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Filling transition for a wedge
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We study the formation and the shape of a liquid meniscus in a wedge with opening angleich is
exposed to a vapor phase. By applying a suitable effective interface model, at liquid-vapor coexistence and at
atemperaturd , we find a filling transition at which the height of the meniscus becomes macroscopically large
while the planar walls of the wedge far away from its center remain nonwet up to the wetting transition
occurring atT,,>T, . Depending on the fluid and the substrate potential the filling transition can be either
continuous or discontinuous. In the latter case it is accompanied by a prefilling line extending into the vapor
phase of the bulk phase diagram and describing a transition from a small to a large, but finite, meniscus height.
The filling and the prefilling transitions correspond to nonanalyticities in the surface and line contributions to
the free energy of the fluid, respective|{t1063-651%99)13508-4

PACS numbg(s): 68.45.Gd, 82.65.Dp, 64.70.Fx, 68.35.Md

I. INTRODUCTION in the wedge explicitlf{Sec. V). Our results are summarized

in Sec. V.
Unless much experimental care is provided in growing
crystals and cutting them, generally on an atomic scale their

L . Il. MACROSCOPIC DESCRIPTION
surfaces exhibit an irregular topography. Numerous theoret-

ical [1-10] and experimentdll1-14 studies have demon- In Secs. Il and IV we shall analyze microscopically the
strated that if such real surfaces are exposed to a vapor phatgmation of a meniscus of wolatile liquid in thermal equi-
the resulting wetting phenomena5,16 may differ signifi-  librium with its vapor phase. Nonetheless it will turn out to

cantly from the corresponding ones on perfectly planar surbe instructive to consider first in the following subsections
faces of the same substrate-fluid systems. These studies dhe corresponding macroscopic description of the problem in
focused on the properties of the adsorbed liquid films avereonstrained equilibrium and to refer to the results obtained
aged laterally over the statistical irregularities of the sub-within the standard theory of capillarity.

strate topography.

However, e.g., in the context of structured semiconductor
surfaceg17—-19, microfluidics[20-24], and templates for
the self-assembly of small particlgg85—27 highly regular We consider a symmetric wedgee., both walls consist
nonflat lateral surface structures can be produced. But botff the same type of substrate materiaith opening angle
the theoretical understanding of tlreal wetting phenomena  2¢< [see Fig. 1a)]. It is cut off at a macroscopic height
in such structuref28—47 as well as corresponding experi- Ho. The lower part of the wedge is filled with liquid; the
mental investigation§43,44] are still in their infancy[45]. corresponding wall-liquid, vapor-liquid, and wall-vapor sur-

As a paradigm of such structures we consider a singléace tensions are denoted ag,, o, and oyg, respec-
wedgelike cavity with an opening angleo2nd macroscopic tively. The vapor and liquid phases are taken to be at bulk
extension along its edge; along tlyiglirection the system is equilibrium so that they can exchange volume with no cost
taken to be translationally invariafsee Fig. 1a)]. The in bulkfree-energy. However, in this subsection we consider
wedge is filled with a simple, volatile fluid such that the a constrained equilibrium such that the volumef the lig-
bulk, i.e., far away from the edge at=z=0, is occupied by uid phase is prescribed. The liquid meniscus is enclosed by
the vapor phase with temperatufeand chemical potential the walls atz=|x|cote and the liquid-vapor interface is de-
u. The values ofu are chosen such that the bulk is close toscribed byf(x) [see Fig. 1@)]. Here and in the following we
liquid-vapor coexistenceuy(T). (Our considerations are discuss a two-dimensional wedge. Some aspects of the full
equally applicable to the two fluid phases of a phase sepdhree-dimensional case will be discussed in Sec. II B. In the
rated binary liquid mixtur@. Accordingly, under the influ- present macroscopic description all length scales are much
ence of the substrate potential a liquidlike wetting film will larger than atomic scales so that the free endfgyf the
form at the planar surfaces leading to a meniscus near thgystem is determined by the aforementiosedacetensions
edge. We analyze the height of this meniscus and its shape asly. For a given configuration of the interfatéx) one has
a function of u and T. This analysis is based on thermody- [see Fig. 1a)]
namic considerationgSec. I) and on a phenomenological . x y
interface model for the local height of the menisd&ec. _ f ! 12 o\ 0~ "1 '

[II). For a special choice of the effective interfacial potential Flfl=0g dex L) +2 sing Twgt2 sing Twl
we are able to calculate analytically the shape of the interface (2.7

A. Constrained equilibrium and thermodynamics

X
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with f,=df/dx. In Eq.(2.1) the artificial contributions to the
free energy generated by the cutofizatH, have been omit-
ted. The liquid-gas interface intersects the wallxat+x;
with f(*x;)=X, cote. The surface tensions determine the
contact angle® via the Young equation

Owg™ Owl

0'|g

cosO = (2.2

The differenceAF[ f|=F[f]—2x,0,4/sin¢ of the energies

of the wedge with a given amount of liquid and of the wedge
filled by the gas phase only follows from E.1) by sub-
tracting the term 2y0,4/sing. Accordingly the constrained

equilibrium profilef_minimizes the functional

Xy cos®
AF*[f]=0 J dx{ 1+ f2(x)— —
[f]=0g x <0 sing (b)
+ \ f t 2.3 \ l
g 100~ Ixlcote] 2.3 cs E
) . wall
with the boundary condition$(=x;)=x; cote and where
the Lagrange multipliek implements the constraint of con-
stant liquid volume v H,
X1 A Ig lx)siny
V= f_dex[f(x)—|x|cot<p]. (2.9 f(x) liquid ()
I wall
[In these formulad (x) is regarded as a single-valued func- 29
tion. In the case that(x) consists of two branches the cor-

. . z=0 X
responding separate analysis for each of the two branches 0 X,
leads to the same conclusions as the ones described below.

Moreover, it is necessary to assume that ¢<m; other- FIG. 1. (8 Macroscopic description of a wedge with opening

wise neither the interface nor its branches can be regarded asgle 2» formed by identical walls whose surfaces are located at
single valued function$ According to the standard calculus z=|x|cote. The shape of the meniscus is describedziyf (x) or
of variations[46] the equilibrium profile fulfills the differen- 1(x)=f(x)—|x|cote. The liquid-gas interface intersects the walls
tial equation at x=*x; with a contact angl®. The system is taken to be two-
dimensional and its height is cut off aE Hg. (b) Same as irfa) on
T N a microscopic scale which takes into account that far away from the
. (2.5  center of the wedge the meniscus reduces to a wetting film of thick-
(1+T§)3/2 O nessl.,, sing covering the walls at largex|; l.,=l(x—®). Iq
=|(x=0) denotes the filling height of the liquid in the wedge.

with the boundary conditions
where the radiuf is given by

1*f,(+x;)cote  COSO

[1+T%(+x,)]¥2  sing

2.6
(2.6 1 cos@cog O + ¢)| "2

R=V ®+<p—§w+ S (2.9

Equation(2.6) is equivalent to the statement that the angle
between the liquid-gas interface and the waileasured on

the liquid side of the interfagds equal to the contact angle 1he value ofz. is always positive for a concave interface

in the planar case. Thus the equilibrium profile is given bywhile fqr the convex one it can be either positive or negative,
depending on the value of the contact an@leThe intersec-

a part of a circle whose radilR= o4 /\ follows from the : g X

constant volume constraifEq. (2.4)] and intersects the 0N of the circle with the wall occurs at
walls at the contact angl®. For ® < — ¢, the liquid-gas
interface is concave, while fob >3 m— ¢ the interface is 1
convex;® = m— ¢ corresponds to a flat interface. The cen- x;=—R sgr( O+ ¢p— >
ter of the circle is located atx(, z.) with

cod @+ ). 2.9

1
X.=0, zc=—ngr(®+<p——7r

cos® 2.7 In the case that the liquid forms a bridge connecting the
2

sing ’ walls the free energy is given by
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For these configurations the difference in free energy be-
tween the wedge being filled with a liquid of volunveand
vapor otherwise and the wedge being filled with vapor only
is given by

2o.gN(®+¢>—3

w
AFzsgr(®+<p—§ 5

Inip20>ln-9
cos® cog 0 + o)

