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Nonlinear viscosity and Grad’s method
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(Received 23 March 1999

The Grad ten-moment approximatiéno heat fluy is analyzed for cylindrical symmetry in a stationary
situation in which the gradients of the fluxes are assumed to be small. We show that if the collision term in the
transport equation, resulting from the ten-moment approximation, is linearized in the fluxes, we can obtain a
viscosity (n,) that depends on the gradient of the velocity with the correct limiting behavior for small gradi-
ents. The nonlinear contribution of the fluxes to the collision term are then taken into account to derive an
expression for the viscosityr(,) as a function of the gradient of the velocity. A comparison betwgeand
7, 1S performed finding that the maximum percentage deviation between them is 0.52% when the gradient of
the hydrodynamic velocity is positive, but when the gradient is negative the situation changes dramatically.
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PACS numbgs): 05.60—k, 51.10:+y, 51.20+d

[. INTRODUCTION main points which we would like to address in this work.
First, we consider stationary situations using Grad’s method.

Shear rate-dependent viscosities have been obtained I8econd, we consider the nonlinear contribution of the fluxes
many authors for specific situations, mainly nonstationaryto the collisions. As we will see, there are situations in
states in simple fluids. There is, for instance, the exact soluwhich, if these nonlinear contributions are not included, the
tion to the Boltzmann equation for Maxwellian molecules results can be in serious error. We will show that in the usual
given by Truesdell and co-workef4]. Monte Carlo calcu- procedure in which the transport coefficients are reanalyzed
lations, molecular dynamics calculations, and solutions to thé @ somewhat more systematic way, there is a dependence
Bhattangar, Gross, and KroolBGK) equations for rigid 0f the viscosity on the longitudinal deformation rate
spheres have also been discussed in detail in many papdrduy(r.t)/dx]. This is done for Grad's ten-moment equa-
[2-5] where a comparison with Truesdell's work can betions but avoiding the use of the invariance principle stated
found. The concept of nonlinear viscositishear rate- by Karlin et al.[8].
dependent viscosifyhas a long history; for example, Gilbarg  In order to simplify the calculations and to make the point
and Paoluccf6] made some considerations of this phenom-in the simplest way some restrictions are convenient. The
enon in their study of shock waves. A more comprehensivdirst one is that we can take the heat flux to be zero, a point
set of references can be found in the works by Truegd@éll which is not trivial and certainly deserves more attention.

More recently Karlinet al.[8] and Gorban and Karliig] ~ The second one is that the velocity has only one component
have used Grad’s method to reach similar conclusions suchnd does not depend on timgr)=u(x)i. As a specific
as those mentioned in the preceding paragraph, for norsituation the reader may think of a one dimensional station-
stationary situations, but with a longitudinal flow instead of aary shock wave, where he should, however, notice that in
shear one. Also, Al-Ghoul and Ha0] have derived explicit this case the heat flux cannot be taken to be zero since there
expressions for the nonlinear viscosity using a modified mois a temperature inhomogeneity. We finally assume cylindri-
ment method and their expressions have been applied to di¢al symmetry of the distribution function, a restriction which
ferent situations such as the shock wave prolléh). These is mainly a matter of convenience to reduce the expressions
works can be difficult to understand in part because of theignd definitions.
use of the same terminology as other researchers to denote
different things; for example, the Rankine-Hugoniot equa- Il. THE DISTRIBUTION FUNCTION.
tions according to Al-Ghoul and E[11] are the integral . . _ o
form of the conservation equations and not the equations We use the expansion of the single particle distribution
relating the two equilibrium states as is standard. In the refunction in terms of Hermite polynomials and the approxi-
cent book by Ei10] the reader can find many references tomMation given by Grad12-14 in the ten-moment approxi-
the nonlinear viscosity issue as implemented by Eu and colation, the weight function being given by the local Max-
laborators. wellian distribution functionf ():

While there is no doubt that viscosities that depend on the
gradients of the hydrodynamic velocify(r,t)] can be ob-
tained from Boltzmann's equatiofl—-5,8—10, a phenom-
enon which we refer to as nonlinear viscosity, there are two

wherec is the atomic velocityk Boltzmann’s constant] the
temperaturen the number densitym the mass, andC=c
* Also at “El Colegio Nacional,” Luis GonZziez Obrega, Centro  — u the peculiar velocity 13].
Historico 06020, Meico D.F., Mexico. The distribution function can be expressed &38|

3/2
exp(—mC?/2kT), (1)

m
(0) =
f(c,r,t) n(27rkT

1063-651X/99/6(%)/405211)/$15.00 PRE 60 4052 © 1999 The American Physical Society



PRE 60 NONLINEAR VISCOSITY AND GRAD’S METHOD 4053

f=fO1+¢), 2 J
( g) ( ) a_x{[Pxx(X)_Pyy(X)]u(X)}

where, under cylindrical symmetry,
au(x 3m
+2PXX(x)%:fdc7c§J(f,f). (12)
+ Mxy( Cny+ Cyc,)

, KT
&= pyx| Cx— F
The right hand side of Eq12) gives the contribution of
s o 2KT the collision term and its calculation is performed by direct
(GFC) = | Ty SGe (3 substitution of the distribution function given by E®). As

a result we obtain a bilinear expression in the fluxes

and Grad’s moments can also be written in terms of quanti{xx,xy,tyz) Which can be linearized. The approximation
ties with a well defined physical meaning, such as the comimplied by this method corresponds to a situation in which

ponents of the pressure tensor, which are abbreviated as the Maxwellian form is rather close to the distribution func-
tion. When we take the hard sphere model, the collisional

