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Filling transition for a wedge

K. Rejmer,1,2 S. Dietrich,1 and M. Napiórkowski2
1Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Germany

2Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00-681 Warszawa, Hoz˙a 69, Poland
~Received 1 December 1998!

We study the formation and the shape of a liquid meniscus in a wedge with opening angle 2w which is
exposed to a vapor phase. By applying a suitable effective interface model, at liquid-vapor coexistence and at
a temperatureTw we find a filling transition at which the height of the meniscus becomes macroscopically large
while the planar walls of the wedge far away from its center remain nonwet up to the wetting transition
occurring atTw.Tw . Depending on the fluid and the substrate potential the filling transition can be either
continuous or discontinuous. In the latter case it is accompanied by a prefilling line extending into the vapor
phase of the bulk phase diagram and describing a transition from a small to a large, but finite, meniscus height.
The filling and the prefilling transitions correspond to nonanalyticities in the surface and line contributions to
the free energy of the fluid, respectively.@S1063-651X~99!13508-6#

PACS number~s!: 68.45.Gd, 82.65.Dp, 64.70.Fx, 68.35.Md
ing
he
re
-
h

u
s
e
b

to

o

i-

g

e

l
to

p

ill
t
e

y-
l

ia
a

d

e

to
ns

in
ed

t
e
r-

ulk
ost
der

by
-

full
the
uch
I. INTRODUCTION

Unless much experimental care is provided in grow
crystals and cutting them, generally on an atomic scale t
surfaces exhibit an irregular topography. Numerous theo
ical @1–10# and experimental@11–14# studies have demon
strated that if such real surfaces are exposed to a vapor p
the resulting wetting phenomena@15,16# may differ signifi-
cantly from the corresponding ones on perfectly planar s
faces of the same substrate-fluid systems. These studie
focused on the properties of the adsorbed liquid films av
aged laterally over the statistical irregularities of the su
strate topography.

However, e.g., in the context of structured semiconduc
surfaces@17–19#, microfluidics @20–24#, and templates for
the self-assembly of small particles@25–27# highly regular
nonflat lateral surface structures can be produced. But b
the theoretical understanding of thelocal wetting phenomena
in such structures@28–42# as well as corresponding exper
mental investigations@43,44# are still in their infancy@45#.

As a paradigm of such structures we consider a sin
wedgelike cavity with an opening angle 2w and macroscopic
extension along its edge; along thisy direction the system is
taken to be translationally invariant@see Fig. 1~a!#. The
wedge is filled with a simple, volatile fluid such that th
bulk, i.e., far away from the edge atx5z50, is occupied by
the vapor phase with temperatureT and chemical potentia
m. The values ofm are chosen such that the bulk is close
liquid-vapor coexistencem0(T). ~Our considerations are
equally applicable to the two fluid phases of a phase se
rated binary liquid mixture.! Accordingly, under the influ-
ence of the substrate potential a liquidlike wetting film w
form at the planar surfaces leading to a meniscus near
edge. We analyze the height of this meniscus and its shap
a function ofm andT. This analysis is based on thermod
namic considerations~Sec. II! and on a phenomenologica
interface model for the local height of the meniscus~Sec.
III !. For a special choice of the effective interfacial potent
we are able to calculate analytically the shape of the interf
PRE 601063-651X/99/60~4!/4027~16!/$15.00
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in the wedge explicitly~Sec. IV!. Our results are summarize
in Sec. V.

II. MACROSCOPIC DESCRIPTION

In Secs. III and IV we shall analyze microscopically th
formation of a meniscus of avolatile liquid in thermal equi-
librium with its vapor phase. Nonetheless it will turn out
be instructive to consider first in the following subsectio
the corresponding macroscopic description of the problem
constrained equilibrium and to refer to the results obtain
within the standard theory of capillarity.

A. Constrained equilibrium and thermodynamics

We consider a symmetric wedge~i.e., both walls consist
of the same type of substrate material! with opening angle
2w,p @see Fig. 1~a!#. It is cut off at a macroscopic heigh
H0 . The lower part of the wedge is filled with liquid; th
corresponding wall-liquid, vapor-liquid, and wall-vapor su
face tensions are denoted asswl , s lg , and swg , respec-
tively. The vapor and liquid phases are taken to be at b
equilibrium so that they can exchange volume with no c
in bulk free-energy. However, in this subsection we consi
a constrained equilibrium such that the volumeV of the liq-
uid phase is prescribed. The liquid meniscus is enclosed
the walls atz5uxucotw and the liquid-vapor interface is de
scribed byf (x) @see Fig. 1~a!#. Here and in the following we
discuss a two-dimensional wedge. Some aspects of the
three-dimensional case will be discussed in Sec. II B. In
present macroscopic description all length scales are m
larger than atomic scales so that the free energyF of the
system is determined by the aforementionedsurfacetensions
only. For a given configuration of the interfacef (x) one has
@see Fig. 1~a!#

F@ f #5s lgE
2x1

x1
dxA11 f x

2~x!12
x02x1

sinw
swg12

x1

sinw
swl

~2.1!
4027 © 1999 The American Physical Society
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with f x5d f /dx. In Eq.~2.1! the artificial contributions to the
free energy generated by the cutoff atz5H0 have been omit-
ted. The liquid-gas interface intersects the walls atx56x1
with f (6x1)5x1 cotw. The surface tensions determine t
contact angleQ via the Young equation

cosQ5
swg2swl

s lg
. ~2.2!

The differenceDF@ f #5F@ f #22x0swg /sinw of the energies
of the wedge with a given amount of liquid and of the wed
filled by the gas phase only follows from Eq.~2.1! by sub-
tracting the term 2x0swg /sinw. Accordingly the constrained
equilibrium profile f̄ minimizes the functional

DF* @ f #5s lgE
2x1

x1
dxHA11 f x

2~x!2
cosQ

sinw

1
l

s lg
@ f ~x!2uxucotw#J ~2.3!

with the boundary conditionsf (6x1)5x1 cotw and where
the Lagrange multiplierl implements the constraint of con
stant liquid volume

V5E
2x1

x1
dx@ f ~x!2uxucotw#. ~2.4!

@In these formulasf (x) is regarded as a single-valued fun
tion. In the case thatf (x) consists of two branches the co
responding separate analysis for each of the two bran
leads to the same conclusions as the ones described b
Moreover, it is necessary to assume thatQ1w,p; other-
wise neither the interface nor its branches can be regarde
single valued functions.# According to the standard calculu
of variations@46# the equilibrium profile fulfills the differen-
tial equation

f̄ xx

~11 f̄ x
2!3/2

5
l

s lg

~2.5!

with the boundary conditions

16 f̄ x~6x1!cotw

@11 f̄ x
2~6x1!#1/2

5
cosQ

sinw
. ~2.6!

Equation~2.6! is equivalent to the statement that the an
between the liquid-gas interface and the wall~measured on
the liquid side of the interface! is equal to the contact angl
Q in the planar case. Thus the equilibrium profile is given
a part of a circle whose radiusR5s lg /l follows from the
constant volume constraint@Eq. ~2.4!# and intersects the
walls at the contact angleQ. For Q, 1

2 p2w, the liquid-gas
interface is concave, while forQ. 1

2 p2w the interface is
convex;Q5 1

2 p2w corresponds to a flat interface. The ce
ter of the circle is located at (xc , zc) with

xc50, zc52R sgnS Q1w2
1

2
p D cosQ

sinw
, ~2.7!
es
ow.

as

y

-

where the radiusR is given by

R5AVS Q1w2
1

2
p1

cosQcos~Q1w!

sinw D 21/2

. ~2.8!

The value ofzc is always positive for a concave interfac
while for the convex one it can be either positive or negati
depending on the value of the contact angleQ. The intersec-
tion of the circle with the wall occurs at

x152R sgnS Q1w2
1

2
p D cos~Q1w!. ~2.9!

In the case that the liquid forms a bridge connecting
walls the free energy is given by

FIG. 1. ~a! Macroscopic description of a wedge with openin
angle 2w formed by identical walls whose surfaces are located
z5uxucotw. The shape of the meniscus is described byz5 f (x) or
l (x)5 f (x)2uxucotw. The liquid-gas interface intersects the wa
at x56x1 with a contact angleQ. The system is taken to be two
dimensional and its height is cut off atz5H0 . ~b! Same as in~a! on
a microscopic scale which takes into account that far away from
center of the wedge the meniscus reduces to a wetting film of th
ness l ` sinw covering the walls at largeuxu; l `5 l (x→`). l 0

[ l (x50) denotes the filling height of the liquid in the wedge.
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F@ f 1 , f 2#5s lgE
2x1

x1
dxA11 f 1x

2 ~x!1s lgE
2x2

x2
dxA11 f 2x

2 ~x!