1/2
- ) , single interface,
sing

(2.12
and

AF=403\V(2¢+cog O cote)
X (20— 7—sin20)" Y2 bridge. (2.13

0=1n-¢ B<im-¢

Any configuration with more than one bridge is disfavored
by a higher free energ¥ =37+ ¢ corresponds to the bor-
der case between a bridge and a convex interface for which
the lowest point of the bridge coincides with the corner of

FIG. 2. Classification of the equilibrium shapes of a nonvolatile
liquid drop (shaded areaas function of the opening anglep2f a
symmetric wedge and of the contact an@leln all cases the shape
of the liquid-vapor interface is a part of a circle. The space within
the wedge, which is not filled by the liquid, is occupied by vapor. the wedge. . ) .
Here the wedge is two-dimensional resembling the situation in From Eq.(2.12 one can infer that fo®@>37—¢, ie.,
which a three-dimensional system exhibits translational invariancéOr @ single convex interface or a bridgeF decreases upon
along the edge of the wedge. decreasing the liquid volume down to the limiting valve

=0. On the other hand, fod <37 — ¢ the free energy de-
creases upon increasi i.e., upon filling the whole wedge

X X
F[fl,f2]=0'|gf idx\/1+ffx(x)+a|gfidx\/l+fgx(x) with liquid. Therefore
A1 —R2

1
XO_X1+X2 Xl_XZ @:—77— i
¢ (wetting (2.149
2 Sin(,D Uwg Sin(,D Owl» (21() 2

marks a filling transition for the wedge. This case corre-
sponds to a flat interfacesee Fig. 2 and the corresponding
free energy is independent of the volume of the liquid. At
fixed temperature, i.e fixed, a wide wedge is covered
only by a microscopically thin liquid film which turns into a
%acroscopic meniscus upon narrowing the wedge beyond
the critical opening anglep.=37—©. (These consider-
ations can be extended to the case of a nonsymmetric wedge.
The corresponding results are presented in AppendixfA.
the planar walls undergo a wetting transition the contact
angle®(T) decreases as a function of temperature and van-
ishes atT=T,,, i.e.,®(T=T,)=0.
Thus for a fixed opening angle E®.14 defines implic-
) B itly a filling transition temperaturer, such that®(T,)
R= V(20— 7—sin20) '~ (21D 37— 4. One hasT ,<T, andT‘PH(l,;W:TW. This means
that the wedge undergoes a filling transition at a temperature
Thus, depending on the opening angleand the contact at which the outer parts of the wedge far away from the
angle ©, the possible shapes of a liquid meniscus can beenter still remain nonwet. The same conclusion has been

where f4(x) and f,(x) correspond to the upper and lower
liquid-gas interface, respectively, whitex; and = x, denote
the intersections with the walls. The minimization of the
constrained free energy with respectffocandf, leads to the
conclusion that both interfaces are parts of the same circl
whose center is given by Ed@2.7). For each of them the
corresponding contact ang{eeasured on the liquid side of
the interface has the same valu® as given by the contact
angle for a planar substrate.

The bridge can exist if and only H; is positive and larger
than the radius of the circle, i.e., >3 7+ ¢. In this case
the radius of the bridge has the value

summarized as followssee Fig. 2 reached previously by Hauge from phenomenological con-
siderations based on the Laplace and Young equaf®fis
O>1m+¢: bridge, Here we obtain this conclusion by analyzing the free energy

of the system.

However, as long as the volume of the liquid drop has a
fixed value there is no phase transition and the free energy is
an analytical function of temperature and of the wedge open-
ing angle. Close tap=37—0 it can be expanded into a
series of powers dfpo— (37— ©)]. The dominant term of this
im—¢>0: concave interface. expansion is

im+9=0>3i7—¢: single convex interface,

O=1m—¢: flat interface,
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AF=—204yVcotg[p— (37— 0)]. (2.19 F(H, Hg)=i‘{H0‘r oT)
: cose W

The aforementioned qualitative change of the interfacial +H;[cosO(T,)—cosO(T)]o4(T)
shape and the change of the behavior of the free energy upon

increasingV are traces of the filling transition which comes X Ha[cosO(T,)+cosO(T)]ag(T)}.
into play when the fixed-volume constraint is removed and (2.19

the system is at liquid-gas bulk coexistence of a grand ca-
nonical ensemble. The minimization of the functioA][ f ] Below T, this expression is minimized bi#;=0 andH,
instead of the functionaAF*[f] leads to the following =0. AboveT,, the minimum corresponds té,=0 whileH;
equation for the equilibrium interfacial shape: takes its maximal possible value.

In the above considerations we have discussed a wetting
situation, i.e., the bulk is occupied by vapor and the wedge-

fyx like substrate prefers the liquid. Our results can be easily
(1+?2)3,2:O- (2.1 mapped onto the corresponding drying situation in which the
X

bulk is occupied by liquid and the wedgelike substrate pre-
fers the vapor phase. In this case the filling transition of the

Thus the interface is flat and horizontélh the general case Wedge occurs for
of a nonsymmetric wedge the interface still remains flat but 1
not necessarily horizontalln the case of a nonconstrained a_ ;
system the surface free-energy is given by 0= 2 m+¢ (drying). (220
This is in accordance with E¢2.14) because liquid and gas
F(H)= L{HOO'WQ(T)'FH[COS@(T(P) are interchanged bu'_[ th_e contact_angl_e is in both cases taken
Cose to be the one of the liquid phase, i.e., in Eg.14) ® must be
replaced byr—@. If the planar substrate supports the drying
transition, i.e.®(T—Ty) = m, the wedge will be completely
filled by the vapor phase fof>T, where now®(T=T,)
where H is the height of the flat and horizontal interface =37+ ¢. Again one hag ,<T4andT, . (12,=Tq. Equa-
measured from the edge of the wedge. FerT,, the above tion (2.20 states that, under drying conditions, for all tem-
surface contribution is minimized by =0, while for T  peratures corresponding ®(T)<; there is no opening
>T, this contribution is minimized by the largest possible angle ¢, such that the wedge is filled with vapor far
value for H. The latter case corresponds to a wedge com=<¢.. On the other hand, i®(T)>3= there is always a
pletely filled by the liquid. The relevant surface free energysufficiently small opening angle(T)=©(T)— 3 such
has the following form: that the wedge is filled up with vapor far<e..
This observation may be of relevance for preparing super-
water-repellent surfacdgl7]. These are surfaces which ex-
_ 2Ho hibit a contact angler>®> 3 if they are very smooth. On
COoS@ the other hand, if the surfaces—made of the same material—
are prepared such that they exhibit a very porous structure
owg(T),  T<T,, one observes an apparent contact angle clogd 47]. In the
Owg(T) +[cosO(T,) —cosO(T)]aig(T), T=T,.  present context this observation is in accordance with a fill-
(2.18 ing of (wedgelikg pores with vapor at temperatures at which
the smooth planar surface is not yet dry, i@<.
Similar considerations hold for wetting conditions, i.e.,
According to Eq.(2.18) F is continuous a1l'=T¢, but exhib- when the Wedge is exposed to a vapor phase_ Edu@iaﬁ)
its a break in slope as a function of temperature. Thus thetates that for all temperatures correspondin@{@) > 7
fIIIIng transition in a Wedge iS—SimiIal’Iy to a Wettlng tran- there is no opening a_ng|¢C such that the Wedge is filled
sition on a planar substrate—associated with a singularity iyith liquid for ¢<¢.. On the other hand, iB(T)<im
the correspondingurface contribution to the free energy. there is always a sufficiently small opening angte(T)

But the relevant structural properties such as, e.g., the shapel @ (T) such that the wedge is filled with liquid for
of the microscopically thin liquid film covering the wedge o< oe.

are determined by thé&ne contribution to the free energy
which is singular aff,, too. This differs from the wetting
transition for which all relevant structural properties are de-
termined by the surface free energy alone. In the previous two subsections we have considered the
An analogous analysis excludes a bridge as a stable cowgenstrained equilibrium of fluid configurations which are
figuration for the unconstrained system. Again both intertranslationally invariant along thg direction of the edge of
faces for such a bridge must be flat. If their heights are dethe wedge. Effectively this corresponds to a two-dimensional
noted asH; and H,<H,, respectively, the free energy is system. In a three-dimensional system, a fixed finite volume
given by V of the liquid must have a finite extension in théirection

