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Stabilization of unstable fixed points in the dynamics of a laser with feedback
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We report theoretical and experimental results on the stabilization of unstable steady states,ifage€O
with feedback. Periodic and chaotic oscillations have been suppressed by means of a control loop consisting of
a high-pass filter, known as washout filter. Although the filter characteristics are determined on the basis of
linear analysis, taking into account the problem of robustness with respect to parameter changes, the present
control strategy provides a large attractive domain in the phase J(&@63-651X99)00707-3

PACS numbgs): 05.45-a, 42.50.Lc, 42.55.Lt

. INTRODUCTION freedom to observe chaotic behaviors. A Q@ser fits such
requirements, provided the laser output is fed back to an
Chaotic dynamics can be interpreted as a superposition éfitracavity electro-optic modulator in a regenerative configu-
an infinite number of different unstable periodic orbits ration [12]. This system presents a very rich dynamics, in-
among which the system continuously switctiés More-  cluding self-pulsing and deterministic chaos. The control
over, irregular oscillations are often related to the competimethod hereafter described is based on a washout high-pass
tion between different unstable fixed points. Thus the chaotidilter which allows robust stabilization of the unstable fixed
attractor, that is the region in the phase space visited by theoints in a wide range of control parameter values. At vari-
trajectory, contains a rich variety of possible states that cagnce with other methods based on a derivative feedback
be fruitfully exploited if any flexible control technique can [7—10 with infinite bandwidth(or at least higher than the
be implemented, to stabilize the originally unstable behavcharacteristic frequencies of the dynamjdsere the cut-off
iors. frequency of the filter is set to a value much lower than the
In order to control chaos, that is to drive the dynamics tocharacteristic frequency, in order to optimize the control.
periodic orbits or steady states by applying small perturbaMoreover, the simplicity and speed of this method make it
tions, several methods have been propogzd]. The key suitable for several experimental applications, not restricted
idea in the early work by Ott, Grebogi, and York@GY) [4]  to the field of laser optics.
is to use linear control theory and feedback on a system The paper is organized as follows: Sec. Il contains the
parameter to direct the motion along the stable manifold oflescription of the theoretical model and the discussion yield-
an unstable state. A scalar version of the OGY controing the stabilization through a derivative control. In Sec. llI
method, called occasional proportional feedb4bk and we report the experimental results on the stabilization of un-
some variations of it, have been successfully used to stabilizetable fixed points in the CQaser with electro-optic feed-
unstable steady states and periodic orbits in a multimoddack. Concluding remarks are drawn in Sec. IV.
Nd:YAG doubled laser, which is a high dimensional system
[6]. The problem of the stabilization of an unstable steady Il. THE MODEL
state has also been faced in a multimode Nd doped optical
fiber laser. In this system the steady state becomes unstable The model we use f0r_ the Cz(lhser,_ based on a fou_r-level
through an Hopf bifurcation, and it has been shown that £cheme, can be stated in the following wajter a suitable
feedback proportional to the derivative of the intensity al-normalization [13]:
ways stabilizes the dynami€g]. Derivative control has been : .
also successfully applied to the Chua’s circuit operating in %1= Koxa[Xp— 1=k Sin’(xe)],
the double-scroll regimé8], in an electrochemical system
[9] and in the Mackey-Glass mod¢lQ]. Large periodic
modulations of the pump parameter have been demonstrated