12
x02x11x2

sinw
swg12

x12x2

sinw
swl , ~2.10!

where f 1(x) and f 2(x) correspond to the upper and low
liquid-gas interface, respectively, while6x1 and6x2 denote
the intersections with the walls. The minimization of th
constrained free energy with respect tof 1 and f 2 leads to the
conclusion that both interfaces are parts of the same c
whose center is given by Eq.~2.7!. For each of them the
corresponding contact angle~measured on the liquid side o
the interface! has the same valueQ as given by the contac
angle for a planar substrate.

The bridge can exist if and only ifzc is positive and larger
than the radius of the circle, i.e., ifQ. 1

2 p1w. In this case
the radius of the bridge has the value

R5AV~2Q2p2sin 2Q!21/2. ~2.11!

Thus, depending on the opening anglew and the contact
angle Q, the possible shapes of a liquid meniscus can
summarized as follows~see Fig. 2!:

Q. 1
2 p1w: bridge,

1
2 p1w>Q. 1

2 p2w: single convex interface,

Q5 1
2 p2w: flat interface,

1
2 p2w.Q: concave interface.

FIG. 2. Classification of the equilibrium shapes of a nonvola
liquid drop ~shaded area! as function of the opening angle 2w of a
symmetric wedge and of the contact angleQ. In all cases the shap
of the liquid-vapor interface is a part of a circle. The space wit
the wedge, which is not filled by the liquid, is occupied by vap
Here the wedge is two-dimensional resembling the situation
which a three-dimensional system exhibits translational invaria
along the edge of the wedge.
le

e

For these configurations the difference in free energy
tween the wedge being filled with a liquid of volumeV and
vapor otherwise and the wedge being filled with vapor o
is given by

DF5sgnS Q1w2
p

2 D2s lgAVS Q1w2
p

2

1
cosQ cos~Q1w!

sinw D 1/2

, single interface,

~2.12!

and

DF54s lgAV~2w1cos2 Q cotw!

3~2Q2p2sin 2Q!21/2, bridge. ~2.13!

Any configuration with more than one bridge is disfavor
by a higher free energy.Q5 1

2 p1w corresponds to the bor
der case between a bridge and a convex interface for w
the lowest point of the bridge coincides with the corner
the wedge.

From Eq.~2.12! one can infer that forQ. 1
2 p2w, i.e.,

for a single convex interface or a bridge,DF decreases upon
decreasing the liquid volume down to the limiting valueV
50. On the other hand, forQ, 1

2 p2w the free energy de-
creases upon increasingV, i.e., upon filling the whole wedge
with liquid. Therefore

Q5
1

2
p2w ~wetting! ~2.14!

marks a filling transition for the wedge. This case cor
sponds to a flat interface~see Fig. 2! and the corresponding
free energy is independent of the volume of the liquid.
fixed temperature, i.e.,Q fixed, a wide wedge is covere
only by a microscopically thin liquid film which turns into
macroscopic meniscus upon narrowing the wedge bey
the critical opening anglewc5 1

2 p2Q. ~These consider-
ations can be extended to the case of a nonsymmetric we
The corresponding results are presented in Appendix A.! If
the planar walls undergo a wetting transition the cont
angleQ(T) decreases as a function of temperature and v
ishes atT5Tw , i.e., Q(T5Tw)50.

Thus for a fixed opening angle Eq.~2.14! defines implic-
itly a filling transition temperatureTw such thatQ(Tw)
5 1

2 p2w. One hasTw,Tw andTw→(1/2)p5Tw . This means
that the wedge undergoes a filling transition at a tempera
at which the outer parts of the wedge far away from t
center still remain nonwet. The same conclusion has b
reached previously by Hauge from phenomenological c
siderations based on the Laplace and Young equations@34#.
Here we obtain this conclusion by analyzing the free ene
of the system.

However, as long as the volume of the liquid drop ha
fixed value there is no phase transition and the free energ
an analytical function of temperature and of the wedge op
ing angle. Close tow51

2p2Q it can be expanded into a
series of powers of@w2~1

2p2Q!#. The dominant term of this
expansion is

.
n
e
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DF.22s lgAV cotw@w2~ 1
2 p2Q!#. ~2.15!

The aforementioned qualitative change of the interfac
shape and the change of the behavior of the free energy u
increasingV are traces of the filling transition which come
into play when the fixed-volume constraint is removed a
the system is at liquid-gas bulk coexistence of a grand
nonical ensemble. The minimization of the functionalDF@ f #
instead of the functionalDF* @ f # leads to the following
equation for the equilibrium interfacial shape:

f̄ xx

~11 f̄ x
2!3/2

50. ~2.16!

Thus the interface is flat and horizontal.~In the general case
of a nonsymmetric wedge the interface still remains flat
not necessarily horizontal.! In the case of a nonconstraine
system the surface free-energy is given by

F~H !5
2

cosw
$H0swg~T!1H@cosQ~Tw!

2cosQ~T!#s lg~T!%, ~2.17!

where H is the height of the flat and horizontal interfac
measured from the edge of the wedge. ForT,Tw the above
surface contribution is minimized byH50, while for T
.Tw this contribution is minimized by the largest possib
value for H. The latter case corresponds to a wedge co
pletely filled by the liquid. The relevant surface free ener
has the following form:

F5
2H0

cosw

3 Hswg~T!, T<Tw ,
swg~T!1@cosQ~Tw!2cosQ~T!#s lg~T!, T>Tw .

~2.18!

According to Eq.~2.18! F is continuous atT5Tw but exhib-
its a break in slope as a function of temperature. Thus
filling transition in a wedge is—similarly to a wetting tran
sition on a planar substrate—associated with a singularit
the correspondingsurfacecontribution to the free energy
But the relevant structural properties such as, e.g., the s
of the microscopically thin liquid film covering the wedg
are determined by theline contribution to the free energ
which is singular atTw , too. This differs from the wetting
transition for which all relevant structural properties are d
termined by the surface free energy alone.

An analogous analysis excludes a bridge as a stable
figuration for the unconstrained system. Again both int
faces for such a bridge must be flat. If their heights are
noted asH1 and H2,H1 , respectively, the free energy
given by
l
on
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pe

-
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F~H1 , H2!5
2

cosw
$H0swg~T!

1H1@cosQ~Tw!2cosQ~T!#s lg~T!

3H2@cosQ~Tw!1cosQ~T!#s lg~T!%.

~2.19!

Below Tw this expression is minimized byH150 and H2
50. AboveTw the minimum corresponds toH250 while H1
takes its maximal possible value.

In the above considerations we have discussed a we
situation, i.e., the bulk is occupied by vapor and the wed
like substrate prefers the liquid. Our results can be ea
mapped onto the corresponding drying situation in which
bulk is occupied by liquid and the wedgelike substrate p
fers the vapor phase. In this case the filling transition of
wedge occurs for

Q5
1

2
p1w ~drying!. ~2.20!

This is in accordance with Eq.~2.14! because liquid and ga
are interchanged but the contact angle is in both cases t
to be the one of the liquid phase, i.e., in Eq.~2.14! Q must be
replaced byp2Q. If the planar substrate supports the dryin
transition, i.e.,Q(T→Td)5p, the wedge will be completely
filled by the vapor phase forT.Tw where nowQ(T5Tw)
5 1

2 p1w. Again one hasTw,Td andTw→(1/2)p5Td . Equa-
tion ~2.20! states that, under drying conditions, for all tem
peratures corresponding toQ(T), 1

2 p there is no opening
angle wc such that the wedge is filled with vapor forw
,wc . On the other hand, ifQ(T). 1

2 p there is always a
sufficiently small opening anglewc(T)5Q(T)2 1

2 p such
that the wedge is filled up with vapor forw,wc .

This observation may be of relevance for preparing sup
water-repellent surfaces@47#. These are surfaces which ex
hibit a contact anglep.Q.1

2p if they are very smooth. On
the other hand, if the surfaces—made of the same materi
are prepared such that they exhibit a very porous struc
one observes an apparent contact angle close top @47#. In the
present context this observation is in accordance with a
ing of ~wedgelike! pores with vapor at temperatures at whi
the smooth planar surface is not yet dry, i.e.,Q,p.

Similar considerations hold for wetting conditions, i.e
when the wedge is exposed to a vapor phase. Equation~2.14!
states that for all temperatures corresponding toQ(T). 1

2 p
there is no opening anglewc such that the wedge is filled
with liquid for w,wc . On the other hand, ifQ(T), 1

2 p
there is always a sufficiently small opening anglewc(T)
5 1

2 p2Q(T) such that the wedge is filled with liquid fo
w,wc .