—cosO(T)]oy4(T)}, (2.17)

B. Theory of capillarity
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and thus the shapf(x,y) of the liquid-vapor interface de- particles, serves as a reasonable compromise between a full-
pends also ory. Based on the classical Young-Laplace- fledged microscopic theory and the purely macroscopic pic-
Gauss capillarity theory the equilibrium liquid-vapor inter- ture. Within this effective approach the morphology of the
face configurations are surfaces of constant mean curvatufiguid-vapor interface is determined by the effective interface
meeting the bounding walls with contact an@le Hamiltonian[see Fig. 1b)]

There exists a sizable body of literature devoted to the

solution of this problem for the present wedge geometry (™ df(x)|* ———
(see, e.g., Ref§48-53, and references therginThe most HI1= fmdx[ Tlg 1+ dx | 1+cot ¢
recent account of the present knowledge based on math-

ematically rigorous results and numerical evidence is sum- V(I (x)sing)— V(I sing)

marized in Fig. 6 in Ref[53]. + sing : (3.9)

For ®>17 there are two possible liquid configurations
depending on the opening angle.2For ¢=0—3;7>0 an  Sincez=|x|cot¢ is the position of the surfaces of the wedge,
edge blob forms; this is a part of a sphere such that the liquithe local thickness of the liquid film measured vertically
is in contact with both walls and the edge of the wedge. Thesquals|(x) = f(x) —|x|cote and thus exhibits a cusp at
shape of the liquid-vapor interface is convex. If the opening=0 with 1’(x— +0)=Fcote. Thus the first term in Eq.
angle of the wedge is reduced such that®—37>0 the  (3.1) corresponds to the cost in free energy due to the in-
liquid loses contact with the edge of the wedge and a sphererease of the surface area of the liquid-vapor interface rela-
cal bridge connecting the two walls is formed. The transitiontive to its flat configuration atx|=c where |(df/dx)(x

kl)etween t_hese two distinct configurations occurga® — )| =cote so that /1+0012(g0)=1/$in<p. The second part
1t the Hamiltonian takes into account the effective interac-

tion V between the liquid-vapor interface and the wedge-
shaped substrate relative to the configuratigfx|— o)

. . =1... V denotes the effective interface potential which we
1 . X -

For @<z a tbular bridge between the walls is not pos take to be of the same form as for a horizontal liquid-vapor

sible. For a wide wedge with>37—©>0 one finds an edge ; : ; :
blob in contact with both walls and with the edge of the E%tfg%(.:e interacting with the corresponding planar substrate

wedge. Upon decreasing the opening angle of the wedge

p=3m—0>0 a transition to edge spreading occurs which V(L) =0y +og+ (L) +Au Ap L (3.2
persists fore<i7—®>0. Edge spreading by the liquid is v

not possible fol®>37. This means that a preference of the yith w(L—2°)=0,Ap=puo(T)—u, andAp=p,— py Where
planar substrate for the vapor phase, i@ ;7 implies @ and p, are the number density of the liquid and vapor,
prefilling of the wedge with vapor for sufficiently small regpectively. In Eq(3.1) V(L) is evaluated in a local ap-
opening angles of the wedge. These findings are in full aCproximation such that =1(x)sine is the local thickness of
cordance with the free energy analysis of the effectively twothe wetting film normal to theear surface of the substrate;

for the vapor phase, i.e@>37 implies a prefilling of the
wedge with vapor for sufficiently small opening angles of the
wedge.

dimensional system discussed in Sec. Il A. therefore these potential terms are integrated with respect to
dx/sing, i.e., along the substrate surfageee Fig. 1b)].
lll. DESCRIPTION OF FILLING TRANSITIONS Thus Eq.(3.1) neglects the additional effective interaction of
BY AN INTERFACE MODEL the liquid-vapor interface with thdistant substrate surface.

Within the macroscopic description in Sec. Il the type ofTh|s approximation is expected to be valid for a rather open

subsiate orming the wedge entrs only summariy va (9526 P e SEILD i s 013 Pl
surface tensions,,q anda, . In the actual microscopic pic- (L) y

ture the fluid particles are exposed to the external substratéPor surface tensiomryg=V(l, sing) of the planar sub-

: . : strate. Due to the subtraction of those terms which
potentialV(x,z) exerted by the particles forming the wedge. : .
The resulting full number density distributiqi(x,z) of the correspond to the asympiotic behavior faf o the

fluid particles can be determined, e.g., either b simulationyf"‘m"tonianH[l] is finit(_e _for all configurations co_mpatible
or byp density functional theory. Hogvever, in \>//iew of the with the boundary conditions. Therefot¢ | | describes the

considerable numerical challenges by such an approach, %ige contributionto the free energy associated with the linear

far only hard sphere fluids confined by hard walls have beeﬁXtenSiany of the wedge in thy directio_n. In the present
studied in such full detai[40,41]. The accessible system mean-field theory we neglect the fluctuations of the interface

sizes of the wedges which can be studied within these a along they direction so that depends ox only and the line

proaches are also severely limited. Moreover, without attracgOntrlbUtlon carries simply a factdry which has been omit-

tive interactions the hard-body systems do not exhibit fiIIingt_eOI in Eq._(3.1_). We emphasize that this consideration of the
transitions. line contribution to the free energy represents the most im-

portant improvement over the macroscopic description
which considers only surface contributions. The effective in-
terface Hamiltonian in Eq(3.1) can be systematically de-

The study of effective models for the liquid-vapor inter- rived within the framework of the Landau-Ginzburg-Wilson
face exposed to an effective interface potenfia#,55, theory in the limit of a wide open wedge. This derivation
which takes into account the competition between the subproceeds along the lines similar to those outlined in Refs.
strate potential and the interaction potential between the fluif56—59 and we refrain from presenting its details.

A. Effective interface Hamiltonian
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Within mean-field theory the equilibrium shapiTex) of (" ayg . df(x)\? 2
the meniscus minimizes this line contribution: HT]=| dx == singl| —5—] —cote
d?f(x)/dx? - , V(I (x)sing)—V(l., sing) 1
Tig — =V'{[f(x)—|x|cote]sine}, + sing » T e <1,
[1+(df(x)/dx)%]%?
(3.3 (3.7
T(0)=0, f(x—=0)=|,+|xcote. so that the equilibrium profilé(x) =1 (x) + |x|cote is deter-
mined by
Equation(3.3) is known as the so-called augmented Young o
equation and has been studied by Kagaml. [39] but not o d?I(x) L=
with the view of filling phase transitions; recently these au- Tig SN — 422 =V'(I(x)sing), x>0. (3.9

thors extended their analysis to study eye-shaped capillaries

[60]. Due to the symmetry of the system we confine ourypon integration one obtains withd {/dx) (x= + ) =0
subsequent analysis 6=0. In terms ofl (x) the boundary

conditions ard (x—«)=I, andl’(x=0+)=—cote. Inte- 1 dix\>
grating Eq.(3.3) yields 5 %1g sirt ¢ o =V(I(x) sing)—V(l., sing).
_ _ (3.9
singp+cose[ df(x)/dx]
ogl 1- Thus for the filling height in the center of the wedge one

V1+(df/dx)?

=V(I(x)sing)—V(l.. sing).

finds due to @1/dx)(x— +0)= ¥ cote [compare Eq(3.5)]

AV 1L
cr_|g_§C0 e=V(p).

(3.9 (3.10

With f'(0)=0 andl,=1(x=0) one obtains from E¢(3.4)
According to the relations: cos ¢=(1-sing)cos (37
—=—"[V(lysing)—V(l.. sing)]=1—sing=v(¢). —¢)] and 1-sing=2sirf[3(37—¢)] the approximate im-
%1g - Tig 3.5 plicit equation(3.10 for I, differs from the corresponding
' fuII_ equation (3.5 onIy_by terms of the ordere*:v(¢)
Equation(3.5) is an implicit algebraic equation for the filing = V(¢)[1+O0(€?)] andv{¢)=0(e?). This is also true for
heightl, in the center of the wedge in terms of the openingthe equation for the filling transition temperatufg [com-
angley and the wetting properties of the planar system, i.e.pare Ed.(3.6)]
oyg, V(L), and thusl... At liquid-vapor coexistencé/(L

AV 1

. 1 1
—o)=oytog [Eq. (3.2] with (AV/eg)(L—=)=1 cos®(T,)=1->cos ¢, ‘—77—@0 <1,
—cos0 [Eq. (2.2)] so that the condition for the filling tran- 2 2
sition 1 (0)—o can be expressed in terms of the contact 1/1
angle® of the planar systerfEqg. (2.2)]: =sing+ 2 sirf E(EW_<P) . (3.11

Thus we conclude that Eg&.7)—(3.11) are reliable approxi-

1
cos®(T,)=sing or T)=57—¢.
(Ty) ¢ (T)=57¢ mations for a wide open wedge.

