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Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence
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A statistical model of strongly anisotropic fully developed turbulence of the weakly compressible fluid is
considered by means of the field theoretic renormalization group. The corrections due to compressibility to the
infrared form of the kinetic energy spectrum have been calculated in the leading order in the Mach number
expansion. Furthermore, in this approximation the validity of the Kolmogorov hypothesis on the independence
of the dissipation length of velocity correlation functions in the inertial range has been proved.
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[. INTRODUCTION language of the RG, this means that the corresponding fixed
One of the oldest open problems in theoretical physics ipoint remains IR stabje
that of describing fully developed turbulence on the basis of In Refs.[13—186, the isotropic turbulence of compressible
a microscopic model. The latter is usually taken to be thdluid was considered. The main difficulty is that the corre-
stochastic Navier-Stokes equation subject to an external raisponding field theoretic model is not multiplicatively renor-
dom force which mimics the injection of energy by the large-malizable, so that the RG technique is not directly applicable
scale modes; see, e.g., REf]. The aim of the microscopic t0 it (for this reason, the results obtained in Hé&f3] cannot
theory is to verify the basic principles of the celebratedbe considered reliable, see the discussion in Ré&#%16).
Kolmogorov-Obukhov phenomenological thedi], study In Ref. [14], the problem of nonrenormalizability was
deviations from this theory, and find the dependence of variSClved in the frame of expansion procedure in small Mach
ous Green functionévelocity correlation and response func- "Umber Masv./c (wherev. is the characteristic mean-
tions) on the times, distances, exterfimtegra), and internal ~ Square velocity and is the speed of soundin the first
(viscous turbulence scales. Most results are obtained withid*ontrivial order (Maf, the problem was reduced to the cal-
the framework of numerous semiphenomenological model ulation of scaling dimensions of certain nonlocal composite
which cannot be considered to be the basis for constructio elds (composite operators in the Ianguage_of field thgory
S . constructed from the fields of the renormalizable model of
of a regular expansion in a certain smat least formal . . .
arameter, see ReP] |ncompres§|ble fluid. _ . . _
P ' S . o Calculation of the scaling dimensions of composite opera-
One of the exceptions is provided by the renormallzat|on-t

. . ) ors is quite a cumbersome task. As a rule, their renormal-
group(RG) method earlier applied successfully in the theoryization involves their mixing with each other, and in order to

of critical behaviqr to explain Fhe o_r_igin o_f critic_al scaling find the scaling dimension of a given operator, one has to
and calculate universal quantitigeritical dimensions and  consider the entire family of operators that admix to it in the
scaling functionsin the form of e expansions; see Re8].  yenormalization procedure. The use of functional Schwinger
The RG was applied to the stochastic Navier-Stokes equasquations and Ward identities, which express the Galilean
tion in Refs.[4-7]. For the isotropic homogeneous turbu- symmetry of the model, simplifies the problem and in many
lence of incompressible viscous fluid, it allows one to provecases allows us to find the dimensions exactly, see Refs.
the existence of the infraredR) scale invariance with ex- [6,8,17,1§. Using this technique for isotropic turbulence, the
actly known “Kolmogorov” scaling dimensions and the in- authors of[14] have calculated all the relevant scaling di-
dependence of the correlation functions of the viscous scalmensions and, with the aid of these results, proved the valid-
(the second Kolmogorov hypothegiand calculate a number ity of the second Kolmogorov hypothedimdependence of
of principal constants in a reasonable agreement with théhe velocity correlation function of the viscositin the lead-
experiment. The detailed exposition of the RG theory of tur-ing order of (Maf. This is in agreement with the result
bulence and the bibliography can be found in the reviewobtained previously ifi19] within the approach based on the
paper|[8]. self-consistent equations. In R¢L5], this proof was gener-
As the model of isotropic incompressible fluid provides alized to all orders of the formal expansion in (Ma)
only a simplified description of real turbulent flows, it is It should be stressed that the stability of the Kolmogorov
interesting to generalize the model by taking into accounfixed point in the presence of anisotropy is obviously aot
anisotropy, compressibility, inhomogeneity, real geometry priori: the analysis of thel-dimensional case shows that the
and so on. In particular, in a number of papers the turbulencstability is violated ford<2.68[11,12 (the two-dimensional
with the weal{9—11] and strond 12] uniaxial anisotropy has case requires special care; see R2f]). The stability of the
been studied. It was shown that, in the three-dimensionaKolmogorov regime is also destroyed for the anisotropic
space, the IR scaling regime characteristic of the isotropienagnetohydrodynamic turbulen¢&0] and for the strongly
case survived also if the anisotropy were includedthe  compressible fluid16].
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In this paper, we study the effect of compressibility in thethe conditions,v; =0, andv|i|E P‘i‘jvj is the longitudinal part.
first nontrivial order of the expansion in the small (Ma) The longitudinalP! and the transvers#"* projectors in the
within the framework of a more realistic model of the wave-vector k) space have the forrﬁ‘i‘j:kikj/k2 and Pﬁ
uniaxial anisotropic turbulence. The anisotropy is not sup-—= g, — pl. respectively k=|k|).
osed to be small. As in the isotropic cd4d], the problem St ity fi i
p : ] P 1&], the pro Since the velocity field has to become transversal in the
is reduced to the calculation of the scaling dimensions of dncompressibility limit, its longitudinal part! has to be pro-
class of nonlocal composite operators in the model of incomportional to the inverse square of the sound spdef,
pressible strongly anisotropic turbulencg con_sidereﬁl_ﬁ]. ~¢~2. Then from the Navier-Stokes equati¢h?) it follows
H_owever, th_e set of releva_mt operators in this case is m_”°fhat|f|”~c*2 for the longitudinal part of the random force.
wider than in Ref[14]. Using the technique developed in Hence,c~2 can be treated as a small formal parameter, and
[6,8,17,18 and the resuits obtained [12], we have found  {he compressibility corrections to the transversal part of the