B. Theory of capillarity

In the previous two subsections we have considered
constrained equilibrium of fluid configurations which a
translationally invariant along they direction of the edge of
the wedge. Effectively this corresponds to a two-dimensio
system. In a three-dimensional system, a fixed finite volu
V of the liquid must have a finite extension in they direction
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and thus the shapef (x,y) of the liquid-vapor interface de
pends also ony. Based on the classical Young-Laplac
Gauss capillarity theory the equilibrium liquid-vapor inte
face configurations are surfaces of constant mean curva
meeting the bounding walls with contact angleQ.

There exists a sizable body of literature devoted to
solution of this problem for the present wedge geome
~see, e.g., Refs.@48–53#, and references therein!. The most
recent account of the present knowledge based on m
ematically rigorous results and numerical evidence is su
marized in Fig. 6 in Ref.@53#.

For Q.1
2p there are two possible liquid configuration

depending on the opening angle 2w. For w>Q21
2p.0 an

edge blob forms; this is a part of a sphere such that the liq
is in contact with both walls and the edge of the wedge. T
shape of the liquid-vapor interface is convex. If the open
angle of the wedge is reduced such thatw,Q21

2p.0 the
liquid loses contact with the edge of the wedge and a sph
cal bridge connecting the two walls is formed. The transit
between these two distinct configurations occurs atw5Q2
1
2p.0. This means that a preference of the planar subst
for the vapor phase, i.e.,Q.1

2p implies a prefilling of the
wedge with vapor for sufficiently small opening angles of t
wedge.

For Q,1
2p a tubular bridge between the walls is not po

sible. For a wide wedge withw.1
2p2Q.0 one finds an edge

blob in contact with both walls and with the edge of t
wedge. Upon decreasing the opening angle of the wedg
w51

2p2Q.0 a transition to edge spreading occurs wh
persists forw<1

2p2Q.0. Edge spreading by the liquid i
not possible forQ.1

2p. This means that a preference of th
planar substrate for the vapor phase, i.e.,Q.1

2p implies a
prefilling of the wedge with vapor for sufficiently sma
opening angles of the wedge. These findings are in full
cordance with the free energy analysis of the effectively tw
dimensional system discussed in Sec. II A.

III. DESCRIPTION OF FILLING TRANSITIONS
BY AN INTERFACE MODEL

Within the macroscopic description in Sec. II the type
substrate forming the wedge enters only summarily via
surface tensionsswg andswl . In the actual microscopic pic
ture the fluid particles are exposed to the external subs
potentialV(x,z) exerted by the particles forming the wedg
The resulting full number density distributionr(x,z) of the
fluid particles can be determined, e.g., either by simulati
or by density functional theory. However, in view of th
considerable numerical challenges by such an approach
far only hard sphere fluids confined by hard walls have b
studied in such full detail@40,41#. The accessible system
sizes of the wedges which can be studied within these
proaches are also severely limited. Moreover, without attr
tive interactions the hard-body systems do not exhibit filli
transitions.

A. Effective interface Hamiltonian

The study of effective models for the liquid-vapor inte
face exposed to an effective interface potential@54,55#,
which takes into account the competition between the s
strate potential and the interaction potential between the fl
re
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particles, serves as a reasonable compromise between a
fledged microscopic theory and the purely macroscopic p
ture. Within this effective approach the morphology of t
liquid-vapor interface is determined by the effective interfa
Hamiltonian@see Fig. 1~b!#

H@ l #5E
2`

`

dxH s lgSA11S d f~x!

dx D 2

2A11cot2 w D
1

V„l ~x!sinw…2V~ l ` sinw!

sinw J . ~3.1!

Sincez5uxucotw is the position of the surfaces of the wedg
the local thickness of the liquid film measured vertica
equals l (x)5 f (x)2uxucotw and thus exhibits a cusp atx
50 with l 8(x→60)57cotw. Thus the first term in Eq.
~3.1! corresponds to the cost in free energy due to the
crease of the surface area of the liquid-vapor interface r
tive to its flat configuration atuxu5` where u(d f /dx)(x

→`)u5cotw so thatA11cot2(w)51/sinw. The second part
of the Hamiltonian takes into account the effective intera
tion V between the liquid-vapor interface and the wedg
shaped substrate relative to the configurationl (uxu→`)
5 l ` . V denotes the effective interface potential which w
take to be of the same form as for a horizontal liquid-vap
interface interacting with the corresponding planar subst
@54,55#:

V~L !5swl1s lg1v~L !1Dm Dr L ~3.2!

with v(L→`)50, Dm5m0(T)2m, andDr5r l2rg where
r l and rg are the number density of the liquid and vapo
respectively. In Eq.~3.1! V(L) is evaluated in a local ap
proximation such thatL5 l (x)sinw is the local thickness of
the wetting film normal to thenear surface of the substrate
therefore these potential terms are integrated with respe
dx/sinw, i.e., along the substrate surface@see Fig. 1~b!#.
Thus Eq.~3.1! neglects the additional effective interaction
the liquid-vapor interface with thedistantsubstrate surface
This approximation is expected to be valid for a rather op
wedge~see below!. The equilibrium film thickness on a pla
nar substrate minimizesV(L) and yields the actual substrate
vapor surface tensionswg5V( l ` sinw) of the planar sub-
strate. Due to the subtraction of those terms wh
correspond to the asymptotic behavior forx→6` the
HamiltonianH@ l # is finite for all configurations compatible
with the boundary conditions. ThereforeH@ l # describes the
line contributionto the free energy associated with the line
extensionLy of the wedge in they direction. In the presen
mean-field theory we neglect the fluctuations of the interfa
along they direction so thatf depends onx only and the line
contribution carries simply a factorLy which has been omit-
ted in Eq.~3.1!. We emphasize that this consideration of t
line contribution to the free energy represents the most
portant improvement over the macroscopic descript
which considers only surface contributions. The effective
terface Hamiltonian in Eq.~3.1! can be systematically de
rived within the framework of the Landau-Ginzburg-Wilso
theory in the limit of a wide open wedge. This derivatio
proceeds along the lines similar to those outlined in Re
@56–59# and we refrain from presenting its details.
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4032 PRE 60K. REJMER, S. DIETRICH, AND M. NAPIO´ RKOWSKI
Within mean-field theory the equilibrium shapef̄ (x) of
the meniscus minimizes this line contribution:

s lg

d2 f̄ ~x!/dx2

@11~d f̄~x!/dx!2#3/2
5V8$@ f̄ ~x!2uxucotw#sinw%,

~3.3!

f̄ 8~0!50, f̄~x→6`!5l`1uxucotw.

Equation~3.3! is known as the so-called augmented You
equation and has been studied by Kaganet al. @39# but not
with the view of filling phase transitions; recently these a
thors extended their analysis to study eye-shaped capilla
@60#. Due to the symmetry of the system we confine o
subsequent analysis tox>0. In terms ofl (x) the boundary
conditions arel (x→`)5 l ` and l 8(x501)52cotw. Inte-
grating Eq.~3.3! yields

s lgS 12
sinw1cosw@d f̄~x!/dx#

A11~d f̄ /dx!2
D

5V„ l̄ ~x!sinw…2V~ l ` sinw!. ~3.4!

With f̄ 8(0)50 andl 0[ l̄ (x50) one obtains from Eq.~3.4!

DV

s lg
[

1

s lg
@V~ l 0 sinw!2V~ l ` sinw!#512sinw[ v̄~w!.

~3.5!

Equation~3.5! is an implicit algebraic equation for the filling
height l 0 in the center of the wedge in terms of the openi
anglew and the wetting properties of the planar system, i
s lg , V(L), and thusl ` . At liquid-vapor coexistenceV(L
→`)5swl1s lg @Eq. ~3.2!# with (DV/s lg)(L→`)51
2cosQ @Eq. ~2.2!# so that the condition for the filling tran
sition l̄ (0)→` can be expressed in terms of the cont
angleQ of the planar system@Eq. ~2.2!#:

cosQ~Tw!5sinw or Q~Tw!5
1

2
p2w. ~3.6!

Tw is the lowest temperature for whichl 05`. Thus our mi-
croscopic approach confirms the results forTw as predicted
by the macroscopic theory in Sec. II.@This conclusion even
holds if the integrand in Eq.~3.1! is supplemented by a term
proportional to the mean curvature of the interface.# It is
rather satisfactory to seeexplicitly that a microscopic theory
for the line contribution to the free energy renders the sa
value for the filling transition temperatureTw as the macro-
scopic considerations based on the surface free energies
the other hand this is to be expected because atTw the sur-
face free energy of the wedge is nonanalytic@see Eq.~2.18!#
so that the line free energy has to follow suit. This is ana
gous to the fact that surface free energies are nonanalyt
bulk transitions.

