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Stabilization of unstable fixed points in the dynamics of a laser with feedback
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We report theoretical and experimental results on the stabilization of unstable steady states in a CO2 laser
with feedback. Periodic and chaotic oscillations have been suppressed by means of a control loop consisting of
a high-pass filter, known as washout filter. Although the filter characteristics are determined on the basis of
linear analysis, taking into account the problem of robustness with respect to parameter changes, the present
control strategy provides a large attractive domain in the phase space.@S1063-651X~99!00707-2#

PACS number~s!: 05.45.2a, 42.50.Lc, 42.55.Lt
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I. INTRODUCTION

Chaotic dynamics can be interpreted as a superpositio
an infinite number of different unstable periodic orb
among which the system continuously switches@1#. More-
over, irregular oscillations are often related to the comp
tion between different unstable fixed points. Thus the cha
attractor, that is the region in the phase space visited by
trajectory, contains a rich variety of possible states that
be fruitfully exploited if any flexible control technique ca
be implemented, to stabilize the originally unstable beh
iors.

In order to control chaos, that is to drive the dynamics
periodic orbits or steady states by applying small pertur
tions, several methods have been proposed@2,3#. The key
idea in the early work by Ott, Grebogi, and Yorke~OGY! @4#
is to use linear control theory and feedback on a sys
parameter to direct the motion along the stable manifold
an unstable state. A scalar version of the OGY con
method, called occasional proportional feedback@5#, and
some variations of it, have been successfully used to stab
unstable steady states and periodic orbits in a multim
Nd:YAG doubled laser, which is a high dimensional syste
@6#. The problem of the stabilization of an unstable stea
state has also been faced in a multimode Nd doped op
fiber laser. In this system the steady state becomes uns
through an Hopf bifurcation, and it has been shown tha
feedback proportional to the derivative of the intensity
ways stabilizes the dynamics@7#. Derivative control has been
also successfully applied to the Chua’s circuit operating
the double-scroll regime@8#, in an electrochemical system
@9# and in the Mackey-Glass model@10#. Large periodic
modulations of the pump parameter have been demonstr
to be an alternative way to track unstable states in the t
level Lorenz-Haken model@11#. However, this nonfeedbac
method presents the disadvantage of inducing a modul
output.

In this paper we report theoretical analysis and exp
mental results about the stabilization of the unstable ste
states in a class-B laser. Since the dynamics of a pure cla
laser is ruled by the interplay between intensity and popu
tion inversion, it is necessary to introduce a third degree
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freedom to observe chaotic behaviors. A CO2 laser fits such
requirements, provided the laser output is fed back to
intracavity electro-optic modulator in a regenerative config
ration @12#. This system presents a very rich dynamics,
cluding self-pulsing and deterministic chaos. The cont
method hereafter described is based on a washout high-
filter which allows robust stabilization of the unstable fixe
points in a wide range of control parameter values. At va
ance with other methods based on a derivative feedb
@7–10# with infinite bandwidth~or at least higher than the
characteristic frequencies of the dynamics!, here the cut-off
frequency of the filter is set to a value much lower than
characteristic frequency, in order to optimize the contr
Moreover, the simplicity and speed of this method make
suitable for several experimental applications, not restric
to the field of laser optics.

The paper is organized as follows: Sec. II contains
description of the theoretical model and the discussion yie
ing the stabilization through a derivative control. In Sec.
we report the experimental results on the stabilization of
stable fixed points in the CO2 laser with electro-optic feed
back. Concluding remarks are drawn in Sec. IV.

II. THE MODEL

The model we use for the CO2 laser, based on a four-leve
scheme, can be stated in the following way~after a suitable
normalization! @13#:

ẋ15k0x1@x2212k1 sin2~x6!#,

ẋ252G1x222k0x2x11gx31x41P0 ,

ẋ352G1x32x51gx21P0 ,

ẋ452G2x42gx51zx21zP0 ,

ẋ552G2x52zx31gx41zP0 ,

ẋ652bx61bB02b f ~x1!, ~1!

where
398 ©1999 The American Physical Society
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f ~x1!5
Rx1

11ax1
.

In these equations the variablex1 is the normalized photon
number and thus is proportional to the laser output intens
x2 is proportional to the population differenceN22N1 be-
tween the two resonant levels,x3 to the sumN21N1 , x4 and
x5 are proportional to the difference and sum of the popu
tions of the rotational manifoldsM2 and M1 , respectively.
Each manifold containsz510 sublevels. The variablex6 ,
proportional to the feedback voltage, affects the cavity l
parameter through the expressionk0@11k1 sin2(x6)#. The
time has been rescaled according tot5t* 73105 sec21. The
control parameters of the system areB0 andR, proportional
to the bias voltage and to the gain of the feedback lo
respectively.G1 , G2 , g, andb represent decay rates,a is a
saturation factor,P0 is the pump parameter. The numeric
parameter values are reported in Table I.