T Ry

m | Py term in Eq.(12) is expressed as follows:
Mxx:m(m—_ )v (4)
am_, 3m
J dcTCXJ(f,f)=7,uXX:, (13
Mx :ﬂzﬁ%! )
Y nkT where E is a collision integral whose value for the rigid
sphere of diametes is [15]
m [P
Myy:m(%—_l)' (6) 1 32 kT)\5?
= C)Z( ;C)Z(— E(C§+C§) =— go’znz\/;(m) .
mP,, (14
Myz= nk2T2" (7)

The term in square brackets in E{.4) is defined for two

. . L arbitrary functions of the velocities, say(c) and®(c), as
In these equation® is the pressure tensor which is well y (c) (©

known to be defined by [0(c);¥(c)]
P= ] terymecac ® = [ dede,des (x.@)af(er0 ey
The pressure is given bynkT=(P)/3, as it should be X0 (c)A[V(c)], (15

for a structureless gas in the dilute regime. This definition
together with Egs(4) and (6) gives a relation between two Where the shorthand notatiax{ ¥ (c)] means
of the moments, namely,
A[Y(c)]=[V(c)+W(c)]-[W¥(c)+V¥(c)], (16
Mxx= — Zﬂyy- 9 . . ) . )
2 (x,9) is the differential cross sectiog, the magnitude of
the relative velocityde denotes an integration over the solid
IIl. THE BOLTZMANN EQUATION angle, and the velocities correspond to their values before

In order to obtain the transport equation let us start withdd after the collisioriprimes [15]. The collision integrals

the behavior of the distribution function which is given by that multiply the other fluxes are zero or are neglected ac-
the Boltzmann equation, cording to the linear approximation in the fluxes. Notice also

that use of Eq(9) was made in order to express the linear
contribution of u,, to the collision term only in terms of

of(r,c,t)
D(f )=—————+c -V, f(r,c,t)=J(f,f), (100 Mxx-
Jt From Egs.(12) and(13) we conclude that
whereJ(f,f) is the well known collision ternj15]. 9 au(x) 3m
The transport equation is obtained by multiplying the 5{[Pxx(x)—Pyy(x)]u(x)}+2Pxx(x)TzT,uXXE,
Boltzmann equation by any function of the veloci#y(c) (17)

and integrating ovec:

which in fact can be seen as a constitutive relation for the
deD(F ¥ :j dcJ(f.f)W(c). 11 ponvamshmg compongnts qf the pressure tgnsor. If, follow-
f ch(f)¥ (o) (1.1)¥(c) (1) ing Grad[12], we substitute in the left hand side of E47)
the values for the pressure tensor calculated with the Max-
In particular, when we tak& (c)=(3m/2)C2 in Eq.(11)  wellian (P=nkT, P,,=nkT) we obtain, after using Eq.
we obtain that for the stationary cafsee Eq.(A7)], (4), the result that
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4 Au(x) where the expression f& given by Eq.(14) has been used.
Poc=nkT—zns— — (18 Equation(24) can be easily solved to yield
where 7ys is the well known Navier-Stokes expressidib]
for the shear viscosity: ~  (1+a) 25
5 (mKT| Y2 X (1+7af13)’
— | 2

which for smalla has the following behavior:

We now show how a longitudinal deformation rate
(oulox) dependence of the viscosity can be obtained from
Grad'’s linear transport equations, H47), using a different  P,=(1+a)[1—7a;/3+0(a}?)]=[1— 4a '+ 0(a/?)].
approximation. For this purpose we assume that we can ne- (26)
glect the gradients of the fluxes, namely, if, for example, the
pressure tensor is a function @li(x)/dx but not of the Equation(26) shows that we recover the correct limiting
higher order derivatives, then the approximation amounts t@ase, corresponding to the reduced form of B@). How-
a situation in which the second order derivatives of the veever, Eq.(25) is clearly more general than its limiting case.
locity or the products of the gradients of the normal variabled=rom the derivation of this equation one should expect it to

can be neglected. Since be valid for smalla;", yet its range can be extended at least
3 a little bit more than the linear term ia . Indeed, from it
Pex—Pyy=5 (Px—nkT) (200  We can derive the region of longitudinal rates for which the
2

Navier-Stokes regiméno longitudinal rate dependence for
. . the viscosity is valid to a certain percentage. For example, a
is a flux, we obtain from Eqg12) and(13) that percentageydifference of 5% beﬁween thge reduced pPessure
3 au su  3m tensor given by Eq(25) and the reduced pressure tensor at
5 (P NKT) =+ 2P = — o= (21)  the Navier-Stokes regimé{'S) wherePNS given by Eq.(18)
can be seen to be valid whej € (—0.11,0.13). On the
It is convenient to introduce a dimensionless pressure tens@ther hand, it should be pointed out that the results just given

P, and a reduced longitudinal deformation raeas were obtained under the assumption that
~ _ Px . 1au(x) _ U(X)(919x) [Pex—p(X)]
Po=nr &5 Tox (22) Q= [P pOOTau()ax] =+ @7
wherev is an effective collision frequency defined by Since from Eq(25) we can obtain an explicit expression
for P,,, namely,
nkT
v=—", (23
NS S 3p(x) +37ns(X)[ JU(X)/ 9X] 28
The reduced form of Eq21) is then given by X 3p(X) + 7 png(X)[u(x)/dx]’
(B —1)a + i~P ar=— (P —1) (24) where 7ys is given by Eq.(19), we can evaluate the rati@
XX | XX XX ’