Before we turn to a closer analysis of the filling transiti
we note that in the special case of a wide open wedge,
w51

2p2e with e!1 the effective interface Hamiltonian i
Eq. ~3.1! reduces to~see Appendix B!
-
es
r

.,

t

e

On

-
at

.,

H@ f #5E
2`

`

dxH s lg

2
sinwF S d f~x!

dx D 2

2cot2 wG
1

V„l ~x!sinw…2V~ l ` sinw!

sinw J , U 1

2
p2wU!1,

~3.7!

so that the equilibrium profilef̄ (x)5 l̄ (x)1uxucotw is deter-
mined by

s lg sinw
d2 l̄ ~x!

dx2 5V8„ l̄ ~x!sinw…, x.0. ~3.8!

Upon integration one obtains with (d l̄ /dx)(x51`)50

1

2
s lg sin2 wS d l̄ ~x!

dx
D 2

5V„ l̄ ~x! sinw…2V~ l ` sinw!.

~3.9!

Thus for the filling heightl 0 in the center of the wedge on
finds due to (d l̄ /dx)(x→60)57cotw @compare Eq.~3.5!#

DV

s lg
5

1

2
cos2 w[v~w!. ~3.10!

According to the relations1
2 cos2 w5(12sinw)cos2@ 1

2(
1
2p

2w)# and 12sinw52 sin2@ 1
2(

1
2p2w)# the approximate im-

plicit equation~3.10! for l 0 differs from the corresponding
full equation ~3.5! only by terms of the ordere4:v(w)
5 v̄(w)@11O(e2)# and v̄(w)5O(e2). This is also true for
the equation for the filling transition temperatureTw @com-
pare Eq.~3.6!#

cosQ~Tw!512
1

2
cos2 w, U12 p2wU!1,

5sinw12 sin4F1

2 S 1

2
p2w D G . ~3.11!

Thus we conclude that Eqs.~3.7!–~3.11! are reliable approxi-
mations for a wide open wedge.

B. Filling height

In the implicit equation~3.5! and its approximation@Eq.
~3.10!# the right hand sidev̄(w) andv(w), respectively, do
not depend onl 0 ; furthermore the left hand sideDV/s lg
remains unchanged upon the open wedge approxima
This facilitates a transparent graphical solution for the filli
heightl 0 as shown in Figs. 3 and 4. As anticipated the fillin
height l 0 is larger than the wetting film thicknessl ` on the
walls of the wedge far away from the edge of the wedge.
gas-liquid coexistence, i.e.,Dm50 the filling height l 0 di-
verges smoothly forT↗Tw in the case of critical wetting
and jumps to a macroscopic value in the case of first-or
wetting of the corresponding planar substrate. AtT5Tw the
wetting film thicknessl ` asymptotically far away from the
center of the wedge remains finite. Thus within the pres
model we find that the wedge does indeed undergo a fil
transition atTw and that the order of the filling transitio
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agrees with the order of the wetting which takes place
Tw.Tw on the corresponding planar substrate for wh
Q(T→Tw)50.

As will be discussed in more detail in the following su
section the filling heightl 0 diverges along isothermsDm
→0 for T.Tw . In that case in Eq.~3.5! the asymptotic
behavior of V(L→`)5Dm Dr L1swl1s lg can be used.
Together withV( l ` sinw)5swg and Eq.~2.2! this leads to
DV/s lg→Dm Dr l 0 sinw/slg112cosQ so that from Eq.
~3.5! one obtains

l 0~Dm→0,T.Tw!5
cosQ2sinw

sinw

s lg

Dr

1

Dm
. ~3.12!

We note that the form of Eq.~3.12! is valid irrespective of
the order of the filling transition and irrespective of the ran
of the molecular forces. The latter enter only indirectly v
Q, s lg , andDr. Equation~3.12! is in full agreement with the
macroscopic description in Ref.@34# and the numerical re
sults aboveTw in Ref. @33#.

FIG. 3. Schematic graphical solution for the filling heightl 0

according to Eqs.~3.5! and ~3.10!, respectively, for the case of
critical wetting transition of the corresponding planar substrate,
Dm50. In this caseDV exhibits a single minimum atl 5 l ` which
moves smoothly to infinity forT→Tw and becomes more shallow
for increasing temperature. Forl→` the ratioDV/s lg attains the
limiting value 12cosQ(T) which vanishes forT→Tw . By con-
structionDV is positive. The intersection with the straight linev(w)
yields the filling heightl 0 . There are two solutionsl 0

(1) and l 0
(2) but

only the solutionl 0. l ` is compatible with the boundary conditio
associated with Eq.~3.9! ~see Sec. III C!. For T↗Tw the asymptote
12cosQ(T) approachesv(w) from above so thatl 0 diverges con-
tinuously forT↗Tw .

FIG. 4. Same as Fig. 3 for the case of a first-order wetting of
corresponding planar substrate. ForT↗Tw the difference 1
2cosQ(T) reachesv(w) andl 0 increases smoothly to a finite max
mum valuel 0

(m) at T5Tw . At Tw there is another solutionl 05`.
As will be shown in Sec. III C,l 05` is the thermodynamically
stable solution forT.Tw . Therefore atTw the filling height l 0

jumps from the finite valuel 0
(m) to infinity.
t

e

C. Line tension

As is apparent from Figs. 3 and 4, the implicit equati
@Eqs.~3.5! and ~3.10!# for the filling heightl 0 yields two or
even more solutions. Forl 0,`, i.e., for T,Tw with Tw

defined by Eqs.~2.14! and ~3.6! or for Dm.0, the equilib-
rium solution is that one whose corresponding profilel (x)
with l (0)5 l 0 minimizes the line contribution of the free en
ergy @Eqs.~3.1! or ~3.7!#. For l 0,` all competing configu-
rations have the same surface free energy. At coexiste
i.e., for Dm50, l 0 can become macroscopically large. In th
case one has to consider both the line and the surface
tribution such that if one solution has a lower surface ene
it wins out irrespective of the behavior of the line tensio
the line tensions matter only if the surface free energies
equal.~By construction the bulk free energies of all config
rations are always the same.! Nonetheless, in any case it i
interesting to study the thermodynamic behavior of line te
sion.

From Eq. ~2.18! one infers that at coexistence the tem
perature dependence of the surface free energy densi
given by swg1ds(T) with ds(T,Tw)50 and ds(T
.Tw),0 due tos lg(T).0. This implies that forT.Tw the
filled wedge exhibits a surface free energy which is low
than the surface free energy of the unfilled wedge extra
lated to T.Tw . This holds independently of whethe
swg(T) is an increasing or decreasing function ofT. Thus we
conclude thatl 05` for all thermodynamic states~Dm50,
T.Tw!.

For all other thermodynamic states withDm>0 one has
l 0,` and the line contribution to free energy@Eq. ~3.7!# of
the corresponding profilef (x) can be determined explicitly
From Eq.~3.9! one has

dl/dx57@&/~As lg sinw!#

3AV@ l ~x!sinw#2V~ l ` sinw!

for x.0 ~upper sign! or x,0 ~lower sign!. With d f /dx
5dl/dx6cotw for x.0 ~upper sign! or x,0 ~lower sign!
the insertion into Eq.~3.7! yields for the line tensionh

h52&s lgA ~3.13!

with

A5E
l `

l 0
dlHAV~ l sinw!2V~ l ` sinw!

s lg

2AV~ l 0 sinw!2V~ l ` sinw!

s lg
J , ~3.14!

where l 0 is a solution of Eq.~3.10! and l ` minimizes
V(L). The quantity A, which has the dimension of a
length and which gives the line tension up to t
positive prefactor 2&s lg , is the area between
the curves A@V( l sinw)2V(l` sinw)#/slg, Av(w)
5A@V( l 0 sinw)2V(l` sinw)#/slg @see Eq.~3.10!#, and l 5 l `

~see Figs. 5 and 6!. Note that obviously the curvesDV and
v(w) intersect at the same positionl 0 asADV andAv(w).

From this graphical interpretation one infers immediate
that only the solutionsl 0. l ` have to be taken into accoun
as expected the filling height in the center of the wedge

.,

e
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larger than the thickness of the wetting film far outside a
these solutions are the ones which increase forT↗Tw . One
can infer the filled state forDm50 andT.Tw by considering
isothermsDm→0 for T.Tw @see Eq.~3.12!#. Figure 7~a!
describes the continuous filling of the wedge forT.Tw and
Dm→0 in the case of a critical wetting transition. For a
underlying first-order wetting transition Fig. 7~b! demon-
strates that along an isotherm withT.Tw , at Dmp f(T) one
encounters a thin-thick transition of the filling height whic
is not accompanied by a phase transition in the structure
the wetting film far away from the center of the wedge. W
call this phase transition a prefilling transition. Once th
prefilling transition locus has been passed, the filling hei
l 0 diverges continuously forDm→0 @see Eq.~3.12!#. This
confirms, within the present interface model, the expecta
that the thermodynamic states~Dm50, T.Tw! correspond to
a filled wedge. The order of the filling transition at coexis
ence is linked to the order of the underlying wetting tran
tion.