In order to implement a suitable control, it is important
identify the fixed-point solutions of Eqs.~1! in the parameter
space, and to study their stability. For simplicity, we co
sider the stationary values ofx1 as a function of the contro
parameterB0P@0,0.222#, for different values of the othe
control parameterRP@50,230# ~see Fig. 1!. Obviously,
whatever values are assigned toB0 and R, it is always
present a solution corresponding to the not-lasing state,
is x150 @andx65B0 , as can be easily verified from the la
of Eqs.~1!#. This solution is unstable forB0<B0C and stable
for B0>B0C . B0C50.163 is the value ofB0 for which the
losses 11k1 sin2(x6) balance the equilibrium value ofx2 ,
representing the unsaturated gain provided by the exc

FIG. 1. Stationary values of the rescaled laser intensityx1 as a
function of the control parameterB0 for different values ofR: ~a!
R550; ~b! R5133; ~c! R5180; ~d! R5230. Dots and open circle
represent stable and unstable fixed points, respectively.

TABLE I. Numerical values of the parameters of the theoreti
model.

G1 10.0643 g 0.05
G2 1.0643 k0 28.5714
a 32.8767 k1 4.5556
b 0.4286 P0 0.016
y,
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,
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active medium. Thus,B0<B0C andB0>B0C correspond to
laser above and below threshold, respectively.

For B0<B0C and small values ofR, the system presents
second fixed point withx1Þ0. These stationary solutions
lying on a single valued curve, are initially stable~CW laser
output!, become unstable through an Hopf bifurcation wh
B0 is increased~self-pulsing and chaos!, and finally converge
to the solutionx150. If the gain is large@case~d!# the curve
of the solutions is no more single valued, and a third unsta
fixed point appears in the regionB0>B0C . Anyway, beyond
the critical valueB0C , the stability of the zero intensity so
lution implies that the trajectory in the phase space can o
visit the vicinity of the other unstable fixed points during
transient before approachingx150. For this reason no dy
namical behaviors except transients are observable forB0
>B0C .

We will present in the following a summary of the typic
dynamics, influenced by the competition between the t
unstable fixed points. In Fig. 2 we show projections of t
attractor in the phase plane (x1 ,x6) corresponding to two
different values ofB0 , at the sameR value. Figure 2~a!
shows a stable limit cycle visiting the regions close to t
two unstable steady state solutions. It is important to obse
that in this condition it exists a small region around the u
stable fixed point never visited by the trajectory. In Fig. 2~b!
we report the chaotic evolution, again showing the comp
tion between the two unstable states. For lower values ofB0
we observe a stable limit cycle around the nonzero station
solution.

The implementation of a method to control the unsta

FIG. 2. Projections of the attractors in the phase pla
(x1 ,x6). ~a! B050.092, R5133. ~b! B050.094, R5133.
Crosses represent the unstable fixed points.
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steady states requires to fulfill two general conditions:~i!
the maintenance of the position of the stationary state,
~ii ! control robustness with respect to large variations of
two system parametersB0 andR. Moreover, in our case it is
also necessary that, in the phase space, the region of a
tion created by the control is large enough to intersect
region occupied by the unperturbed attractor.

Nonlinear approaches, such as the feedback lineariza
or sliding control methods@14#, are not applicable becaus
not all the state variables are accessible in our experim
For this reason we first study the control problem for t
system linearized around the unstable fixed point. Then,
verify a posteriori that it exists a condition which ensures
large domain of attraction from which there is convergen
to the fixed point. After linearization around the unstab
stationary solution, the local dynamics can be obtained
terms of the Jacobian matrixJ evaluated at the fixed point
The linearized system can be represented by the sch
shown in Fig. 3~a! with transfer functionL(s) given by

L~s!5C̃~sI2J!21B̃,

where

B̃5S 0
0
0
0
0

2b

D , C̃5~c1,0,0,0,0,0!, c15
2bR

~11ax1e!
,

x1eÞ0 being the equilibrium value of the variablex1 .
The input to the linear block is given byB0 , while the

output is proportional tox1 . Since both the quantities ar
experimentally accessible, the control can be implemen
by a function ofx1 fed back and added withB0 . The require-
ment of a control which maintains the position of the statio
ary point excludes a conventional feedback proportiona
x1 , but suggests to use a feedback proportional to the der
tive of the output signal. The simplest realization of this
represented by a washout filter, which is a stable high-p
filter commonly used in control of aircrafts@15#, with trans-
fer function

C~s!5gs/~s1n!. ~2!

The corresponding block diagram is shown in Fig. 3~b!. The
first step to realize the filter consists in selecting suita
values for the parametersg andn. A possible choice for the

