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Symbolic dynamics analysis of nonstationary data from a model of a magnetic system
with solitons

T. Buchner* and J. J. Z˙ebrowski†

Institute of Physics, Warsaw University of Technology, ul.Koszykowa 75, 00-662 Warszawa, Poland
~Received 6 July 1998; revised manuscript received 10 March 1999!

The probability distribution of a complexity measure is used to characterize chaotic states: an estimator of
the algorithmic complexity of a time series of symbolic words is calculated within a fixed length time window,
which sweeps through the time series analyzed. The words are derived through a symbolic dynamics scheme
applied in anm-dimensional delay coordinate space. Time intervals instead of the variables of the system are
used. The chaotic states of a model of a magnetic domain wall are characterized better by the methods
presented than with the use of fractal dimensions and new intermittent states of the system were easily
identified. Using an artificial nonstationary signal composed of different chaotic states of the Bloch wall as a
test for chaos-chaos intermittency we demonstrate that the method developed is suitable for the detection and
characterization of intermittency. It is also shown that nonstationarity in the form of a slow monotonic drift in
the control parameter may extend the stability range of periodic states of the spatially extended system
studied—a trackinglike phenomenon.@S1063-651X~99!11510-1#

PACS number~s!: 05.45.2a, 75.10.Hk, 75.60.Ch
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I. INTRODUCTION

To quantify the properties of chaotic states of nonline
dynamical systems, complexity measures such as fracta
mensions, Liapunov exponents, and various types of entr
@1# are often applied. The major drawback of many compl
ity measures used to characterize the properties of cha
states is that they are defined for trajectories of infin
lengths. This is because the dynamical systems analyze
assumed to be ergodic@2#. One way of characterizing a sys
tem, which may not be ergodic, is to study the probabi
distribution of the given complexity measure. Such an
proach was implemented in@3# where the probability distri-
bution of the local Liapunov exponents of a classical clus
Ar3, whose ergodicity depends on its energy, was analy
for a set of increasing values of the lengths into which
trajectory of the system was partitioned. Conclusions as
the properties of the states at different energy levels w
drawn from the shape of the probability distributions of t
local Liapunov exponents.

Ergodicity is questionable especially when nonstationa
of the system is expected. The aim of this paper is to sh
that complex chaotic states may be characterized by
probability distribution of a complexity measure calculat
within a fixed length time window, which sweeps throug
the time series analyzed. We show that the method de
oped is equally well suited to analyze nonstationary state
chaotic systems as well as intermittency. The complex
measures mentioned earlier typically quantify the statist
properties of the state analyzed. Instead, symbolic dynam
@4# may be applied@5–9# to detect the sequential order in th
signal, ignoring information about the details of the traje
tory in phase space. As the complexity measure in the s
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bolic dynamics, we use an estimator of the algorithmic co
plexity @10# of a time series of symbolic words. The word
are derived through a symbolic dynamics scheme define
such a way that it maps a trajectory from anm-dimensional
delay coordinate space into them-dimensional symbol spac
~multidimensional coding@6,8,9#!. We verify the usefulness
of this approach to the analysis of nonstationary data.

Searching for the kind of data, which may be relative
easily extracted from a time series, we discuss the use
time intervals between zero crossings of the variables of
system studied and compare the results with the analysi
the successive extrema of the variables of the system.
show that the approach described is able to arrange in
rameter space the chaotic states of a model of a spat
extended system with solitons—the Bloch magnetic dom
wall @11–18#—according to their complexity. The states
the Bloch wall may be more precisely identified by tim
intervals than by using just the system variables. We dem
strate this by studying newly identified intermittency sta
associated with a symmetry breaking phenomenon. Form
an artificial nonstationary signal composed of different ch
otic states of the Bloch wall, we show that the method d
veloped is able to analyze chaos-chaos intermittency,
identify in the signal the phases with a different level
complexity and precisely identify moments of rapid switc
ing between these phases. Thus, the method is also sui
for the analysis of nonstationary signals. Next, we anal
the effect of a slow monotonic drift in the control parame
~the drive field magnitude! on the dynamics of the Bloch
wall and find that such a drift may stabilize some of
periodic states. The possible reasons for this effect are
cussed.

II. THE MODEL

We analyzed the model of a spatially extended, mic
magnetic system—a magnetic domain wall of the Bloch-ty
~Fig. 1!. This system has been studied in the past in sev
3973 © 1999 The American Physical Society
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3974 PRE 60T. BUCHNER AND J. J. Z˙EBROWSKI
contexts@11–18#. It is described by a pair of nonlinear pa
tial differential equations of motion, which can be deriv
from the Landau-Lifshitz-Gilbert equation@17,18#:

q̇5gDF2pM sin~2w!2
2A

M

]2w

]z2 G1aDẇ, ~1!