From Fig. 7~b! one infers that a jump in the thicknessl `

of the wetting film far away from the center of the wed
upon crossing the prewetting line enforces a discontinuity
the line contribution to free energy associated with a disc
tinuity of the whole profile l (x), however, such that—
surprisingly—l 05 l (x50) happens to change only smoothl
On the other hand, upon crossing the prefilling linel 0
changes discontinuously without a change inl ` . This behav-
ior confirms the general picture that a nonanalyticity at o
thermodynamic level~bulk, surface, line,...! induces nonana

FIG. 5. Schematic graphical interpretation of the line tension
the case of critical wetting of the corresponding planar subst
below ~a! and at~b! the filling transition temperature. According t
Eqs.~3.13! and~3.14!, for l 05 l 0

(1) the line tensionh is proportional
to the vertically hatched areaA, which is to be taken negatively
whereas forl 5 l 0

(2) the line tensionh is proportional to the horizon-
tally hatched area, which is to be taken positively. Thereforel 0

(1)

has the lower line tension and is thermodynamically stable.
T↗Tw l ` increases, the minimum ofADV becomes less steep, an
l 1
(0) moves out to infinity corresponding to the filling of the wedg

Even for dispersion forces withV(L→`);L22 the areaA and the
line tensionh remain finite forT↗Tw . The second value ofl 0 , i.e.,
l 0
(2) does not correspond to solution of Eqs.~3.4! or ~3.9!.
d

f

t

n

-

n
-

e

lyticities at the same locus at all subdominant thermo
namic levels and that each thermodynamic level can deve
new nonanalyticities at loci where all higher thermodynam
levels are strictly analytic: the phase boundaries in the b
free energy are lines of nonanalyticities both for the surfa
and the line contributions, and the prewetting line nonana
ticity of the surface free energy is also the locus of nona
lyticities in the line tension. On the other hand, the bulk fr
energy is analytic along the prewetting line and the bulk a
the surface free energy are analytic along the prefilling li

If the wedge fills, on each side of the wedge a three-ph
contact line between the substrate, liquid, and vapor is fo
ing. In the limit l 0→` these two contact lines become ind
pendent and each of them reduces to the structure of a s
three-phase contact line on a planar substrate. Therefore
expects that in the limitl 0→` the line tension given by Eqs
~3.13! and~3.14! should reduce to twice the line tensionhplan
of the corresponding single contact line on a planar substr

h~ l 0→`!52A2s lgE
l `

`

dl

3HAV~ l sinw!2V~ l ` sinw!2As lg

2
coswJ

52hplan1O„~ 1
2 p2w!2

… ~3.15!

where within the present interface modelhplan is indeed
given by @61#

n
te

r

FIG. 6. Same as Fig. 5 for first-order wetting of the correspo
ing planar substrate. ForT↗Tw both l ` and l 0 increase but stay
finite. At Tw the filling height l 05` is also a solution, but the
corresponding line tension is larger than that corresponding to
indicated finite solution by an amount given by the horizonta
hatched area, which is to be taken positively. ForT.Tw the surface
free energy favors the filled wedge so thatl 0(T) undergoes a dis-
continuous jump from a finite value atT5Tw

2 to a macroscopically
large value atTw

1 .
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hplan5A2s lgE
l `

`

dl$AV~ l !2V~ l `!2A2S% ~3.16!

with the spreading coefficientS5swg2s lg2swl52s lg(1
2cosQ) equal to2 1

2 s lg cos2 w for T5Tw . However, within
a full theory one expects thath( l 0→`)52hplan1h l where
h l is the line tension of a wedge filled with liquid, includin
the liquid phase as boundary condition in the bulk limit. B
this latter contribution is not contained in the presentinter-
facemodel.

D. Phase diagram

In order to translate the general features of the line tens
discussed in the previous subsection into an actual ph
diagram one has to specify the functional form of the eff
tive potential, i.e.,v(L) @see Eq.~3.2!#. In the spirit of the

FIG. 7. Schematic illustration of the filling transition of th
wedge along isothermsDm→0 above the filling temperatureTw for
critical ~a! and first-order wetting~b! of the corresponding plana
substrate. Off coexistenceADV/s lg increases for largel as
(Dm Dr sinw/slg)

1/2l1/2, whereasADV/s lg attains the finite value
A12cosQ for Dm50 which is less thanAv(w) for T.Tw . In the
case of critical wetting there is a single filling heightl 0 which can
possibly be thermodynamically stable. ForDm→0 the wetting film
thicknessl ` increases slightly but remains finite whereasl 0 di-
verges continuously. The vertically hatched area diverges als
that h~Dm→0, T.Tw)→2`. In the case of first-order wetting
ADV/s lg exhibits a global minimum atl `

(1) and a local minimum at
l `
(2) . Upon crossing the prewetting line of the corresponding pla

substratel `
(2) turns into the global minimum. Thus~b! corresponds

to a caseTw.T.Tw . For largeDm the areauA3u52A3 is smaller
than A2.0 so thatA21A3.0. Consequently,l 0

(1) corresponds to
the global minimum of the line tension. ForDm→0 the areauA3u
increases without limit so that there is a critical valueDmp f(T) at
which uA3u5A2 so that forDm,Dmp f(T) the filling height l 0

(2)

becomes the globally stable configuration. Upon loweringDm fur-
ther l 0

(2) diverges, as well asA11A21A3 , leading to the filling of
the wedge. For reasons of clarity we have ignored the sl
changes inADV/s lg for l< l `

(2) upon loweringDm. Dmp f(T) marks
a prefilling transition in the wedge.
t

n
se
-

square gradient expression@Eq. ~3.7!#, which is applicable
for systems with short-ranged forces@62#, we choose the
generic form obtained by Fisher and Jin@56#

v~L !5W expS 2
L

j D1US 12CW2
L

j D
3expS 2

2L

j D1Dm Dr L. ~3.17!

Since at present we are aiming for the generic, possible
tures of the phase behavior in wedges we refrain from stu
ing the specific effects due to an algebraic decay ofv(L
→`) as it is characteristic for actual fluids governed
dispersion forces@15#; this is left to future studies. In Eq
~3.17! j is the correlation length in the bulk of the wettin
phase, i.e., the liquid phase.

For C<0 Eq. ~3.17! yields a continuous wetting trans
tion at coexistenceDm50 if W(T,Tw),0, W(T5Tw)
50, W(T.Tw).0, andU(Tw).0. In this case the phas
diagram consists of the line of first-order gas-liquid bu
transitions atm5m0(T) and of the temperaturesTc , Tw ,
andTw as determined by Eq.~3.11! on that line correspond
ing to the bulk, surface, and line nonanalyticities, resp
tively. For mÞm0(T) there are no nonanalyticities.

For C.0, W(T).0, and U.0 Eq. ~3.16! describes a
first-order wetting transition atT5Tw due to a decrease o
W(T) for T↗Tw such thatW(Tw)5Ww(C,U).0. For rea-
sons of simplicity we takeU, C, andj as constant and con
sider a linear temperature dependence ofW(T)5Ww
1W0(Tw2T)/Tw , W0.0. The chemical potential differ-
ence can be expressed in terms of the dimensionless var
(Dm Dr j)/Ww . Figure 8 illustrates the phase diagram pr
dicted by this model. The thick lines indicate the bulk sing
larities atm5m0 , which for simplicity we have taken to be
temperature independent, and the prewetting line emana
from Tw and ending at the prewetting critical pointCpw . The
prewetting lineTpw(Dm) @or Dmpw(T)# joins the gas-liquid
coexistence curve tangentially@63# such thatTpw(Dm→0)
2Tw;Dm ln Dm in accordance with the exponential dec
of v(L→`). On the present scale of Figs. 8 and 9 th
tangential approach is not visible. The first-order filling tra
sition occurs atTw,Tw such thatTw approachesTw for w→
1
2p. This infinite jump from a microscopic filling height to
macroscopic height at coexistence is reduced to a finite
continuity off coexistencem,m0 forming a prefilling line
mp f(T) which joins the gas-liquid coexistence curve al
tangentially. From our numerical analysis we fin
mp f(T↘Tw)2m0;a(DT)21b(DT)41¯ with DT5T
2Tw . The thin-thick jump of the filling height across th
prefilling line diverges ;(Dm)21 for m→m0 @see Eq.
~3.12!# and vanishes upon approaching the prefilling critic
point Cp f . For sufficiently narrow wedges the prefilling line
are completely below the prewetting line and shorter than
latter. Upon increasing the opening angle of the wedge
prefilling line slides into the prewetting line thereby breaki
up into two pieces: one betweenTw and a so-called extraor
dinary point denoted asE(1) and another between a secon
extraordinary pointE(2) and the prefilling critical pointCp f .
In the limit w→1