3 defined by Eq(27) using Eq.(28) to get

u(x)p()Lap(x)/ax]  ux)p)[dnns(x)/ax] _u(x)p(x) ans(X)[FPu(x)/ax*] _u(x) gns(X)[ap(x)/9X]

Q=0 0G0 au(x)lax] 91(x)ga(X) 91(x)g2(x)[du(x)/ax] 91(X)g2(X)
L UC0PC)Lap)Iax] | u()pO)[agns(¥)/ax]  u(x)p)* pns()[77u(x)/7°X]
92(x)g2(X)[ du(x)/9x] 92(x)g2(X) 92(x)ga(X)[ du(x)/9x]

u)P(X) 7ns()LIP(X)ax]  u(x)p(x) pns(X)[IP(X)] X[ mns(X)] 9X]
5 -21 >
91(x)g2(X) 91(X)g2(x)
u(x)p(x) ug(X)[*u(x)/d*X] 3 u(x)[ap(x)/9x]
92(X)ga(X) 2 go(x)[au(x)/x]’

(29
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where spheres, and that the result for the reduced viscosity is in
agreement with our results for the case of rigid spheres. We
Ju(x) have evaluated the viscosity factor for the nonstationary lon-
ax -’ gitudinal flow considered by Karliret al. [8] for the rigid
sphere model following Uribe and Rif16,17] finding that
pP)? _p(x)pns(¥)[u(x)/ox] 3 nr=0.4781 foraj =1 which should be compared with the
g,=3 +3 —5P(X). ; *_ *_
g1(x) 91(x) 2 value obtained from Eq31), 7 '=0.3 fora, =1.
(30 Finally, we mention thatju(x)/dx can be positive or

F Eas.(29) and (30 lude th i negative, that isa" can be positive or negative. For negative
rom Egs.(29) and (30) we conclude that our approxima- values ofa] Eqg. (31) predicts a divergence of the reduced

tion, Q<<1, holds wherj4u/éx| is very large but the quanti- viscosity ata]=—3/7 and for values oy less than—3/7

ties u, p, T, du/dx, ap/ox, aT/ax, and s°u/ax* remain the reduced viscosity is negative. Thus, this region is ex-
finite. These conditions are similar to the ones used by Gor- y 9 : ' 9

ban and Karlif9] and Karlinet al.[8] with which they were pected to be one in which the nonlinear contributions should
able to sum a subseries of the Chapman—Enskog higher ordg? Important since negative viscosities are cgrtalnly c_on3|d-
gradient expansion using a direct approf@htogether with reggltgo;pt%&:;i’t ig;ﬁéﬂedaﬂon that is confirmed with the
the principle of the invariant manifolf®]. ’

We now compare with the results mentioned in the Intro-
duction but notice that they were obtained for a different IV. THE NONLINEAR TERMS
situation and thus, in principle, there is no reason why they \ye now consider the nonlinear terms in the fluxes, imply-
should cqrrespond. Nevertheless the comparison should FHg that for the rigid sphere model we obtain
least exhibit whether the order of magnitude and the general

g1=3p(X) + 7 ng(X)

trend are correct. Also, we know that in the Chapman- 9 Au(X)
Enskog expansion the transport coefficients are independent 5{[PXX(X)— Pyy(X)]u(X)}+2Pxx(X)T
of the particular flow considered so that the comparison will

be performed at the level of the viscosity. The question now 3am _ 3m , _

is, how do we define the viscosity when the reduced pressure Ty M= + o M= 1/2

tensor is given by Eq25)? The natural way of doing this is
by assuming a relation of the for(i8) with 7yg replaced by > am , _
a certain new viscosityy, . Doing this we obtain for the + 7“xyn2/2+ 7“3/2:3/2' (32)
reduced viscosity ;")
To obtain a closed system for the fluxes we use the trans-
7 1 port equation[Eq. (11)] with ¥ (c)=mC,c, and V¥(c)

77NS: m . (31) = mCyCZ to Obtain that

*
|

n =
Equation(31) gives fora; =1 the valuen; = 0.3, whereas J = = -

. . . o —[U(X)Pyo(X) |=MuyZ4+m Zetm =P

for the nonstationary shear rate situation considered by other&x[ COP OO 1= Mty =t Mptxbboy=s + Mibybtyz= e

authord 1,3-5 the value for the reduced viscosity, which we (33
denote byng, is about 0.53 fomg=1 (shear rate situation

The asymptotic behavior of; for largea;" is also different; and
for the nonstationary situation considered by they,goes
-4 . . -1 = = = 2 g
asag  while our expression predicts @i — dependence, 5[u(x)PyZ(x)]— Mty Z 7+ Mibyxfby 22 5+ Mgy = of2.
so the quantitative behavior for the reduced viscosity is dif- (34)

ferent. We notice further from Eq25) that for a|*=1 we
The collision integrals that appear in Eq32), (33), and

haveP,,=0.6 and so the linear approximation of the colli- -
sion term, consisting in neglecting the nonlinear contribution(34) have been evaluated for the rigid sphere model, the

~ results bein
of the fluxes, may certainly be questioned sifigg is not g

near 1. In order to see if the discrepancy may be due to the 32 KT\ 72
linear approximation in the collision term we have under- El={C§;A*(fl(C),fl(cl))}:—isaznz\/;(ﬁ) ,
taken some calculations considering the full expression of (35)
the collision term.

