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Nonlinear viscosity and Grad’s method

F. J. Uribe and L. S. Garcı´a-Colı́n*
Departamento de Fı´sica, Universidad Auto´noma Metropolitana–Iztapalapa, 09340 Me´xico, Distrito Federal, Mexico

~Received 23 March 1999!

The Grad ten-moment approximation~no heat flux! is analyzed for cylindrical symmetry in a stationary
situation in which the gradients of the fluxes are assumed to be small. We show that if the collision term in the
transport equation, resulting from the ten-moment approximation, is linearized in the fluxes, we can obtain a
viscosity (h l) that depends on the gradient of the velocity with the correct limiting behavior for small gradi-
ents. The nonlinear contribution of the fluxes to the collision term are then taken into account to derive an
expression for the viscosity (hnl) as a function of the gradient of the velocity. A comparison betweenh l and
hnl is performed finding that the maximum percentage deviation between them is 0.52% when the gradient of
the hydrodynamic velocity is positive, but when the gradient is negative the situation changes dramatically.
@S1063-651X~99!00410-9#

PACS number~s!: 05.60.2k, 51.10.1y, 51.20.1d
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I. INTRODUCTION

Shear rate-dependent viscosities have been obtaine
many authors for specific situations, mainly nonstation
states in simple fluids. There is, for instance, the exact s
tion to the Boltzmann equation for Maxwellian molecul
given by Truesdell and co-workers@1#. Monte Carlo calcu-
lations, molecular dynamics calculations, and solutions to
Bhattangar, Gross, and Krook~BGK! equations for rigid
spheres have also been discussed in detail in many pa
@2–5# where a comparison with Truesdell’s work can
found. The concept of nonlinear viscosity~shear rate-
dependent viscosity! has a long history; for example, Gilbar
and Paolucci@6# made some considerations of this pheno
enon in their study of shock waves. A more comprehens
set of references can be found in the works by Truesdell@7#.

More recently Karlinet al. @8# and Gorban and Karlin@9#
have used Grad’s method to reach similar conclusions s
as those mentioned in the preceding paragraph, for n
stationary situations, but with a longitudinal flow instead o
shear one. Also, Al-Ghoul and Eu@10# have derived explicit
expressions for the nonlinear viscosity using a modified m
ment method and their expressions have been applied to
ferent situations such as the shock wave problem@11#. These
works can be difficult to understand in part because of th
use of the same terminology as other researchers to de
different things; for example, the Rankine-Hugoniot equ
tions according to Al-Ghoul and Eu@11# are the integral
form of the conservation equations and not the equati
relating the two equilibrium states as is standard. In the
cent book by Eu@10# the reader can find many references
the nonlinear viscosity issue as implemented by Eu and
laborators.

While there is no doubt that viscosities that depend on
gradients of the hydrodynamic velocity@u(r ,t)# can be ob-
tained from Boltzmann’s equation@1–5,8–10#, a phenom-
enon which we refer to as nonlinear viscosity, there are

*Also at ‘‘El Colegio Nacional,’’ Luis Gonza´lez Obrego´n, Centro
Histórico 06020, Me´xico D.F., Mexico.
PRE 601063-651X/99/60~4!/4052~11!/$15.00
by
y
u-

e

ers

-
e

ch
n-

-
if-

ir
ote
-

s
-

l-

e

o

main points which we would like to address in this wor
First, we consider stationary situations using Grad’s meth
Second, we consider the nonlinear contribution of the flu
to the collisions. As we will see, there are situations
which, if these nonlinear contributions are not included,
results can be in serious error. We will show that in the us
procedure in which the transport coefficients are reanaly
in a somewhat more systematic way, there is a depende
of the viscosity on the longitudinal deformation ra
@]ux(r ,t)/]x#. This is done for Grad’s ten-moment equ
tions but avoiding the use of the invariance principle sta
by Karlin et al. @8#.

In order to simplify the calculations and to make the po
in the simplest way some restrictions are convenient. T
first one is that we can take the heat flux to be zero, a p
which is not trivial and certainly deserves more attentio
The second one is that the velocity has only one compon
and does not depend on timeu(r )5u(x) i. As a specific
situation the reader may think of a one dimensional stati
ary shock wave, where he should, however, notice tha
this case the heat flux cannot be taken to be zero since t
is a temperature inhomogeneity. We finally assume cylind
cal symmetry of the distribution function, a restriction whic
is mainly a matter of convenience to reduce the express
and definitions.

II. THE DISTRIBUTION FUNCTION.

We use the expansion of the single particle distribut
function in terms of Hermite polynomials and the appro
mation given by Grad@12–14# in the ten-moment approxi
mation, the weight function being given by the local Ma
wellian distribution functionf (0):

f (0)~c,r ,t !5nS m

2pkTD 3/2

exp~2mC2/2kT!, ~1!

wherec is the atomic velocity,k Boltzmann’s constant,T the
temperature,n the number density,m the mass, andC[c
2u the peculiar velocity@13#.

The distribution function can be expressed as@12#
4052 © 1999 The American Physical Society
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f 5 f (0)~11j!, ~2!

where, under cylindrical symmetry,

j5mxxS Cx
22

kT

m D1mxy~Cxcy1Cxcz!

1myyS ~cy
21cz

2!2
2kT

m D1myzcycz , ~3!

and Grad’s moments can also be written in terms of qua
ties with a well defined physical meaning, such as the co
ponents of the pressure tensor, which are abbreviated a

mxx5
m

2kT S Pxx

nkT
21D , ~4!

mxy5
mPxy

nk2T2 , ~5!

myy5
m

2kT S Pyy

nkT
21D , ~6!

myz5
mPyz

nk2T2 . ~7!

In these equationsP is the pressure tensor which is we
known to be defined by

P5E f ~c,r ,t !mCCdC. ~8!