all the scaling dimensions exactly. The main result of the,g|ocity field can be studied within the expansiorcir? (or
paper is the substantiation of the validity of the second Kol Ma?).

mogorov hypothesis me_:ntioned above, for strongly ani_so- In the first order inc™2, the continuity equation(2.4)
tropic, weakly compressible developed turbulence in the firs{,) o< the form
nontrivial order in the Mach number.

1
Il. THE MODEL ?(at+vﬁai)p+aiv‘i‘:o. (2.5

In the stochastic theory of fully developed turbulence, the
motion of a viscous fluid is described by the Navier-Stokegn the leading approximation ie~2 (corresponding to the
equation incompressible fluig the Navier-Stokes equatid@.1) gives
the well-known relation between the pressyreand the

elavitvdvil=volvitwodidvi=diP+fi, (2D yansversal velocity

the continuity equation Ap= —8iﬁjVﬁVf _ 2.6
de+d;(ev))=0, (2.2 .

The last two equations allow us to express the pressure
and the equation of stat®=P(0). Here 9,=dldt, J; and the longitudinal part of the velocity via the transversal
=4/9%;, vi(x,t) are the coordinates of the velocity field, partv',

o(x,t) is the density of the fluidP(x,t) is the pressure, and

v and v are the molecular viscosity coefficients. Here and H 1 . . L

henceforth, summation over repeated indices is implied. vi=-— gé’iA Vip, p=—A""didvivi, (2.7
Following the tradition of stochastic models of turbu-

lence, the randomness in E@.1) is introduced by the large-

scale random forcég,(x,t) with Gaussian statistics with zero

mean and matrix of the correlation functiof; =(f;;), for the Laplace operator. In the field theory the quantities

which will be specified later. ) . ; . .
We shall consider the weakly compressible fluid when the“kirt_gﬁ):lsgbt'hand sides of Eqg2.7) are termed “composite

fields of the dens_|ty_and pressure can bg written as sums &pOperating with the transversal projec®@t onto Eq.(2.1)
the mean valuep, p and small fluctuation, p: =p  and using relation.7), we arrive at the closed equation for
+p, P=p+p. Without loss of generality, we take=1.  the transversal part of the velocignd, therefore, for all its
Due to the smallness of the fluctuations, the equation of statetatistical momenjsin which the compressibility is taken
can be taken in the adiabatic approximation: into account to the order af 2, or, equivalently, M3,

p=Cc?p, (2.3

where V,=4,+v; d; is the Lagrangian derivative for the
transversal part of the velocity aid ! is the Green function

avi = voAvi — Pii[vsdevi 1— Pii[ v asv|j| +vl&svjl]
w_herec is the a_ldlabatlc sp_egq of _so_und in the tzuibulent me- _C—ZVOPiLj[ijL]+ £, 2.9
dium. In the incompressibility limit one has“=<« or,
equivalently, Ma=0.

Using the adiabatic relatiof2.3), the continuity equation
(2.2) can be rewritten in the form

To simplify the notation, we shall writg; instead ofv; in
what follows.

The positively definite < d) square matrix of the pair
correlation functions of the random forég will be taken in

1 1
S ap+ = di(pvi)+dv;=0. (2.4)  the form(see, e.g.[5,8])
c c

f-(x,1) 5(0,0))=gDs(X,1)
For c?=x, the density becomes a constant, the velocity be- {fi s )=e0Djs

comes transversaldfv;=0), and we return to the case of ddk o )
incompressible fluid. =4(t) sof ﬁDjs(k)expﬁk.x],
The velocity fieldv; can be expressed in the form (2m)

=v{ +v|, wherev{ =P}v; is the transversal part satisfying (2.9
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Dij(k)zk“‘d‘EPﬁj(k) (2.10 ity Icorrelation and response functions is the functional inte-
gra