In the situation considered by Karliat al. [8,9], for a 32 KT\ 72
nonstationary longitudinal flow, they obtained for the Max- EZ={C§ ;A*(fa(c),fo(c)))}=— 1—0502n2\/;(—> ,
well model the valuey = 0.478 fora; =1 which is different m
from our result and also from Truesdell's value. The 32 KT\ 772
asymptotic behavior of the reduced viscosity for large longi- = .={C2;A*(f5(c),f4(c;))} = _Uznz\/;( _) i
tudinal rates can be shown to go a5 !, which is again 105 m

different from Truesdell’s result but is in agreement with our 5
results. It is important to notice that the stationary situation — _~2. __ E 2.2 kT

. : : . E,=[Cs;fa(0)]= on N
can be obtained from their equati¢hO) [8], valid for soft X 5 m/ '’
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. kT\ 72 tives of the fluxes can be neglected, the reduced form of Egs.
Es={Cxcy;4%(f1(0), fz(cl))}___o' n?\m ( ) : (32), (33), and(34) finally leads to the results that
kT\"2 - 4.
Ee= {Cxey A% (f5(0), fs(Cl))}—__O' n \/—< ) ) (Px—Daj+ §P
KT\ 52 B LB 2t e
== [Chify(0]=— o n2\/—( ) | ==~ (B D)= 55 (P 1P~ 57 Poyt 5 P2,

kT 712 (40)
8=1¢,C;; A (f1(0),f5 Cl))}__o'n \/—< ) ,

I

~ ~ 1. 1. -
nyal == ny_ 2_8ny( Pux—1)— ﬂpxypyv (42)

kT 712
Za={6,6,1A" (1(0) Fo(c)} = — gpon®\m ) |

. 1
In Eq. (35) some shorthand notation has been introduced, Pyaf=—Py,+ 1 PyAPox—1)— 1 4P2 (42)
namely, the function$; ,i=1,2,3 are defined by

This is a set of closed constitutive equations for the indepen-

f1(c)=CZ~ §(C§+C§)’ dent components of the pressure tensor written in terms of
the longitudinal deformation rate] .
f2(c)=Cy(cy+Cy), (36) Equation(41) can be rewritten as
fs(c)=¢c,.
. o - L1 1.
A*(O(c),A(cy)) is defined as Pyl 1+a+ %(PXX— 1)+ ﬂPyZ =0. (43

A*(0(c),A(cy))=0(c")A(cy) +0O(c)A(c')—B(c)A(cy)
) @7 From the two solutlgns c.>f.Ec(.43) it is easllly. §een that

P«y=0 is the only solution giving the correct limiting behav-

where the primes denote the final velocities in the binaryior for smalla; . Thus, using5xy=0 in Eq.(42) we infer that

collision, and the curly brackets mean P,, must vanish to be consistent with the correct limiting
behavior for smale* . Then substitution oP,,=0 andP,

®(c);A*(O(c),A i ' xy yz

{®(0):47(O(c) A} =0 in Eq. (40) leads us to the result that

EJ dede,des (x,9)gf@(c,r,t)

1. -
X fO(cp,r, )@ (c)A*(O(c),A(cy)). (38 —8P§X+(7a,*/3+ 13/14Py,— (27/28+a])=0, (44)

2
The evaluation of the collision integrals given by Egs.

(35), and others that turn out to be zero, is a tedious labor ifrom which the solution with the correct limiting behavior

attempted by hand, which is why we used computer algebraollows,

We have been unable to find results we can compare with,

but the general methodology used in evaluating the integrals 98

was checked out in the following particular case;fifc) B o—_ —ar—13+z\/2401a|*2+197431r+441 45
=1 then x> 3 '

(@A (O ()N =[(0): (9] 39 The leading terms i/ of the reduced pressure tensor

where we recall that the square brackets are defined by E§an be shown to be given by
(15). The results from the symbolic algebra program are in
agreement with hand calculations for the relevant collision 5 4 64
integrals in the linear regim&,, =,, andZ. Also, as we Pyn=1- = 3 21aI +O(a, ), (46)
show in Appendix B, a hand calculation was done to evalu-
ate{C2,A*(C2,C2))} leading to the same value as the one
calculated with the computer algebra code. To this extent wavhich means that we recover the first order Chapman-
believe the results of this section are reliable. Enskog expression for the viscosity.

In terms of the reduced variables introduced in the pre- Defining a viscosity §,) through Eq.(18) with %, in-
ceding section and with the approximation that the derivastead ofznys, as in the preceding sectiomy, is given by



PRE 60 NONLINEAR VISCOSITY AND GRAD’'S METHOD 4057

T50
£
0.5T
0.4
0.31
0.2
d
0t ! 5 $ ! 5 1 5 = = 5 0
FIG. 1. Percentage deviation gf with respect toy, versus the FIG. 2. Reduced nonlinear viscosity versus the reduced longitu-
reduced longitudinal deformation rateys a; . dinal deformation ratep?, vs a
7 49f+21— \/24013r2+ 1974 + 441 Finally we would like to know under what conditions the
== - ) approximation of neglecting the gradients of the fluxes holds.
7INS 23 The explicit form ofP,, for the nonlinear case is the follow-
(47 ing:
It is instructive to examine the percentage deviatigrof 98 au
the two reduced viscosities as a functionagf: Poy=— 3 NS~ 13p(X)
X
(70— 7) 2
€= nl—*l X 100%. (48 + 3 204172 (7_u
7ni 3 NS\ ox