The pressurep is given bynkT5(P)/3, as it should be
for a structureless gas in the dilute regime. This definit
together with Eqs.~4! and ~6! gives a relation between tw
of the moments, namely,

mxx522myy . ~9!

III. THE BOLTZMANN EQUATION

In order to obtain the transport equation let us start w
the behavior of the distribution function which is given b
the Boltzmann equation,

D~ f ![
] f ~r ,c,t !

]t
1c•“ r f ~r ,c,t !5J~ f , f !, ~10!

whereJ( f , f ) is the well known collision term@15#.
The transport equation is obtained by multiplying t

Boltzmann equation by any function of the velocityC(c)
and integrating overc:

E dcD~ f !C~c!5E dcJ~ f , f !C~c!. ~11!

In particular, when we takeC(c)5(3m/2)Cx
2 in Eq. ~11!

we obtain that for the stationary case@see Eq.~A7!#,
i-
-

n

h

]

]x
$@Pxx~x!2Pyy~x!#u~x!%

12Pxx~x!
]u~x!

]x
5E dc

3m

2
Cx

2J~ f , f !. ~12!

The right hand side of Eq.~12! gives the contribution of
the collision term and its calculation is performed by dire
substitution of the distribution function given by Eq.~2!. As
a result we obtain a bilinear expression in the flux
(mxx ,mxy ,myz) which can be linearized. The approximatio
implied by this method corresponds to a situation in wh
the Maxwellian form is rather close to the distribution fun
tion. When we take the hard sphere model, the collisio
term in Eq.~12! is expressed as follows:

E dc
3m

2
C x

2J~ f , f !5
3m

2
mxxJ, ~13!

where J is a collision integral whose value for the rigi
sphere of diameters is @15#

J[FCx
2 ;Cx

22
1

2
~cy

21cz
2!G52

32

5
s2n2ApS kT

m D 5/2

.

~14!

The term in square brackets in Eq.~14! is defined for two
arbitrary functions of the velocities, sayF(c) andQ(c), as

@Q~c!;C~c!#

[E dcdc1deS~x,g!g f (0)~c,r ,t ! f (0)~c1 ,r ,t !

3Q~c!D@C~c!#, ~15!

where the shorthand notationD@C(c)# means

D@C~c!#5@C~c8!1C~c18!#2@C~c!1C~c1!#, ~16!

S(x,g) is the differential cross section,g the magnitude of
the relative velocity,de denotes an integration over the sol
angle, and the velocities correspond to their values be
and after the collision~primes! @15#. The collision integrals
that multiply the other fluxes are zero or are neglected
cording to the linear approximation in the fluxes. Notice a
that use of Eq.~9! was made in order to express the line
contribution of myy to the collision term only in terms o
mxx .

From Eqs.~12! and ~13! we conclude that

]

]x
$@Pxx~x!2Pyy~x!#u~x!%12Pxx~x!

]u~x!

]x
5

3m

2
mxxJ,

~17!

which in fact can be seen as a constitutive relation for
nonvanishing components of the pressure tensor. If, follo
ing Grad@12#, we substitute in the left hand side of Eq.~17!
the values for the pressure tensor calculated with the M
wellian (Pxx5nkT, Pyy5nkT) we obtain, after using Eq
~4!, the result that
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Pxx5nkT2
4

3
hNS

]u~x!

]x
, ~18!

wherehNS is the well known Navier-Stokes expression@15#
for the shear viscosity:

hNS5
5

16S mkT

p D 1/2Y s2. ~19!

We now show how a longitudinal deformation ra
(]u/]x) dependence of the viscosity can be obtained fr
Grad’s linear transport equations, Eq.~17!, using a different
approximation. For this purpose we assume that we can
glect the gradients of the fluxes, namely, if, for example,
pressure tensor is a function of]u(x)/]x but not of the
higher order derivatives, then the approximation amount
a situation in which the second order derivatives of the
locity or the products of the gradients of the normal variab
can be neglected. Since

Pxx2Pyy5
3

2
~Pxx2nkT! ~20!

is a flux, we obtain from Eqs.~12! and ~13! that

3

2
~Pxx2nkT!

]u

]x
12Pxx

]u

]x
5

3m

2
mxxJ. ~21!

It is convenient to introduce a dimensionless pressure te
P̃xx and a reduced longitudinal deformation rateal

! as

P̃xx[
Pxx

nkT
, al

![
1

n

]u~x!

]x
, ~22!

wheren is an effective collision frequency defined by

n[
nkT

hNS
. ~23!

The reduced form of Eq.~21! is then given by

~P̃xx21!al
!1

4

3
P̃xxal

!52~P̃xx21!, ~24!
e-
e

to
-
s

or

where the expression forJ given by Eq.~14! has been used
Equation~24! can be easily solved to yield

P̃xx5
~11al

!!

~117al
!/3)

, ~25!

which for smallal
! has the following behavior:

P̃xx5~11al
!!@127al

!/31O~al
!2!#5@12 4

3 al
!1O~al

!2!#.
~26!

Equation ~26! shows that we recover the correct limitin
case, corresponding to the reduced form of Eq.~18!. How-
ever, Eq.~25! is clearly more general than its limiting cas
From the derivation of this equation one should expect it
be valid for smallal

! , yet its range can be extended at lea
a little bit more than the linear term inal

! . Indeed, from it
we can derive the region of longitudinal rates for which t
Navier-Stokes regime~no longitudinal rate dependence fo
the viscosity! is valid to a certain percentage. For example
percentage difference of 5% between the reduced pres
tensor given by Eq.~25! and the reduced pressure tensor
the Navier-Stokes regime (P̃NS) wherePNS given by Eq.~18!
can be seen to be valid whenal

!P(20.11,0.13). On the
other hand, it should be pointed out that the results just gi
were obtained under the assumption that

Q[
u~x!~]/]x! @Pxx2p~x!#

@Pxx2p~x!#@]u~x!/]x#
!1. ~27!

