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Relation of shear viscosity and self-diffusion coefficient for simple liquids

Kyunil Rah and Byung Chan Eu
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
(Received 16 April 1999

A Stokes-Einstein-type relation is derived for the potential part of the shear viscosity of a simple liquid by
means of statistical mechanics. The product of the shear viscosity and the self-diffusion coefficient is shown to
be expressible in terms of the pair correlation function and the intermolecular force as well as the density. The
shear viscosity formula, consisting of kinetic and potential parts and given in terms of the self-diffusion
coefficient, is tested against experimental data with regard to the temperature and density dependence of the
shear viscosity. Given the self-diffusion coefficient determined by experiment or simulations, the viscosity
formula involving the Stokes-Einstein relation obtained produces the shear viscosity of argon, krypton, and
xenon, in good agreement with experiment in the case of temperatures well away from the triple point.
However, in the neighborhood of the triple point of argon examined, a cutoff parameter, which is a measure of
the range of density variation, is needed to account for the experimental data. The applicability of the Stokes-
Einstein relation to molecular particles is assessed, and it is found to remain applicable in the range of density
and temperature examing$1063-651X99)05710-4

PACS numbes): 66.20+d, 05.60—k, 05.20.Dd, 05.20.Jj

[. INTRODUCTION first order Chapman-Enskog solution of the Boltzmann equa-
tion yields a relation between the shear viscosity and the
Transport coefficients of fluids constitute an importantthermal conductivitywhich is known as the Eucken relation
class of thermophysical properties necessary in materials ap4]), the Nernst-Einstein relation for mobilify], or a rela-
plications. Kinetic theories of transport processes have beelion [4] between the shear viscosity and the self-diffusion
pursued for a long time in statistical mechanics for the excoefficient, which are linearly proportional to each other with
plicit purpose of calculating them in terms of intermolecular@ proportionality constant.
forces. However, the molecular theory to calculate them by
means of statistical mechanics is rather challenging and, n=C(T)pD, @
faced with the enormous difficulty of solving many-particle

dynamics, the challenge has been increasingly met in recefhere 5 andD are the shear viscosity and the self-diffusion
years by developing various numerical simulation method$gefficient of a monatomic gas, respectively, &) is a
[1-3]. Numerical simulation methods allow us to computeconstant weakly dependent on temperature for non-hard-
some particular aspects of transport coefficients, but they stilphere potentials, but a simple numerical constant in the case
need inputs from theoretical investigations of the interrelauf hard spheresc(T)=0.831.

tionships of various transport processes and accompanying | the case of a hard sphere immersed in a viscous me-
transport coefficients, as well as some subtle conceptual agjym, the well known Stokes-Einstein relatif] is another

pects of the problems involved. Therefore theoretical studiegxample that holds between the shear viscosity and the dif-
and some analytical results or models, if possible to obtaingsjon coefficient of the particle:

can be very valuable for the overall aim of endeavors in
research in transport properties of matter. The work pre- KT
i inuti B
sented here is a contribution to that end. 7D=——.
There are known some simple relations between transport cmR
coefficients, which have been experimentally verified to
hold. They serve not only as means to compute one transpoktere R is the hard sphere radius, which is assumed to be
coefficient from another but also as verifications of the interimuch larger than the solvent molecular radius and may be
nal consistency of the phenomenological theory employed ttreated as an adjustable parameter in the case of molecular
calculate them. Indeed, the solutions of the kinetic equationparticles, and is equal to 6 in the case of the stick boundary
of fluids employed predict certain relations between transportondition and 4 in the case of the slip boundary condition.
coefficients in the limits of density, and it is thereby possibleThis macroscopically derived relation in fact often works
to provide phenomenological relations with molecular theoryimpressively even if the diffusing particle is of a size com-
foundations. For example, in Boltzmann kinetic theory theparable to the solvent molecule. Why this should be so has
not as yet been satisfactorily explained by a molecular
theory, but will be examined in the present work. On the
*Also at Center for the Physics of Materials and Departmentother hand, there are some cases where there exist deviations
of Physics, McGill University, and the Asia Pacific Center from the relation in the case of some molecular flUifis]
for Theoretical Physics, Seoul, Korea. Electronic addressand also some evidence of sizable deviations in the case of
Eu@OMC.Lan.McGill.Ca supercooled liquid$8—14]. See Mohanty’s papdi5] for a
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review of the situation on supercooled liquids. Some atthat occur when a stress is applied to a liquid. This is an
tempts[16—18 have recently been made to understand theeffect which has not traditionally been taken into account
deviations. when a theory of transport processes is developed. Therefore,
There have been some derivations of the Stokes-Einsteidespite the derivation of an old well known result, it repre-
relation made by using the absolute reaction rate thgl8}y  sents a fresh viewpoint on the problem. The present method
which yields an intuitive formula involving adjustable pa- is sufficiently general as to suggest that it should be possible
rameters, generalized hydrodynam[@§], the tagged par- to obtain a similar expression for polyatomic liquids.
ticle kinetic theory[21], mode coupling theory22], and a In Sec. Il a Stokes-Einstein relation is derived for simple
kinetic theory of ellipsoidal particlg®3]; however, the deri- liquids subjected to shearing perturbation by using a kinetic
vations are mathematically rather involved and require aheory method. The derivation exploits the bulk density
considerable amount of work even just to follow them. Therevariation that occurs in the molecular length scale in the
also have been derivations of a relation bas&t25 on the liquid as it is sheared. A formula similar to the Stokes-
autocorrelation function for the diffusion coefficient, but Einstein relation, which holds only for a sufficiently large
they require an assumption of the relaxation time and idenhard sphere in a viscous medium, is obtained for the poten-
tifications of the elastic and shear moduli with the longitudi-tial part of the shear viscosity in terms of the density, tem-
nal and shear viscosities on the basis of physical argumentperature, and pair correlation function of the liquid. This
Therefore, it is reasonable to conclude that a statistical merelation can used for calculating the shear viscosity of a
chanical derivation of the relation is still an interesting sub-simple liquid from the data on the self-diffusion coefficient
ject of study. of the liquid, either known experimentally or from simula-
On the phenomenological side of the study of the relationtions. The original Stokes-Einstein formula is valid if the
in the case of polyatomic liquids a number of auti@®,27]  assumption is made that the hard sphere radius is much
have suggested on empirical grounds that the Stokes-Einstelarger than that of the solvent molecule, so that the solvent

relation should be modified to the forf28] can be treated as a continuous medium. The formula ob-
. tained in this work does not require the usual assumption
nD=C(T), (3 mentioned. In Sec. Il the relation is applied to calculate the