In Fig. 1 a plot ofe as a function ofa" is given, fora/ vz

>0. It is seen that the maximum percentage deviation, in the
region shown, is about 0.52%, which means that the nonlin-

ear terms represent a marginal modification to the linear re- Evaluating the ratio defined in EQ7) (Q,,), where now

sult. . the pressure tensor is given by E¢49), we obtain
However, fora; <0, where we expect problems men-

tioned in the preceding section, the situation is quite different 2 52
. J SFLE - X X X X X
since the percent deviation is very large due to the predictiorp = — 98UC)Imns/ox 98 UC) mns(X) 97Ul

(49

Ju
+ 1974’7“‘55 p(X) +441p(x)?

of negative viscosities of the linear theory. In Fig. 2 the 3 92 3 g20ul 9x

behavior of}, as a function ofy is shown where a thick- 29 u(x)apl ax

ening of the viscosity can be observed. After an appreciable T guaulax

increase in the reduced viscosity we observe a region in gaouloX

which the viscosity is again nearly independent of the longi- 4082 u(X) pns(X) (AUl 9X) (3 ng IX)

tudinal deformation rate but its plateau value is about 50 + 3 929Ul 9X

times greater than the Navier-Stokes result. This behavior of 2

the viscosity comes out as a result of considering the nonlin- 4082u(x) 77EIS(X)(92U/(92X u(X)p(X)d7ns! X

ear contributions of the fluxes to the collision term and can-
not be predicted by a linear theory. 3 92@ 92@
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U(X) 7 X) 32Ul 32X u(x) 7ns(X) Ipl ax arounda; =0 which is in contrast with our result and also
+658 +658 with the results by Karlinet al. [8]. However, whena;—
92019/ X 92101

—oo the nonlinear viscosity given by E¢p6) goes to zero as
happens for the nonlinear viscosity obtained by Kaeliral.

+294w, (50) [8,9], which is in contrast to the plateau found in this section.
921/g19u/ ox For af =1, 5g, is equal to 0.7295, in comparison with the

results given in Sec. Ill. The question that springs to mind is

where the following: What is a more reasonable behavior, from a
ou\ 2 au physical point of view, for large and negative longitudinal
915204177§S(x)(— +1974nns(X) p(X) — + 441p?(x), rates of thexx component of the viscous pressure tensor? In
X order to get a qualitative understanding let us consider an
98 au (51) explosion or implosion of a gas with spherical symmetry.
9=~ 3 7Ns(X) X X)+ \/— Under this condition the problem is one dimensional, the

explosion corresponds to positive longitudinal rates, and for

We conclude that the conditions under which the approxithis case all the theories that we have considered predicted
mation holds, namely, that the gradients of the fluxes can bthat thexx component of the reduced stress tensor should go
neglected, are the same as those obtained in the precedit@zero. In the case of an implosion the theories that predict
section. This means that the gradients of the fluxes can biéat the viscosity should go to zero when the longitudinal
neglected whehju/dx| is very large but the quantitias p, rate goes to—oc imply that if the compression is large
T, dulox, aplax, aTlax, andd?ul 9x? remain finite. enough thexx component of the viscous stress tensor is

It is interesting to compare with the results by Bi0], if equal to zero. This means that for large and negative longi-
there are no temperature gradients. In this case for the stéddinal rates thex component of the stress tensor is equal to
tionary case Eu’s resulisee Eq. 8.6Pcan be expressed as the pressure. Our guess is that it is more reasonable to expect
that in an implosion the finite size of the atoms would imply
that that it is much harder to compress the system even for
large and negative gradients. So, this qualitative argument
favors the behavior of the viscosity that we have obtained in
where, this section. Nevertheless it would be convenient to have

= 0y 2 VU] DO[ VU] @) 2 53 experiments or simulations to verify our expectations.

sinh‘l(:c))

K

Ne= 77NS< (52

whereu is the hydrodynamic velocity and the superindgx V. A GENERAL RESULT

means the traceless symmetric tengbd]. We have been In this section we will prove that the result for the reduced
unable to find explicit reference to this notation in Eu’s bookyiscosity obtained in Sec. I[lsee Eq(31)] is independent of
so this is an inference we made based on his(&4.7) when  the interatomic potential. To see this we argue as follows:

compared with the known Chapman-Enskptp] result.  from Grad’s ten-moment equations and considering the lin-
Also, one must notice that the thermal conductivity definedearized collision operator, we obtain that

by Eu is different from the one defined by Chapman and

Cowling [15]. The symbol® denotes the full contraction of d u(x) 3m_ .
the tensors. Moreover, 7x P = Pyy () JUOO - 2Py(x) — 2= = =B,
5
(ka)1/4 ( 7)
Y0~ Vipo (54) whereZC is a collision integral given by
For the rigid sphere model in whichys is given by Eq(19) EC=[C{;Ci- 3(g+c)], (58)
and after some transformations Eu’s result can be recast in

and the term in square brackets is defined by(E§). Notice

the form
that in the linearized collision operator the contributions
1 from u,, andu,, [see Eq(3)] are zero due to parity reasons
_ ﬁ sinh” (5) — 1\ / |a (55) and also that the drift term is independent of the interaction
Teu= NS ! potential.
Let us now assume that by consistency the previous equa-
where tion should yield the Navier-Stokes constitutive equation for
small gradients. Then, following Grad we make the substitu-
a*zﬂs '9_“ (56) tion P,=Py,,=p in the left hand side of Eq57) (zero order
' p ox’ in the Knudsen numbegto obtain
It is easy to see that for positive longitudinal rates the gu  3m? —G Pyx
reduced viscosity is decreasing as for all the nonlinear vis- 2P ox _ 4AKT— ?_ 1 (59

cosities that we have discussed, but notice that Eu’s reduced
viscosity does not depend on the sign of the reduced longiEquation(59) is an algebraic equation fdt,, which can be
tudinal rate, which means that his expression is symmetrisolved to yield