FIG. 3. Logical diagram of~a! the linearized laser equations an
~b! the control loop implemented by a washout high-pass filter.
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cut-off frequencyn could be a value corresponding tob,
which represents the bandwidth of the feedback loop.
though in principle it is always possible to find a suitableg
value providing stabilization whenn5b, only a small set of
initial conditions, contained in a narrow region around t
fixed point, can be driven to the stabilized steady state. T
implies that the control may fail in a dynamical conditio
such that of Fig. 2~a!. In order to obtain a largely attractiv
fixed point,n can be selected so that the filter presents a
amplitude response over the frequency range correspon
to the bandwidth ofL(s). This feature assures feedback, a
consequently rejection, of all the undesired frequency co
ponents of the uncontrolled system. Oncen is fixed, we have
to optimize the gaing of the filter. To do this, it is useful to
determine the poles of the closed loop transfer function, t
is, to study the root locus of the complex function
1F(s), whereF(s)5L(s) C(s) is the open loop transfe
function. For small values ofg, all the roots are real and
negative, except a pair of complex conjugate ones hav
positive real part. By increasingg, the two complex roots
move towards the negative half plane, while the other ro
move~more slowly! in the opposite direction. After a critica
valueg* , all the roots have negative real parts and the s
tem becomes stable. Nevertheless, the time required to
proach the steady state can be very long since two eigen
ues are only weakly negative. For this reason it is conven

FIG. 4. Typical transient evolution in the phase plane (x1 ,x6)
toward the stabilized fixed point~cross! for B050.133 andR
5133.

FIG. 5. Scheme of the experimental setup: LT, laser tube;M,
electro-optic modulator;D, fast HgCdTe detector; HVA, high volt-
age amplifier; VGA, variable gain amplifier; CLK, TTL clock por
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to further increaseg up to a value for which the real part o
the two complex roots equals the value of the larger r
root.

In order to insure a robust control with respect to chan
of B0 and R in the previously specified ranges, we can u
for n and g the minimum and the average values, resp
tively, among those calculated for each pair (B0 ,R). Follow-
ing this strategy, the transfer function of this tracking filt
was found to be

C~s!5
0.86s

s10.015
.

FIG. 6. Stationary values of the laser intensityI as a function of
the rescaled control parameterB/BC for different values of the high
voltage amplifier gainA: ~a! A5390; ~b! A51200; ~c! A
51400; ~d! A52200. Dots represent originally stable fixed poin
open circles denote originally unstable fixed points stabilized by
control.

FIG. 7. Projections of the attractors in the phase pla
(I ,V). ~a! B5631 V, A51900. ~b! B5648 V, A51900. Tri-
angles represent the unstable fixed points.
l

s
e
-

The use of this control provides a stable fixed point in t
phase space with a large domain of attraction. An exampl
a transient is shown in Fig. 4.

III. THE EXPERIMENT

The experiment~Fig. 5! has been performed on a sing
mode CO2 laser with an intracavity electro-optic modulato
After detection and suitable amplification, the laser intens
signal is sent to the modulator, summed with a constant v
ageB acting as the control parameter. The relationship
tweenB and B0 is B05p(B2V0)/Vl , whereV05100 V
and Vl54240 V. This loop provides the extra degree
freedom necessary to observe chaotic oscillations@12#. The
second feedback loop contains the tracking filter used to
bilize the unstable fixed point. It has been implemented b
variable gain amplifier in series with an RC high-pass filt
with R511.4 kV and C59.2 nF. This circuit presents
transfer function with the same analytical structure of E
~2!. The cut-off frequency is 1.52 kHz, which, following th
time rescaling operated in the model, givesn50.014 in good
agreement with the theoretical predictions. The control s
nal can be gated by a TTL square wave in order to obse
several transients toward the desired steady state solutio

The stabilized fixed points, namely, the values of the C
laser intensityI (I}x1), are reported in Fig. 6 as a functio
of the control parameterB, for different values of the high
voltage amplifier gainA (A}R). The horizontal axis is res
caled to the critical valueBC5978 V ~corresponding to
B0C), where the cavity losses balance the laser gain provi
by the pump mechanism. The solutions correspondingI

e

e

FIG. 8. Temporal evolution of the laser intensityI when the
control is switched on and off synchronously with a TTL cloc
signal @same parameter values of Fig. 7~b!#.
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50, unstable forB,BC and stable forB.BC , are not re-
ported. It is important to observe that the curves of Fig
present the same qualitative behavior than those of Fig
when the gainA is increased. Moreover, stabilization h
been achieved over the whole ranges ofB andA without any
change in the control loop parameters. Figure 7 shows
two dimensional projections of the attractors in terms oI
versus the feedback voltageV (V}x6), and proves the rel-
evant role played by the unstable fixed points in the dyna
ics. The steady state withIÞ0 has been detected by usin
the stabilization loop, while the other one can be easily r
ognized considering that forI 50 we haveV5B. Finally,
several transients from chaos towards the stabilized ste
state are reported in Fig. 8~a!, paced by the TTL clock signal
the enlargement of Fig. 8~b! shows that the typical transien
times are of the order of 0.5 msec.

IV. CONCLUSIONS

In this paper we have shown that chaotic and noncha
dynamics of a CO2 laser with feedback can be stabilized o
an
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the unstable steady state by using a washout filter with
propriate cut-off frequency. The proposed feedback sche
which does not require a real time analysis of the state of
system and is able to track the steady states over a w
range of the control parameters, seems particularly suita
to stabilize the laser output intensity on fast time scales
those accessible acting on the cavity losses. The possib
to continuously select the output laser intensity starting fr
its maximum value up to the laser threshold is of practi
importance in applications where an high stability las
source with adjustable output is required.
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