) ) density and temperature dependence of the shear viscosity of
where the exponendis a parameter less than unity but vary- 5,400 " and the density dependence of the shear viscosity of

ing with temperature and the nature of the solvent. In Refskrypton and xenon. They all are in good agreement with
[26, 27) cited, this formula, with an appropriately chosen gyneriment. The applicability of the Stokes-Einstein relation
value of the parametey was shown to correlate with experi- 14 molecular particles is also assessed in this section. A dis-

mental data on polyatomic molecules such as hydrocarbons, ssion and concluding remarks are given in Sec. IV.
tetramethylsilane, and benzene, to cite a few examples.

Since the dilute gas relatidiiEq. (1)] and the relatiofEq.
(2)] holding for liquids are so different with regard to the Il. STOKES-EINSTEIN RELATION
exponent oD, and are in fact in an inverse relation to each FOR A SIMPLE LIQUID
other with regard to theD dependence, a conventional

Chapman-Enskog-type solution method for a kinetic equa- Consider a simple liquid of mqlecular masscontained
in volumeV at temperaturd. It will be assumed that par-

tion is unlikely to produce the Stokes-Einstein relation for icles interact through pairwise additive potentials. A kinetic
liquids. Such a diametrically opposite density dependence o eory can be developed for the fluid, and, if the system is

the »— D relation suggests that it is important to understand A X : :
how the crossover behavior enters into the kinetic theory ofi€ar equilibrium ar_1d subject o a small velocity gradient
the relation. The derivation of such a relation, which exhibitsc""used by a S.heaf'”g pertur.bat|or.1, then. the shear s]ﬂess
a crossover behavior, should be interesting even for simpIQaS f[he .followmg linear relationshig29] with the velocity
liquids. Also, a generalized form of the Stokes-Einstein rela-grad'ent'
tion for complex liquids promises to be an even more inter-
esting and worthwhile problem in the kinetic theory of lig- I=-27[Vu]®?, (5)
uids, especially because the self-diffusion coefficients are the
easiest among transport coefficients to simulate on a ComWheren is the shear viscosity, anfdu]®@ is the traceless
puter; thus such a relation can provide a relatively simpleSymmetric part of the velocity ,gradiemu namely
method of computing viscosities for complex liquids. We ' '
therefore consider the present line of investigation to be the
first step in such a direction of work. [Vu]@=3[Vu+(Vu)i]-16V-u. (6)
In this paper we would like to report a simple method of

deriving the Stokes-Einstein relation, or a general form of it,yere the superscripitdenotes the transpose of the tensor and
by means of statistical mechanics in the form the symbol & stands for the unit second rank tensor. The
D=C'(T.p) 7 assumption made for Ed5) is tha_t||[Vu.](2)H is small in
Tp P magnitude, so that the linear relationship holds between the
angstress and the velocity gradient. The shear stib&salso the

where 7, is the potential part of the shear viscosity, :
7 P B 4 traceless symmetric part of the strépsessurgtensorP:

C'(T,p) is given in terms of the density, the pair correlation
function, and the intermolecular force. This method rests on
the recognition of the importance of bulk density variations M=3[P+P']—16TrP. (7
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In the kinetic theory of liquids based on the generalized Bolt-
zmann equatioh29], the shear viscosity is given in terms of
a collision bracket integral of the virial tensor,

7= Nt 7p. (14)

Both contributions depend on densjtyas well as on tem-
peraturel. However, there exists a density-independent limit

2p’g
= (8 . 0
kT R lim 7(p)= nx, (15
p—0
where
12 which is the Chapman-Enskog viscosity. It can be verified
g=< My ) (nd)~2 that this is indeed the case, if the density expan§8fj of
2kgT ’ the collision bracket integraR®) is calculated by using a

?Iuster expansion of the collision operaf®f"). To see this
OWe define the collision bracket integrelY for the kinetic
part by the formula

with m, andd denoting a mean mass and a mean radius
the molecules, respectively, arf?) the collision bracket
integral defined by30]

1
R<1>=—f dxNEN) R(l):—j dxNMEMN)
5n2d3(kgT)2 e % 5n2d3(kgT)? ¢
N N N N
XjZl h}“é(lrj—r):iT(N)kZ1 hi. 9) x>, [MC;C;128(r;—n):iTMY [mC,C®@.
= = i=1 k=1
Here dxN=dr,...drydp;...dpy, with r; and p; denoting (16)
the position and momentum of partidleOther symbols in o _ _ _ _
this expression arie= = 1. F(") is the equilibrium distribu-  Then it is possible to identifyy, in the form
tion function,
2p’g
m. |12 = = a7
TN — N[ K @’
TN=T d(2k5T> , (10) keT Ry
with TN) denoting the collision operator ®f particles, and and », with the statistical mechanical formula
hj(l) is the traceless symmetric part of the virial tensor: ,
2p“g 1 1
N — _  (rW_Rp()y___
[r-|r-|](2) , 7o (1)(R0 R ) (1) (18)
h}l):[mcjcj](z)_%gj #V“, (11) keT Ry R
Py The leading term in the density expansion of the collision
, I : (1) i
V) zﬁ (ry =|r]-||=|rj—r||). (12) bracket integraRy~’ can be showi30] to be the Chapman
i

Enskog collision bracket integral of the Boltzmann kinetic
theory [4]. Since the density-dependent part gf is rela-
tively smaller than the density-dependent potential paﬁt,
P; may be used for, in the lowest order approximation for the

Cj= o u, (13 kinetic part:

HereC; is the peculiar velocity of particlg defined by

with u denoting the fluid velocity, and, is the intermolecu- = m(T). (19
lar potential of particlegandl. The collision operatof V) is
the solution of the classic-particle Lippmann-Schwinger The potential contributiony, evidently has to do with the
equation; it may be expanded into a cluster expansion whicintermolecular interactions. It depends strongly on both tem-
reduces to the Boltzmann collision integral in the dilute gagperature and density. This is the part that will be calculated
limit. For details about thé-particle collision operator, the alternatively to the method using the collision bracket inte-
reader is referred to Reff29]. Since it requires the solution gral presented earlier. Consequently, except for showing that
of many-particle collision dynamics it is not trivial to calcu- 7 is decomposable into kinetic and potential parts, the ki-
late the collision bracket integrals except for the kineticnetic theory expression fay, is not used at all in this work.
contribution—namely, the tern‘ijjCj](Z) in hJ(1> which  All we need from the kinetic theory of transport coefficients
represents the momentum transfer per unit time—in the cagé the decomposition of; [ Eq. (14)], Newton's law of vis-
of hard spheres, the problem of calculatingemains largely ~ cosity [Eq. (5)], and the Chapman-Enskog result fa}, as
unsolved at present. We look for an alternative procedure oshown below. It should be noted that on the right hand side
computing the shear viscosity. of Eqg. (18) there are cross terms between the kinetic and
To begin with, it is useful to observe that the shear vis-potential parts of the virial tenscbrfl). Since the cross terms
cosity may be decomposed into kinetic and potential contriare generally smaller than the purely potential part, they will
butions, namely, be neglected in the present work.
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According to the method of Irving and Kirkwod@1] the 1 [Fof15]@
stress tensor of a nonequilibrium inhomogeneous liquid can IL,(r,t)= —%J dhf drip— ——Vv'(r')
be calculated in terms of the dynamic pair correlation func- 0 12
tion in the form X p@(r =N\l 10, r + (1= N)r10,t). (29)
P=P+Py, 20 Here the symbo]A]®®) denotes the traceless symmetric part

of tensorA as in Eq.(6). Adding these two components, we

where
obtain the traceless symmetric p&ktof P:
Pk(r,t)=f dp mCCf(p,r,t), (21 =[P]?=II+1I, . (30)
1 o The two components must be calculated for the correspond-
P,(r,t)= _%J d)\f dry, 1rz Lyi(ry) ing viscosities.
0 12

XpPD(r=Nrpr+H(1=Nrppt). (22 A. Kinetic part 7

] ] i The kinetic part of the shear viscosity is obviously related
In these expressionp is the momentum of the particle, i the kinetic part of the stress tensor, and this relation, al-
v'(r1p) is the derivative of the pair potential already defined,ough already discussed from the viewpoint of the collision
r1= 11 =[r1=rof, f(p.r.t) is the nonequilibrium singlet pracket integral, can be examined from the standpoint of the

distribution function normalized tp, stress tensors given in Eq&8) and (29). This is the aim of
this subsection.
p(r’t):f dpf(p,r,t), (23 Since we are interested in the linear process occurring

near equilibrium, it is sufficient to expand the singlet distri-
bution function in the leading moments. It is assumed that
the temperature is uniform. Therefore, there is only the stress
tensor to consider. The singlet distribution function then can
be written in the form

andp®(ry,r,,t) is the dynamic pair configuration distribu-
tion function. It should be noted that if the full virial tensor
V; is used, which is defined Hy2]
1
V;=mC;C; 5(rj—r)—§f d\ f=fo[1+mC-CA+[mCC]?:B]
0
=fo(W)[1+kgTw-wA+kgT[ww]?:B],  (31)

N
Fiklik J :
nggzl ™ v(rj)exp —Arje -] 8ne—r); (249 wheref, is the local equilibrium Maxwell distribution func-
tion
then the stress tensor is given by the average ilNtparticle 2
phase space fo= p(2mmkgT) ¥2ex — m
\ 2kgT
P(r,t)=J’dr<N) dp™ > VFN (N pN 1) (25) =p(2mmkgT) *exp — tw?), (32
j=1

with the reduced peculiar velocity defined b
Here FN(r(N) p(N) t) is the dynamic distribution function P Y y

depending om-particle position and momentum vectofy) 1

andp™). It obeys the generalized Boltzmann equatia8l. w=mBC (/3= ﬁ)

Thereforeh(" is an approximation of the traceless symmet- ®

ric part of V; where the exponential displacement operatorA andB are the scalar and tensor moments to be determined.
exg —\rj- (9/dr)] in Eq. (24) is set equal to unity: Since the normalization is preserved, it follows that

hiVs(r;—r)=[V;]?(\=0). (26)
I, o p=f dpf(p,r,t)=f dpfo(p). (33
The dynamic pair distribution function in E€R2) may be

written in the form

p(2)(rl!r2!t):p(rlrt)p(r21t)g(rllr2:t)l (27)

whereg(rq,r»,t) is the dynamic pair correlation function,

which depends on density as well as the velocity gradient for
the nonequilibrium system under consideration. Therefore] herefore
there follow the expressions for the traceless symmetric part

of P: A (—1 TP 1|=c—t—p. (34
5kgT | 3pkgT = K 5p(kgT)?"

Multiply mC- C to f and integrate ovep to obtain

TrP = f dpmC- Cf(p,r,t)=3pkgT+ 15p(kgT)?A.