PRE 60 NONLINEAR VISCOSITY AND GRAD’S METHOD 4059

8 p%kT du planes whose separation is of the order of the mean free path,
Po=P+ 3 2506 7 (600 alinear relation between they component of the pressure

tensor and the shear ratéuf Jy) must hold. The constant of
Equation (60) is consistent with the Chapman-Cowling Proportionality is the viscosity(7) which turns out to be

[15] result, related with the mean free path by
4 Ju(x) 1 _
Po=P= 3 mcc, (62) n=znvml, (67)
where 7 is the viscosity, provided that wherev is the mean velocity. Such a derivation contains
) implicitly the conditions that the higher order gradients of
__5 pkT 62) the hydrodynamic velocity can be neglected and that this is
ccT T e mZEG: the only quantity that depends gn Clausius obtained, for a

gas of particles moving with the same absolute value of ve-
Alternatively Eq.(62) may be regarded as an expression forlocity, an expression for the mean free path, which was later
the viscosity in terms of a collision integral. corrected by Maxwell by using a Maxwellian distribution
We now assume that the gradients of the fluxes can bgunction[20]. However, in a non-equilibrium situation, there
neglected and obtain from E5) and using Eq(62) that  are corrections to the Maxwellian distribution function which
) in principle should be taken into account.
‘9_u: i(&_l) 63) Let us calculate the mean free path, or equivalently the
XXOX  27mcc\ P ' collision frequency, for a non-equilibrium situation. We con-
o ) sider the first approximation to the distribution function
In terms of the reduced quantities given by given by Chapman and Cowling.5] for a shear flow(for
simplicity we will not include the heat floyy

3 P Kk o 2P.
5( xx— N T)(?_X+

«_Tlcc au ~ Pyx
al - p ax! XX p ’ (64) f( ) f(0)|:l 5 ( m 3/2F7UC c (68)
r,c)= - = = .
Eg. (63) can be rewritten as gn\ma? \KT) gy ™7
~ L A _ For rigid spheres, the number of collisions between the mol-
(Po—Dai+ 3 Poai = = (Po—1). (65 ecules per unit volume and timé&() is [15]
Equation(65) is the same as the one that we obtained for the N :}f ; dydedc.de,o2f f 69
rigid sphere casfsee Eq(24)] and from it we conclude that 1=g | sin(x)dxdede,deof(r.c)t(r,cp). (69
5 (1+a) .M 1 66 Using Eq.(68) to evaluateN; we obtain
= oAy M= ST o4
T (1+7a13)" ' mec 1+7a13 AKTVY2 5 [ m \Y21 [ gu)\2
. . . . N;=2n%c?| —| —==|—=| —=|—=|. (70
So, in terms of the appropriate variables given by &d) m 384\ mkT| o“\dy

the form of the reduced pressure tensor and the reduced vis-
cosity, given by Eq(66), are independent of the interatomic ~ The collision frequency is defined & /n and then the
potential. We would like to stress that this result holds onlymean free path can be calculafdd]. The main conclusion
when using the linear collision Operator; for the non”nearthat we can extract from our calculation is that the collision
case it is not obvious at this stage if a similar result can bdrequency and the mean free path are expected to be shear
obtained. rate dependent if the distribution function does not corre-
spond to the Maxwellian. The usual Chapman-Enskog
method assumes the gradients are small enough so that the
guadratic terms in the shear rate can be neglected. However,
As mentioned in the Introduction, there is no doubt thatin situations where the shear rate is large we can have a shear
there are situations in which the viscosity depends on theate-dependent mean free path which in turn can be expected
gradients of the velocity as first found by Truesdell and co+o give a shear rate-dependent viscosity which is precisely
workers[1]. The question now is to have an idea of what thethe effect that we have been discussing. While the Chapman-
underlying physical mechanism for such a phenomenon isEnskog formulation is incapable of treating these cases, we
At this point it is convenient to depart from the situation have the Burnett and higher order equations that have been
considered in this work and consider the physical situation irconsidered by Chapman and Cowlifith] but these are re-
which the viscosity is introduced. Usually it corresponds tostricted to small gradients. Regularizations of these expan-
the shear rate in a stationary state where the hydrodynamaions can be found in the literatuf®,9,21 and the present
velocity[u(y)] has only thex component which depends on work shows that Grad’s method is able to cope with large
they coordinate. longitudinal deformation rates and that a longitudinal defor-
The viscosity calculatiofil8,19 uses the concept of the mation rate dependence of the viscosity can be obtained in
mean free pathlj to establish that, by taking into account an almost straightforward way. In these cases the usual deri-
the net molecular transport of the momentum between twoation of the relation between the viscosity and the mean

