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Synchronization and resonance in a driven system of coupled oscillators

H. Hong!? M. Y. Choi?® K. Park?** B.-G. Yoon? and K.-S. Soh?
IDepartment of Physics Education, Seoul National University, Seoul 151-742, Korea
2Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea
3Department of Physics, Seoul National University, Seoul 151-742, Korea
4Department of Physics, University of Ulsan, Ulsan 680-749, Korea

(Received 19 March 1999

We study the noise effects in a driven system of globally coupled oscillators, with particular attention to the
interplay between driving and noise. The self-consistency equation for the order parameter, which measures the
collective synchronization of the system, is derived; it is found that the total order parameter decreases
monotonically with noise, indicating overall suppression of synchronization. Still, for large coupling strengths,
there exists an optimal noise level at which the periddio component of the order parameter reaches its
maximum. The response of the phase velocity is also examined and found to display resonance behavior.
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[. INTRODUCTION overall suppression of phase synchronization. The ac compo-
nent, on the other hand, may first increase as noise grows

The set of coupled nonlinear oscillators serves as a protdrom zero, and reach its maximum at a finite noise level.
type model for a variety of self-organizing systems in phys-Such SR-like behavior is also observed in the response of the
ics and in other sciences, which display the remarkable phethase velocity; at low noise levels, the noise subtracted
nomena of collective synchronizati¢h—4]. Due to analytic ~Power spectrum of the phase velocity tends to increase with
simplicity and some physical as well as biological applica-noise.
tions, the system with global coupling has been mostly stud- This paper consists of six sections. Section Il introduces
ied both analytically and numericallf5—9]. Here external the driven system of coupled oscillators subject to random
periodic driving may induce characteristic mode locking ofnoise. The recurrence relation for the Fourier components is
each oscillator, leading the system to display periodic synobtained. In Sec. Ill, we use the recurrence relation obtained
chronization[10]. In such a driven system, the presence ofin Sec. Il, and derive the self-consistency equation for the
noise raises another interesting possibilitystifchastic reso- — order parameter. The set of coupled equations of motion for
nance(SR), which leads to the amplification of the responsethe system is transformed into a Fokker-Planck equation and
of the system by cooperative interactions between the noisée corresponding probability density is expanded as a Fou-
and external periodic drivind11l]. The SR phenomena, fier series. Sections IV and V are devoted to the investigation
which have various practical applicatioi42—17, have of the responses of the phase and of the phase velocity, re-
been investigated in systems with relatively few degrees ofpectively, to the external driving. In spite of the overall
freedom, and observed in bistable systems and also in sy§uppression of synchronization, the ac component of the or-
tems with periodic potentiald4]. On the other hand, the SR der parameter, corresponding to the phase response, as well
effects have hardly been examined in a system with man@s the response of the phase velocity is revealed to display
degrees of freedom such as the system of coupled oscillato%;lq'"ke behavior. Finally, a brief summary is given in Sec.
[18].

In this paper we consider a system of globally coupled
stochastic oscillators, driven periodically, and investigate the
interplay of noise and periodic driving, with particular atten-
tion to the possibility of stochastic resonance. For this pur- The set of equations of motion governing the dynamics of
pose, it is crucial to consider appropriate responses of ththe system ofN coupled oscillators is given by
system to the periodic forcing. Here we consider the re-

II. DRIVEN SYSTEM OF COUPLED OSCILLATORS

sponse of the phase velocity, as well as the order parameter, K N
which describes the phase synchronization. We first derive St >, sin(éi—¢;)

the self-consistency equation for the order parameter and in-
vestigate the behavior of the order parameter in the presence
of noise. It is found that the total order parameter, which
consists of the time-independdaic) and periodidac) com-
ponents, decreases monotonically with noise, indicating thevhere ¢; represents the phase of thé oscillator. The sec-
ond term on the left-hand side corresponds to the global
coupling between oscillators, with strengitfN. The first
*Present address: Department of Physics of Complex System&nd the second terms on the right-hand side describe the
Weizmann Institute of Science, Rehovot 76100, Israel. natural frequency of théth oscillator and the periodic driv-
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ing on theith oscillator, respectively. Finallyl;;(t) is inde-  eral, the set oN Langevin equationgl) makes it necessary