_ (2)
Hk(r’t)_j dpLmCCIt(p.r.1), (28 Multiplying [mCC]® by f and integrating ovep, we obtain
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2 ) direction, and the velocity gradient in thlxedirection. They
Hk:j dp[mCC]' f(P,f,t)Zf dp fo[mcC]? direction is neutral. It is important to recognize that the fluid
is compressible. Expansion of the bulk densities in series of
X[mCC]?:B=2p(kgT)?B]?. ATy, yields
This means that the tenspB]® is given by p(r=Ar)p(r+(1—N\)rp)
I, ) ((9p)
() P — S =p°(r)+(1=2N)p(r)| =] -rio—A(1—\
[B] 2o(kgT) (35) p(r)+( )p(N)| =] 2= AM1=A)
. . . 2
Collecting these results, we finally obtain « o o +O(rf2). (40)
Ay . k

f=fo(w) 1+W~W5p?+ ww]?): 2pksT| (36)  Since the density gradient is expected to be small, only the
B B first order derivative terms will be retained. The dynamic
There remains the problem of determiniHg in terms of the ~ Ppair correlation functiory(ry,r2,p,t) will be approximated
shear rate or, more generally, the velocity gradient. For thagy the equilibrium pair correlation function to the lowest
the kinetic theory must be Sought for he|p, and we may us@rder because the system is near equilibrium. Furthermore, it
expressior(17). Calculating this formula to the lowest order Will be evaluated at a suitable mean dengitywhich will be
in density making use of the well established procedure irfpecified later. The main reason for this approximation is a
the dilute gas kinetic theory, we can obtain the resultgﬁ)r practical one because otherwise it will be necessary to solve

as follows: an integral equation fog(r,r,,p) where the density varies
in space, but such an integral equation is impractical to solve
I,=—27Vu]?® (370  because it involves three-dimensional integrals requiring too
large computational resources. In any case, it does not
and change so rapidly with regard to the density in the dense
liquid regime, and the approximation is reasonable. By using
0 3032)(2) B expansion40) and the approximate pair correlation function
77k:5Q<—1)(1)PDO:CPDO- (38) g(ry,r,,p), we obtain thexzcomponent ofl,, necessary for
12 the plane Couette flow configuration in the following form:
HereQ{?(2) andQ{}(1) are collision bracket integrald], 1 oz PO
andD, is the Chapman-Enskog self-diffusion coefficigk Hvxz:_f A 220 (F 1) G (P10 p)F 1ol 12 e
Tables for the collision bracket integrals for the Lennard- 12 M2 or or
Jones potential are available in the literat[88]. From the 1 (Xq9215)? ap dp
tabulated values for the collision bracket integrals, we find = Ef drlzr—le’(rlz)g(Mz,F)& 7z

that the ratioQ{?(2)/Q{})(1) is approximately 1.1 for the
Lennard-Jones potential, and theis:0.7. It must be noted T dp dp

that the formula in Eq(38) is an approximation ofy,, since =75/, drrevi(ng(r,p) - —- (41)

the singlet distribution functiofi is not a dilute gas singlet

distribution function and therefore the viscosity coefficientsince the bulk density variation is expected to be limited to a
7k is density dependent. To take this into account we mayange of distance of the order of intermolecular force at

replaceD, ad hocwith a density-dependent self-diffusion most, it is appropriate to insert a cutoff factor defined by
coefficient, for example the full self-diffusion coefficieDt

and set L(E=ra)=1—0(&—|r13),
n=cpD. (39) Wwhered(&é—|ryj) is the Heaviside step function:

However, this procedure is not firmly based on mathematical o(x) = 1 for x=0

analysis, but empirical. Nevertheless, the result may turn out 0 for x<O0.

to be useful.

Here ¢ is the cutoff distance which can be as small as about

20 in the low temperature regime, and as large as the inter-

molecular force range,.x at higher temperatures. Thus we
To calculate the potential part alternatively to the methodinally obtain

of Eq. (18), the pair correlation function must be examined

with regard to the ;, dependence of densip(r —\r,,) and o 1 dp dp

p(r+(1—\)rqp). This ry, dependence of the bulk density vxz—§w(p) X 92"

indicates that the potential part of the stress tensor varies

over the length scale of intermolecular distance, and it caivhere

have a significant effect since the shearing perturbation is om [

accompanied by shear waves. To be specific we will consider _=" 5,7 _

a plane Couette flow configuration in which flow is in the w(p) 15 jo drrvi(ng(rp)d(=lrD. (43

B. Potential part »,

(42
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In the case of a single component fluid under consider- p?w(p)
ation, the velocityu* of the diffusing tracer particle is re- (1p)=1p(p(Em))=np(p)= 6D (53
lated to the density gradient in the following manp@4]:

This relation is similar to the Stokes-Einstein relation except
wiy— P for the factorp?w(p) which depends on density, tempera-
pu*(r) D—, (44) , . T C
ar ture, and intermolecular potential parameters. By combining

_ o o ) ~ the kinetic and potential parf&qgs.(39) and(53)], we finally
whereD is the self-diffusion coefficient. This tracer particle optain the shear viscosity of the fluid in the form

velocity is opposite to the velocity of the bulk fluid against
which the diffusing tracer particle moves, that is, p’w(p)
n:CpD0+ W (54)
u*(r)=—u(r). (45
In the limit of vanishing density, this formula gives rises to
the Chapman-Enskog viscosity of the gas which is indepen-
9 dent of density, whereas in the limit of high densities in the
pu(r)=D —. (46) liquid regime it takes the Stokes-Einstein form since the sec-
or ond term on the right is dominant over the Chapman-Enskog

Therefore, if the density variation withis small so that the contribution. Therefore' fprmula(54) explamg how the
Chapman-Enskog prediction of the—D relation crosses

second der|vat|ve. is negllglble, then the velocity gradient forover to the Stokes-Einstein form of the- D relation as the
the Couette flow is given by

density increases from the dilute gas regime to the liquid
regime. We see that in the dilute gas regime the momentum

This means that

du, Jd _dp 2D dp dp

e D~ — — (47  relaxation dominates, since the intermolecular part of the
Jz dz  JX p? 90X dz stress relaxes faster than the momentum transfer(nate
mentum fluy owing to frequent collisions of relatively long
for which we have used the property@tD'/p, whereD'  mean free paths, whereas in the liquid density regime the

is approximately independent of The removal of this as- stress arising from the intermolecular interactions dominates
sumption does not basically change the essential result. Singgnce it relaxes more slowly than the momentum transfer rate

for the plane Couette flow configuration owing to the more constrained configuration of the particles
at a liquid density.
Moo= — IUy (48) The formula derived suggests that if there are data, ex-
vxz— Mo gy perimental or simulation, available f@, then the shear vis-

cosity can be calculated from Ed54). Since the self-
use of Eq.(47) yieldsII,,, in the form diffusion coefficient is much easier to simulate than the shear
viscosity, formula(54) can be quite useful in practice, pro-
vided it is sufficiently reliable. The utility of the formula is
tested against experimental data in the following.
We examine the Stokes-Einstein relation fgy in some