Since from Eq.~25! we can obtain an explicit expressio
for Pxx , namely,

Pxx5p~x!
3p~x!13hNS~x!@]u~x!/]x#

3p~x!17hNS~x!@]u~x!/]x#
, ~28!

wherehNS is given by Eq.~19!, we can evaluate the ratioQ
defined by Eq.~27! using Eq.~28! to get
Q56
u~x!p~x!@]p~x!/]x#

g1~x!g2~x!@]u~x!/]x#
13

u~x!p~x!@]hNS~x!/]x#

g1~x!g2~x!
13

u~x!p~x!hNS~x!@]2u~x!/]x2#

g1~x!g2~x!@]u~x!/]x#
13

u~x!hNS~x!@]p~x!/]x#

g1~x!g2~x!

29
u~x!p~x!2@]p~x!/]x#

g1
2~x!g2~x!@]u~x!/]x#

221
u~x!p~x!2@]hNS~x!/]x#

g1
2~x!g2~x!

221
u~x!p~x!2hNS~x!@]2u~x!/]2x#

g1
2~x!g2~x!@]u~x!/]x#

29
u~x!p~x!hNS~x!@]p~x!/]x#

g1
2~x!g2~x!

221
u~x!p~x!hNS~x!@]p~x!/]x#@]hNS~x!/]x#

g1
2~x!g2~x!

221
u~x!p~x!hNS

2 ~x!@]2u~x!/]2x#

g1
2~x!g2~x!

2
3

2

u~x!@]p~x!/]x#

g2~x!@]u~x!/]x#
, ~29!
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where

g153p~x!17hNS~x!
]u~x!

]x
,

g253
p~x!2

g1~x!
13

p~x!hNS~x!@]u~x!/]x#

g1~x!
2

3

2
p~x!.

~30!

From Eqs.~29! and ~30! we conclude that our approxima
tion, Q!1, holds whenu]u/]xu is very large but the quanti
ties u, p, T, ]u/]x, ]p/]x, ]T/]x, and ]2u/]x2 remain
finite. These conditions are similar to the ones used by G
ban and Karlin@9# and Karlinet al. @8# with which they were
able to sum a subseries of the Chapman-Enskog higher o
gradient expansion using a direct approach@8# together with
the principle of the invariant manifold@9#.

We now compare with the results mentioned in the Int
duction but notice that they were obtained for a differe
situation and thus, in principle, there is no reason why th
should correspond. Nevertheless the comparison shou
least exhibit whether the order of magnitude and the gen
trend are correct. Also, we know that in the Chapma
Enskog expansion the transport coefficients are indepen
of the particular flow considered so that the comparison w
be performed at the level of the viscosity. The question n
is, how do we define the viscosity when the reduced pres
tensor is given by Eq.~25!? The natural way of doing this i
by assuming a relation of the form~18! with hNS replaced by
a certain new viscosityh l . Doing this we obtain for the
reduced viscosity (h l

!)

h l
![

h l

hNS
5

1

117al
!/3

. ~31!

Equation~31! gives foral
!51 the valueh l

!50.3, whereas
for the nonstationary shear rate situation considered by o
authors@1,3–5# the value for the reduced viscosity, which w
denote byhS

! , is about 0.53 foraS
!51 ~shear rate situation!.

The asymptotic behavior ofh l
! for largeal

! is also different;
for the nonstationary situation considered by them,hS

! goes

asaS
!24/3

while our expression predicts anal
!21

dependence
so the quantitative behavior for the reduced viscosity is
ferent. We notice further from Eq.~25! that for a

l

!51 we

haveP̃xx50.6 and so the linear approximation of the col
sion term, consisting in neglecting the nonlinear contribut
of the fluxes, may certainly be questioned sinceP̃xx is not
near 1. In order to see if the discrepancy may be due to
linear approximation in the collision term we have und
taken some calculations considering the full expression
the collision term.

In the situation considered by Karlinet al. @8,9#, for a
nonstationary longitudinal flow, they obtained for the Ma
well model the valueh l

!50.478 foral
!51 which is different

from our result and also from Truesdell’s value. T
asymptotic behavior of the reduced viscosity for large lon
tudinal rates can be shown to go asal

!21, which is again
different from Truesdell’s result but is in agreement with o
results. It is important to notice that the stationary situat
can be obtained from their equation~10! @8#, valid for soft
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spheres, and that the result for the reduced viscosity is
agreement with our results for the case of rigid spheres.
have evaluated the viscosity factor for the nonstationary l
gitudinal flow considered by Karlinet al. @8# for the rigid
sphere model following Uribe and Pin˜a @16,17# finding that
h l

!50.4781 foral
!51 which should be compared with th

value obtained from Eq.~31!, h l
!50.3 for al

!51.
Finally, we mention that]u(x)/]x can be positive or

negative, that is,al
! can be positive or negative. For negativ

values ofal
! Eq. ~31! predicts a divergence of the reduce

viscosity atal
!523/7 and for values ofal

! less than23/7
the reduced viscosity is negative. Thus, this region is
pected to be one in which the nonlinear contributions sho
be important since negative viscosities are certainly con
ered nonphysical, an expectation that is confirmed with
results of the next section.

IV. THE NONLINEAR TERMS

We now consider the nonlinear terms in the fluxes, imp
ing that for the rigid sphere model we obtain

]

]x
$@Pxx~x!2Pyy~x!#u~x!%12Pxx~x!

]u~x!

]x

5
3m

2
mxxJ1

3m

2
mxx

2 J1/2

1
3m

2
mxy

2 J2/21
3m

2
myz

2 J3/2. ~32!

To obtain a closed system for the fluxes we use the tra
port equation @Eq. ~11!# with C(c)5mCxcy and C(c)
5mcycz to obtain that

]

]x
@u~x!Pxy~x!#5mmxyJ41mmxxmxyJ51mmxymyzJ6 ,

~33!

and

]

]x
@u~x!Pyz~x!#5mmyzJ71mmxxmyzJ81mmxy

2 J9/2.

~34!