2p these two pieces shrink to zero, such th
E(1)→w and E(2)→Cpw . Figure 9 summarizes the type o

so

r

t
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FIG. 8. ~a! Phase diagram for the filling of a wedge in the case where the corresponding planar substrate exhibits a first-orde
transition atTw . The thick phase boundaries represent the gas-liquid coexistence curve atm5m0 , which for reasons of simplicity has bee
taken to be a straight line, and the prewetting line emanating fromTw and ending at a prewetting critical pointCpw . The bulk critical point
Tc is off the scale to the right. We use dimensionless quantitiesm* 2m0* 52Dm Dr j/Ww ~see the main text! andT* 5T/Tw so thatTw*
51. The temperaturesTw i

denote first-order filling transition temperature which move towardsTw for increasing values ofw i . From each
filling transition point a so-called prefilling line emanates ending in a critical prefilling pointCp f . The prefilling lines join the gas-liquid
coexistence line tangentially as a quadratic function whereas the corresponding tangential approach of the prewetting line is logari
not visible on the present scale. Forw→(1/2)p the prefilling line touches the prewetting line and breaks into two pieces. Forw5w3 in ~a!
the lower piece between the extraordinary pointE3

(2) andCp f is shown. On this scale the upper piece betweenTw3 andE3
(1) is not visible as

well as the distinction betweenTw andTw3 . This is resolved in~b! on a magnified scale. These phase diagrams have been obtained f
model defined by Eqs.~3.7!, ~3.10!, ~3.2!, and~3.17! using the following potential parameters:C/Ww

2 53.504823 andU/Ww50.197338. For
the anglesw1581.40°, w2583.12°, w3584.84°, w4585.99°, andw5587.13° with Ww i

5W(Tw i
) one obtainsWw1

/Ww51.008580,
Ww2

/Ww51.005532,Ww3
/Ww51.003130,Ww4

/Ww51.001899, andWw5
/Ww51.000971 so thatTw* 2Tw i

* 5Ww /W0(Ww i
/Ww21). Put-

ting numbers on the axis requires to choose a value for the ratioWw /W0 . For Ww /W051 one obtains Tw* 2Tw i
*

50.008580, 0.005532, 0.003130, 0.001899, 0.000971, fori 51,•••,5 andTCpw
* 51.594132 andm* (TCpw

)2m0* 520.038024. For a differ-
ent value ofWw /W0 the temperatures are rescaled linearly according to the formula given above.
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the phase transitions in the meniscus shape of the liqui
the wedge across the various phase boundaries for a
wide wedge. Crossing the pieces of the prefilling line alo
the paths 1 and 2 leads to a discontinuous increase of
filling height of the wedge but does not change the thickn
of the wetting layer far away from the center of the wedge
subsequent crossing of the prewetting line leads to a dis
tinuous increase of the thickness of the wetting film an
discontinuous change of the meniscus profilel (x) but such
that—surprisingly—just the filling heightl 05 l (x50) in-
creases continuously~paths 3 and 4!. Along path 5 both the
thickness of the wetting film and the filling height chan
discontinuously; that happens only upon crossing the prew
ting line. According to Fig. 9, for suitable model system
along a pathDm→0 that crosses both pieces of the prefillin
line, one observes a reentrant prefilling of the wedge.
large undersaturations the filling height is very small. It
creases until the prefilling line connectingCp f and E(2) is
reached. Crossing it leads to a discontinuous decrease o
filling height upon decreasingDm. A further decrease ofDm
leads again to an increase of the filling height which jumps
in
ry

g
he
s

n-
a

t-

r
-

the

o

an even larger value upon crossing the prefilling line co
necting the filling pointf and the extraordinary pointE(1).
Once this prefilling line has been passed the filling hei
diverges continuously forDm→0 @see Eq.~3.12!#.

E. Fluctuations

Upon crossing the prefilling line the filling heightl 0

jumps from a valuel 0
, to a larger valuel 0

. so that a volume
DV proportional to1

2 @( l 0
.)22( l 0

,)2#L0 tanw is transformed
from gas into liquid;L0 is the linear extension of the wedg
in y direction.~The above expression corresponds to flat m
nisci at heightl 0

, and l 0
. , respectively.! Thus effectively

Dr DV particles participate in this phase transition. The
fore in the thermodynamic limitL0→` only at coexistence,
i.e., for the filling transition withl 0

.5`, this phase transition
corresponds to a true two-dimensional system which can
deed support a phase transition atT.0. However, along the
prefilling line l 0

. is finite so that in that case the system
quasi-one-dimensional and cannot undergo a true phase
sition for realistic interaction potentials. Therefore we co
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clude that the prefilling lines, as predicted by the mean-fi
theory described in the previous subsections, are wiped
by fluctuations in space dimensionsd53. Only the filling
transitions at coexistence, which can be either continuou
first order, are true phase transitions. These conclusions
in accordance with considering the critical pointsCpw of the
prewetting line andCp f of the prefilling line~see Figs. 8 and
9!. WhereasCpw belongs to the Ising universality class
d52, Cp f would belong to the Ising universality class ind
51 and thus cannot exist.

One can identify the type of fluctuations which wipe o
the prefilling line. If it did exist, by imposing suitable bound
ary conditions at the two ends of the groove for thermo
namic states at the prefilling line, one could generate a st
interface perpendicular to they direction of the wedge which
smoothly interpolates between a portion of the wedge fil
up to l 0

, and another portion filled up tol 0
. . However, in this

quasi-one-dimensional system the fluctuations of the fill
height l 0 along they direction, which are not captured b
mean-field theory, are so strong that for this thermodyna
state at the presumed prefilling line the interface configu
tion in the wedge breaks up into many domains withl 0

. and
l 0

, , respectively, whose positions fluctuate strongly.
However, close to liquid-vapor coexistencel 0

. is very
large so that overturning al 0

, domain into al 0
. domain and

vice versa becomes increasingly improbable. Therefore a

FIG. 9. Types of morphology of the wetting film in a wedge f
the various phases within a schematic phase diagram. The not
is the same as in Fig. 8. The opening anglew is sufficiently large so
that the prefilling line is split into two pieces forming the two e
traordinary pointsE(1) andE(2). Along the thermodynamic paths
and 2 the filling heightl 0 in the center of the wedge increas
discontinuously upon crossing the pieces of the prefilling line
the thicknessl ` of the wetting film far away from the center of th
wedge does not jump. Along the thermodynamic paths 3 andl `

increases discontinuously whilel 0 grows smoothly upon crossin
the prewetting line. Along the thermodynamic path 5 bothl 0 andl `

jump only at the prewetting line.
d
ut
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prefilling line as function ofT or m the filling heightl 0(T,m)
changes rapidly but smoothly betweenl 0

. and l 0
, such that

along the prefilling line form→m0 , i.e., l 0
.→` this cross-

over betweenl 0
. andl 0

, becomes steeper and is confined to
vanishingly narrow region around the prefilling line so th
the true phase transition at the filling transition at coexiste
is restored forDm→0.

The width of this smooth transition region ofl 0(T,m) at
the prefilling line can be estimated on the basis of the fin
size scaling theory for first-order phase transitions@64#.
These results can be adapted to the present problem fol
ing the line of arguments in Sec. 4 in Ref.@65# where the
corresponding smearing out of the prewetting line on a
lindrical substrate of radiusr 0 has been analyzed. Up to
pre-exponential factor, which dependsinter alia on the de-
tails of the effective interface potential, the temperatu
rangedT within which l 0(T,m) crosses over smoothly from
l 0

. to l 0
, is given by

dT

Tw
;expS 2

k̄S

kBTw
D , ~3.18!

where k̄ is a numerical factor of order unity andS is the
energy required for the formation of a domain wall betwe
a l 0

. domain and al 0
, domain. As a crude estimation w

approximateS by 2s lg( l 0
.)2 tanw. ~Here the effective width

2l 0
. tanw of the wedge replaces the cylinder radiusr 0 in Ref.