This result should be compared with Ed2). We thus ob- detail. First, expressed in reduced quantitiesr/o,v*

271,D dp dp

VXz— p2 6_Xo72' (49)

tain the potential part of the shear viscosity in the form  =V/KgT, ando* = wa°p/6, thep®w(p) factor can be given
in the form
2
p w(p)
7= 76D (50 1o LA ez w keT
P w(p)—sg w(e™) gy (59

Since the density in this expression changes over the range
of 2¢ this formula should be averaged over the distanceVhere
Thus we obtain %

~ * dv -
1 e w(Q*,T*)=fo dx x° dx 9(x,0*)(&—x]), (56)
()= 3¢ | demtote. (51
with £= &/ o. Therefore the numerical factarin the Stokes-
By the mean value theorem there existg afor which Einstein relation is replaced by a density- and temperature-
dependent factor
<77p>: np(P(gm))- (52 4R
—1_.__ %22 * T*
Since the density variation in the interval of B small and c = 50 o™ w(e”,T7). (57)
around the bulk density valup, the densityp(¢,,) at &
= &, satisfying the mean value theorem should be practicallylhat is,
the same as the bulk density to a good approximation. This
suggests that we tale= p(&,)=p. Thus it is permissible to D_kB_T AR o . T+ £g
take b= —_gl5,¢ @@ T (58)
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Because the particle diffusing through the medium is theStokes-Einstein relation.

same molecule as the molecules comprising the medium, a In fact, sinceR is generally a parameter that can be dif-
non-numerical factor depending dif andg* in Eq.(58)is  ferent from the radius of the molecule if the Stokes-Einstein
understandable. The factor in the square brackets ifd8). relation is applied to particles of a molecular size, one may
replaces 6 in the case of the stick boundary condition, andinfer a molecular expression f& from Eq. (58) if one in-
471 in the case of the slip boundary condition, in the sists it be the Stokes-Einstein relation

o 12 ) -
ﬁ=€g*2a(g*,T*) for the stick boundary condition
8 2. . ”
=§Q*2w(9*,T*) for the slip boundary condition. (59)

If the Stokes-Einstein relation is obeyed, the right hand side should be equal to unjtg. Used instead ofy,, then we find,
from Eq. (54)

O 3MT DD+ 0% 2 (e* T*) for the stick bound diti
ﬁ—kB—TCp 0 EQ (o™, T*) for the stick boundary condition
270 8 . ) »
ZﬁCpDOD-I- EQ*Za)(Q*,T*) for the slip boundary condition. (60
B

Here one may replacepD, with 70. These relations will be It is remarkable that this relation arises despite the fact that
assessed to see if the Stokes-Einstein relation is obeyed féfte method of Kirkwood, Buff, and Green is quite different
molecules. from the present method. This suggests that the Kirkwood-

Formula(54) is reminiscent of the one derived by Kirk- Buff-Green method seems to merit a more careful investiga-
wood, Buff, and Greer{35], who obtained it by using a tion. In this connection it should be noted that the Rice-
different method which requires solutions for the hierarchyAllnatt theory [37] also gives formulas for viscosities in
of kinetic equations for Brownian particles. These kineticterms of a hard sphere friction constant in forms reminiscent
equations are Fokker-Planck equations that Kirkwood deof the viscosity formula presented here, but they are more
rived in his earlier papei36] for reduced distribution func- complicated than either Eqéb4) or (61).
tions for particles immersed in their own kind of particles  In the derivation of formuld54) the coupling between the
which are treated as a continuous medium bombarding thenomentum transfer parEijCi-](Z) and the virial part
particles of interest. In fact, their equation can be given tthrijrij](z)vi’j/rij of the tensoh}1 has been neglected. Near
same form as E(54) if an approximate form is taken for the equilibrium, the contribution from the coupling of these
¥, factor appearing in their equation except for the differentterms is negligible, but it may become non-negligible in the
numerical coefficients emerging thereby. For example, if thesupercooled liquid regime. In such a case Egl) may re-
lowest order approximation is taken fak,, namely, i, quire a correction. Since investigation of this aspect also re-
~r?/2 [see Eq(31) of Ref.[35]], then from Eq(10) of Ref.  quires an improved method of computing the pair correlation
[35] we have the viscosity formula function beyond the Percus-Yevick integral equation used in

this work, it will be deferred to a future work.
2
= %pD-l— p ngM(P), 61)
Ill. COMPARISON WITH EXPERIMENT

where A. Shear viscosity

To see the utility of the formula presented, we calculate

(N , the shear viscosity of argon with regard to its density and
wkem(pP)= 5 fo drrév’(r)g(r,p). (62) temperature dependence as well as the density dependence of
krypton and xenon, and compare the results with experimen-
tal data available in the literature. The temperature depen-
dence for krypton and xenon is not calculated because of the
absence of experimental data to compare with. The values of
the self-diffusion coefficienD are computed with either the
formula obtained by fitting the Naghizadeh-Rice d&8] to
a mathematical form or the formula proposed by Hea}
on the basis of the molecular dynamics simulation results.