The collision integrals that appear in Eqs.~32!, ~33!, and
~34! have been evaluated for the rigid sphere model,
results being

J15$Cx
2 ;D!

„f 1~c!, f 1~c1!…%52
32

35
s2n2ApS kT

m D 7/2

,

~35!

J25$Cx
2 ;D!

„f 2~c!, f 2~c1!…%52
32

105
s2n2ApS kT

m D 7/2

,

J35$Cx
2 ;D!

„f 3~c!, f 3~c1!…%5
32

105
s2n2ApS kT

m D 7/2

,

J45@Cx
2 ; f 2~c!#52

16

5
s2n2ApS kT

m D 5/2

,
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J55$Cxcy ;D!
„f 1~c!, f 2~c1!…%52

8

35
s2n2ApS kT

m D 7/2

,

J65$Cxcy ;D!
„f 2~c!, f 3~c1!…%52

8

35
s2n2ApS kT

m D 7/2

,

J75@Cx
2 ; f 3~c!#52

16

5
s2n2ApS kT

m D 5/2

,

J85$cycz ;D!
„f 1~c!, f 3~c1!…%5

16

35
s2n2ApS kT

m D 7/2

,

J95$cycz ;D!
„f 2~c!, f 2~c1!…%52

16

35
s2n2ApS kT

m D 7/2

.

In Eq. ~35! some shorthand notation has been introduc
namely, the functionsf i ,i 51,2,3 are defined by

f 1~c![Cx
22

1

2
~cy

21cz
2!,

f 2~c![Cx~cy1cz!, ~36!

f 3~c![cycz .

D!
„Q(c),L(c1)… is defined as

D!
„Q~c!,L~c1!…[Q~c8!L~c18!1Q~c18!L~c8!2Q~c!L~c1!

2Q~c1!L~c!, ~37!

where the primes denote the final velocities in the bin
collision, and the curly brackets mean

$F~c!;D!
„Q~c!,L~c1!…%

[E dcdc1deS~x,g!g f (0)~c,r ,t !

3 f (0)~c1,r ,t !F~c!D!
„Q~c!,L~c1!…. ~38!

The evaluation of the collision integrals given by Eq
~35!, and others that turn out to be zero, is a tedious labo
attempted by hand, which is why we used computer alge
We have been unable to find results we can compare w
but the general methodology used in evaluating the integ
was checked out in the following particular case; iff 4(c)
51 then

$F~c!;D!
„f i~c! f 4~c1!…%5@F~c!; f i~c!#, ~39!

where we recall that the square brackets are defined by
~15!. The results from the symbolic algebra program are
agreement with hand calculations for the relevant collis
integrals in the linear regimeJ4 , J7, andJ. Also, as we
show in Appendix B, a hand calculation was done to eva
ate $Cx

2 ,D!(Cx
2 ,C1x

2 )% leading to the same value as the o
calculated with the computer algebra code. To this extent
believe the results of this section are reliable.

In terms of the reduced variables introduced in the p
ceding section and with the approximation that the deri
d,

y

.
if
a.
h,
ls

q.
n
n

-

e

-
-

tives of the fluxes can be neglected, the reduced form of E
~32!, ~33!, and~34! finally leads to the results that

~P̃xx21!al
!1

4

3
P̃xxal

!

52~P̃xx21!2
1

28
~P̃xx21!22

1

21
P̃xy

2 1
1

21
P̃yz

2 ,

~40!

P̃xyal
!52P̃xy2

1

28
P̃xy~P̃xx21!2

1

14
P̃xyP̃yz , ~41!

P̃yzal
!52P̃yz1

1

14
P̃yz~P̃xx21!2

1

14
P̃xy

2 . ~42!

This is a set of closed constitutive equations for the indep
dent components of the pressure tensor written in term
the longitudinal deformation rateal

! .
Equation~41! can be rewritten as

P̃xyF11al
!1

1

28
~P̃xx21!1

1

14
P̃yzG50. ~43!

From the two solutions of Eq.~43! it is easily seen that
P̃xy50 is the only solution giving the correct limiting behav
ior for smallal

! . Thus, usingP̃xy50 in Eq.~42! we infer that

P̃yz must vanish to be consistent with the correct limitin
behavior for smallal

! . Then substitution ofP̃xy50 andP̃yz

50 in Eq. ~40! leads us to the result that

1

28
P̃xx

2 1~7al
!/3113/14!P̃xx2~27/281al

!!50, ~44!

from which the solution with the correct limiting behavio
follows,

P̃xx52
98

3
al

!2131
2

3
A2401al

!2
11974al

!1441. ~45!

The leading terms inal
! of the reduced pressure tens

can be shown to be given by

P̃xx512
4

3
al

!1
64

21
al

!2
1O~al

!3
!, ~46!

which means that we recover the first order Chapm
Enskog expression for the viscosity.

Defining a viscosity (hnl) through Eq.~18! with hnl in-
stead ofhNS, as in the preceding section,hnl

! is given by



th
lin
r

n-
en
tio
he

b

g
5
r
lin

an

e
ds.
-

itu-

PRE 60 4057NONLINEAR VISCOSITY AND GRAD’S METHOD
hnl
! [

hnl

hNS

5
49al

!1212A2401al
!2

11974al
!1441

2al
!

.

~47!

It is instructive to examine the percentage deviation~e! of
the two reduced viscosities as a function ofal

! :

e5
~hnl

! 2h l
!!

hnl
! 3100%. ~48!

In Fig. 1 a plot ofe as a function ofal
! is given, foral

!

.0. It is seen that the maximum percentage deviation, in
region shown, is about 0.52%, which means that the non
ear terms represent a marginal modification to the linear
sult.