pendent white noise with zero mean and correlation, to consider theN-oscillator probability densityP({;},t)
) ) and the corresponding Fokker-Planck equatiéh In the
(Mi(OTj(t"))=2D & 8(t—t'), (2)  system with global coupling, however, the set in E)

naturally reduces to the single Langevin equatidh as
shown above. This in turn leads to the Fokker-Planck equa-
tion for the single-oscillator probability densiB(¢,t) with

whereD (>0) plays the role of the “effective temperature”
of the system. The natural frequenay is distributed over

thﬁ. \;]vhole oscillactio[s gccordin?h to tdhe distritggtigﬁw),t the self-consistency for the order parameter explicitly im-
which 1S assumed 1o be smooth and symmetric akay! posed, which has been considered in the absence of driving
Without loss of generality, we may take, to be zero and 8]
assume thag(w) is concave aw=0, i.e..g"(0)<0. The The Fokker-Planck equation for the probability density
periodic(ac) driving amplitudel; may also vary for different P(6,t) reads[21]

oscillators, while the frequendf of the driving is assumed ’

to be uniform for all oscillators. In the absence of noige ( 2

i ' aP 9 [[dV(e) 9°P
=0), Eq. (1) precisely reduces to the set of equations of N —1cosQt|P +D—, (6)
motion studied in Ref[10]. The set of equations of motion gt ¢ I ¢

in Eq. (1) describes a superconducting wire netwdf] and . )
may also be regarded as the mean-field version of an array ¥fhereV(¢)=—KA cos¢—w¢ is the washboard potential.
resistively shunted junctions, which serves as a commof/nlike the system without drivingl &= 0), the stationary so-
model for describing the dynamics of superconducting array!tion of which has been obtain¢], Ed.(6) does not allow
[20]. In these cases, the two terms on the right-hand side cfuch a simple stationary solution. We thus use the periodicity
Eq. (1) correspond to the combined direct and aIternatingOf the system and expand the probability density as a Fourier
current bias. seres
Collective behavior of such aN-oscillator system is con-

veniently described by the complexder parameter P(pit)= 2 C,(t)en?, @
1 N T
=_ 6 —Aglf . L :
Y= N 121 e'%i=Ae' ©) which, upon substitution into Ed6), yields

where nonvanishin@’ indicates emergence of synchroniza- Cn(t)= —[in(w+1 cosQt)+n?D]C,(1)

tion. Note that the synchronized state corresponds to the su- N N

perconducting state _W|th global phase coherence in the case — —KA(1)Cppy (D) + =KA()C,_4(1). (8
of the superconducting network or array. The order param- 2 2

eter defined in Eq(3) allows us to reduce Eql) into a

single decoupled equation Since the probability density should be real, we have the
relaton C,=C*; the normalization condition
éi+KA sin(¢;— 0) = w;+1; cosQt+T'(t). f%”P(¢,t)d¢=1 gives the constant terr@,=1/27. The

differential recurrence relation in E48) can be written in
We then seek the stationary solution withbeing constant, the form of an integral recurrence equation
which is possible due to the symmetry of the distribution of

w; andl; about zero. Redefining;, — 6 as ¢; and suppress- , I )
ing indices, we obtain the reduced equation of motion Cn()=Cp(0)exp —in| wt+ o sinQt | —n"Dt
¢+KAsing=w+1 cosQt+I(t), (4) _QKEXF{_m wHI_Smm)_nth
: - . 2 Q
which depends explicitly on the order parameter. In this
manner the order paramet&r defined in terms of the phase t , .
via Eq. (3), in turn determines the behavior of the phase via X fodt A(t)[Crya(t)=Cpq(t)]
Eq. (4), and can thus be obtained by imposing self-
consistency, as discussed in Sec. lll. Note here thain i I )
general, depends periodically on time due to the periodic Xexr{m wt'+ & sinQt’ |+n°Dt’ 9
driving; this allows the Fourier expansion
o which is of the same form as the equation for a single oscil-
A=Ag+ z A cogsOt+ ay), (5) lator[22], except f(_)r that, here, self-consistency for the order
§=1 parameter is required.

with appropriate phasesyg, where Ay is the time-
independentidc) component and\ is the time-dependent
(a0 one due to the periodic forcing.