VI. DISCUSSION
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free path is incorrect since it is assumed that the mean freequation although in the case of E1) a series expansion
path does not depend on the shear rate. is not justified. Therefore, Eq.71) may be regarded as a
Let us now consider a fluid at rest between two parallelnonlinear constitutive equation which is valid independently
planes located at=0 and z=d. If the plane atz=d is  of whetherVu is or is not a small quantity. Moreover, it was
moving to the right along the axis and the fluid remains at also shown that this scheme is perfectly in harmony with the
rest, then, the shear rate is infinite; but this could only haplocal equilibrium assumption and the second law of thermo-
pen if the fluid does not have viscosiglip boundary con- dynamics, thus providing a solid basis for these types of
dition), which means that the viscosity must be zero for suctconstitutive equations.
a case. Since for small shear rates the viscosity is different In conclusion we see that it is natural to expect that in
from zero it follows that this quantity must be shear depen-ssituations not near equilibrium, which can be generated by
dent. large velocity gradients, the viscosity should depend on the
For a longitudinal flow the necessity of a viscosity de-velocity gradients. Also, there are situationg/£0) in
pending on the longitudinal deformation rate can be underwhich the nonlinear contribution of the fluxes to the collision
stood in the following way: from the definition of the pres- term is minor, but for other cases/(<0) they give a sig-
sure tensofsee Eq(8)] it follows thatP,, should be greater nificant contribution. It should be pointed out that the results
than zero since the distribution function is non-negative. Asgptained depend strongly, besides Grad’s approximation, on
suming thatP,, given by Eq.(18) holds for any longitudinal  the assumption that the gradients of the fluxes can be ne-
rate, then fora/=0 we will have a region of longitudinal glected, it is only in this case that we can guarantee a vis-
rates for whichP,,<0 in contradiction with what was pre- cosity depending only on the first order derivative of the
viously stated. Notice that the previous argument does ndtydrodynamic velocity. As far as we know this is the first
hold if a;<0 and that positive viscosities, according to thetime that a thickening in the viscosity followed by a plateau
Chapman-Enskog theory, are implicitly assumed. has been reported and also the importance of the nonlinear
The nature of the results obtained in this paper meritgontributions of the fluxes to the collision term has been
another comment which is intimately related to the nature otlearly shown.
the constitutive equations that are required to obtain a well
defined set of hydrodynamic equations. It is well known that ACKNOWLEDGMENTS
the linear laws, Navier-Stokes-FouriéMSF), give rise to a
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gradients, the corresponding transport coefficients beingrofessor I. V. Karlin for their valuable comments and dis-
functions of thelocal equilibrium thermodynamic variables cussions about this work. The work was supported by
only [15,22,23. A long debated question has been how to gogCONACYT under Grant No. 0651-E9110.
about generalizing these linear laws to yield hydrodynamic
equations that include terms of higher order in the gradients, APPENDIX A: EVALUATION OF THE DRIFT TERMS
meaning specifically of order higher than 2. According to the IN THE TRANSPORT EQUATION
kinetic theory based on the Boltzmann equation, the ) _ ) _
Chapman-Enskog expansion, which is valid for small gradi- In this appendix we consider the evaluation of the trans-
ents, leads to one alternative which is well known and itsPort equation fory(C)=3m/2C3, that is, we would like to
consequences, especially those related to their compatibilitgvaluate the left hand side of the following equation:
with irreversible thermodynamics, have been widely dis-

cussed in the literatuf@3—27. We shall not deal with them 3m _,[of B 3am _,
here. The point we want to underline is that when the gradi- f de75-Cif g e Vif | = | de- QI ).
ents are large, in our cadéu, then the natural constitutive (A1)

equation for the viscous stress tensor could be written as

First we evaluate the drift term; for simplicity we will use
7=7(Vu)-Vu, (71)  the conditions used in this work, that g(r,t)=u(x)i, then
for the stationary case we have

indicating that the viscosity is, in general, a nonlinear tensor

function of the viscosity gradients. This is, in a macroscopic 2 , of

language, what the results of this paper suggest as the approj( demCic- V, f= mJ' deCiliy

priate relationship. But this is not new. Some years ago it

was clearly showrj24—2¢ how one may obtain hydrody- afCc, aC2

namic equations of arbitrary order in the gradients by con- =mf de| — — ~foy

structing a matrix whose elements are transport coefficients

such that acting on a vector defined by the thermodynamic d d

forces yields expressions for the corresponding fluxes. If the = (9_( f dCfCi) +m—( f dCfCEU)

elements of such a matrix are of a given order in the gradi- 5000

ents the resulting fluxes will be one order higher. Equation u(x 2

(71) is an example of this procedure. In the lowest approxi- +am X (f dCf(Cx+CXu))

mation one recovers the NSF hydrodynamics equations and

in higher orders, equations which resemble those obtained

from the Chapman-Enskog method of solving the Boltzmann

P
=Qx+ 5(PXXU)+2P (A2)

XXaX'
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The first equality follows from the assumption that all the 3m 9 Ju

quantities depend only on the coordinate and the second f dc7C§J(f,f )= S [P Py )u() ]+ 2Py

one follows from an integration by parts. The third equality (A7)

is obtained by using the relatiary=C,+ u(x), interchang-

ing the order for the integration and the partial derivative in

the first two terms, and carrying the partial derivative with ~ APPENDIX B EVALUATION OF THE COLLISION

respect tox of the squared peculiar velocity. Finally the INTEGRALS

fourth equality follows from the definition of the pressure  Here we show how to evaluate the collision integrals that

tensor. Itis pertinent to stress that the quan@tydefined by resyit from considering the nonlinear contribution of the

fluxes in the collision term. We will evaluate the collision

Q,= J defC?, (A3) integral given by

2 Ax(r2 2
is zero if the distribution function is given by E¢). {CA%(Cx.Cod}
Using similar arguments as the ones used to obtain the

previous equation we obtain ZZJ dede,deS (x,9)gf@(c,r,H) fO(cy,r,t)
m
> f de(c;+c5)c- Vi X C2(CL2Cy2—C2cy)). (B1)