However, for al
!,0, where we expect problems me

tioned in the preceding section, the situation is quite differ
since the percent deviation is very large due to the predic
of negative viscosities of the linear theory. In Fig. 2 t
behavior ofhnl

! as a function ofal
! is shown where a thick-

ening of the viscosity can be observed. After an apprecia
increase in the reduced viscosity we observe a region
which the viscosity is again nearly independent of the lon
tudinal deformation rate but its plateau value is about
times greater than the Navier-Stokes result. This behavio
the viscosity comes out as a result of considering the non
ear contributions of the fluxes to the collision term and c
not be predicted by a linear theory.

FIG. 1. Percentage deviation ofh l with respect tohnl versus the
reduced longitudinal deformation rate,e vs al

! .
e
-

e-

t
n

le
in
i-
0
of
-
-

Finally we would like to know under what conditions th
approximation of neglecting the gradients of the fluxes hol
The explicit form ofPxx for the nonlinear case is the follow
ing:

Pxx52
98

3
hNS

]u

]x
213p~x!

1
2

3 F2041hNS
2 S ]u

]xD 2

11974hNS

]u

]x
p~x!1441p~x!2G1/2

. ~49!

Evaluating the ratio defined in Eq.~27! (Qnl), where now
the pressure tensor is given by Eq.~49!, we obtain

Qnl52
98

3

u~x!]hNS/]x

g2
2

98

3

u~x!hNS~x!]2u/]2x

g2]u/]x

2
29

2

u~x!]p/]x

g2]u/]x

1
4082

3

u~x!hNS~x!~]u/]x!~]hNS/]x!

g2]u/]x

1
4082

3

u~x!hNS
2 ~x!]2u/]2x

g2Ag1

1658
u~x!p~x!]hNS/]x

g2Ag1

FIG. 2. Reduced nonlinear viscosity versus the reduced long
dinal deformation rate,hnl

! vs al
! .
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1658
u~x!hNS~x!]2u/]2x

g2Ag1]u/]x
1658

u~x!hNS~x!]p/]x

g2Ag1

1294
u~x!p~x!]p/]x

g2Ag1]u/]x
, ~50!

where

g1[2041hNS
2 ~x!S ]u

]xD 2

11974hNS~x!p~x!
]u

]x
1441p2~x!,

~51!
g2[2

98

3
hNS~x!

]u

]x
1

29

2
p~x!1

2

3
Ag1 .

We conclude that the conditions under which the appro
mation holds, namely, that the gradients of the fluxes can
neglected, are the same as those obtained in the prece
section. This means that the gradients of the fluxes can
neglected whenu]u/]xu is very large but the quantitiesu, p,
T, ]u/]x, ]p/]x, ]T/]x, and]2u/]x2 remain finite.

It is interesting to compare with the results by Eu@10#, if
there are no temperature gradients. In this case for the
tionary case Eu’s results~see Eq. 8.69! can be expressed a

he5hNSS sinh21~k!

k D , ~52!

where,

k5g0~2hNS@“u# (2)(@“u# (2)!1/2, ~53!

whereu is the hydrodynamic velocity and the superindex~2!
means the traceless symmetric tensor@10#. We have been
unable to find explicit reference to this notation in Eu’s bo
so this is an inference we made based on his Eq.~6.47! when
compared with the known Chapman-Enskog@15# result.
Also, one must notice that the thermal conductivity defin
by Eu is different from the one defined by Chapman a
Cowling @15#. The symbol( denotes the full contraction o
the tensors. Moreover,

g05
~mkT!1/4

&ps
. ~54!

For the rigid sphere model in whichhNS is given by Eq.~19!
and after some transformations Eu’s result can be reca
the form

hEu
! [

he

hNS

5
sinh21~j!

j
, j[A32Ap

15
ual

!u, ~55!

where

al
!5

hNS

p

]u

]x
. ~56!

It is easy to see that for positive longitudinal rates t
reduced viscosity is decreasing as for all the nonlinear
cosities that we have discussed, but notice that Eu’s redu
viscosity does not depend on the sign of the reduced lo
tudinal rate, which means that his expression is symme
i-
e
ing
be

ta-

d
d

in

-
ed
i-
ic

aroundal
!50 which is in contrast with our result and als

with the results by Karlinet al. @8#. However, whenal
!→

2` the nonlinear viscosity given by Eq.~56! goes to zero as
happens for the nonlinear viscosity obtained by Karlinet al.
@8,9#, which is in contrast to the plateau found in this sectio
For al

!51, hEu
! is equal to 0.7295, in comparison with th

results given in Sec. III. The question that springs to mind
the following: What is a more reasonable behavior, from
physical point of view, for large and negative longitudin
rates of thexx component of the viscous pressure tensor?
order to get a qualitative understanding let us consider
explosion or implosion of a gas with spherical symmet
Under this condition the problem is one dimensional, t
explosion corresponds to positive longitudinal rates, and
this case all the theories that we have considered predi
that thexx component of the reduced stress tensor should
to zero. In the case of an implosion the theories that pre
that the viscosity should go to zero when the longitudin
rate goes to2` imply that if the compression is larg
enough thexx component of the viscous stress tensor
equal to zero. This means that for large and negative lon
tudinal rates thexx component of the stress tensor is equal
the pressure. Our guess is that it is more reasonable to ex
that in an implosion the finite size of the atoms would imp
that that it is much harder to compress the system even
large and negative gradients. So, this qualitative argum
favors the behavior of the viscosity that we have obtained
this section. Nevertheless it would be convenient to ha
experiments or simulations to verify our expectations.

V. A GENERAL RESULT

In this section we will prove that the result for the reduc
viscosity obtained in Sec. III@see Eq.~31!# is independent of
the interatomic potential. To see this we argue as follow
from Grad’s ten-moment equations and considering the
earized collision operator, we obtain that

]

]x
$@Pxx~x!2Pyy~x!#u~x!%12Pxx~x!