A convenient way to deal with a set of Langevin equa- In this section we derive the self-consistency equation for
tions is to introduce an appropriate probability density and tahe order parameter, which describes the response of the
resort to the associated Fokker-Planck equdi®i. In gen-  phase and determines the collective behavior of the system.

Ill. SELF-CONSISTENCY EQUATION
FOR THE ORDER PARAMETER
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We suppose that the periodic driving amplitudes distrib- ~ where the relatiorC,=C* | has been used. Then E{.0)
uted according tof(l), independently of the natural fre- leads straightforwardly to

guencyw. Recalling thate in Eqg. (4) in fact represents)

— 6, we have the self-consistency equation

:i S e A=27rf7wdlf(l)ﬁxdwg(w)C’{(t), (12
:
= Ljdlf(l)fﬁxdwg(wxei%,. : (100 which gives the order parameter in terms of the Fourier co-
efficient C4(t). AssumingKA<1 near the transition to the
where(- - -),,, denotes the average with givenand|. coherent state, we need to obtal up to the order of
With the probability densityP(¢,t), the expansion of (KA)2. For this, we first comput€, from Eq. (9), neglect-
which is given by Eq(7), we compute the average ing Cs, and substitute the obtain€} back into the equation
) for C4, i.e., Eg.(9) with n=1. At long times the transient
. ™ . 2 i
eld EJ do e ®P(b.t)=27C* (1), 11 terms such as expn°Dt] for n#0 vanish, and a lengthy
(€9 0 ¢ ($)=2mC1(V a1 calculation yields

* ei(/fers,)QHiaS ei(/fmfs)mfiaS

|
Cilh=" g7 2 852 IO 5070t T (7-90-1D

K3
é4 2 AAGAy X J /(%) /1 (%) Imn(2X%) I s (2%) I (X) I (X)

s.s' 8" 7/ mm’ nn’
x[ellasmas—as)p(t;5,8",8") +el(asTas ~as)F(t;5,— ' 8")
+ellasmasTag)p(t: —g g ) +ell@stastag)p(t: —g —g' )
+elCasmasmas)E(t;5,8", —s)+ el (" astas Tas)E(t:5,— 5’ — )
+elCasmaytas)p(t:—g 8" —g")+e (T as TaE(t; —s,— s, —9")], (13

wherex=1/Q, a;=0, and the functior(t;s,s’,s”) depends on the indices, /', m, m’, n, andn’ as well as onw and:

ei(/—/’+m—m’+n—n’—s—s’—s”)Qt

F(t;s,s',s")= - )
[+ (n"+5)Q—iID][20+ (M —n+n'+s+s")Q—4iD]

1
o+ (/" —m+m’'—n+n’'+s+s'+5")Q—-iD

X

With the above expression f@;, Eq.(12) yields the explicit
form of the self-consistency equation for the order param- /2 f dIf(1)3,(x)Im(x) €'~
eter.

Comparing term by term in the resulting self-consistency g(w)
equation, we can determine each component of the order jdw—-,

S w+mQ+iD

parameter. Namely, the dc componeyy is given by the
constant(zero-frequencyterms in the expansion df(t). i
The next component, can be obtained from the terms with b= - — 2 dif(1)J (x)J,(X)Im(2X)
frequency(}, the component\, from the X) terms, and so /" mm’ nn’

on. For weak driving, the ac components of the order param- i(/"—/+m —m+n’ —n)Qt
eter are much smaller than the dc component, leading to the X Jm (2X)Jn(X)Jn (x)€

simple self-consistency equation: 9(w)
J|

w
[0+n"Q+iD][20+ (M +n"—n)Q+4iD]

A~aKAy—b(KAy)®3 (14)
o ! . (15

with the coefficients w+(/"+m'—m+n"—n)Q+iD
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In the simple case of no external driving=0) and noise only the trivial solutionA=0 exists. On the other hand, for
(D—0), the representationr§(w)=D(w?+D?) ! in the K=K.=1/a,, Eq. (14) also allows the nontrivial solution
limit D—O0, together with the symmetry af(w), reduces with the dc component