(3.6)

T, is the lowest temperature for whi¢h=oc. Thus our mi-
croscopic approach confirms the results Tor as predicted
by the macroscopic theory in Sec. [This conclusion even In the implicit equation(3.5 and its approximatioiEq.
holds if the integrand in Eq3.1) is supplemented by a term (3.10] the right hand side(¢) andv(¢), respectively, do
proportional to the mean curvature of the interfade.is not depend orly; furthermore the left hand sidaV/og
rather satisfactory to sesxplicitly that a microscopic theory remains unchanged upon the open wedge approximation.
for the line contribution to the free energy renders the samdhis facilitates a transparent graphical solution for the filling
value for the filling transition temperatuf®, as the macro- heightl, as shown in Figs. 3 and 4. As anticipated the filling
scopic considerations based on the surface free energies. @rightl is larger than the wetting film thickness on the
the other hand this is to be expected becausg,ahe sur-  walls of the wedge far away from the edge of the wedge. At
face free energy of the wedge is nonanalytiee Eq(2.18]  gas-liquid coexistence, i.eAu=0 the filling heightl, di-
so that the line free energy has to follow suit. This is analoverges smoothly foif “T, in the case of critical wetting
gous to the fact that surface free energies are nonanalytic and jumps to a macroscopic value in the case of first-order
bulk transitions. wetting of the corresponding planar substrate TAt T, the
Before we turn to a closer analysis of the filling transition wetting film thicknesd.. asymptotically far away from the
we note that in the special case of a wide open wedge, i.ecenter of the wedge remains finite. Thus within the present
p=3m—€ with e<1 the effective interface Hamiltonian in model we find that the wedge does indeed undergo a filling
Eq. (3.1 reduces tqsee Appendix B transition atT, and that the order of the filling transition

B. Filling height
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Nigy C. Line tension
T:‘T’ As is apparent from Figs. 3 and 4, the implicit equation
M [Egs.(3.5 and(3.10] for the filling heightl, yields two or
L U even more solutions. Fdp<w, i.e., for T<T, with T,
vig) defined by Eqgs(2.14) and(3.6) or for Au>0, the equilib-
rium solution is that one whose corresponding proff{ie)
/ with 1(0)=1, minimizes the line contribution of the free en-
% L | | ergy [Egs.(3.2) or (3.7)]. Forly<c all competing configu-

rations have the same surface free energy. At coexistence,
FIG. 3. Schematic graphical solution for the filling heidgt i.e., for Au=0, |, can become macroscopically large. In that
according to Egs(3.5 and (3.10), respectively, for the case of a case one has to consider both the line and the surface con-
critical wetting transition of the corresponding planar substrate, i.e.4rihution such that if one solution has a lower surface energy
Ap=0. In this caseAV exhibits a single minimum dt=1.. which it wins out irrespective of the behavior of the line tension;
moves smoothly to infinity fof —T,, and becomes more shallow ¢ |ine tensions matter only if the surface free energies are
for increasing temperature. Fof> the ratioAV/oyg attains the o441 (By construction the bulk free energies of all configu-
limiting value 1-cos®(T) which vanishes foff—Ty. By con- \iinng are always the samélonetheless, in any case it is
structionAV is positive. The intersection with the straight linép) interesting to study the thermodynamic behavior of line ten-
yields the filling height,. There are two solutiong” and!{? but sion
only the solutionl y>1,, is compatible with the boundary condition F.rom Eq.(2.18 one infers that at coexistence the tem-
associated with Ed3.9) (see Sec. Ill & ForT "T, the asymptote perature de.peﬁdence of the surface free energy density is
1—-cosO(T) approaches (¢) from above so thalty diverges con- . .
tinuously forT /T, . given by o4+ a(T) with _50_(T<_T<P)=O and 8o (T
>T,)<0 due too|4(T)>0. This implies that foT>T,, the
{illed wedge exhibits a surface free energy which is lower
than the surface free energy of the unfilled wedge extrapo-
lated to T>T,. This holds independently of whether
owg(T) is an increasing or decreasing functionTofThus we
conclude thatlj=< for all thermodynamic state\u=0,
T>T,).
For all other thermodynamic states witt=0 one has
o< and the line contribution to free enerffgq. (3.7)] of
the corresponding profil&(x) can be determined explicitly.
From Eq.(3.9) one has

agrees with the order of the wetting which takes place a
T,>T, on the corresponding planar substrate for which
O(T—T,)=0.

As will be discussed in more detail in the following sub-
section the filling height, diverges along isotherma
—0 for T>T,. In that case in Eq(3.5 the asymptotic
behavior of V(L—»)=AwApL+0oy+ 04 can be used.
Together withV(l.. sing)=0,,4 and Eq.(2.2) this leads to
AV/og—Au Aplgsinglog+1-cos® so that from Eqg.
(3.5) one obtains

cos® —sing oy 1 dl/dx=*[v2/(Jogsine)]

lo(Ap—0,T>T,)= (312 X AWV[I(x)sing]—V(l,. sing)

sing A_pm

We note that the form of Eq3.12) is valid irrespective of for x>0 (upper sign or x<<O (lower sign. With df/dx
the order of the filling transition and irrespective of the range=dl/dx=cote for x>0 (upper sign or x<<0 (lower sign
of the molecular forces. The latter enter only indirectly viathe insertion into Eq(3.7) yields for the line tensiom

0, a4, andAp. Equation(3.12 is in full agreement with the

macroscopic description in Ref34] and the numerical re- 7=2V206A (313
sults aboveT,, in Ref.[33]. with
! V(I sing)—V(l,sin
Wiyl A:fodl[\/ (I'sing)—V(l..sing)
T=1, 1 Tlg
V(lgsing)—V(l. sing)
l-cos@f——\\-—-—f———-—— T - \/ Olg ’ (3'14)
vie) where |, is a solution of Eq.(3.10 and |, minimizes
W V(L). The quantity A, which has the dimension of a
0 P = length and which gives the line tension up to the
0 o lo " ' positive prefactor 2204, is the area between

FIG. 4. Same as Fig. 3 for the case of a first-order wetting of thd € ___Curves J[V,(I sing)—V(l..sing)Joig,  \v(¢)
corresponding planar substrate. F@r/ T, the difference 1 = \/[V(_|05|n @)= V(l..sing))loyg [se_:e Eq.3.10], andl=1.,
— cos®(T) reachew (¢) andl, increases smoothly to a finite maxi- (See Figs. 5 and)6Note that obviously the curvesV and
mum valuel{” at T=T,. At T, there is another solutiolp==.  V(¢) intersect at the same positidgp as VAV andv(¢).
As will be shown in Sec. IlICJ,=« is the thermodynamically From this graphical interpretation one infers immediately
stable solution forT>T,. Therefore atT, the filling heightl, that only the solution$,>1., have to be taken into account;
jumps from the finite valué{™ to infinity. as expected the filling height in the center of the wedge is
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/AVia, T<T, @ /NTs] T<T, fa)
/1cose(T f—\-——————————— === = A-coso(T)}\-—————fr—— T —
/v iy} Mol
0
0o 1@ (o ! % o b 1
= b N (b)
JAVio T=T (b) /AVia, T=T,
Jviol \
/vig)
00 lo 1
0 H
FIG. 5. Schematic graphical interpretation of the line tension in 0 o b !