]u~x!

]x
5

3m

2
JG,

~57!

whereJG is a collision integral given by

JG[@Cx
2 ;Cx

22 1
2 ~cy

21cz
2!#, ~58!

and the term in square brackets is defined by Eq.~15!. Notice
that in the linearized collision operator the contributio
from mxy andmyz @see Eq.~3!# are zero due to parity reason
and also that the drift term is independent of the interact
potential.

Let us now assume that by consistency the previous eq
tion should yield the Navier-Stokes constitutive equation
small gradients. Then, following Grad we make the subst
tion Pxx5Pyy5p in the left hand side of Eq.~57! ~zero order
in the Knudsen number! to obtain

2p
]u

]x
5

3m2

4kT
JGS Pxx

p
21D . ~59!

Equation~59! is an algebraic equation forPxx which can be
solved to yield
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Pxx5p1
8

3

p2kT

m2JG

]u

]x
. ~60!

Equation ~60! is consistent with the Chapman-Cowlin
@15# result,

Pxx5p2
4

3
hCC

]u~x!

]x
, ~61!

wherehCC is the viscosity, provided that

hCC522
p2kT

m2JG . ~62!

Alternatively Eq.~62! may be regarded as an expression
the viscosity in terms of a collision integral.

We now assume that the gradients of the fluxes can
neglected and obtain from Eq.~25! and using Eq.~62! that

3

2
~Pxx2nkT!

]u

]x
12Pxx

]u

]x
5

3p2

2hCC
S Pxx

p
21D . ~63!

In terms of the reduced quantities given by

al
!5

hCC

p

]u

]x
, P̃xx[

Pxx

p
, ~64!

Eq. ~63! can be rewritten as

~P̃xx21!al
!1

4

3
P̃xxal

!52~P̃xx21!. ~65!

Equation~65! is the same as the one that we obtained for
rigid sphere case@see Eq.~24!# and from it we conclude tha

P̃xx5
~11al

!!

~117al
!/3)

, h l
![

h l

hCC
5

1

117al
!/3

. ~66!

So, in terms of the appropriate variables given by Eq.~64!
the form of the reduced pressure tensor and the reduced
cosity, given by Eq.~66!, are independent of the interatom
potential. We would like to stress that this result holds o
when using the linear collision operator; for the nonline
case it is not obvious at this stage if a similar result can
obtained.

VI. DISCUSSION

As mentioned in the Introduction, there is no doubt th
there are situations in which the viscosity depends on
gradients of the velocity as first found by Truesdell and
workers@1#. The question now is to have an idea of what t
underlying physical mechanism for such a phenomenon
At this point it is convenient to depart from the situatio
considered in this work and consider the physical situation
which the viscosity is introduced. Usually it corresponds
the shear rate in a stationary state where the hydrodyna
velocity @u(y)# has only thex component which depends o
the y coordinate.

The viscosity calculation@18,19# uses the concept of th
mean free path (l ) to establish that, by taking into accou
the net molecular transport of the momentum between
r

e

e

is-

y
r
e

t
e
-

s.

n

ic

o

planes whose separation is of the order of the mean free p
a linear relation between thex-y component of the pressur
tensor and the shear rate (]u/]y) must hold. The constant o
proportionality is the viscosity~h! which turns out to be
related with the mean free path by

h5
1

3
nv̄ml, ~67!

where v̄ is the mean velocity. Such a derivation contai
implicitly the conditions that the higher order gradients
the hydrodynamic velocity can be neglected and that thi
the only quantity that depends ony. Clausius obtained, for a
gas of particles moving with the same absolute value of
locity, an expression for the mean free path, which was la
corrected by Maxwell by using a Maxwellian distributio
function @20#. However, in a non-equilibrium situation, ther
are corrections to the Maxwellian distribution function whic
in principle should be taken into account.

Let us calculate the mean free path, or equivalently
collision frequency, for a non-equilibrium situation. We co
sider the first approximation to the distribution functio
given by Chapman and Cowling@15# for a shear flow~for
simplicity we will not include the heat flow!,

f ~r ,c!5 f (0)F12
5

8nAps2 S m

kTD 3/2]u

]y
CxCyG . ~68!

For rigid spheres, the number of collisions between the m
ecules per unit volume and time (N1) is @15#

N15
1

8 E sin~x!dxdedc1dc2s2f ~r ,c1! f ~r ,c2!. ~69!

Using Eq.~68! to evaluateN1 we obtain

N152n2s2S pkT

m D 1/2

2
5

384S m

pkTD 1/2 1

s2 S ]u

]yD 2

. ~70!

The collision frequency is defined asN1 /n and then the
mean free path can be calculated@15#. The main conclusion
that we can extract from our calculation is that the collisi
frequency and the mean free path are expected to be s
rate dependent if the distribution function does not cor
spond to the Maxwellian. The usual Chapman-Ensk
method assumes the gradients are small enough so tha
quadratic terms in the shear rate can be neglected. Howe
in situations where the shear rate is large we can have a s
rate-dependent mean free path which in turn can be expe
to give a shear rate-dependent viscosity which is precis
the effect that we have been discussing. While the Chapm
Enskog formulation is incapable of treating these cases,
have the Burnett and higher order equations that have b
considered by Chapman and Cowling@15# but these are re-
stricted to small gradients. Regularizations of these exp
sions can be found in the literature@8,9,21# and the presen
work shows that Grad’s method is able to cope with lar
longitudinal deformation rates and that a longitudinal def
mation rate dependence of the viscosity can be obtaine
an almost straightforward way. In these cases the usual d
vation of the relation between the viscosity and the me
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free path is incorrect since it is assumed that the mean
path does not depend on the shear rate.