(we recall that(fji>=0). We see that temporal correlations
of f{ have the character of white noise, while the spatial G(A,A’)=f Dv DV’ detM (v)exd S(v,v/) +Av+A'v'],
falloff of the correlations is controlled by the parameter
and space dimensiod. The functions(2.9) are translation 3.1
inyariant and fqre=2 bec.ome spale invariant when' the am-\vith the effective action
plitude £, acquires the dimension of the energy dissipation
rate, e, see Ref[6]. The valuee=2 is physically most ac- 1
ceptable, since it represents the assumption that randonﬁ(V,V’)=EQOVSV’DV'+V'[—t?tV+ voAv—(va)v—(vlg)v
force acts at very large scales, which substitutes for the effect
of boundary conditions. For simplicity, we use the force cor- —(va)vH—c*Z;joAvp], 3.2
relation function(2.9) without the usual infrared regulariza-
tion. In this case, foe=2 the function(2.10 with the proper whereA, A’ are the source fields, which are equivalent to
choice of the amplitude in Eq. (2.9) can be considered as regular external forces. Here, the required integrations over
a powerlike model of the “ideal” pumping functio@(k), the space-time arguments of the fields and sums over discrete
see[8]. The justification of this choice as well as the discus-indices are implicitly assumed.

sion of the central problem of the expansion, i.e., the con- The Jacobian défl in Eqg. (3.1 ensures the cancellation
tinuation frome=0 to e=2, have been thoroughly discussed of all the diagrams containing the self-contracted bare propa-
in Ref.[24]. gator(w’), which arise along with other diagrams from the

The ratioeq/v3=g, plays the role of a bare coupling rules of the Feynman diagrammatic technique for the action
constant, i.e., the expansion parameter in the nonlinearit{3.2), but do not arise in the construction of diagrams by
(vd)v in the nonrenormalized perturbation theory. In thedirect iteration of the stochastic equati¢®.8). Following
limit e—0, the constang, becomes dimensionless, the dia- [22,5,d, we simply define these superfluous diagrams as
grams of the Green functions become divergent in the ultrazero, and simultaneously set diét=1 in Eq.(3.1). We note
violet (uv) region of the wave-vector space, and the problenthat in our model such a definition is nontrivial because the
of eliminating these divergences emerges. In the field theorinteraction in Eq(3.2) involves the derivatives with respect
this problem is solved by the well-known uv renormalizationto the time variable. Nevertheless, this definition is feasible,
procedure, see, e.d21]. as it has been shown in RéfL4] using isotropic turbulence

In this paper we consider the uniaxial anisotropic turbu-as an example. As a result, we arrive at a standard field
lence. The transverse projectBr for the correlation matrix theoretic model with actiof8.2), and the standard renormal-
(2.10 is defined by the relation®,11,13 ization theory is applicable to it.

The action(3.2) is not renormalized and the correspond-
les(k)= (14 a,€%) les(k)+ aszlS(k), (2.11 ing Green functions of the fieldsv’ contain uv divergences
for e—0. In order to analyze them, we rewrite the action

PL(K)=8,s— Ply(k), Ply(k)=kjkek 2, (3.2 as a sunB=S'+S":
_ - - _ - 1
st(k) = (nj - fkk 1kj) (ns— fkk 1ks)a &= (k-n) k(le,I_Z) SI(V,V,) = EgngV' Dv’ +V’[ — OVt VoAv— (Vﬁ)V],
' 3.3
where the unit vecton yields the direction of the anisotropy
axis anday,a, are free amplitudes. These amplitudes are SC(v,v')=agF1+agF,, (3.9

not considered small in the present analysis, however restric-

tions to their valuesy;=—1, a,=0 follow from positive ~ Whereag,=—c"?, ap, = ¢ ?v,, and the composite opera-
definitness of the matrix2.9). For nonzeroa; ,a, the ran-  tors Fy,F,, according to Eq(2.7) and using the relation
dom forcing describes differences in energy injection in theﬁivk‘=f9jvy, can be represented in the form

preferred direction and directions perpendicular to it with the

subsequent generation of anisotropic structures in large-scale F1=V{(djvi=av))dAT VA I90viv;,
eddies.
F2:V|,(AV|)A_1(7i(9jViVj. (35)
Il. FIELD THEORETIC FORMULATION AND THE RG Lo . . .
EQUATION In the limit ¢ “—0, the action(3.3) describes the incom-

pressible anisotropic turbulence. Renormalization of this

As in the critical dynamic§22,23, the stochastic problem model has been considered|itl,12. It was shown that in
(2.8), (2.9, and(2.10 is mapped to a quantum-field model, order to ensure the multiplicative renormalizability, the
which is determined by an effective De Dominicis—Janssemmodel has to be extended by adding certain anisotropic dis-
“action” S(v,v') constructed on the basis of the original sipative terms with new viscosity coefficientsyyg;, i
stochastic model. This action is a functional of the transver=1,2,3, where the dimensionless paramejgrdescribe the
sal velocityv and an independent transverse auxiliary fieldrelative impact of the different anisotropic structures on the
v'. viscous dissipation and play the role of additional coupling

In this approach, the generating functio@bf the veloc-  constants.