the case of critical wetting of the corresponding planar substrate
below (a) and at(b) the filling transition temperature. According to
Egs.(3.13 and(3.14), for 1,=1{ the line tensiony is proportional

to the vertically hatched are&, which is to be taken negatively,
whereas fot :Igz) the line tensiony is proportional to the horizon-
tally hatched area, which is to be taken positively. Theref§te
has the lower line tension and is thermodynamically stable. Fo
T,/T, |l.increases, the minimum afAV becomes less steep, and
19) moves out to infinity corresponding to the filling of the wedge.
Even for dispersion forces with(L— ) ~L 2 the areaA and the

line tensiony remain finite forT T, . The second value df, i.e., o )
1$? does not correspond to solution of E¢3.4) or (3.9). lyticities at the same locus at all subdominant thermody-

namic levels and that each thermodynamic level can develop
larger than the thickness of the wetting film far outside and’€w nonanalyticities at loci where all higher thermodynamic
these solutions are the ones which increaseTfgiT,,. One levels are strictly analytic: the phase boundaries in the bulk
can infer the filled state faku=0 andT>T,, by considering free energy are lines of nonanalyticities both for the surface
isothermsAu—0 for T>T, [see Eq.(3.12]. Figure 7a) and the line contributions, and the prewetting line nonanaly-
describes the continuous filling of the wedge Tor T, and ~ ficity of the surface free energy is also the locus of nonana-
Ap—0 in the case of a critical wetting transition. For an Iyt|C|t|e§ in the Ime tension. On the chef hand, the bulk free
underlying first-order wetting transition Fig.(j demon-  €nergy is analytic along the prewetting line and the bulk and
strates that along an isotherm with>T,,, atAu,¢(T) one the surface free energy are ar_lalyt|c along the prefilling line.
encounters a thin-thick transition of the filling height which  If the wedge fills, on each side of the wedge a three-phase
is not accompanied by a phase transition in the structure ofontact line between the substrate, liquid, and vapor is form-
the wetting film far away from the center of the wedge. Weing. In the limitl,—c these two contact lines become inde-
call this phase transition a prefilling transition. Once thisPendent and each of them reduces to the structure of a single
prefilling transition locus has been passed, the filling heighthree-phase contact line on a planar substrate. Therefore one
|, diverges continuously foAu—0 [see Eq.(3.12]. This  €xpects that in the limit,— oo the line tension given by Egs.
confirms, within the present interface model, the expectatio3.13 and(3.14) should reduce to twice the line tensigga,
that the thermodynamic statésu=0, T>T,) correspond to of the corresponding single contact line on a planar substrate:
a filled wedge. The order of the filling transition at coexist-
ence is linked to the order of the underlying wetting transi-
tion. eyl

From Fig. 1b) one infers that a jump in the thickneks 7lo—)=2 Za'gﬁwdl

of the wetting film far away from the center of the wedge
upon crossing the prewetting line enforces a discontinuity in - . [01g
the line contribution to free energy associated with a discon- X{ Wl sing) = V(l..sine) - TCOS"D]
tinuity of the whole profilel(x), however, such that—
surprisingly—,=1(x=0) happens to change only smoothly. =29pjant O((3m—¢)?) (3.19
On the other hand, upon crossing the prefilling lihg
changes discontinuously without a changé.in This behav-
ior confirms the general picture that a nonanalyticity at onevhere within the present interface mods},,, is indeed
thermodynamic levelbulk, surface, line,.).induces nonana- given by[61]

FIG. 6. Same as Fig. 5 for first-order wetting of the correspond-
ing planar substrate. FoF T, both ., andl, increase but stay
finite. At T, the filling heightly=c is also a solution, but the
corresponding line tension is larger than that corresponding to the
indicated finite solution by an amount given by the horizontally
hatched area, which is to be taken positively. For T, the surface
free energy favors the filled wedge so thg{T) undergoes a dis-
continuous jump from a finite value &t=T  to a macroscopically
large value aff | .
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(a) square gradient expressi¢kg. (3.7)], which is applicable
/Ao, T>Tp for systems with short-ranged forc¢82], we choose the
KAZWOO generic form obtained by Fisher and J56]
—Au=
L L
Sie) \ W’ w(L)=Wexp(—E +U 1—CW2E)
o AN A
]\/’—— 2L
i X ——+ . .
05 L N 1 ex Z AuAplL (3.17
/AVT T>T>T (b) Since at present we are gimjng for the generic,_ possible fea-
9 tures of the phase behavior in wedges we refrain from study-
A, A¢>9 ing the specific effects due to an algebraic decayw¢E
A, —o) as it is characteristic for actual fluids governed by
Jvle) dispersion force$15]; this is left to future studies. In Eq.
N\ (3.17 ¢ is the correlation length in the bulk of the wetting
1-cos® phase, i.e., the liquid phase.
0 For C<0 Eq. (3.17 yields a continuous wetting transi-

0 19 2@ tion at coexistenceAu=0 if W(T<T,)<0, W(T=T,)
=0, W(T>T,)>0, andU(T,,)>0. In this case the phase
diagram consists of the line of first-order gas-liquid bulk
transitions atu= uo(T) and of the temperatures., T,,,

FIG. 7. Schematic illustration of the filling transition of the
wedge along isotherm&u—0 above the filling temperaturg, for
critical (a) and first-order wettingb) of the corresponding planar . .
substrate. Off coexistence/AV/o,, increases for largel as f”de‘P ?15 dgt?krmmefd by Eq%lﬁ) on that “nle .Cc.)rreSpond_
(Ap Ap singlayg) 412, Whereas\/K\g/F,g attains the finite value M9 0 the bulk, surface, and line nonanalyticities, respec-

1= cos0 for Auu=0 which is less thanv(g) for T>T,. In the tively. For u# uo(T) there are no nonanalyticities. '
case of critical wetting there is a single filling heidgtwhich can For C>0, W(T)>0, andU>0 Eq. (3.16 describes a

possibly be thermodynamically stable. Fir—0 the wetting film ~ first-order wetting transition af=T,, due to a decrease of
thicknessl ., increases slightly but remains finite wherdgsdi- ~ W(T) for T T, such thatW(T,)=W,/(C,U)>0. For rea-
verges continuously. The vertically hatched area diverges also s8ons of simplicity we tak&J, C, and¢ as constant and con-
that 9(Au—0, T>T,)——=. In the case of first-order wetting sider a linear temperature dependence \W(T)=W,,
VAV/ a4 exhibits a global minimum df! and a local minimum at ~ +Wo(T,,—T)/T,,, Wp>0. The chemical potential differ-
12 . Upon crossing the prewetting line of the corresponding planaence can be expressed in terms of the dimensionless variable
substratd 2 turns into the global minimum. Thug) corresponds  (Au Ap £)/W,,. Figure 8 illustrates the phase diagram pre-
to a casel,,>T>T,. For largeAu the aregAz|=—A; is smaller  dicted by this model. The thick lines indicate the bulk singu-
than A,>0 so thatA,+A;>0. Consequentlyl$) corresponds to larities atu=uq, which for simplicity we have taken to be
the global minimum of the line tension. Faru—0 the aregA,| temperature independent, and the prewetting line emanating
increases without limit so that there is a critical valip,¢((T) at  from T,, and ending at the prewetting critical poidt,,. The
which |Ag|=A, so that forAu<Au,«(T) the filling height I {? prewetting lineT,,(Au) [or Au,,(T)] joins the gas-liquid
becomes the globally stable configuration. Upon lowerag fur- coexistence curve tangentialf3] such thatT (A u—0)
ther 1P diverges, as well a8 +A,+Ag, leading to the filling of  — T ~A 4 In A in accordance with the exponential decay
the wedge. For reasons of clarity we have ignored the slighty w(L—). On the present scale of Figs. 8 and 9 this
changes in/AV/ oy for <1 upon loweringAu. Auy(T) marks  tangential approach is not visible. The first-order filling tran-
a prefilling transition in the wedge. sition occurs aff ,<T,, such thafT, approached,, for ¢—
3. This infinite jump from a microscopic filling height to a
— ——— macroscopic height at coexistence is reduced to a finite dis-
MTplan= 20'9J',xd|{ V(H-V(.)--§ (316 continuity off coexistenceu< u, forming a prefilling line
tpi(T) which joins the gas-liquid coexistence curve also
tangentially. From our numerical analysis we find
ppt(TNT,) — o~a(AT)?+b(AT)*+---  with AT=T
—T,. The thin-thick jump of the filling height across the
prefilling line diverges ~(Au) ™t for u—pu, [see Eq.
t(3.12] and vanishes upon approaching the prefilling critical
pointC, . For sufficiently narrow wedges the prefilling lines
are completely below the prewetting line and shorter than the
latter. Upon increasing the opening angle of the wedge the
_ prefilling line slides into the prewetting line thereby breaking
D. Phase diagram up into two pieces: one betwedr), and a so-called extraor-