Let us now consider a fluid at rest between two para
planes located atz50 and z5d. If the plane atz5d is
moving to the right along thex axis and the fluid remains a
rest, then, the shear rate is infinite; but this could only h
pen if the fluid does not have viscosity~slip boundary con-
dition!, which means that the viscosity must be zero for su
a case. Since for small shear rates the viscosity is diffe
from zero it follows that this quantity must be shear dep
dent.

For a longitudinal flow the necessity of a viscosity d
pending on the longitudinal deformation rate can be und
stood in the following way: from the definition of the pre
sure tensor@see Eq.~8!# it follows thatPxx should be greate
than zero since the distribution function is non-negative. A
suming thatPxx given by Eq.~18! holds for any longitudinal
rate, then foral

!>0 we will have a region of longitudina
rates for whichPxx,0 in contradiction with what was pre
viously stated. Notice that the previous argument does
hold if al

!,0 and that positive viscosities, according to t
Chapman-Enskog theory, are implicitly assumed.

The nature of the results obtained in this paper me
another comment which is intimately related to the nature
the constitutive equations that are required to obtain a w
defined set of hydrodynamic equations. It is well known th
the linear laws, Navier-Stokes-Fourier~NSF!, give rise to a
set of hydrodynamic equations which are of order 2 in
gradients, the corresponding transport coefficients be
functions of thelocal equilibrium thermodynamic variable
only @15,22,23#. A long debated question has been how to
about generalizing these linear laws to yield hydrodynam
equations that include terms of higher order in the gradie
meaning specifically of order higher than 2. According to t
kinetic theory based on the Boltzmann equation,
Chapman-Enskog expansion, which is valid for small gra
ents, leads to one alternative which is well known and
consequences, especially those related to their compatib
with irreversible thermodynamics, have been widely d
cussed in the literature@23–27#. We shall not deal with them
here. The point we want to underline is that when the gra
ents are large, in our case“u, then the natural constitutive
equation for the viscous stress tensor could be written a

t5h~“u!•“u, ~71!

indicating that the viscosity is, in general, a nonlinear ten
function of the viscosity gradients. This is, in a macrosco
language, what the results of this paper suggest as the ap
priate relationship. But this is not new. Some years ag
was clearly shown@24–26# how one may obtain hydrody
namic equations of arbitrary order in the gradients by c
structing a matrix whose elements are transport coefficie
such that acting on a vector defined by the thermodyna
forces yields expressions for the corresponding fluxes. If
elements of such a matrix are of a given order in the gra
ents the resulting fluxes will be one order higher. Equat
~71! is an example of this procedure. In the lowest appro
mation one recovers the NSF hydrodynamics equations
in higher orders, equations which resemble those obta
from the Chapman-Enskog method of solving the Boltzma
ee
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equation although in the case of Eq.~71! a series expansion
is not justified. Therefore, Eq.~71! may be regarded as
nonlinear constitutive equation which is valid independen
of whether“u is or is not a small quantity. Moreover, it wa
also shown that this scheme is perfectly in harmony with
local equilibrium assumption and the second law of therm
dynamics, thus providing a solid basis for these types
constitutive equations.

In conclusion we see that it is natural to expect that
situations not near equilibrium, which can be generated
large velocity gradients, the viscosity should depend on
velocity gradients. Also, there are situations (al

!>0) in
which the nonlinear contribution of the fluxes to the collisio
term is minor, but for other cases (al

!,0) they give a sig-
nificant contribution. It should be pointed out that the resu
obtained depend strongly, besides Grad’s approximation
the assumption that the gradients of the fluxes can be
glected, it is only in this case that we can guarantee a
cosity depending only on the first order derivative of t
hydrodynamic velocity. As far as we know this is the fir
time that a thickening in the viscosity followed by a plate
has been reported and also the importance of the nonli
contributions of the fluxes to the collision term has be
clearly shown.

ACKNOWLEDGMENTS

The authors wish to thank Professor R. M. Velasco a
Professor I. V. Karlin for their valuable comments and d
cussions about this work. The work was supported
CONACyT under Grant No. 0651-E9110.

APPENDIX A: EVALUATION OF THE DRIFT TERMS
IN THE TRANSPORT EQUATION

In this appendix we consider the evaluation of the tra
port equation forc(C)53m/2Cx

2 , that is, we would like to
evaluate the left hand side of the following equation:

E dc
3m

2
Cx

2S ] f

]t
1c•“ r f D5E dc

3m

2
Cx

2J~ f , f !.

~A1!

First we evaluate the drift term; for simplicity we will us
the conditions used in this work, that is,c0(r ,t)[u(x) i, then
for the stationary case we have

E dcmCx
2c•“ r f 5mE dcCx

2cx

] f

]x

5mE dcS ] f Cx
2cx

]x
2 f cx

]Cx
2

]x D
5m

]

]x S E dcf Cx
3D1m

]

]x S E dcf Cx
2uD

12m
]u~x!

]x S E dcf ~Cx
21Cxu! D

5Qx1
]

]x
~Pxxu!12Pxx

]u

]x
. ~A2!
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The first equality follows from the assumption that all t
quantities depend only on thex coordinate and the secon
one follows from an integration by parts. The third equal
is obtained by using the relationcx5Cx1u(x), interchang-
ing the order for the integration and the partial derivative
the first two terms, and carrying the partial derivative w
respect tox of the squared peculiar velocity. Finally th
fourth equality follows from the definition of the pressu
tensor. It is pertinent to stress that the quantityQx defined by

Qx[E dcf Cx
3 , ~A3!

is zero if the distribution function is given by Eq.~2!.
Using similar arguments as the ones used to obtain

previous equation we obtain

m

2 E dc~cy
21cz

2!c•“ f

5
m

2 E dc~cy
21cz

2!“•~cf !5“•

m

2 E dc~cy
21cz

2!cf

5“•S m

2 E dc~Cx
21cy

21cz
2!cf D2“•S m

2 E dcCx
2cf D

5“•S m

2 E dcC2Cf D1“•S m

2 E dcC2c0f D
2“•S m

2 E dcCx
2c0f D2“•S m

2 E dcCx
2Cf D

5
]qx

]x
1

1

2

]u~x!~P!