Eq. (15) to a=(=/2)g(0) andb= — (7/16)g”(0), which in-

deed reproduces the self-consistency equation obtained in A A= VboK(apK—1) 16
Ref.[5]. 0= +_—b0K2 ;

Solving Eq.(14), we obtain the collective behavior of the
system, which has been analyzed in R&D]; for smallK,  where the constant coefficients are given by

9(w)
2 fdlf(l).]/(x)fdm 0+ D

o= 3 [ dI1)3,003(203r (203,003 00 - ()
xjdw 9w . (17
[0+n Q+iD][w+/Q+iD][20+ (M +n’—n)Q+4iD]

Thus ax is increased beyond., the null solution becomes Similarly, a tedious but straightforward calculation leads to

unstable and the stable nontrivial solutidan (accompanied the coefficientb=by+ b, cos(2+w,). Note that the sym-

by the ac componentsippears via a pitchfork bifurcation at metry of the distributionf(l) aboutl=0 forbids the fre-

K=K, [10]. quency() term, which is linear in the driving. Here it is easy
to observe thaf,, which reads

o J(w) Do
1-— fdww2+D2+8(22 dog(w)

IV. NOISE EFFECTS ON SYNCHRONIZATION

To understand the cooperative effects of the driving and
noise on the response of the system, we examine in this
section how the noise affects synchronization behavior of the
system. For simplicity, we consider the weak-driving or
high-frequency limit k=1/Q)<1), expand the Bessel func-
tions in Eq.(15) to the order of?, and perform the average ) N
over the distributiorf(1). This gives the coefficiers to the ~ in general, decreases monotonically wibhThus the critical
order of o, the variance of the distributiof(1): coupling strengthK, grows as the noise level is raised. Fig-

ure 1 displays the monotonic increaseikof = a, *) with the
noise levelD, for o;=0.1 andQ)=2.0. For the distribution

1 1
X +
(0+Q)°+D? (w0—0)?+D?

, 19

B (a)) o of natural frequencies, the Gaussian distribution with vari-
T2 w +D2 802 anceo,=0.5 has been chosen.
XJd (@) D(cos 0t—2) 4.5
w )|
g w?+D?
D(cos 20t— 1)+ (w+Q)sin 20t
- ) K,
(0+Q)“+D
D(cos 20t—1)— (w—Q)sin 20t
(0—Q)%?+D? g
2'00 0|2 0|4 0.6
D cos 20t + (w+2Q)sin 20t ‘ ’
2(w+20)%+2D2 D

. FIG. 1. Critical coupling strength beyond which synchronization
n D cos 20t — (w—2€2)sin 20t appears versus the noise level in the system with the driving fre-
2(w—20)%+2D? quency{)=2 and the variances,=0.5 ando,=0.1. The random
noise in the system increases monotonically the critical coupling
=agp+ta,cod20t+a,). (18) strength, thus tending to suppress synchronization.
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havior is also exhibited by, for K=2.5. ForK =3.0, on the
other hand, Fig. @) displays that the ac componehj first

) increases with noise and reaches its maximum at a finite
T value of the noise levdD. Similar nonmonotonic behavior of

) A, can be observed for larger values of the coupling strength
0.9 K, suggesting the presence of SR-like behavior in the order
parameter. Note, however, that the dc compornenis, in
general, dominant over the ac component, leading to the
monotonic decrease of the total order parameter. It is thus
concluded that noise tends to suppress monotonically the
overall synchronization in the system.

RN V. RESPONSE OF THE PHASE VELOCITY

0.9 In this section we investigate the power spectrum of the
D phase velocity at the driving frequency, which conveniently
describes the response of the phase velocity to the external
driving. In the case of a superconducting wire network or

FIG. 2. Behavior of the order parameter in the presence of noiseédfay, the phase velocity can be identified with the voltage
The data represented by empty and solid squares correspond to tH@ the Josephson relation, and the power spectrum of the

coupling strengttk = 2.5 andK = 3.0, respectively(a) The dc com-  phase velocity simply corresponds to the voltage power
ponentA, for bothK =2.5 andk = 3.0 is shown to decrease mono- Spectrum under the combined direct and alternating current

tonically. (b) The ac componens,, for K= 2.5 decreases monotoni- driving. Equationg4) and(7) give the average phase veloc-
cally, while forK =3.0 it displays a peak at a finite noise level. The ity of a single oscillator in terms of Ir€,, the imaginary part
standard deviations of the dagaot shown range from 5 to 15%, of Cy:

and lines are merely guides to the eye.