In order to translate the general features of the line tensiodinary point denoted aE™ and another between a second
discussed in the previous subsection into an actual phastraordinary poinE‘?) and the prefilling critical poinC ;.
diagram one has to specify the functional form of the effecdn the limit ¢— 3 these two pieces shrink to zero, such that
tive potential, i.e.w(L) [see Eq(3.2]. In the spirit of the EY—w andE®—C,,. Figure 9 summarizes the type of

with the spreading coefficier= o,g— 0g— o= —04(1
—cos0) equal to— %cr,g cog ¢ for T=T,. However, within

a full theory one expects thaj(ly— *)=27,.n+ 7 Where
7, is the line tension of a wedge filled with liquid, including
the liquid phase as boundary condition in the bulk limit. Bu
this latter contribution is not contained in the presenér-
facemodel.
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FIG. 8. (a) Phase diagram for the filling of a wedge in the case where the corresponding planar substrate exhibits a first-order wetting
transition atT,,. The thick phase boundaries represent the gas-liquid coexistence cwrwewaf, which for reasons of simplicity has been
taken to be a straight line, and the prewetting line emanating frgrand ending at a prewetting critical poi@t,,,. The bulk critical point
T. is off the scale to the right. We use dimensionless quantities uf = —Aux Ap &/W,, (see the main textand T* =T/T,, so thatT;,
=1. The temperatures,, denote first-order filling transition temperature which move towdigldor increasing values of; . From each
filling transition point a so-called prefilling line emanates ending in a critical prefilling pOjat The prefilling lines join the gas-liquid
coexistence line tangentially as a quadratic function whereas the corresponding tangential approach of the prewetting line is logarithmic and
not visible on the present scale. For (1/2)7 the prefilling line touches the prewetting line and breaks into two piecesp Fag in (a)
the lower piece between the extraordinary p@## andC, is shown. On this scale the upper piece betwggnandES" is not visible as
well as the distinction betweeh, andT 3. This is resolved ir(b) on a magnified scale. These phase diagrams have been obtained for the
model defined by Eq43.7), (3.10), (3.2), and(3.17) using the following potential parameteSlWﬁ,=3.504823 andJ/W,,=0.197338. For
the anglesp,=81.40°, ¢,=83.12°, ¢3=84.84°, ¢,=85.99°, and¢s=87.13° with W¢i=W(T¢i) one obtainsW%/WW: 1.008580,
W,,, /W,,=1.005532 W, /W,,=1.003130,W,, /W,,=1.001899, andV,,_/W,=1.000971 so thaly,— T} =W, /Wo(W,, /W, —1). Put-
ting numbers on the axis requires to choose a value for the ra¥p/W,. For W, /Wy=1 one obtains T\’,“V—T’;i
=0.008580, 0.005532, 0.003130, 0.001899, 0.000971#dr,--,5 andTépW= 1.594132 ang.* (Tcpw) — g =—0.038024. For a differ-
ent value ofW,, /W, the temperatures are rescaled linearly according to the formula given above.

the phase transitions in the meniscus shape of the liquid ian even larger value upon crossing the prefilling line con-
the wedge across the various phase boundaries for a venecting the filling pointf and the extraordinary poirE%).
wide wedge. Crossing the pieces of the prefilling line alongOnce this prefilling line has been passed the filling height
the paths 1 and 2 leads to a discontinuous increase of thdiverges continuously foA u— 0 [see Eq.(3.12].

filling height of the wedge but does not change the thickness

of the wetting layer far away from the center of the wedge. A E. Fluctuations

subsequent crossing of the prewetting line leads to a discon- . - . - .

tinuous increase of the thickness of the wetting film and g Upon crossing tL‘e prefilling fine t>he filling heigtt
discontinuous change of the meniscus profiite) but such JUmPs from a valuélo to>a2IargEr2vaIuéo so that a volume
that—surprisingly—just the filling heighto=I(x=0) in- AV proportional toz[(l5)"—(lg)]Lotan¢ is transformed
creases continuouskpaths 3 and ¥ Along path 5 both the from gas into liquid;Ly is the Ilneqr extension of the wedge
thickness of the wetting film and the filling height changein y direction.(The above expression corresponds to flat me-
discontinuously; that happens only upon crossing the preweflisci at heightly and |y, respectively. Thus effectively
ting line. According to Fig. 9, for suitable model systemsAp AV particles participate in this phase transition. There-
along a path\ u—0 that crosses both pieces of the prefilling fore in the thermodynamic limit,— o only at coexistence,
line, one observes a reentrant prefilling of the wedge. For.e., for the filling transition witH ; =, this phase transition
large undersaturations the filling height is very small. It in-corresponds to a true two-dimensional system which can in-
creases until the prefilling line connectiri,; and E@ is  deed support a phase transitionTat 0. However, along the
reached. Crossing it leads to a discontinuous decrease of tipeefilling line |5 is finite so that in that case the system is
filling height upon decreasingu. A further decrease aiu  quasi-one-dimensional and cannot undergo a true phase tran-
leads again to an increase of the filling height which jumps tcsition for realistic interaction potentials. Therefore we con-
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- prefilling line as function off or u the filling heightl o( T, )
changes rapidly but smoothly betwegp and g such that
along the prefilling line foru— ug, i.e., 15— this cross-
over between, andl; becomes steeper and is confined to a
vanishingly narrow region around the prefilling line so that
the true phase transition at the filling transition at coexistence
is restored forAu—0.

The width of this smooth transition region bf(T,u«) at
the prefilling line can be estimated on the basis of the finite-
size scaling theory for first-order phase transitidigl].
These results can be adapted to the present problem follow-
ing the line of arguments in Sec. 4 in R¢65] where the
corresponding smearing out of the prewetting line on a cy-
lindrical substrate of radius, has been analyzed. Up to a
pre-exponential factor, which depenufger alia on the de-
tails of the effective interface potential, the temperature
rangedsT within which 14(T,u«) crosses over smoothly from
lg tolg is given by

oT E)

T, R,

(3.18

FIG. 9. Types of morphology of the wetting film in a wedge for . ] ) ]
the various phases within a schematic phase diagram. The notatidMN€re « is a numerical factor of order unity ard is the
is the same as in Fig. 8. The opening anglis sufficiently large so ~ €nergy required for the formation of a domain wall between
that the prefilling line is split into two pieces forming the two ex- a |, domain and dg domain. As a crude estimation we
traordinary point€™® andE®). Along the thermodynamic paths 1 approximateS, by 20'|g(|§)2tan<p. (Here the effective width
and 2 the filling heightl, in the center of the wedge increases 2| tan¢ of the wedge replaces the cylinder radiysn Ref.
discor_ltinuously upon cros_sing_ the pieces of the prefilling line but[65]; as in Ref.[65] the line tensior, introduced there is
the thickness., of the wetting film far away from the center of the approximated bygmg)- Since§20|g /kBT¢ is of order unity

yvedge doeg not Jump. Along _the thermodynamic paths 3 ah,gl 4 [65], whereé is the bulk correlation length, we finally arrive
increases discontinuously whilg grows smoothly upon crossing at the estimate

the prewetting line. Along the thermodynamic path 5 Hgtandl .,
jump only at the prewetting line.