4046 N. V. ANTONOV, M. HNATICH, AND M. YU. NALIMOV PRE 60

The renormalized action corresponding to the originalThe second effective variable, the invariant viscosifsg),
nonrenormalized functiondB.3) is of the form satisfies the equations

1 _
— 3 2€,/ ’ nm_ dv _ _
S 59V KV DV +V'[—dv+vZ, Av+ vZV)(lZXlnA(vn) Sd_S:_y”(g(S))’ Vo1 =7. (3.13
+vZ,x2Z, (N)V+vZ ,x3Z, .n(NJ)%(vn) — (V) V]. _
#xe X From the solution of Eqg3.12) it follows thatg(s) —g* for
(3.6)  s—0, whereg* is an infrared stable fixed point of the RG
equations, i.e., the root of the equatigg=0 with the posi-

Here, the renormalization mage is an additional arbitrary tjye value of the correction exponent=3,/dg.
parameter of the renormalized theory, and the renormalized The solution of Eq(3.13 is g

parameterg), v, x; are related to their bar@inrenormalizeg

counterparts by the multiplicative renormalization formulas _ os - Y,(X)
12], v(S)=vex —f dx . 3.1
[12] () 0 Py (5.19
— 2e — = _7-3
90=02g1"% o=VZy, Xoi=XiZy Zg=Z, " From Eq.(3.14 along with Egs.(3.10 and(3.7) it follows
37 that

The renormalization constani are calculated within the 113 13
perturbation theory. In the minimal subtraction scheme, they j(s):,,(_g ) - (_80 ) _ (3.15
have the form ‘Z= 1+ only poles ine” and cancel all the gs’c gk?e
uv divergences in the correlation functions of the primary
fields in the model3.6). The last relation in Eq¥3.7) fol- For the spectrum of kinetic enerdy(k)~k *GR(k) in
lows from the absence of the constarts the first and last the asymptotic regios— 0 we obtain from Eqs(3.11) and
terms of the actior3.6). (3.15 the expressioii (k) ~ &2k~ %3 which is independent

To determine the dependence of the renormalized corresf the viscosityry and corresponds to the Kolmogorov value
lation functions on the parameteaig; andag, after the term  of the exponent.
(3.4 has been added to the action, let us consider the pair When the anisotropic case is studifattion (3.6)], the
correlation function for the incompressible isotropic casenew termsﬁxjaGR(k)/an are appended to the RG equation
(the detailed discussion can be found, e.g., in R&24)),  (3.9). The newp functions and the anomalous dimensions
Yy, corresponding to the new dimensionless parametgrs

(V)06 DVmO2,0) = [ =5 600 exifik- ()T

(3.9

d%
(2m) By="XiYx» Yx=DuINZ,, (3.16

) ) ) are expressed via the renormalization constajtsin the
The RG equation for the trace of its space Fourier trans- N ] . I
form GR(k) =GR(k) is action (3.6). The additional invariant variableg(s) satisfy
" equations such as E¢B.12. In Ref.[12] it has been shown
that those equations have an IR stable fixed point
GR(k)=0, (39  g(s),x(s)—g*,x*, in which all the eigenvalues of the ma-
trix of the correction exponents

c5'+ d d
'u(?,u Bgﬁg Yv Yoy

where thegy function and the anomalous dimensign are

expressed via the renormalization constapt 9By,

:&_g|9i:9i*' giEgi)(bXZvXS! i1j2011!213
~ J
Bg=—9(2¢-3y,), v,=D,InZ,. (3.10 (3.17

wij

HereD, denotes the operationd/dy taken at fixed values (10 P€ precise, their real paytare positive, i.e., the Kolmog-
of all tﬁe bare parameters. orov asymptotic regime conserves the stability against the

The solution of the RG equations along with the dimen-St'ong anisotropy. _ _ .
sionality considerations gives _ '_I'he prob_lem becomes more involved if the compressibil-
ity is taken into account. Let us suppose that we have man-
- . k aged to renormalize the actigB.4). Then, the new terms
GR(k)=12(s)k* 9 R(g(s)), s=—, (3.11) yaiDaiGR(k) appear in the RG equatia8.9), wherey, are
H the anomalous dimensions of the renormalized parameters
a;. In contrast with the parameterg, the renormalized
counterparts of the parametexg, andag, have nonzero di-
mensions and, therefore, the scaling functi®rlepends on
_ the effective dimensionless variables

dg — —
S—=Bg(g(s)), g|s:1:g- (3.12
ds

whereRis a “scaling function” of the invariant chargg(s),
the effective variable satisfying the equations

U =k%%a;, u,=k%vay,. (3.18
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The effective variables,(s) and a,(s) satisfy equations ~ Let F={F;} be a system of composite operators closed
such as Eqs(3.13. In the infrared asymptotic regidn—0, ~ With respect to renormalization. The equatiaFi=aoF
they take on the forrai ~k~7a, and the infrared asymptotic (the summation over the subscripts implied can be re-

form of the dimensionless argumer(®&18 is given by the garded as a definition of the renormalized souraesa;},
= A . . . which for the usual renormalization formulag=azZ,, F
expressiona;~k™“a with the scaling d|men5|onAai(f0r

