triple point, aT
590 K for the density dependence and atrm51.408 g/cm3

for the temperature dependence. For these figuresa
50.175. The meanings of the lines are the same as in Fig
The values of2R/s are seen to remain virtually constant fo
all cases, indicating that the Stokes-Einstein relation
obeyed. These figures suggest that in the density and
perature ranges examined here the Stokes-Einstein rela
remains valid forh, even if the particle is of a molecula
size, and that the question of slip or stick boundary conditi
is irrelevant from the viewpoint of statistical mechanics a
if one is prepared to takeR as an adjustable parameter th

FIG. 4. ~a! Density dependence of 2R/s for argon at T
5273.0 K. ~b! Temperature dependence for argon atrm

51.0 g/cm3. For these figures,a51. The broken~- - -! and dotted
~¯! lines are computed with Eq.~59! for the slip and stick bound-
ary condition, respectively. The solid~—! and dash-dotted~-•-!
lines are computed with Eq.~60! for the slip and stick boundary
conditions, respectively.

FIG. 5. ~a! Density dependence of 2R/s for argon at T
590 K. ~b! Temperature dependence of argon atrm

51.408 g/cm3. For these figures,a50.175. The meanings of the
lines are the same as in Fig. 4.
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should be taken with a value in the neighborhood ofs/2.
Since the validity of the Stokes-Einstein relation for mo
ecules has been a focus of attention in the literature, as m
tioned in Sec. I the assessment made here of the rela
provides useful insight into the question. In any case, fr
the perspective of Eq.~54! the question of the validity of the
Stokes-Einstein relation for molecular particles is irrelev
because it itself is a relation holding for fluids consisting
molecular particles.

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, by means of statistical mechanics, we h
derived a relation of the shear viscosity to the self-diffus
coefficients for a simple liquid in which the potential part
the shear viscosity bears a resemblance to the well-kn
Stokes-Einstein relation for a hard sphere immersed in a c
tinuous medium. The coefficient in the relation is given
terms of density, molecular parameters, and the pair corr
tion function of the fluid. The relation may be regarded a
generalization of the Stokes-Einstein relation. The form
derived for the relation of shear viscosity and the se
diffusion coefficient is reminiscent of the expression for t
shear viscosity derived by Kirkwood, Buff, and Green@35#
in 1949. The latter can be shown to take the present fo
apart from the constant numerical factor, in the lowest or
approximation forc2 appearing in their formula for the shea
viscosity. This seems to suggest that the Kirkwood kine
equation for Brownian particles@36# may be worth a fresh
investigation, although its variant was already proposed
the form of Rice-Allnatt theory@37# which was used to cal
culate transport coefficients. As far as the mathemat
structure goes with regard to the friction constant dep
dence, the present result is also reminiscent of the shear
cosity formula of the Rice-Allnatt theory despite the diffe
ence in the methods of derivation of the viscosity formul

The present theory for the relation ofh to D exploits the
minute bulk density variations which occur when the fluid
sheared or compressed by an external agency. This i
effect which is traditionally ignored when a theory of tran
port processes is developed in the Chapman-Enskog lin
approach. Neglect of such an effect within the bounds of
traditional line of approach to the transport theory is qu
legitimate when the collisional contributions are calcula
from the solutions of the kinetic equations, but the effe
becomes significant when some relations are sought betw
transport coefficients such as viscosities and the s
diffusion coefficient of the fluid, especially in the liquid den
sity regime. As a matter of fact, such a density variat
appears in the free energy functional in the van der Wa
theory of inhomogeneous fluids@58# where the bulk density
variation is taken into account by including a quadratic fo
s
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of first density derivative with respect to space. In the Kir
wood line of transport theory such an effect is taken in
account in the sense that the kinetic equation for the sin
distribution function is solved together with the kinetic equ
tion for the dynamic pair correlation function, whereas, f
example, in the linear response theory it is not taken i
consideration.

Since it is not possible to acquire numerically reliab
analytical solutions for transport properties of dense ga
and liquids by means of statistical mechanics, and the o
practicable option is numerical simulation methods@1–3#, it
is useful to develop relations between transport coefficie
which can be made use of to compute one transport co
cient from another. In this regard the formula we have d
rived here and a further improvement of it can be very use
from a practical viewpoint, because the self-diffusion coe
cient is the simplest of transport coefficients to compute
means of a numerical simulation method. Its simulation
quires the least amount of technical and conceptual probl
to resolve in implementing the numerical simulation metho
In contrast to this, simulations for viscosities, although oft
practiced, are not as simple to implement, because of
required boundary conditions, viscous heating, numerical
stabilities that may arise as the shear rate increases, a
large signal to noise ratio in the small shear rate regime.

Although not directly applicable to supercooled liquid
and complex liquids, the viscosity formula derived in th
work has a potentially useful feature which, when prope
generalized, may be helpful for understanding the deviati
from the Stokes-Einstein relation which have been exp
mentally observed in glass-forming liquids as mentioned
Sec. II, because the present approach may provide molec
theory expressions for the parameters replacingc and R in
the Stokes-Einstein relation for such complex liquids.

In conclusion, the derivation of the formula presented
the shear viscosity is relatively simple. Although it has
adjustable parameter in the case of low temperatures nea
triple point where the density variation is short ranged and
the order of a couple of molecular diameters, the formula
not only easy to use and practical in accounting for the te
perature and density dependence of experimental dat
simple fluids such as argon, krypton, and xenon, but it is a
suggestive of the possibility of generalizations for mo
complex fluids. In the range of density and temperature
amined, the Stokes-Einstein relation is found to remain
plicable to particles of a molecular size.
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