: 2m :
(d)= , 4P

With the coefficientsa and b obtained above, the order
parameter can be obtained from Efi4) and its behavior in
the presence of noise can be investigated. Indeed the dc com-
ponentA, given by Eg.(16) is easily found to decrease
monotonically as the noise levBlis increased. On the other
hand, it is too complicated to obtain analytically the explicit
behavior of the ac component; (s=1). Further, the ana- )
lytical results are based on E@.4), which is valid only near (p)=w+AcosQt+BsinQt+0(K?Agd,), (21
the transition K~K_); this makes it desirable to obtain the
order parameter numerically. We have thus performed nuwith the amplitudes
merical simulations to compute the componeftsand A,.
Since the effects of external driving first appear in the coef-
ficientsa, andb,, giving rise to the frequency2 term, it is A=1
relevant to investigaté\, as the response to the external
driving. In the simulations, Eq.1l) has been integrated with
discrete time steps aft=0.01. At each run, we have used K2A2
N;=6048 time steps to compute the order parameter, disg—= 0
carding the data from the first410® steps, and varied both 2Q
At and N; to verify that the stationary state was achieved. ] .
Finally, independent runs with 30 different distributions of 'T'he desired power spect.ruﬁof the phase velocity at thg
the natural frequency and initial conditions have been perdriving frequency is proportional to the square of the Fourier
formed, over which the averages have been taken. For bogPmponent of frequencg, i.e., S(Q)=A?+BZ. In the limit
the distribution of the driving amplitudes and that of the D—0, the amplitude of the Fourier component approaches
natural frequencies, we have chosen Gaussian distributions

=w+!| cosQt+27KAIMmCy, (20

which, upon substitution of Eq13) for Im C,, obtains the
simple form

K2A3
20

w+Q w—
(0+Q)2+D? (0—Q)%>+D?

1—

1 2 1

DI — +
(0+Q)?°+D? w?+D? (w—0)?+D?

with various values of variances ando,, only to find no K2A2 12
qualitative difference. 1?1+ — 02
Figure 2 displays the obtained behavide of the dc 0=
componentA; and(b) of the ac componenk, in the system 21aA
of N=1000 oscillators, driven by frequen€y=1.0738 and 12 m O s+ ) —28(w)+ 8(w— Q)12
with variancesr ,= 1.0 ando,=1.0. The data represented by 4072 [ow ) (@) + 6l )

empty and solid squares in Fig. 2 correspond to the coupling

strengthK =2.5 andK = 3.0, respectively. It is shown that while it approaches? in the limit D—c. It is of interest to

for both values of the coupling strengthg decreases mono- note that the amplitude in the noiseless limit can be either
tonically as the noise leveD is raised. Such monotonic be- larger or smaller than that in the strong-noise limit, depend-
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15 ian ones have been chosen with varianeges=0.5 ando,
=0.2, respectively, while the coupling strendth=2.5 and
the driving frequency) = 7/1.024 have been taken. Remark-
ably, Fig. 3 displays that the power spectrum increases as the
noise level is raised from zero. Obviously, it does not keep
increasing monotonically with the noise, and there appar-
ently exists an optimal noise level at which the power spec-
trum reaches its maximum. Beyond the optimal noise level,
the power spectrum first falls off gradually and saturates
0 05 1.0 eventually toward its asymptotic value, although this behav-
ior is somewhat obscured by the large fluctuations due to
D strong noise. Such a broad peak followed by gradual de-

FIG. 3. Noise subtracted power spectrum of the phase veloci%;rease has also been observed in the SR of another system