. _ S =Z:FR leads to the reIationZa=ZF‘1 for the renormaliza-
more details see, €.48,25,28). In the linear approximation i1’ constants ande= — v, for the corresponding anoma-
V.V'th respect to the gmall parametersy andag, n the fuqc- lous dimensions. The requirement that the terms
tional (3.1), the leading correction to the scaling functiBn
takes on the form (% consk ™ 2ma), whereA . is the maxi-
mal dimension among . j dx aFR:j dxaF, x=xt

Therefore, the investigation of the dependence of the ki-
netic energy spectrum on the compressibility is related to thée dimensionless then gives the “shadow relations” for the
calculation of the scaling dimensiomai, which, as we shall canonical and scaling dimensions of the operatersand

show below, can be expressed via scaling dimensions of theoUrcesa; ,
composite operators, , entering into the actiofi3.4).
P P 12 9 B4 d+di=d, do+de=1, A,+Ap=d+4,. (4.3

IV. RENORMALIZATION AND SCALING DIMENSIONS Due to Egs.(4.3), the problem of finding the maximal di-
OF THE COMPOSITE OPERATORS mensionA,_ for the sources corresponding to the operators

The addition of the tern(3.4) involving the operators Fj,in the action(3.4) is equivalent to the calculation of the
F.,F, (3.5 to the action(3.3) gives rise to new uv diver- minimal scaling dimensiod ¢ associated with the operators
gencegpoles ine) in the correlation functions. According to F;,and all the operators that admix to them in renormaliza-
the generic rules, all the composite operators with the sam@on.
canonical (naive dimensions and tensor structure can be According to the general theory of renormalization, see,
mixed in the renormalization procedure, i.e., a uv finitee.g.[21], counterterms in a field theory with a local interac-
renormalized operator FR  has the form FR=F tion are also local. Therefore, the renormalization of the non-
+ counterterms, where the contribution of the countertermdocal operators=,F, is reduced to that of their local blocks
is a linear combination oF itself and other unrenormalized (see belowand to the admixture of the local operatdéie.,
operators that “admix” toF. Therefore, to perform renor- monomials constructed of the fields and their derivatives at
malization of the operators; andF,, one has to consider a the same poink,t) with the same canonical dimension and
wider family of operatorss; which admix toF,F». symmetry(Galilean invariant scalarsThese local operators

The renormalized operatofs" are related to their non- in our case are the followingE=av'dvav, ov'Vav,
renormalized counterpari; by the well-known matrix for-  gv’a3v, n2ov’dvdv, n2ov’'V.dv, n2ov’#3v, ntov’avav,
mulas of multiplicative renormalization, see, e.g., REs8],  n*ov'V,av, n*v’év, nov’'oviv, nSov'V,iv,

nbgv’#%v. The notation is symbolic and it implies all pos-
Fi=ZiijR, (4.1)  sible contractions of the vector indices of the fields v,
derivatived, and unit vecton. This set of operators is closed
whereZ;; is the matrix of the renormalization constants. In with respect to renormalization because the nonlocal opera-
the minimal subtraction scheme, its diagonal elements hav@rsF; andF, cannot admix to them. The first three types of
the form 1+ poles ine while the nondiagonal elements con- the operator§ have been considered fi4]. It was shown
tain only poles. From the matri;; one calculates the matrix that they did not affect the scaling dimensions of the nonlo-
of anomalous dimensiong; :Zﬁ(lﬁﬂzkj and the matrix of cal operatord-,,F, due to the fact that the corresponding

scaling dimensions for the set of operators renormalization matrix;; was block-triangular. This feature
of the renormalization matrix persists also in the other op-
Af=Df + . (4.2 eratorsF, which contain the vectar, so that they also do not

affect the scaling dimensions &f; ,F,. In contrast with the

The contributionDf;=[dr—y,d¢];; is expressed via the |ocal operators, they contain additional factors df ~Lav
anomalous dimension of the viscos({8.10 and the totatl-  which have zero canonical dimension and negative scaling
and frequencydg canonical dimensions of the operatér dimension—4/3 ate=2 (we recall that the scaling dimen-
[6,8], which are equal to the sums of the corresponding dision of the fieldv equal to—1/3 ate=2, se€[6,8]). There-
mensions of the fields and derivatives that constitute fore, the scaling dimensions of the operatﬁsare greater

The total canonical dimensions of the fields and paramyhan the dimensions of the nonlocal opera@ysF,, and the
eters of the model are found from the requirement that all th‘?eading contribution to the IR asymptotic form of the spec-
terms of the action3.2) be dimensionless, sef6,8]: di  trym is determined by the contributions Bf and F,. We
=d,=—-2,d,=1,dy,=d-1 (dy=dy=—1 by definition.  pote that due to renormalization, the scaling dimension of an
F.rom these dimensions we then obtain the canonical d'merbperatorF does not coincide in general with a naive sum of
sions of the operatorB, ,F, equal tode =dr =d+4. We  gcaling dimensions of the fields and derivatives entering into
also note that these operators are Galilean invariant, scaldf, But, for the incompressible case, the hypothesis that the
and nonlocal. scaling dimension of a nonlocal operator is the sum of scal-
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them only the dimensions of the local blodik4) and (4.5
W . W require nontrivial calculation. In order to find them, one has

to study the renormalization of the complete set of the op-

erators that admix t&; in renormalization. This set is rather

big because of the anisotropy and the canonical dimension of
G; is high dg=7 for d=3). To simplify the analysis, we
shall use some general rules for the operator mixing. Their
proof and other examples can be found, e.g., in Refs.
[6,8,17,18.
FIG. 1. Graphs of composite nonlocal operatofs; (a) In the action(3.6) the derivative in the interaction term