@65#; as in Ref.@65# the line tensionS l introduced there is
approximated byl 0

.s lg!. Sincej2s lg /kBTw is of order unity
@65#, wherej is the bulk correlation length, we finally arriv
at the estimate

dT

Tw
;expF2kS l 0

.

j D 2

tanwG . ~3.19!

As soon asl 0
. becomes significantly larger thanj the tem-

perature regiondT for the smooth crossover is vanishing
small. Sincel 0

. diverges as (Dm)21 for Dm→0 along the
prefilling line we conclude that close to liquid-vapor coexis
ence the difference between a true first-order thin-thick tr
sition for l 0 cannot be experimentally distinguished from t
actual smooth but very steep crossover. In this sense
prefilling line as obtained by mean-field theory remains
experimentally accessible line of~quasi!nonanalyticities.
Only close toCp f this smearing out of the prefilling line
becomes effective. There, in Eq.~3.19! l 0

. must be replaced
by l 0

.2 l 0
, .

IV. MENISCUS SHAPE

So far we have discussed the configuration in the we
only in terms of its key characteristic feature, i.e., the fillin
height l 0 ~see Sec. III B!. The more detailed information
about the full meniscus shape requires one to solve Eq.~3.3!
or its approximate version given by Eqs.~3.8! and ~3.9!.
Whereas the former typically requires a numerical soluti
the implicit solutionl (x) of the latter reduces to an integra
tion

ion

t
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2A1

2
s lg sinwE

l 0

l ~x! d l̂

AV~ l̂ sinw!2V~ l ` sinw!
5x, x.0,

~4.1!

where l 0 is the equilibrium solution of Eq.~3.10! and
l (2x)5 l (x). @Here and in the following we drop the ove
bar which indicates the minimum of Eq.~3.7!.# For a given
effective interface potentialV(L) Eq. ~4.1! can readily be
solved numerically.

For the model given in Eq.~3.17! it turns out that one can
obtain explicit solutions forC50 and Dm50 describing a
critical wetting transition of the corresponding planar su
strate, i.e.,W5W0(Tw2T)/Tw where hereW0,0 and U
.0. Within this model one has

l `5
j

sinw
lnS 2U

uW0ut D5
j

sinw
lnSA2U

s lg

1

cosw

tw

t D ,

t5
Tw2T

Tw
, ~4.2!

and

l 05 l `1
j

sinw
ln

t

t2tw
, ~4.3!

which diverges fort↘tw where

tw5
Tw2Tw

Tw
5

A2s lgU

uW0u
cosw. ~4.4!

The contact angle is given by

cosQ511
v~ l ` sinw!

s lg
. ~4.5!

which leads to@see Eq.~3.10!#

12cosQ5
1

2 S t

tw
D 2

cos2w5S t

tw
D 2

v~w! ~4.6!

which is in accordance with Eq.~3.11! so that

Q~Tw!5S 1

2
p2w D H 12

1

8 S 1

2
p2w D 2

1OF S 1

2
p2w D 4G J .

~4.7!

For x>0 the profile is determined by@see Eq.~3.9!#

sinw
dl~x!

dx
5A2U

s lg
S W

2U
1expF2

l ~x!

j
sinwG D ~4.8!

with the boundary conditiondl(x)/dxux50152cotw. The
explicit solution of Eq.~4.8! can be written as

l ~x!5 l `1
j

sinw
lnS 11

1

t/tw21
expF2

t

tw

x

j
coswG D ,

x>0. ~4.9!
Equation ~4.9! is in accordance with all expected limitin
behaviors: l (0)5 l 0 as given in Eq.~4.3!, tw→0 for w
→ 1

2 p @Eq. ~4.4!# so that forx and t fixed l (x)→ l ` which
itself reduces to the planar valuel `

(p)5j ln(2U/uW0ut) @Eq.
~4.2!#, and for largex the film thicknessl (x) approaches its
asymptote exponentially from above,

l ~x→`!5 l `1
j

sinw

1

t/tw21
e2~ t/tw!~x/j!cosw, ~4.10!

provided T is not too close to Tw , i.e., t/tw21
@exp@2(t/tw)(x/j)cosw#. For any fixed value ofx the profile
diverges fort→tw as @see Eq.~4.3!#

l ~x, t→tw!5 l 02
j

sinw

x

j
cosw. ~4.11!

The maximum curvature, i.e.,l-(x0)50 occurs at

x056
j

~ t/tw!cosw
lnS 1

t/tw21D
56S 12

t2tw

tw
D ~ l 02 l `!tanw1O~ t2tw!. ~4.12!

Thus for t→tw the position of the maximum curvature
given by the intersection of the asymptotef (x)5 l `

1uxucotw and the horizontalz5 l 0 . Figure 10 illustrates the
change of the meniscus shape upon approaching the fi
transition temperaturetw .

The excess coverageG ~see Fig. 10! associated with the
meniscus is given by

FIG. 10. Shapef (x)5 f (2x) of the meniscus in units of the
bulk correlation lengthj in the liquid phase. f (x.0)5 l (x)
1x cotw with l (x) given by Eqs.~4.2! and ~4.9!. The planar sub-
strate undergoes a critical wetting transition atTw . The temperature
is raised towards the filling transition temperatureTw , i.e., t/tw

5(Tw2T)/(Tw2Tw)→1 along two-phase coexistence in the bu
In units of j and in terms oft/tw the profile is determined uniquely
by the dimensionless parameterA2U/s lg which is chosen to be 2
here. The diamonds indicate the position of the maximum curva
of f (x). As explained in the main text this position attains a co
stant distance from the wall fort/tw→1. The shaded area corre
sponds to half of the wedge excess coverageG/Dr @see Eq.~4.13!#
for t/tw51022. The dotted line indicates the asymptote off (x)
extended tox50. At the present scale the temperature depende
of the asymptotes, i.e., ofl `, is not visible.
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G52DrE
0

`

dx@ l ~x!2 l `#5
4Drj2

sin 2w

tw

t
I S 1

t/tw21D
~4.13!

with @66# I (y)5*0
ydx x21 ln(11x) ~see Fig. 11!. Since I (y

→`)51
6p

211
2 ln2y one finds that upon approaching the fillin

transition the excess coverage diverges as

G~ t→tw!5
2Drj2

sin 2w
ln2S t

tw
21D ~4.14!

For fixed temperatureG~w→1
2p! vanishes as12p2w @see Eq.

~4.4! and I (y→0)5y#.
The line tension associated with the meniscus shap

given by Eqs.~3.13!, ~3.14!, ~3.2!, ~3.17!, and ~4.2!–~4.4!.
One finds

h522js lgF11S t

tw
21D lnS 12

tw

t D Gcotw. ~4.15!

The line tension is negative and approaches its mini
value att5tw with a logarithmic singularity~see Fig. 12!:

h~ t→tw!2h~ t5tw!;2S t

tw
21D lnS t

tw
21D . ~4.16!

For w→1
2p ~i.e., t/tw→`! the line tension vanishes as

hS t

tw
→` D52js lgS t

tw
D 21

cotw. ~4.17!

Thus for fixed temperatureh(w→ 1
2 p) vanishes ;( 1

2 p
2w)2 @see Eq.~4.4!#.

Finally it should be pointed out that in terms of the va
able t/tw both the excess coverageG and the line tensionh
@see Eq.~4.15! and Fig. 12# can be expressed by scalin
functions which are independent ofw and the model param
eterss lg , W0 , andU. It will be interesting to see to which
extent this feature is established by more realistic model

FIG. 11. Inverse of the reduced excess coverageG*
5G@sin(2w)#/(4Drj2) as function of reduced temperaturet/tw @Eq.
~4.13!#. Upon approaching the filling transition temperatureG* di-
verges; ln2(t/tw21) @see Eq.~4.14! and the inset#. For w→1

2p, i.e.,
t/tw→` the inverse coverage 1/G* diverges quadratically so tha
G;G* /sin~2w!;w2

1
2p for w→1

2p, i.e., t/tw→`. Note that in terms
of the variablet/tw the functional form ofG* is independent ofw
and the model parameterss lg , W0 , andU.
is

al

V. SUMMARY

We have obtained the following main results for the stru
ture of a fluid exposed to a substrate forming a wedge w
opening angle 2w @Fig. 1~a!#.

~1! A nonvolatile liquid spreads along the edge of t
wedge if its contact angleQ on the corresponding plana
substrate is less than12p2w @see Fig. 2 and Eq.~2.14!#. A
vapor bubble in a liquid spreads along the wedge ifQ.1

2p
1w @Eq. ~2.20!#. Theory of capillarity tells thatQ(T5Tw)
5 1

2 p2w marks also the filling transition temperatureTw of
a wedge by a volatile liquid in equilibrium with its vapo
reservoir~Sec. II B!. At liquid-vapor coexistence of the bulk
phases the wedge is completely filled by the liquid phase
T.Tw althoughTw,Tw whereTw with Q(T5Tw)50 de-
notes the wetting transition temperature of the correspond
planar substrate;Tw→(1/2)p5Tw . The filling transition con-
stitutes a nonanalyticity in thesurface contributionto the
free energy of the liquid confined by the wedge@Eq. ~2.18!#.