This must be compared with E¢43). We thus find that,
apart from the cutoff factor, there holds the following rela-
tion for the multiplicative factors:

2
o(p)= §wKBM(P)- (63
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FIG. 1. (8 Density dependence of shear viscosity &t FIG. 2. (8 Temperature dependence of shear viscosity at

=273.0K. The dotted curve is the prediction by the Haynes for-=1.408 g/cmi. The solid curve is the theoretical shear viscosity
mula. The solid and dashed curves are the theoretical shear viscogialculated with Dagnizaden-rice38]. In this case, the Chapman-
ties calculated withD eyes @aNd Dyaghizaden-rice '€SPECtively. The  Enskog shear viscosity was used for the kinetic partpofThe
experimental value ony is used in place of the Chapman-Enskog dotted and dash-dotted curves are the experimental temperature de-
shear viscosity. The filled circle®) are the experimental values pendence calculated with the empirical formulas of Hayjg
reported in Ref[42]. (b) Temperature dependence &)= 7— 7? and Younglove and Hanlegy3]. The filled circles(®) are experi-

at p=0.9 g/cn?. The solid curve is for the theoretical excess shearmental values as reported in Rp£5] whose authors obtained them
viscosities calculated witD ey, and the dotted and broken curves by interpolating/extrapolating the data reported in R§A&—-48.
are the experimental temperature dependence computed with tiie) Density dependence of shear viscosityfat90.0 K. The mean-
empirical formulas of Haynggl1] and Younglove and Hanlgy3], ings of the curves are the same agan The symbols represent the
respectively. The value of parametein this case is equal to unity. following dataO from Ref.[49], * from Ref.[50], X from Ref.

. . . L . [51], and® from Ref.[45]. The value of parameter in this case is
The pair correlation function appearing in the expression folyy 51 1o 0.175, which corresponds to the cutoff parameter walue
w(p) was obtained from the numerical solution of the Percus- 5.

Yevick integral equatio40] for the pair correlation func-
tion. With the so obtained pair correlation function, the inte-—|r | - Thus the viscosity values computed are free from
gral is numerically evaluated at different temperatures angharameters other than potential parameters. Agreement with
densities. . . _experiment is good. In Fig.(lt) the temperature dependence
In Fig. 1(a) the shear viscosity of argon &=273.0K is  of the shear viscosity at,=mp=0.9 g/cni is presented for
plotted against the density, and the density dependence {fie temperature range indicated. The solid curve is for the
compared with that predicted by the Haynes formidld],  gycess viscosity calculated Wiy eyes the dotted curve is
which was obtained by fitting his experimental data. Thecomputed by the empirical formula reported by Hayfs,
potential parameters for argon are=3.40A and e/kgT  ang the dash-dotted curve is obtained with the formula re-
=119.8K[33]. The dotted curve is the prediction by the ported by Younglove and Hanlg®3]. The latter two curves
Haynes formula. The solid and broken curves are the theogre therefore experimental. In this case, the valuerd$
retical values of the present theory, which have been comequal to unity. The temperature dependence by the present
puted with the values db by using the Heyes formula and  theory shows a negative temperature derivative gf as do
the Naghizadeh-Rice formula, respectively. Thealues ob-  the Younglove-Hanley formula and molecular dynamic
tained by the former will be calle®yes, and those ob-  simylation data[44], whereas the Haynes formulgil]
tained by the latter will be calleB yagnizaden-rice IN @ll of the  shows a positive temperature derivative. On physical
calculations for this figure the experimental value of the di-grounds the temperature gradient &f is expected to be
lute gas viscosity has been used Wﬁ: cpDg. The reason npegative.
for not using the Chapman-Enskog value faﬁ is that it is The critical density and temperature of argon are, respec-
about 10% lower than the experimental value &t tively, p.=0.533 g/cmi andT,=151K, whereas at the triple
=273.0K, and 4-5% in the range of=240-250K, point p=1.42g/cni and T=85K. The empirical value of
whereas it agrees well with the experimental values arounthe viscosity at the triple point is 0.289 mPas according to
the triple point. Since the principal aim here is to test thethe Younglove-Hanley formula and 0.282 mPa s according to
formula for the excess shear viscosipy, the part obeying the Haynes formula. As the temperature approaches the triple
the Stokes-Einstein form, we feel it appropriate to removepoint of argon, the value of parameteris found to be less
the uncertainty in the kinetic part of, namely, ). The than unity. For Figs. @ and 2b) we have choserx
filled circles are the experimental values of Réf2]. In this  =0.175, which approximately corresponds to the cutoff pa-
case, the value of the parameteris taken to be equal to rameter value¢~2¢. In Fig. 2a) the temperature depen-
unity, which implies that the range of density variation is dence of the shear viscosity of argonggt=1.408 g/cr is
equal to or larger than the intermolecular force ramngg, shown. The solid curve is the theoretical shear viscosity
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TABLE 1. Ratio of 7, to 7 at T=273.0K.

n (mPag 7, (MPa$ mln
Pm DN-Ra D Heyes EXp'[.b EXpt.C D N-R DHeyes EXp'[.b DN-R D Heyes EXpt.b

0.508 0.032 0.028 0.0365 0.033 0.009 0.0066 0.009 0.28 0.24 0.25
(0.033

0.694 0.052 0.043 0.051 0.044 0.022 0.016 0.029 0.42 0.31 0.57
(0.044

0.812 0.071 0.056 0.060 0.054 0.035 0.025 0.033 0.49 0.45 0.55
(0.059

0.896 0.087 0.068 0.067 0.063 0.046 0.033 0.044 0.53 0.49 0.66
(0.065

0.958 0.10 0.078 0.073 0.071 0.055 0.040 0.048 0.55 051 0.66
(0.079

1.008 0.11 0.086 0.08 0.079 0.063 0.045 0.056 0.57 0.52 0.70
(0.083

®D.R iS Dyaghizadeh-rice The columnsDy g andD e esrepresent the theoretical values of viscosities computed Dty andD pyesfor the
self-diffusion coefficient. The viscosities quoted are in the units of mPa s. The viscosities computed with the Younglove-Hanley and Haynes
formulas are experimental.

PExperimental values reported in RE53].