:vi’(ajvi—aivj)a|A’1VtA’1ﬂiﬂjviv,- and F,=v/(Av)A™? can be moved onto the auxiliary field using integration by

X d;9viv; giving a leading correction to the infrared form kinetic parts:v{v;d;vi=—(d;v{)v;v;. Therefore, the derivative

energy spectra of weakly compressible developed turbulence.  appears as an external factor for each external leg of the field
v’ for any one-particle irreducible diagram, and the corre-

ing dimensions of its local parts and of the factors of typesponding counterterm contains the facsor .

A~'ov has been confirmed i[25] by the explicit one-loop (b) Only Galilean invariant operators can admix to an
calculation of the scaling dimensions related to the local opinvariant operator in the renormalization procedure.
erators with the canonical dimensionr-4, and we also ac- (c) Let some operato@ have the form of a total deriva-
cept it in what follows. tive of some other operat¢G], G=4[G]. In this case, the

As a result, we obtain that the scaling dimensions=of  scaling dimension of5 is simply given by the relatior g
and F, are determined by their own renormalization. The=1+Ag.
latter is reduced to the renormalization of the local blocks (d) All the one-particle irreducible diagrams, containing
entering intoF; andF,. closed circuits of the retarded propagators’), vanish. We

Let us denote the field by the §c1>lid line,v" by the  genote byG or [G] the full sets of operators that can mix
oriented solid line, and the operatar - by the wave line. \ith a givenG or [G] in renormalization.

The derivative with _respect tp the coordinatg is denoted by a According to the itenfc), instead of the operat@. from

slash, and the derivative with respect to time by a crossgq (4.5) it is sufficient to study the renormalization of the

Graphical representation of the operat8s) is depicted in operator[ G,]=v;v;. Due to the transversality of the field

Fig. 1, where the vector indices are omitted and the operato(, o only operators that can admix[t6,] have the form

containing the full time derivativé/,, is represented as a  ~ . . . . .

sum of the first two diagrams. [GZ]—nkn|<9|vk~5ij » MNdvinin; The_lr scglmg d_|menS|ons
The contribution of the last operator from Fig. 1 to the gre equal tcA[GZ]=1.+ Ay . The scaling dimensions of the

correlation functionv’vwv) is depicted in Fig. 2. The shad- fieldsv, v' and the time have the forisee, e.g.[6])

owed rectangle denotes an arbitrary one-particle irreducible

diagram with fixed external legs. One can show that the tri-

angular subdiagram contains uv divergence and its elimina- Ay=1-2€l3, A, =d—1+2¢€/3, A=—2+2€l3.

tion requires the renormalization of the local block of the (4.6

nonlocal operator under consideration. Thus, for the com-

plete renormalization of the operatdf5), it is sufficient to ) ) )

study the renormalization of all their local blocks. We then obtaind (g ) =2—2¢/3, which givesA g, =2/3 at
The operatof; consists of two nonlocal factors—1,the €=2. Since the operatdiG,] itself is not renormalized, for

full derivative V, and two local blocks the scaling dimension o, we obtain[item ()] Ag,=2
+A[g,=2+2A,=4-4¢/3, which givesAg =4/3 at €
Glzvi’(&jVi_aiVj), G2:aiajvivjy (44) _o.

The operatoiG, consists of two termsG;=G1;— G5.
The termG; is rewritten in the formG,=d(v;v;); it is
then sufficient to consider the operafdB;,|=v/v; [item

Ga=v/Av,. 4.5) (©)]. It can mix with the following operatorg;v; , njnjg,v; ,
Sijnn g vy, and ninjngn;dvy . They all are uv finite and
The scaling dimensions of the operat(8s) are equal to the their critical dimensions are simply given by+)A,,=d

sums of the scaling dimensions of the above factors; among 2€/3, i-€., 13/3 ad=3 ande=2. The diagonal element of
the matrixZ;; of the above set of operators equalsittm