~2! For T,Tw or off liquid-vapor coexistence the surface
of the wedge are covered by a thin wetting film which r
quires a more detailed microscopic description, e.g., by
effective interface HamiltonianH@ f # for the shapef (x) of
the ensuing meniscus of the emerging liquid-vapor interf
@see Eqs.~3.1! and ~3.7! and Fig. 1~b!#. The interaction of
this interface with the substrate is governed by the effec
interface potentialV @Eq. ~3.2!#. This description allows one
to compute theline contribution to the free energy which
determines the shape of the meniscus. Without specifying
explicit functional form ofV the dependence of the filling
height l 0 @Fig. 1~b!# on temperature and deviationDm from
two-phase coexistence can be discussed graphically~Figs. 3
and 4!. The filling transition atTw and Dm50 can be con-
tinuous or discontinuous; the order of the filling transition
the same as the order of the wetting transition of the co
sponding planar substrate. Quite generallyl 0 diverges
;(Dm)21 upon approaching coexistence, i.e.,Dm→0, for
T.Tw @Eq. ~3.12!#.

~3! By analyzing the line tension@Eqs.~3.13! and~3.14!#
graphically ~Figs. 5–7! one finds that a first-order filling

FIG. 12. Reduced line tensionh* 5h/(2js lg cotw) as function
of t/tw @Eq. ~4.15!#. h* is negative and attains its minimum att
5tw in a cusplike singularity;(t/tw21)ln(t/tw21) @Eq. ~4.16!#.
For w→1

2p, i.e., t/tw→`, the line tensionh* vanishes as2tw/t so
thath;h* cotw;(w2

1
2p)2 for w→1

2p. In terms of the variablet/tw

the functional form ofh* is independent ofw and the model pa-
rameterss lg , W0 , andU.
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transition at coexistence, at whichl 0 jumps from a micro-
scopic value to a macroscopic one, is accompanied by a
filling line extending into the vapor phase region of the bu
phase diagram~Fig. 8!. This prefilling line is the locus of
nonanalyticities in the line tension; there the surface and b
contributions to the free energy are analytic. Upon cross
the prefilling line the filling height undergoes a first-ord
thin-thick transition~Fig. 9!. The prefilling line joins the line
Dm50 of the bulk coexistence tangentially. For increasi
opening anglesTw moves towardsTw . Accordingly the pre-
filling line slides into the prewetting line and breaks up in
two pieces~Figs. 8 and 9! giving rise to rich reentrant pre
filling transitions. These general features are borne out
plicitly by model calculations based on a specific choice
the effective potential@Eq. ~3.17!#.

~4! The prefilling transition as obtained from mean-fie
theory is smeared out by fluctuations of the local fillin
height along the edge of the wedge~Sec. III E!. Instead of the
jump the mean filling height changes smoothly betwee
small valuel 0

, and a large valuel 0
. near the prefilling line.

For small undersaturationsDm the larger value diverge
;(Dm)21 so that in this limit the temperature resolutio
required for distinguishing between the jump and the ac
smooth crossover is experimentally not accessible@see Eq.
~3.19!#. Due tol 0

.(Dm50)5` the filling transition at coex-
istence persists even in the strict sense. Thus for a sys
which exhibits a first-order wetting transition in planar g
ometry, the prefilling line in a wedge should be detectable
experiments.

~5! Whereas the thermodynamic behavior of gross f
tures such as the filling heightl 0 and thus the filling transi-
tion itself can be obtained on rather general grounds,
determination of the actual meniscus shape requires m
calculations based on explicit choices for the interface eff
tive potentialV. For short-ranged forces@see Eq.~3.17! with
C50# exhibiting a continuous wetting transition the men
cus shape@Eq. ~4.9! and Fig. 10#, the excess coverage~Fig.
11!, and the line tension~Fig. 12! can be obtained analyti
cally. In terms of the reduced temperature variablet/tw

5(Tw2T)/(Tw2Tw), within this model the excess coverag
and the line tension are governed by scaling functions~Figs.
11 and 12! which are independent of the opening anglew and
of potential parameters. The scaling functions are nona
lytic for T→Tw @see Eqs.~4.14! and ~4.16!#. Thus although
the analysis of the surface contributions to the free ene
already points at the existence of the filling transition it is t
analysis of the line contributions to the free energy that
lows one to extract detailed information about the morph
ogy of the interface and about the nonanalytic behavior
the excess coverage and the line tension itself.
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APPENDIX A: CONSTRAINED EQUILIBRIUM
IN A NONSYMMETRIC WEDGE

The analysis presented in Sec. II A can be repeated f
nonsymmetric wedge characterized by contact anglesQ1 and
Q2 on the left and right sides of the wedge, respective
Also, in this case the liquid with constrained volumeV forms
a single spherical liquid-gas interface or a bridge. In ea
case the interface intersects the sides of the wedge at an
which are equal to the corresponding contact angles.

In the case of a single interface the radiusR of the corre-
sponding circle is

R5AV H Q11Q212w2p

2
2S cosQ12cosQ2

2 cosw D 2

cotw

1
cosQ1 cos~Q11w!1cosQ2 cos~Q21w!

2 sinw J 21/2

~A1!

while the surface free energy difference between the fil
and the nonfilled wedge is given by

DF562s lgAV H Q11Q212w2p

2

2S cosQ12cosQ2

2 cosw D 2

cotw

1
cosQ1 cos~Q11w!1cosQ2 cos~Q21w!

2 sinw J 1/2

,

~A2!

where the upper sign corresponds to a convex and the lo
sign to a concave interface. The interface becomes flat
DF vanishes at a temperatureTw determined implicitly by

Q1~Tw!1Q2~Tw!12w5p. ~A3!

This temperature marks a filling phase transition for a n
symmetric wedge if the constraint of a fixed volume is r
moved in favor of a grand canonical ensemble. AtT5Tw

both the filled and the nonfilled configuration have the sa
surface free energies, independent of the volume of the
uid.

A bridge configuration in a nonsymmetric wedge is po
sible as well. The common radiusR of both interfaces is

R5AV$Q11Q22p2 1
2 ~sin 2Q11sin 2Q2!%21/2

~A4!

while the free energy difference between the liquid brid
and the nonfilled wedge is given by
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DF54s lgV1/2H w1Fcos2 Q11cos2 Q2

2

22S cosQ12cosQ2

2 cosw D 2GcotwJ
3H Q11Q12p2

1

2
~sin 2Q11sin 2Q2!J 21/2

.

~A5!

The bridge configuration occurs provided the following co
dition is fulfilled:

S cosQ11cosQ2

2 sinw D 2

1S cosQ12cosQ2

2 cosw D 2

.1. ~A6!

For Q15Q2 these expressions reduce to those given in S
II. For the symmetric wedge the interface is concave
Q1w,1

2p and convex ifQ1w.1
2p. In the nonsymmetric

case it is possible for an interface to be convex or concav
even form a bridge ifQ11w, 1

2 p and simultaneouslyQ2
1w. 1

2 p.

APPENDIX B: EXPANSIONS FOR A WIDE WEDGE

For a wide wedge the opening angle is close top so that
w51

2p2e with e!1. In this limit d f /dx[ f x is small for allx
ys
.

tt.

v.

,

n
A

J

-

c.
f

or

so that the first part of the integrand in Eq.~3.1! can be
expanded into powers off x

2. In terms of l x5 f x2cotw, x
>0 one has

A11 f x
22

1

sinw

5
1

sinw
$~112l x cosw sinw1 l x

2 sin2 w!1/221%

5
1

sinw H 1

2
l x
2 sin2w1 l x sinw cosw1O~e4!J

5
1

sinw H 1

2
f x

2 sin2w2
1

2
cos2w1O~e4!J

5
1

2
sinw$ f x

22cot2 w%1O~e4!. ~B1!

Here we have used the fact that cosw5sine5O(e) and that
u l xu is largest forx50 with u l x(x50)u5cotw5tane so that
l x5O(e). This leads to Eq.~3.7!. From a systematic point o
view in the last line of Eq.~B1! the prefactor sinw5cose can
be dropped and cot2 w can be replaced bye2. However, it
turns out that it is advantageous to keep the full form of th
terms@see Eqs.~3.9! and ~3.10!#.
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