XZZ _F1X2_2k0X2X1+ ')/X3+X4+ Po,

to be an alternative way to track unstable states in the two- X3=—I'1X3= X5+ yX2+ Py,
level Lorenz-Haken modégll1l]. However, this nonfeedback
method presents the disadvantage of inducing a modulated X4=—T'2Xg4— yX5+2%+2Py,
output.
In this paper we report theoretical analysis and experi- Xg= —T'oXg—ZX3+ yX4+ 2Py,
mental results about the stabilization of the unstable steady
states in a class-B laser. Since the dynamics of a pure class-B Xg= — BXe+ BBo— Bf(Xy1), @

laser is ruled by the interplay between intensity and popula-
tion inversion, it is necessary to introduce a third degree ofvhere
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TABLE I. Numerical values of the parameters of the theoretical 2.5x10°
model. (@)
2.0x10° |
r, 10.0643 y 0.05
r, 1.0643 Ko 28.5714 1.5x10° -
a 32.8767 Ky 4.5556
B 0.4286 Po 0.016 X 1.0x10°
5.0x10*
f(xy)= R4 . 00 +
1+ aXl 1 1 1
.10 0.0 0.00 0.05 0.10

In these equations the variablg is the normalized photon
number and thus is proportional to the laser output intensity,
X, is proportional to the population differendé,—N; be- 25x10° F
tween the two resonant levelg; to the sumN,+ N4, X, and
Xg are proportional to the difference and sum of the popula- 20x10° 1
tions of the rotational manifoldM, and M, respectively.
Each manifold containg=10 sublevels. The variablgg, o
proportional to the feedback voltage, affects the cavity loss 1.0x10° |
parameter through the expressitg[1+Kk; sir’(xs)]. The
time has been rescaled accordingrtet* 7x 10° sec . The
control parameters of the system &g andR, proportional 00l
to the bias voltage and to the gain of the feedback loop,
respectivelyI'y, I'5, y, and B represent decay rates,is a
saturation factorP, is the pump parameter. The numerical
parameter values are reported in Table I. FIG. 2. Projections of the attractors in the phase plane
In order to implement a suitable control, it is important to (x,,x¢). (a) By=0.092, R=133. (b) By=0.094, R=133.
identify the fixed-point solutions of Eqgl) in the parameter Crosses represent the unstable fixed points.
space, and to study their stability. For simplicity, we con-

sider the stationary values &f as a function of the control  5.tive medium. ThusBo<Boc andBy=B, correspond to
parameterB,[0,0.223, for different values of the other |55¢r above and below threshold, respectively.

control parameterRe[50,23Q (see Fig. 1 Obviously, For Bo=<Byc and small values oR, the system presents a
whatever values are assigned By and R, it is always gecond fixed point withk,#0. These stationary solutions,
present a solution corresponding tq the n'o.t—lasmg state, thqa);ing on a single valued curve, are initially stalf@w laser

is x,=0 [andxg=By, as can be easily verified from the last qytpyup, become unstable through an Hopf bifurcation when
of Egs.(1)]. This solution is unstable f@,<Byc and stable g s increasedself-pulsing and chagsand finally converge

for Bo=Bgc. Boc=0.163 is the value 0B, for which the {4 the solutionx,=0. If the gain is largdcase(d)] the curve
losses ¥k, sin(x;) balance the equilibrium value of;,  of the solutions is no more single valued, and a third unstable
representing the unsaturated gain provided by the excitegyeqg point appears in the regi@y=Boc . Anyway, beyond
the critical valueByc, the stability of the zero intensity so-
lution implies that the trajectory in the phase space can only
visit the vicinity of the other unstable fixed points during a
transient before approaching=0. For this reason no dy-
namical behaviors except transients are observableBfor
=Bgc.-

We will present in the following a summary of the typical
dynamics, influenced by the competition between the two
unstable fixed points. In Fig. 2 we show projections of the
attractor in the phase plane;(xg) corresponding to two
different values ofB,, at the sameR value. Figure 29
shows a stable limit cycle visiting the regions close to the
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4x10™
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that in this condition it exists a small region around the un-

stable fixed point never visited by the trajectory. In Fi¢)2

we report the chaotic evolution, again showing the competi-
FIG. 1. Stationary values of the rescaled laser intensitas a  tion between the two unstable states. For lower valueg;of

function of the control paramet&, for different values oR  (a) we observe a stable limit cycle around the nonzero stationary

R=50; (b) R=133; (c) R=180; (d) R=230. Dots and open circles solution.