(@] and, as in the case of the set associated W@ish this
7 matrix is triangular. It then follows thaAGlzzlJrA[Glz]
7 =1+A,+A,,=d+1, which givesAGlZ=4 atd=3.
The operatofG;; does not admix to itself due to ite(n).
FIG. 2. The correlation functiofiv’vwv) with the contribution ~ Owing to the Galilean invariance, it does not mix with the
of the nonlocal operatdf,=v| (Av))A~14,d,v;v; . The shadowed operators of the same tensor structure which involve the vec-

rectangle denotes an arbitrary one-particle irreducible diagram witor n [item (b)]. Furthermore, it does not mix with the invari-
four external legs. ant operatorsn;Vn,v, [item (a)] and n;Vid;v; [item

while F, contains one factoA ~ 1, the operatoG,, and the
local block
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(d)]. The setG,;, which can admix toG,;, includes the g,

operators Av, njAv{ng, Ngdgnidv|, djnsdsvin;, and k= —gi&—gk, (4.9
n;ndNsdsvi Ny . All these operators are uv finite and their
critical dimensions are equal tot2A,, = 16/3. As in the case
of the operatorsG, and G;,, these operators do not affect
the critical dimension 0G;=v/{d;v;. Since the latter is uv
finite, its critical dimension is given bx&Gll=1+ A, +A,

where gi={g,x;} (we recall thaty,=—3v,). Using Egs.

(3.10 and(3.16), we readily find that at the fixed poirt*

the matrix(4.9) coincides with the matrix of correction ex-

ponentsw;, defined in Eq.(3.17).

=4. We define the commutator of two differential operators
Now let us turn to the last operatdgs, from Eq.(4.5). D;,Dj in a standard way{,D;,D;]=D,D;— D, D; . The com-

The invariant operatong/ V,v; andv{n;Vivjn; do notadmix  mutators of the operatorBrg, D,=vd,=vdldv, and dg

to G; due to item(a). Therefore, we are left with the three '

=d/dg; are of the form
types of operators

~ 1
{Gah={v{(n9)?v;, (Nv)A(nv), (nv')(nd)*(nv)}, [Dre,D,]=0, [DRGaagi]:wii(5io§Dv_agi)
{Ga={a(viavs), (v av)),(nd)[ v/ (nd)v], _5_0@(99 .10
07g %o .

(na)[(v'a)(nv)],

(4.7)  Differentiation of the RG equatiof4.8) with respect tov
. ) , andg; along with the commutation relatiori4.10 gives
al(nv)a(nv)], aL(nv)(nd)vi], (nd)[(nv")(nd)(nv)]},

1 B
5iO@DV—agj)G—5mEgagG,

{Gad={(n9)A(NV'), (nd)(nd)*(nv")}. Drady G= o),

The operator§Gs,t do not affect the scaling dimensions of DreD,G=0 (4.11)

{Gsy} and{Gg,} [item ()], they are uv finite, and their di-

mensions are equal g3 =19/3 atd=3 ande=2.The 1o tact that the operatorBrg and D, are commutative

operators{G,,} do not affect{ G,} [item (c)], they are also allows the left-hand side of the first equation in E4.11) to
finite (like G45), and their scaling dimensions are equal tobe rewritten in the form
Thus, we need to renormalize the remaining set that in-
cludes the operator§; and Gs,. They are renormalized
with mixing, and the corresponding mati; is nontrivial.
In the isotropic case the renormalization constanGafis  Using this relation, Eq(4.11) is rewritten as
expressed via the known renormalization cons@nin the
action (3.6) and, therefore, the scaling dimensim@3 is re- B
lated to the known functiory, [14]. In the presence of an- DreXi= — wijXj— Sio—2Xo, 1,j=0,1,2,3,4, (4.12
isotropy the situation becomes more complicated. However, g
even in this case it turns out to be possible to express the . , - i _ ,
matrix Z;; in terms of the known renormalization constants Which, at the fixed poing™ #0 along with3,=0, gives
Z, andZXi from the action(3.6).
Consider the generating functionéd.1) with detM =1 DreXi= —~ wijX;. (413
and the renormalized actiai3.6). It is uv finite and, there-
fore, its derivative with respect to the renormalized param-This is nothing more than the scaling equation for the quan-
eterse={g,x;,v} (they are the generating functionals of the tities
composite operatorg,S) is also uv finite, as well as the
operatorsd,S themselves. Xi=[dg— (39) 160D, ] G(A,A"),
The functionalG(A,A’) satisfies the RG equation

Bg

1
Dradg,G= DRG( dg,~ 5i0@DV) G- 5i03_gz

D,G.

P P and w;; is the matrix of their anomalous dimensions. Its ei-
— genvalues are positivé follows from the IR stability of the
Ip v fixed point, se¢12]). According to Eq.(4.9), it is expressed

J J via the renormalization constar#sof the action(3.6) calcu-

+ B+ By _) (4.9 lated in the one-lp(_)p approximation in F_l@I_Z]. _
99 524 Using the explicit form of the generating functior(8l1),
the quantitiesX; are explicitly expressed via the derivatives

with the functionsgy and g, defined in Egs(3.10 and  of the renormalized actio(8.6) with respect to the param-
(3.16). Let us define the matriw;, by the relation etersg, v, andy;,

DRGG(AIA,): 01 DRG: M
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Since the parametex; is not renormalizedsee abovg
we havea;=a;=ay=—c 2, which along with Eqs(3.18
and(3.15 in the IR asymptotic region for the effective vari-

Xi= f DVDV'X; exg S(v,v')+Av+A'V']