-4
e £

L £ SR

b———— i ———————

r———— g —————

at the driving frequency. There appears an optimal noise level 15]t It :S th(;J.S ‘T’queSSIt?e?kth%t t:e respoTﬁe of the p.h{':lse ve-
which the power spectrum reaches its maximum. The error bar Cily also dispiays -like behavior In the appropriate re-

have been estimated by the standard deviation and the line is mere§M€- Since the phase velocity corresponds to the voltage in
a guide to the eye. a superconducting system, this indicates that the noise sub-

tracted power spectrum of the voltage displays such reso-

. . L ) nance behavior.
ing on w and(}; as the noise level is raised, the amplitude

tends to decrease from the noiseless valuedor() and
increase forw<<(). Accordingly, for given driving fre-
guency, those oscillators with smaller/larger natural frequen-
cies contribute to the increase/decrease of the amplitude to- We have studied the noise effects in a driven system of
ward its asymptotic valud?. For small values of the globally coupled oscillators, with emphasis on the interplay
varianceo,,, for example, most oscillators should possessof noise and periodic driving. In particular, to investigate the
the natural frequencw< (), although there may still exist possibility of resonance behavior, we have considered the
some oscillators with frequenay> (). The power spectrum response of the phase velocity, as well as the order parameter
of the whole system, which is given by the sum of contribu-which describes the phase synchronization. The self-
tions from all the oscillators, is then expected to increase foronsistency equation for the order parameter, derived from
smallD and to approach the asymptotic value which is pro-the recurrence relation of the probability density, has been
portional tol?. Unfortunately, however, the approximations shown to display monotonic decrease of the total order pa-
used on various stages of the analysis disallow a reliableameter in the presence of noise. It has thus been concluded
analysis. In particular, the extrapolation to the lifit~0 is  that noise, in general, suppresses overall phase synchroniza-
untrustworthy since nonzero effective temperatube=0)  tion in the system, i.e., superconductivity tends to be dis-
has been assumed in solving the equationF6p,t). It is  turbed by noise present in a superconducting wire network or
also obvious that the higher-order terms neglected in tharray.
analysis set a limit in the regime of validity, making it desir-  Nevertheless, it has also been revealed that for large cou-
able to investigate the system by other means. pling strengths the ac component of the order parameter in-

We have thus performed numerical simulations to obtaircreases with the noise level growing from zero and reaches
the power spectrum for various values of the couplingits maximum at a finite noise level. Such resonance behavior
strength and of the variance in the distributions of the naturalhas also been observed in the response of the phase velocity;
frequency and of the driving amplitude. We have again inte-at low noise levels, the noise subtracted power spectrum of
grated Eq.(1) for the system ofN=1000 oscillators with the phase velocity has been found to increase with noise,
discrete time steps ofAt=0.01, using at each rum; displaying a broad peak at a finite noise level. As the noise
=6048 time steps to compute the power spectrum of théevelis raised further, the power spectrum appears to saturate
phase velocity and discarding the data from the first 4toward its asymptotic value, although concealed by large
x 10° steps. The averages have been taken over 300 ind@uctuations due to strong noise. In conclusion, the phase
pendent runs with different distributions of the natural fre-Synchronization, describing the collective behavior of the
quency and initial conditions. From the obtained time series¢oupled-oscillator system, is suppressed monotonically in the
we have computed the power spectrum by means of the fagresence of noise. Still, the responses of the phase and of the
Fourier transform algorithm. To take into account the back{hase velocity can display nonmonotonic resonance behavior
ground noise, we have taken five nearest data points arourid the appropriate regime, which may be manifested by a
the peak at the driving frequency in the power spectrum an#road resonance peak of the voltage power spectrum in the
performed the average to give the noise ley&@he results case of a superconducting system.
have been found not to change qualitatively even if other It is also of interest to note that the phase velocity on
measure for the noise level is adopied. average may serve as a measurdoA, the rate of change

In Fig. 3 we present the obtained data: the backgrounaf phase synchronization. Accordingly, the resonance behav-
noise subtracted power spectrum of the phase velocity at ther in the response of the phase velocity suggests that the
driving frequency versus the noise level. For the distributionsapproach to the coherent state with synchronization can be
of the natural frequency and of the driving amplitude, Gaussaccelerated by the presence of weak noise. Since the phase

VI. SUMMARY
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