]x
2

1

2

]u~x!Pxx

]x
2

]Qx

]x
5

]qx

]x
2

]Qx

]x

1
1

2

]u~x!~Pyy1Pzz!

]x

5
]qx

]x
2

]Qx

]x
1

]

]x
~u~x!Pyy!, ~A4!

where q is the heat flux which is zero if the distributio
function given by Eq.~2! is used and in the last equality w
have used cylindrical symmetry.

From Eqs.~A1!, ~A2!, and~A4! we obtain, for the distri-
bution function given by Eq.~2!,

E dcS mCx
22

m

2
~cy

21cz
2! D J~ f , f !

5
]

]x
„Pxxu~x!…12Pxx

]u

]x
2

]

]x
„u~x!Pyy….

~A5!

Finally using the relationcy
21cz

25C22Cx
2 in the left hand

side of Eq. ~A5! and remembering thatC2 is a collision
invariant so that

E dcC2J~ f , f !50, ~A6!

we obtain
e

E dc
3m

2
Cx

2J~ f , f !5
]

]x
@~Pxx2Pyy!u~x!#12Pxx

]u

]x
.

~A7!

APPENDIX B: EVALUATION OF THE COLLISION
INTEGRALS

Here we show how to evaluate the collision integrals t
result from considering the nonlinear contribution of t
fluxes in the collision term. We will evaluate the collisio
integral given by

$Cx
2 ,D!~Cx

2 ,C1x
2 !%

52E dcdc1deS~x,g!g f (0)~c,r ,t ! f (0)~c1 ,r ,t !

3Cx
2~Cx8

2C1x8
22Cx

2C1x
2 !. ~B1!

For rigid spheres we haveS(x,g)5s2/4 @15#, wheres is
the rigid sphere diameter so that using the expression for
Maxwellian distribution function given by Eq.~1! and the
center of mass and relative coordinates defined as

C5G2g/2, C15G1g/2,

~B2!C85G2g8/2, C185G1g8/2,

we obtain the following expression for Q
[$Cx

2 ,D!(Cx
2 ,C1x

2 )%:

Q52VE dGdgdeg exp~2mg2/4kT!exp~2mG2/kT!

3~Gx2gx/2!2@~Gx2gx8/2!2~Gx1gx8/2!2

2~Gx2gx/2!2~Gx1gx/2!2#, ~B3!

where

V5
n2s2

32p3 S m

kTD 3

. ~B4!

The integration over the dispersion angles, namely,de
5sin(x)dedx, can be done using the following relation@15#:

gx85g cos~u!cos~f!sin~x!cos~e!

2g sin~f!sin~x!sin~e!1g cos~f!cos~x!sin~u!,

~B5!

whereu and f are the polar angles ofg. ~Alternatively, in
doing the integration over the dispersion angles, it is poss
to chooseg along thez axis so that the polar angles ofg8 are
the dispersion angles. Then, Eq.~B5! reduces a bit and it is
simpler to carry out the integration!. We obtain forQ

Q52pVE dGdgg exp~2mg2/4kT! exp~2mG2/kT!

3~Gx2gx/2!2S g4

20
12Gx

2gx
22

gx
4

4
2

2

3
G2gx

2D . ~B6!
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The integrations overGy andGz can be easily carried out, s
that

Q52
kT

m
p2VE dgg exp~2mg2/4kT!exp~2mGx

2/kT!

3S g4Gx
2

20
1

g4gx
2

80
12gx

2Gx
41

gx
4Gx

2

4

2
gx

6

16
2

2g2Gx
4

3
2

g2gx
2Gx

2

6 D . ~B7!

The integrations overGx are Gaussian and do not represen
problem. If in addition we use polar coordinates forg and
carry out the angular integrations we are led to

Q52
kT

m
p2VE

0

`

dgg3 exp~2mg2/4kT!

3Fg4

20

Ap

2 S kT

m D 3/2

~4p!1
g6

80
ApS kT

m D 1/2S 4

3p D
12g2

3Ap

4 S kT

m D 5/2S 4

3p D1
g4

4

Ap

2 S kT

m D 3/2S 4

5p D
2

g6

16
ApS kT

m D 1/2S 4p

7 D2
2g2

3

3Ap

4 S kT

m D 5/2

~4p!

2
g4

6

Ap

2 S kT

m D 3/2S 4

3p D G . ~B8!

Note that the third and sixth terms in Eq.~B8! cancel out.
For any natural numbern it is easy to show that
a

. E
a

E
0

`

dgg31n exp~2mg2/4kT!5
1

2 S 4kT

m D (n14)/2

GS n14

2 D ,

~B9!

whereG(x) is the gamma function@28#.
Substitution of Eq.~B9! into Eq. ~B8! leads to

Q52S kT

m D 3/2

p7/2VF 1
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2
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1
1
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2
1
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1

2
G~5!S 4kT

m D 5

2
1

9 S kT

m D 1

2
G~4!S 4kT

m D 4G
52S kT

m D 5/2

p7/2S 4kT

m D 4

G~4!V

3S 1
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1

16

120
1

1

20
2

16

56
2

1

18D
52

34 816

105 S kT

m D 13/2

p7/2V. ~B10!

Using the value ofV given by Eq.~B4! in Eq. ~B10! we
conclude that

$Cx
2 ,D!~Cx

2 ,C1x
2 !%52

1088

105 S kT

m D 7/2

Apn2s2. ~B11!

As mentioned previously the result from the compu
algebra code gives the same value, for this particular ca
f
e,
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