:f DVDV'[ 9, S—(39) 16,0D,S] ableu; givesu;—u¥ ~c~ 23?3 Using the well-known
' relatione ~v?2/L (wheree is the mean dissipation rate, is
xexg S(v,v')+Av+A'V']. (4.14  the mean-square velocity field, ahdis the outer scale of

turbulence, the expression fou; can be rewritten as
Therefore, the quantitieX; represent the generating func-

tionals of the correlation functions that involve not only pri- uf ~(Ma)?(kL) =25, (4.19
mary fieldsv,v’ but also renormalized composite operators
X; In a similar way, one can find thedependence of the vari-

Performing the differentiation in Eq4.14) explicitly, one  able u} at e=2. From the relatioru; ~uj (kl)“ [see Eq.
obtains 3.18], where =g Y43 is the Kolmogorov dissipation
_ length, one obtains
Xi=ejov'Av+e (V' n)A(vn)+e;,v' (nd)ve 5(v'n)

X(n@)2(vn), (4.15 u3 ~(Ma)*(kL) ~3(kD), (4.20

where the coefficiente are expressed via the renormaliza- andui>Uu; (w>0) in the inertial rangél<1. Therefore,
tion constants from Eq3.6): the leading contribution to the sm&lbehavior of the scaling

function R from Eg. (3.11) is given by the term with the

Z, variableu? . In the linear approximation in the Mach num-
€00= V( ﬁgzy—@) g=g*» Coi=VXi ﬁg(ZVZXi) ber, the leading correction to the kinetic energy spectrum is
of the form
Z,Zy, 2/3),— 51! 2 ~2/
“35 i =123, E(k)~e?*k S 1+AMa)?(kL)~??], (4.2

g=g* . . . L
whereA is a numerical factor. This correction is independent

€= V&xlzv|g=g*v e;= VXi'?xl(Zvai)|g=g*’ of the viscosity coefficienty, Which proves the _vali_dity of
4.16 the second Kolmogorov hypothesis. The contributiorubf
' gives rise to avy-dependent term, but in the inertial range it
€= VaXZZV|g=9*' €= VXiaXZ(ZVZXi)|9=9*’ only_ det_ermines a vanishing corr_ection._ FME_(<1, the cor-
rection is rather small because in the inertial range one has
(kL) "?®<1. In contrast with the isotropic model, the ampli-
tude factor in Eq(4.21) and the coefficien depend on the
anisotropy parameters.

€30~ V&X3Zv|g=g*v €3i= VXiﬁX3(ZvZXi)|g=g* .

It is obvious from Eqs(4.16) thatX; are given by linear

combinations of the operatof3; and{G,}, and the matrix

w (4.9 determines their anomalous dimensions. The eigen-
valuesw; of the matrixw have been calculated in R¢f.2] We have shown that in the statistical model of the fully

in the first order of thee expansion. All the real parts of developed turbulence in the presence of uniaxial anisotropy,
these eigenvalues are positievo of the eigenvalues are the kinetic energy spectrum in the inertial range is indepen-
compley. We calculate from Eq(4.2) the scaling dimen-  dent of the viscosity coefficiert.e., the second Kolmogorov
sions of the operator&,; and {G,} A, =133+ (o hypothesis holdsin the leading approximation in the Mach
=wo), A{.é“}: 1313+ fori=1.23. -From the results of nurl?wbtiri:s paper, we have dealt only with the dependence on
Efetfﬁgalze]i,glér:(\)/lzlil)t\j\f&fhatstc)h(tahz)t(aﬁgerrr:g;: ig]na'tlrli?aruttihoann c?fatchhe the uv scale(orz equivalently, on the viscosity cqefficient
operators in considle,ration of the IR asymptotic behavior ofand have not discussed the erendence on the integral scale
he kinetic enerav spectrum is aiven by the operaiar L. The RG approgch along Wlth the operator produqt expan-

t eF' v f gEy p3 4.0 94 y q - hpd 9 | sion are also applicable to this problem. The most sindular

. ,',na y, from q's.( 9, " ), ( .'5)’ and ~snadow refa- dependence is revealed by the different-time velocity corre-
tion” (4.3) we obtain the scaling dimensions for the original

. . lations and physically is explained by the well-known
composite operatorg;,F, and the corresponding param- sweeping effects, see, e.§27]. The RG treatment of this
etersa; anda,, ! '

problem has been given in R¢24] (see also Ref8]) and it
Ar =d+4-2e, Ap=d+4—2e+w, 4.17 is readily gener.alized' to our case. It is now generall'y ac-
1 2 cepted that the intermittency phenomenon leads to a singular
L dependence of the equal-time correlations, see, e.g. Ref.
[28]. In Ref.[29], it has been applied to the simple example
o of the so-called rapid-change model of passive scalar advec-
Ford=3 ande=2 this givesA, =2/3,A, =2/3-w (Aa,  tion[30] in order to confirm the singular dependence of the
= —10/3 in the first order ire). equal-time correlation functions dnand calculate the cor-

V. CONCLUSION

A31:46/3—2, Aa2=4e/3—w. (4.18
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