. (3.19

5T Iy )2
clude that the prefilling lines, as predicted by the mean-field T—”eXF{ - K(g) tane
theory described in the previous subsections, are wiped out ¢
by fluctuations in space dimensiods=3. Only the filling
transitions at coexistence, which can be either continuous d\s soon ad, becomes significantly larger thahthe tem-
first order, are true phase transitions. These conclusions aperature regionsT for the smooth crossover is vanishingly
in accordance with considering the critical pois,, of the ~ small. Sincel diverges as £x)~* for Au—0 along the
prewetting line andC ¢ of the prefilling line(see Figs. 8 and prefilling line we conclude that close to liquid-vapor coexist-
9). WhereasC,, belongs to the Ising universality class in ence the difference between a true first-order thin-thick tran-
d=2, C,; would belong to the Ising universality class dn sition for |, cannot be experimentally distinguished from the
=1 and thus cannot exist. actual smooth but very steep crossover. In this sense the

One can identify the type of fluctuations which wipe out prefilling line as obtained by mean-field theory remains an
the prefilling line. If it did exist, by imposing suitable bound- experimentally accessible line ofguasjnonanalyticities.
ary conditions at the two ends of the groove for thermody-Only close toC; this smearing out of the prefilling line
namic states at the prefilling line, one could generate a stableecomes effective. There, in E@.19 |, must be replaced
interface perpendicular to thedirection of the wedge which by I5—15 .
smoothly interpolates between a portion of the wedge filled
up tol5 and another portion filled up i@ . However, in this
quasi-one-dimensional system the fluctuations of the filling IV. MENISCUS SHAPE

heightl, along they direction, which are not captured by — gq far we have discussed the configuration in the wedge
mean-field theory, are so strong that for this thermodynamie,n|y in terms of its key characteristic feature, i.e., the filling
state at the presumed prefilling line the interface conﬂguraheight I, (see Sec. lIB. The more detailed information
tion in the wedge breaks up into many domains wWighand  ahout the full meniscus shape requires one to solve(E8)
l5 . respectively, whose positions fluctuate strongly. or its approximate version given by Eqe.8 and (3.9).
However, close to liquid-vapor coexistentg is very  Whereas the former typically requires a numerical solution,
large so that overturning k& domain into a, domain and the implicit solutionl (x) of the latter reduces to an integra-
vice versa becomes increasingly improbable. Therefore at thigon
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U|g Slmpf =X, x>0,
\/V(I sing)—V(l, sing)
4.1

where |y is the equilibrium solution of Eq(3.10 and
[(—x)=1(x). [Here and in the following we drop the over-
bar which indicates the minimum of E(3.7).] For a given
effective interface potentiaV/ (L) Eq. (4.1) can readily be
solved numerically.

For the model given in Eq3.17) it turns out that one can
obtain explicit solutions forC=0 and Au=0 describing a
critical wetting transition of the corresponding planar sub-
strate, i.e., W=Wy(T,,—T)/T,, where hereW,<0 andU
>0. Within this model one has

€ 2U & 2U 1 tq,
l,=—=—1In =——In —_—
sing |\ |Wplt) sing a'|g cose t
Tu—T
t= T, (4.2
and
[h=1 +_§ I t 4.3
07 sing nt—t(P’ 4.3
which diverges foit\ t, where
TW_Tq: \/20’|gU (4 4)
= = COSop. .
¢ TW |WO| ¢
The contact angle is given by
(I, sin
cos®@=1+ (—(P). (4.5
0'|g
which leads tdsee Eq(3.10]
1/t)2 t)2
1-cos®=~| —| cofe=|—| v(e) (4.6)
2\t, t,

which is in accordance with E¢3.11) so that

1 4
it el |
(4.7
For x=0 the profile is determined bisee Eq(3.9)]
2U F{
=\/— ex
g

Ig
with the boundary conditior!(x)/dx|,—y+=—cote. The
explicit solution of Eq.(4.8) can be written as

1 2

1
827 ¢

1
@(T¢)=(§w—

dl(x)

)
dx Sing

w
sing ( £

2U

) s

&
I(x)=|x+sin¢ln(1
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FIG. 10. Shapé(x)=f(—x) of the meniscus in units of the
bulk correlation length¢ in the liquid phase.f(x>0)=1(x)
+Xx cote with [(x) given by Eqs.(4.2) and(4.9). The planar sub-
strate undergoes a critical wetting transitiorTgt. The temperature
is raised towards the filling transition temperatdrg, i.e., t/t,
=(T,—TN)/(T,—T,)—1 along two-phase coexistence in the bulk.
In units of £ and in terms ot/t,, the profile is determined uniquely
by the dimensionless parametéfU/o,g which is chosen to be 2
here. The diamonds indicate the position of the maximum curvature
of f(x). As explained in the main text this position attains a con-
stant distance from the wall fart,— 1. The shaded area corre-
sponds to half of the wedge excess coverBfp [see Eq(4.13]
for t/t“,:lO‘?-. The dotted line indicates the asymptote fgk)
extended tox=0. At the present scale the temperature dependence
of the asymptotes, i.e., df,, is not visible.

Equation (4.9 is in accordance with all expected limiting
behavmrs 1(0)=I, as given in Eq.(4.9, t,—0 for ¢
— 37 [Eq. (4.4)] so that forx andt fixed I(x)—>| which
itself reduces to the planar vaIUé’)—gln(ZU/lWOh) [Eq.
(4.2)], and for largex the film thicknesd (x) approaches its
asymptote exponentially from above,

3 1
— = > —(t/t,)(xIé)cose
|(x=e)=l. Sin(pt/t(p—le ’ , (410
provided T is not too close toT,, ie., t/it,—1

>exd —(Ut,)(}écose]. For any fixed value ok the profile
diverges fort—t, as[see Eq(4.3)]

|(X,t*>t¢)=|0 WECOSQD (4.11)
The maximum curvature, i.el}’(Xy) =0 occurs at
Xo= =/t )cose M\ tt,—1
t—t,
==+|1- n (lo—lo)tane+0O(t—t,). (4.12
¢

Thus fort—t, the position of the maximum curvature is
given by the intersection of the asymptotix)=I.,
+|x|cote and the horizontat=1,. Figure 10 illustrates the
change of the meniscus shape upon approaching the filling
transition temperaturg, .

The excess coveradeé (see Fig. 10 associated with the
meniscus is given by



PRE 60 FILLING TRANSITION FOR A WEDGE 4039

10* +

8x10° 1

6x10° 1

1/T*

4x10° +

2x10° ¢

t/t,

FIG. 11. Inverse of the reduced excess coverage
=T"[sin(2p)]/(4Ap&) as function of reduced temperaturi,, [Eq.
(4.13]. Upon approaching the filling transition temperatlm’é di-
verges~InX(t/t,—1) [see Eq(4.14 and the insdt For ¢— 3, i.e.,
t/t,— the |nverse coverage 117 diverges quadratically so that
r~ I‘*/sm(2<p) o— wfor <p~>277 i.e.,t/t,—c. Note that in terms
of the variablet/t,, the functional form ofF* is independent ofp
and the model parameteosg, W, andU.

_AMpEt, ( 1 )
SInZ(p TI t/t,—1

(4.13

with [66] 1(y)=[¥dx x 1In(1+X) (see Fig. 11 Sincel(y

—x)=17+3In’y one finds that upon approaching the filling
transition the excess coverage diverges as

F=2Apfwdx[l(x) I.]=
0

(4.14

2Ap&?
P(t=t,) =g (—@—1

For fixed temperatur&(e— 3m) vanishes agm—¢ [see Eq.
(4.4 andl(y—0)=y].

given by Eqgs.(3.13, (3.14), (3.2, (3.17), and (4.2—(4.4).
One finds

n=—2&0y| 1+ cote. (4.1H

t t
——1)|n<1——*°
t, t

-0.2

-0.4

-0.6

-0.8

FIG. 12. Reduced line tensiof* = n/(2£04 cote) as function
of t/t, [Eq. (4.19]. #* is negative and attains its minimum &t
=t, |n a cusplike singularity~(t/t,—1)In(t/t,—1) [Eq. (4.16)].
For tp—>27T, ie.,t/t,—, the line tensmnr; vanishes as-t/t so
that p~ n* c0t<p~(<p sm)?for o— 3. In terms of the varlable’t
the functional form ofz* is independent ofp and the model pa-
rametersog, Wy, andU.

V. SUMMARY

We have obtained the following main results for the struc-
ture of a fluid exposed to a substrate forming a wedge with
opening angle @ [Fig. 1(a)].

(1) A nonvolatile liquid spreads along the edge of the
wedge if its contact angl® on the corresponding planar
substrate is less thajw—¢ [see Fig. 2 and Eq2.14]. A
vapor bubble in a liquid spreads along the wedg®3if 37
+(p [Eg. (2.20]. Theory of capillarity tells tha® (T=T,)

=2a7— ¢ marks also the filling transition temperatuTg of
a wedge by a volatile liquid in equilibrium with its vapor
reservoir(Sec. Il B.. At liquid-vapor coexistence of the bulk
phases the wedge is completely filled by the liquid phase for

The line tension associated with the meniscus shape i5- | ¢ althoughT,<T,, whereT, with ©(T=T,)=0 de-

notes the wetting transition temperature of the corresponding
planar substrateTl ,_,(1/2),=T,,. The filling transition con-
stitutes a nonanalyticity in theurface contributionto the
free energy of the liquid confined by the weddss. (2.18)].