For rigid spheres we hav&(y,g) = o%/4 [15], whereo is
_ TJ' dc(c§+(‘72)V (cf)=V. Tj dc(c§+c§)cf the rigid_sphe_re Qiameter SO 'Fhat u_sing the expression for the
2 2 Maxwellian distribution function given by Eql) and the
center of mass and relative coordinates defined as

=V-<TJdC(C2+ 2+C2)Cf)—V~(TijC2Cf>
2 xTHTE 2 x C=G-g2, C,=G+g?2,

m m '—C_n - ! B2
=v-<§JdchCf " §fdcczcof) C'=G-g'2, C;=G+g'/2, (B2)
we obtain the following expression for ©
m m — 2 * (2 2 .
—v-(ff ch)z(cOf)—V- Ef dccic:f) ={C0AY(CCLk:
B ‘9qx+ 1au(x)(P) 1 au(X)Py dQy day dQy ®=29f dGdgdeg exp( —mg?/4k T)exp( —mG?/kT)
Tox 2 ox 2 X X Ix  dx

X (Gx_ gxlz)z[(Gx_ g>,</2)2(Gx+ 9;(/2)2
1 du(x)(Pyy+P,,)

+ 2 IX - (Gx_gx/Z)Z(Gx+gx/2)2]a (83)
99 9Qy 4 where
Toax ox +&(U(X)Pyy)' (A4) 2 2 3
n“o( m
: o . o O=-=5 ( —) (B4)
where q is the heat flux which is zero if the distribution 327° | KT
function given by Eq(2) is used and in the last equality we
have used cylindrical symmetry. The integration over the dispersion angles, namdly,

From Egs.(Al), (A2), and(A4) we obtain, for the distri- =sin(y)dedy, can be done using the following relatifh5]:
bution function given by Eq(2),

0y=9 cog 6)cog ¢)sin( x)cog )

f dC( mC;— g(cﬁﬂﬁ) J(f. 1) — g sin(¢)sin(x)sin(e) +g cog ¢)cog x)sin(0),
(B5)
_ J Ju J
= 7x Pl 00) 2Pz = 22 () Pyy). where 6 and ¢ are the polar angles af. (Alternatively, in

(A5) doing the integration over the dispersion angles, it is possible
to choosey along thez axis so that the polar angles gf are
Finally using the relation§+c§=C2—C§ in the left hand the dispersion angles. T'hen, E@S) reduces_ a bit and it is
side of Eq.(A5) and remembering thaE? is a collision simpler to carry out the integratipnWe obtain for®
invariant so that
0= 27TQJ' dGdgg exp( — mg?/4kT) expl — mG?/kT)
f dcC?J(f,f)=0, (AB)
9 o Oy

4
2
55+26i6— 7~ 360 (B

X(Gx_gxlz)z 2 4

we obtain



4062 F. J. URIBE AND L. S. GARCA-COLIN PRE 60

n+4

2

The integrations ove®, andG, can be easily carried out, so e AKT\ (n+4)2
that f dgg® "exp(— ng/4kT)— 5|

kT (B9)
0=2—m0Q f dgg exp( —mg?/4kT)exp( — mGZ/kT)
m wherel'(x) is the gamma functioh28].

g“Gf( 949)2< - QQGi Substitution of Eq(B9) into Eq. (B8) leads to
0 + 80 +2g,G,+ 7]
62 KT\ %2 n2g, 1 (kT 1F A 4kT\*
¢ 20°G! g’gG? 2w "0l m)2 “W
3 (B7)
6 3 6 11 4kT\® KT 4kT
N . + 55T ()| 4)| ——
The integrations ove®, are Gaussian and do not represent a 602 m | 10 2 m
problem. If in addltlon we use polar coordinates fpand 11 4KT\5 KT AKT\4
carry out the angular integrations we are led to R B I —F 4) —
282 m 9\m)2 m
kT °
0=2— ZQI dgg® exp(—mg?/4kT kT\5?2 4kT\*
m77 0 993 s 92 ) :Z(F) 7712 ['(4)Q
4 3/2
v (kT _T 1 16 1 16 1
X| = 20 > (47T)+ Wy 2y =2 =
m m 20120720 56 18
5/2 3/2
429 3\/—(kT) ( ) g_£(k_) ( ) | 34816(KT| 192 . .
4 \m 37/ 4 2 \m o5 \m/ 7 (B10)
kT\Y? 47| 29% 3w [kT|>?
26\/—( —) ( 777) - % T\/;(_) (4m) Using the value of) given by Eq.(B4) in Eq. (B10) we
m conclude that
g* Vo (kT 1088/ kT| "2
‘37( m (aw) - B9) {ci,A*<c§,c§x>}=—r,5(;) Jan?o?. (B11)
Note that the third and sixth terms in E@®8) cancel out. As mentioned previously the result from the computer
For any natural numbaer it is easy to show that algebra code gives the same value, for this particular case.
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