represent stable and unstable fixed points, respectively. The implementation of a method to control the unstable
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FIG. 3. Logical diagram ofa) the linearized laser equations and 00|

(b) the control loop implemented by a washout high-pass filter. 002 003 004 005 o006 o007 o008 009
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steady states requires to fulfill two general condition6) . . o

the maintenance of the position of the stationary state, an% W';erd' fHeTZgEﬁ:Zzgnzfené evolution in the phfse plang, ko)

.. ! L2 poinfcross for By=0.133 andR

(i) control robustness with respect to large variations of the_ 133

two system parameteB, andR. Moreover, in our case it is ’

also necessary that, in the phase space, the region of attrac-

tion created by the control is large enough to intersect thgut-off frequencyv could be a value corresponding 1§

region occupied by the unperturbed attractor. which represents the bandwidth of the feedback loop. Al-
Nonlinear approaches, such as the feedback linearizatidihough in principle it is always possible to find a suitagle

or sliding control method$§14], are not applicable because value providing stabilization when= 8, only a small set of

not all the state variables are accessible in our experimentnitial conditions, contained in a narrow region around the

For this reason we first study the control problem for thefixed point, can be driven to the stabilized steady state. This

system linearized around the unstable fixed point. Then, wenplies that the control may fail in a dynamical condition

verify a posteriorithat it exists a condition which ensures a such that of Fig. @&). In order to obtain a largely attractive

large domain of attraction from which there is convergencdixed point, v can be selected so that the filter presents a flat

to the fixed point. After linearization around the unstableamplitude response over the frequency range corresponding

stationary solution, the local dynamics can be obtained irio the bandwidth of (s). This feature assures feedback, and

terms of the Jacobian matrikevaluated at the fixed point. consequently rejection, of all the undesired frequency com-

The linearized system can be represented by the schemm®nents of the uncontrolled system. Oncis fixed, we have

shown in Fig. 8a) with transfer functionL(s) given by to optimize the gairg of the filter. To do this, it is useful to
determine the poles of the closed loop transfer function, that
L(s)=C(sl-J)"'B, is, to study the root locus of the complex function 1
+F(s), whereF(s)=L(s) C(s) is the open loop transfer
where function. For small values of), all the roots are real and

negative, except a pair of complex conjugate ones having
positive real part. By increasing, the two complex roots
move towards the negative half plane, while the other roots
_ —PBR move(more slowly in the opposite direction. After a critical
T (1+axg)’ valueg*, all the roots have negative real parts and the sys-
tem becomes stable. Nevertheless, the time required to ap-
.y proach the steady state can be very long since two eigenval-
ues are only weakly negative. For this reason it is convenient

ool
Il

I} 6:(0110101010101 Cl

O OO oo

X1e7# 0 being the equilibrium value of the variabte.
The input to the linear block is given b8, while the [m—————————————— T———————— 9
output is proportional tok;. Since both the quantities are :
experimentally accessible, the control can be implemented |
by a function ofx, fed back and added witR,. The require- :
ment of a control which maintains the position of the station- |
ary point excludes a conventional feedback proportional to :
X1, but suggests to use a feedback proportional to the deriva- |
I

l

I

I

I

[

|

tive of the output signal. The simplest realization of this is
represented by a washout filter, which is a stable high-pass
filter commonly used in control of aircraffd5], with trans-

fer function

AND

g
gl

C(s)=gd(s+v). )
CHAOTIC SYSTEM CONTROL LOOP
The corresponding block diagram is shown in Fign)3The FIG. 5. Scheme of the experimental setup: LT, laser tihe;
first step to realize the filter consists in selecting suitableslectro-optic modulato, fast HgCdTe detector; HVA, high volt-
values for the parametegsand v. A possible choice for the age amplifier; VGA, variable gain amplifier; CLK, TTL clock port.
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FIG. 6. Stationary values of the laser intenditys a function of
the rescaled control paramet®@fB for different values of the high
voltage amplifier gainA: (a) A=390; (b) A=1200; (c) A
=1400; (d) A=2200. Dots represent originally stable fixed points;
open circles denote originally unstable fixed points stabilized by the
control.

to further increasg up to a value for which the real part of
the two complex roots equals the value of the larger real
root.