‘The Younglove-Hanley formula. The numbers in parentheses are from Haynes’ formula.

computed With Dyaghizaden-rice @d  the Chapman-Enskog value changes frqm 0 te0.6 as the density incr_eases from_O
shear viscosity is used for the kinetic partmfnamely,?  to 1.0 glent, as indicated by some of the higher density
= Tchapman-Enskog AS Mentioned in connection with Fig. 1, values shown in Table I. The ratio clearly vanishes as the
the Chapman-Enskog shear viscosity at the temperatures Bgnsity vanishes sincg,~ p° asp—0.

interest here agrees well with experiment. BecaDggyes These comparisons of the ratig, /7 indicate the formulas
was considered inapplicable in the temperature range consi@bPtained for the viscosities in the present theory have quali-
ered here, the viscosity was not calculated with it. The dotted@tively correct and mutually consistent properties, and there-
(---) and dash-dotted---) curves are computed with the fore are reliable. Note that because of the kinetic contribution
Haynes[41] and Young|ove_Han|ey formu|a[$3]' respec- to 7, the values of the rati@]b/ﬁ are a little lower than the
tively, which are empirical. The filled circleg®) are the ratio of 7, to 7y, which is 2/3.

experimental data as quoted in REf5], whose authors, to To ascertain the applicability of the shear viscosity for-
obtain them, either interpolated or extrapolated the data rehula to other simple fluids we have calculated the density
ported in Refs[46], [47], [48]. The slopes of the shear vis- dependence of krypton at=298.1K and of xenon af
cosity are seen to be negative, that is, the temperature deriva=373.1K. The results are presented in Fig&) &nd 3b).

tive of 7 is negative as expected. The qualitative behavior of 03
the theoretical prediction shows a correct tendency. In Fig.

2(b) the density dependence of the shear viscosityT at o2
=90.0K is presented. The meanings of the curves are the
same as in Fig. (d). The symbols represent experimental ol
data:O from Ref.[49], * from Ref.[50], X from Ref.[51],
and @ from Ref.[45]. The theoretical prediction, with one
adjustable parameter, agrees well with experiment in the a
density range where experimental values are available. It can =
be showr{52] that the bulk viscosityy, also obeys a Stokes- &
Einstein relation similar to the potential part gfpresented

in this work:

a sec)

m

0.2r

2
_po(p) 2
="9p 370 (64)

L L L L L
1.2 1.4 1.6 1.8 2

D:ansity (g/cmBd)

I ! L
0.2 04 0.6 0.8

Therefore, it is possible to calculate the ratig/7. The
value of this ratio in the neighborhood of the triple pointis  FiG. 3. (a) The density dependence of of krypton at T
found to be about 0.77, whereas the experimental values arepgg. 1 K (T* =1.74). The solid curve is theoretical and the filled
on the average 0.85 from R¢#5], 0.78 from Ref[49], 0.56  circles are the experimental values reported by Trappeeiess.
from Ref.[50], and 0.69 from Ref[51]. Therefore, the the- [54]. (b) The density dependence of of xenon atT=373.1K
oretical value is comparable to the mean value 0.72 of theT*=1.69). The solid curve is theoretical and the open circles are
experimental values. On the other hand,Tat273.0K its  the experimental values reported by Reynes and Thifss
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The potential parameters for krypton ave=3.60A and 5 ‘ ; :
e/lkg=171K, whereass=4.10A ande/kg=221K in the a (@)
case of xenon. The values of the potential parameters were ab e
taken from Refs[33, 50. These parameters give rise to the e T

reduced temperature @t =1.74 for krypton andl*=1.69 | e TTTmeeol

for xenon. Therefore, the two fluids are at comparable re- R IR R an S s s = as

duced temperatures. For the calculation of the shear viscosi-, 85 06 07 08 09 i T
ties of these fluids, the value of the parametds set equal = Density (g/cm3)

to unity. Therefore, the viscosity formula involves the poten- o 25 \ \ - \

tial parameters only. The density dependence of the sheal 2t (b)

viscosity is presented for krypton in Fig(e3, where the 15k

solid curve is the theoretical density dependence whereas the !
filled circles are the experimental values reported by Trappe- s
niers et al. [54]. The Chapman-Enskog shear viscosity is Py T T T
used for the kinetic part of), which was found to agree well Y o 2T o s oo o e s mi s
with experiment. In Fig. @) the density dependence of the Temperature (K)

shear viscosity of xenon is presented, where the solid curve

is the theoretical density dependence calculated with the FIG. 4. () Density dependence ofRlo for argon atT
Chapman-Enskog shear viscosity for the kinetic partypf =273.0K. (b) Temperature dependence for argon at,
and the open circles are the experimental values reported ifi1-0 g/cni. For these figuresy=1. The broken(- - -) and dotted
Ref. [55]. In this case the Chapman-Enskog shear viscosity *) lines are computed with E¢S9) for the slip and stick bound-
was found to underestimate the experimental viscositie€ condition, respectively. The soli—) and dash-dotted---)
slightly at low densities. Agreement with experiment and!n€s are computed with EG60) for the slip and stick boundary
theory is not as good as for the case of krypton at intermegond't'ons’ respectively.
diate densities, but the density dependence is found to b8

qualitatively correct. Since the law of corresponding states n the.other hand, the Stokes-Einstein relationsfgshows
was reported56,57] to be obeyed by simple fluids such as a density dependence, but has no temperature dependence. In

argon, krypton, and xenon examined here, agreement bé:—ig' 5 the density and temperature dependencesbé 2ire

tween experiment and theory in the case of krypton and xe€X@mined in the case of argon near the triple pointl at

non could have been expected. Nevertheless, the comparis:ngoﬁ for the density dependence andpegzhl.408 ?/C'ﬁ
presented for krypton and xenon assures us of the reliabilit}®’ e témperature dependence. For these figuses

of the viscosity formula derived in this work, and verifies the =0.175. The meanings of the lines are 'the same as in Fig. 4.
law of corresponding states for the fluids considered. The values 02R/ ¢ are seen to remain virtually constant for

all cases, indicating that the Stokes-Einstein relation is

obeyed. These figures suggest that in the density and tem-
B. Assessment of the Stokes-Einstein relation perature ranges examined here the Stokes-Einstein relation
) ) remains valid for», even if the particle is of a molecular
The viscosity formuldEq. (54)] does not appear to be a gj,e and that the question of slip or stick boundary condition