(2) ForT<T, or off liquid-vapor coexistence the surfaces
of the wedge are covered by a thin wetting film which re-

The line tension is negative and approaches its minimafiuires a more detailed microscopic description, e.g., by an

value att=t,, with a logarithmic singularity(see Fig. 12

t t
n(t—t,)— n(t=t,)~ _(Q_ 1) |n(§— 1) . (4.18
For ¢—3m (i.e., t/t,—) the line tension vanishes as

[ ]=sels
n\ T =~ €oig t,

¢

-1
cote. (4.17

Thus for fixed temperaturep(e— 37) vanishes ~ (3w
—¢)? [see Eq(4.9)].

Finally it should be pointed out that in terms of the vari-

ablet/t, both the excess coverageand the line tensiom
[see Eq.(4.15 and Fig. 12 can be expressed by scaling
functions which are independent gfand the model param-
etersoyy, Wy, andU. It will be interesting to see to which

extent this feature is established by more realistic models.

effective interface Hamiltoniaf[ f] for the shapef(x) of
the ensuing meniscus of the emerging liquid-vapor interface
[see Egs(3.1) and (3.7) and Fig. 1b)]. The interaction of
this interface with the substrate is governed by the effective
interface potentiaV [Eq. (3.2)]. This description allows one
to compute thdine contributionto the free energy which
determines the shape of the meniscus. Without specifying the
explicit functional form ofV the dependence of the filling
heightl, [Fig. 1(b)] on temperature and deviatiaku from
two-phase coexistence can be discussed graphi@itys. 3
and 4. The filling transition atT, and Au=0 can be con-
tinuous or discontinuous; the order of the filling transition is
the same as the order of the wetting transition of the corre-
sponding planar substrate. Quite generally diverges
~(Aw) ! upon approaching coexistence, i.Au—0, for
T>T, [Eq.(3.12].

(3) By analyzing the line tensiofEgs.(3.13 and(3.14)]
graphically (Figs. 5—7 one finds that a first-order filling
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transition at coexistence, at whidh jumps from a micro- APPENDIX A: CONSTRAINED EQUILIBRIUM
scopic value to a macroscopic one, is accompanied by a pre- IN A NONSYMMETRIC WEDGE

filling line extending into the vapor phase region of the bulk The analysis presented in Sec. Il A can be repeated for a

phase diagrantFig. 8. This prefilling line is the locus of nonsymmetric wedge characterized by contact angleand
nonanalyticities in the line tension; there the surface and bull@2 on the left and right sides of the wedge, respectively.
contributions to the free energy are analytic. Upon crossing“so’ in this case the liquid with constrained voluvidorms
the prefilling line the filling height undergoes a first-order 4 single spherical liquid-gas interface or a bridge. In each
thin-thick transition(Fig. 9. The prefilling line joins the line  ¢case the interface intersects the sides of the wedge at angles
Ap=0 of the bulk coexistence tangentially. For increasingwhich are equal to the corresponding contact angles.
opening angle§ , moves towardd,,. Accordingly the pre- In the case of a single interface the radRisf the corre-
filling line slides into the prewetting line and breaks up into sponding circle is
two pieces(Figs. 8 and 9 giving rise to rich reentrant pre-
filling transitions. These general features are borne out ex-
plicitly by model calculations based on a specific choice of 0,+0,+2¢—7 [cos®;—cosO,
the effective potentialEq. (3.17)]. R=V 2 ( 2 cosg

(4) The prefilling transition as obtained from mean-field

2
) cote

q -1
theory is smeared out by fluctuations of the local filling N c0s®; COg O, + ¢) +c0sO, Cog O, + ) |
height along the edge of the wed(ec. Ill B). Instead of the 2 sing
jump the mean filling height changes smoothly between a (A1)

small valuel 5 and a large valug, near the prefilling line.

For small undersaturationdu the larger value diverges

~(Aw) ! so that in this limit the temperature resolution while the surface free energy difference between the filled
required for distinguishing between the jump and the actuafind the nonfilled wedge is given by

smooth crossover is experimentally not accessibie Eq.

(3.19]. Due tol 5 (A u=0)=2 the filling transition at coex-

istence persists even in the strict sense. Thus for a system, AF=+2¢, N 0,+0,+2¢0—7
—<0ig

which exhibits a first-order wetting transition in planar ge- 2

ometry, the prefilling line in a wedge should be detectable in 0O, cosO | 2

experiments. —| ——=——"=| cote
(5) Whereas the thermodynamic behavior of gross fea- 2 cosg

tures such as the filling heighg and thus the filling transi- c0sO, cog O+ ¢)+cos®, cog @, + p)| M2
tion itself can be obtained on rather general grounds, the
determination of the actual meniscus shape requires model
calculations based on explicit choices for the interface effec- (A2)
tive potentialV. For short-ranged forcgdsee Eq(3.17) with

C=0] exhibiting a continuous wetting transition the menis- .
cus shapéEq. (4.9 and Fig. 10, the excess coverad€ig. where the upper sign corresponds to a convex and the lower
11), and the line tensiofFig. 12 can be obtained analyti- sign to a concave interface. The interface becomes flat and

cally. In terms of the reduced temperature variable, AF vanishes at a temperatufg, determined implicitly by

=(Tw—T)/(Ty—T,), within this model the excess coverage
and the line tension are governed by scaling functigigs.

11 and 12 which are independent of the opening angland

of potential parameters. The scaling functions are nonana-
Iytic for T—T,, [see Eqs(4.14 and(4.16]. Thus although  This temperature marks a filling phase transition for a non-
the analysis of the surface contributions to the free energgymmetric wedge if the constraint of a fixed volume is re-
analysis of the line contributions to the free energy that alyoth the filled and the nonfilled configuration have the same

lows one to extract detailed information about the morphol-surface free energies, independent of the volume of the lig-
ogy of the interface and about the nonanalytic behavior ofiid.

the excess coverage and the line tension itself. A bridge configuration in a nonsymmetric wedge is pos-
sible as well. The common radil&of both interfaces is

2 sing

0(Ty)+0,(T,)+2¢=m. (A3)
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" cof ®,+cog 0, so that the first part of the integrand in E®.1) can be
AF=40,V7 o+ > expanded into powers of?. In terms ofl,=f,—cote, X
=0 one has
(cos@l—cos®2)2
—2| —————=| |cote
2 cosyp — 1
1 -1/2 1+fx_ sine
X 1+®1—77—§(sin21+sin2®2)] . 1
- : 2 o 1/2_
(AB) Sin¢{(1+2|XCOSQD sing+1£ sir? ¢)2—1}
The bridge configuration occurs provided the following con- 1 (1, . )
dition is fulfilled: ~ Sine §|>2< sirfe+1, sing cose+O(e?)
cos®,+c0s0,\? [cos®,—cos0,\? 1 (1 1
- > . = — —_— 2 1 —_—— 4
( 2 sing ) 2 cosyp G singo[foSInz(P 20052(P+O(6 )]

For ®,=0, these expressions reduce to those given in Sec. ) ) 4

Il. For the symmetric wedge the interface is concave if 255'”‘»"{fx_C°t2 ¢} +0(€). (B1)

O+ e<3m and convex if@+¢>3im. In the nonsymmetric

case it is possible for an interface to be convex or concave or _

even form a bridge i®;+ <17 and simultaneousiy, Her_e we have used thg fact that eossine=0(e) and that

+o>1ia, [l is largest forx=0 with [l (x=0)| =cotp=tane so that

I,=0(e). This leads to Eq(3.7). From a systematic point of

view in the last line of Eq(B1) the prefactor sip=cose can

be dropped and cbp can be replaced by?. However, it
For a wide wedge the opening angle is closerteo that  turns out that it is advantageous to keep the full form of these

p=3m—ewith e<1. In this limitdf/dx="f, is small for allx ~ terms[see Eqs(3.9) and(3.10].

APPENDIX B: EXPANSIONS FOR A WIDE WEDGE
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