In order to insure a robust control with respect to changes
of By andR in the previously specified ranges, we can use
for v and g the minimum and the average values, respec-
tively, among those calculated for each pdg(R). Follow-
ing this strategy, the transfer function of this tracking filter
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FIG. 8. Temporal evolution of the laser intensitywhen the

was found to be control is switched on and off synchronously with a TTL clock
signal[same parameter values of Figby].
0.86s
C(s) s+0.015 The use of this control provides a stable fixed point in the
phase space with a large domain of attraction. An example of
08 a transient is shown in Fig. 4.
07} (a)
i ll. THE EXPERIMENT
05}
T o4l The experimentFig. 5 has been performed on a single
5 mode CQ laser with an intracavity electro-optic modulator.
g osr After detection and suitable amplification, the laser intensity
= o2r signal is sent to the modulator, summed with a constant volt-
01 ' ageB acting as the control parameter. The relationship be-
00} tweenB and B is Bo=m(B—V)/V, , whereVy,=100 V
P . . . 1 . and V,=4240 V. This loop provides the extra degree of
100 200 300 400 500 GO0 700 freedom necessary to observe chaotic oscillatidr®3. The
vy second feedback loop contains the tracking filter used to sta-
0.8 bilize the unstable fixed point. It has been implemented by a
o7k ; variable gain amplifier in series with an RC high-pass filter,
sl with R=11.4K) and C=9.2 nF. This circuit presents a
osh transfer function with the same analytical structure of Eq.
_— (2). The cut-off frequency is 1.52 kHz, which, following the
g 04T time rescaling operated in the model, gives0.014 in good
g 03f agreement with the theoretical predictions. The control sig-
2 o2f nal can be gated by a TTL square wave in order to observe
oal several transients toward the desired steady state solution.
ool The stabilized fixed points, namely, the values of the CW
laser intensity (lcx;), are reported in Fig. 6 as a function
O e 200 a0 40 500 600 700 of the control parameteB, for different values of the high
V(V) voltage amplifier gailA (AxR). The horizontal axis is res-

FIG. 7. Projections of the attractors in the phase planecaled to the critical valueBc=978 V (corresponding to
(1,V). (@ B=631V, A=1900. (b) B=648V, A=1900. Tri- Bgc), where the cavity losses balance the laser gain provided

angles represent the unstable fixed points.

by the pump mechanism. The solutions corresponding to
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=0, unstable foB<B; and stable foB>B., are not re- the unstable steady state by using a washout filter with ap-
ported. It is important to observe that the curves of Fig. 6propriate cut-off frequency. The proposed feedback scheme,
present the same qualitative behavior than those of Fig. hich does not require a real time analysis of the state of the
when the gainA is increased. Moreover, stabilization has system and is able to track the steady states over a wide
been achieved over the whole range8andA without any  range of the control parameters, seems particularly suitable
change in the control loop parameters. Figure 7 shows th stabilize the laser output intensity on fast time scales, as
two dimensional projections of the attractors in termsl of those accessible acting on the cavity losses. The possibility
versus the feedback voltage (Vxxg), and proves the rel- to continuously select the output laser intensity starting from
evant role played by the unstable fixed points in the dynamits maximum value up to the laser threshold is of practical
ics. The steady state with#0 has been detected by using importance in applications where an high stability laser
the stabilization loop, while the other one can be easily recsource with adjustable output is required.

ognized considering that fdr=0 we haveV=B. Finally,

several transients from chaos towards the stabilized steady

state are reported in Fig(&®, paced by the TTL clock signal; ACKNOWLEDGMENTS
the enlargement of Fig.(B) shows that the typical transient . ) .
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