Stokes-Einstein relation at first glance. Nevertheless, it cafy jrrelevant from the viewpoint of statistical mechanics and
account for the experimental density and temperature depeg-oq is prepared to takR as an adjustable parameter that
dence of simple fluids, and thus is useful in practice. It will

be useful to see if the Stokes-Einstein relati@ can be 15 , , ,
understood for molecular particles in terms of the formula. (a)
For this we examine the relations given in EGs0) and(60).
If o/2R remains constant with regard to temperature and W ———======s==s-c-c-=o--ooc
density, and is equal to unity, then it is possible to conclude
that the Stokes-Einstein relation is valid even for particles of L s e e
a molecular size comparable to the solvent molecules. The 45 ‘ s s : :

. . . 1.37 1.376 1.38 1.385 1.39 1.395 1.4
assessment of the relation will be made for argon. In Fig. 4 © Density (g/cm?d)
the values of R/ are plotted against density and tempera- &

Al T T T T

ture in panela) and(b) respectively. The brokef - -) and (b)
dotted (---) lines are results computed for slip and stick
boundary conditions with the formulas in EG9), respec-
tively, and the solid—) and dash-dotte¢ - -) lines are the
results computed for slip and stick boundary conditions with e eeraS Aot e ety AL e A A R
the formulas in Eq(60), respectively. The density depen- 05 ‘ . . . . .
dence is computed for argon®t=273.0 and the temperature & 8 & Ter??peratlf?e K) % o %
dependence is computed@= 1.0 g/cni. The value of pa-
rametera is unity for the figures. The density dependence of F|G. 5. (a) Density dependence of RZo for argon atT
2R/ o is almost absent if the full viscosity is used for the =90K. (b) Temperature dependence of argon at,
Stokes-Einstein relation, although the values for the different1.408 g/cmi. For these figuresg=0.175. The meanings of the
boundary conditions used differ by an almost constant factofines are the same as in Fig. 4.
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should be taken with a value in the neighborhoodo®®.  of first density derivative with respect to space. In the Kirk-

Since the validity of the Stokes-Einstein relation for mol- wood line of transport theory such an effect is taken into

ecules has been a focus of attention in the literature, as meaccount in the sense that the kinetic equation for the singlet
tioned in Sec. | the assessment made here of the relatiadistribution function is solved together with the kinetic equa-

provides useful insight into the question. In any case, frontion for the dynamic pair correlation function, whereas, for

the perspective of Eq54) the question of the validity of the example, in the linear response theory it is not taken into
Stokes-Einstein relation for molecular particles is irrelevantconsideration.

because it itself is a relation holding for fluids consisting of  Since it is not possible to acquire numerically reliable

molecular particles. analytical solutions for transport properties of dense gases
and liquids by means of statistical mechanics, and the only
IV. DISCUSSION AND CONCLUDING REMARKS practicable option is numerical simulation methdds 3], it

. o ) is useful to develop relations between transport coefficients

In this paper, by means of statistical mechanics, we havgnich can be made use of to compute one transport coeffi-
derived a relation of the shear viscosity to the self-diffusiongijent from another. In this regard the formula we have de-
coefficients for a simple liquid in which the potential part of riyed here and a further improvement of it can be very useful
the shear viscosity bears a resemblance to the well-knowfom a practical viewpoint, because the self-diffusion coeffi-
Stokes-Einstein relation for a hard sphere immersed in a consient is the simplest of transport coefficients to compute by
tinuous medium. The coefficient in the relation is given in means of a numerical simulation method. Its simulation re-
terms of density, molecular parameters, and the pair correlgyyjres the least amount of technical and conceptual problems
tion function of the fluid. The relation may be regarded as &g resolve in implementing the numerical simulation method.
generalization of the Stokes-Einstein relation. The formulap contrast to this, simulations for viscosities, although often
derived for the relation of shear viscosity and the Se”‘practiced, are not as simple to implement, because of the
diffusion coefficient is reminiscent of the expression for therequired boundary conditions, viscous heating, numerical in-
shear viscosity derived by Kirkwood, Buff, and Gref85]  stapilities that may arise as the shear rate increases, and a
in 1949. The latter can be shown to take the present formgrge signal to noise ratio in the small shear rate regime.
apart from the constant numerical factor, in the lowest order Although not directly applicable to supercooled liquids
approximation for;, appearing in their formula for the shear ang complex liquids, the viscosity formula derived in this
viscosity. This seems to suggest that the Kirkwood kinetiGyork has a potentially useful feature which, when properly
equation for Brownian particles36] may be worth a fresh generalized, may be helpful for understanding the deviations
investigation, although its variant was already proposed ifrom the Stokes-Einstein relation which have been experi-
the form of Rice-Allnatt theory37] which was used to cal- mentally observed in glass-forming liquids as mentioned in
culate transport coefficients. As far as the mathematicakec. ||, because the present approach may provide molecular
structure goes with regard to the friction constant deloentheory expressions for the parameters repladirand R in
dence, the present result is also reminiscent of the shear vighe Stokes-Einstein relation for such complex liquids.
cosity formula of the Rice-Allnatt theory despite the differ- |y conclusion, the derivation of the formula presented for
ence in the methods of derivation _of the viscosity formula. the shear viscosity is relatively simple. Although it has an

_The present theory for the relation gfto D exploits the  adjustable parameter in the case of low temperatures near the
minute bulk density variations which occur when the fluid istriple point where the density variation is short ranged and of
sheared or compressed by an external agency. This is 3Re order of a couple of molecular diameters, the formula is
effect which is traditionally ignored when a theory of trans- not only easy to use and practical in accounting for the tem-
port processes is developed in the Chapman-Enskog line ¢ferature and density dependence of experimental data of
approach. Neglect of such an effect within the bounds of th%imple fluids such as argon, krypton, and xenon, but it is also
traditional line of approach to the transport theory is quitesyggestive of the possibility of generalizations for more
legitimate when the collisional contributions are calculatedcommex fluids. In the range of density and temperature ex-

from the solutions of the kinetic equations, but the effectamined, the Stokes-Einstein relation is found to remain ap-
becomes significant when some relations are sought betwegyficaple to particles of a molecular size.

transport coefficients such as viscosities and the self-

diffusion coefficient of the fluid, especially in the liquid den-

sity regime. As a matter of fact, such a density variation ACKNOWLEDGMENT

appears in the free energy functional in the van der Waals
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