ẇ5gFHz1
2A

DM

]2q

]z2G2a
q̇

D
, ~2!

where thez variable is perpendicular to the surface of t
magnetic film in which the domain wall resides,q(z,t) is the
position of the wall,w(z,t) is the azimuthal angle betwee
the magnetization vector and the wall surface,Hz is the spa-
tially uniform and constant in time drive field,a is the phe-
nomenological damping constant,g is the gyromagnetic ra
tio, 4pM is the saturation magnetization,A is the exchange
constant, andpD is the Bloch wall width. The azimutha
anglew is given in radians while the position of the wallq is
given in units of the wall width parameterD.

The model of the Bloch wall may only be analyzed
numerical means. Below we used the explicit finite diffe
ence scheme of@18# with the same time step as used the
~0.05 ns!. This scheme is extremely stable and, in the pres
study, has enabled us to calculate trajectories of the Bl
wall exceeding 163ms in length, i.e., 3.263106 numerical
time steps. For initial conditions, we assumed that the wa
flat @q(z,0)50# and that all the magnetic moments lie in th
plane of the wall@w(z,0)50#. As in @18# we assumed force
free boundary conditions neglecting the surface stray fie

]q

]z
50,

]w

]z
50. ~3!

As the control parameters, the drive field magnitudeHz
and the distance between the surfaces of the film, i.e.,
height of the wallh were used. The latter does not ent

FIG. 1. Schematic of the Bloch magnetic domain wall in a th
film of uniaxial magnetic material of thicknessh. The arrows inside
the domain wall mark the direction of the magnetization. Within t
Bloch wall and within the Bloch line only the central magnetizati
vectors are marked.
-
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explicitly into the equations of motion and affects the d
namics of our system through the number of spatial g
points used in the numerical integration with the distan
between grid points fixed.

The initial conditions given above used with our model
the Bloch wall~Fig. 1! would result in the numerical equiva
lent of the well-known Walker model@19#: a spatially uni-
form precession in the azimuthal anglew(z,t) would last for
ever. The motion of the wall would be either running—
oscillatory or with a constant velocity—if the external driv
field Hz is less than the Walker critical fieldHw ~a charac-
teristic of the magnetic material@18,19#—here Hw
510.92 Oe!. The uniform precession mode is unstable, ho
ever. WhenHz.Hw and the symmetry of the system is br
ken ~in our case by a 0.08% change of the drive field at
arbitrarily chosen, single spatial grid point for two tim
steps! coherent spacial structures—Bloch lines~Fig. 1!—are
generated at drives above the Walker field@17,18#. The
Bloch lines connect regions of magnetic moments at the
ergy minimum orientations atw5np, n50,61,62,
63, . . . andpass through the energy maximum located e
actly in between, atw5np/2.

One or several of such coherent spatial structures
present during the motion of the Bloch wall in any one of t
states studied below. Their number depends on the state
is, in general, greater when the height of the wall is
creased. Soliton properties of the coherent spatial struct
of the Bloch wall@17# are an important feature of the system
The soliton properties of the Bloch lines are retained, ev
though the system is dissipative, provided the drive field
is large enough to compensate for the dissipation@17#. The
propagation of solitons along the Bloch wall of a fini
height results in nonmonotonic correlations of the dynam
occurring at remote parts of the wall@20,21#. The fractal
dimensions and the spatial distribution of the dimens
along the wall height were calculated in Refs.@11,12#. In
particular, it was found that the values of the fractal dime
sions do not differ significantly for the different chaot
states~only by about 20%!.

For the drive fieldHz greater than the Walker field th
specific mode of motion of the wall depends on a combi
tion of control parameters: the drive field magnitudeHz and
the heighth of the wall. For the magnitude of the driveHz
set at 12 Oe, i.e., 1.08 Oe above the Walker field, depend
on the heighth of the wall, periodic or chaotic states of th
wall with coherent spatial structures occur~see also
@15,16,18#!. These structures are confined to the varia
w(z,t) while q(z,t), i.e., the position of the wall, undergoe
a vibration forced by the propagation of the Bloch line.

III. THE DATA

A. Data reduction methods

Studying spatially extended systems, described by pa
differential equations we typically obtain a large amount
information, which needs to be reduced in order to be a
lyzed efficiently. The reduction must not distort or igno
any important information about the studied state. T
method that has focused much attention recently is to
time intervals between characteristic events during the e
lution of a dynamical system@22,23#. This type of time se-
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ries, which seems to be natural for biomedical resea
@24,25#, has not been widely used with physical models a
systems so far@26#.

The idea was applied in the following steps. First, t
analysis was limited to the projection of the phase portrai
the midplane of the film. The phase portrait was construc
in the frame moving with the wall by subtracting at ea
time step the average wall position and the average
muthal angle. Although the system is spatially extended
has been shown before@15–18# that the projection of the
phase portrait to the midplane is sufficient to distinguish
tween different states. The results below will be given for
variable w(t); however, similar results were also obtain
for the wall positionq(t). Next, the time intervalstw be-
tween consecutive zero crossings in the positive direc
were found for the chosen variable. All the time intervalstw

form a one-dimensional time series in which each orbit~in
fact, half of the orbit! length is represented by a single valu
Local extrema, namely, the minimaws of the variablew(t)
between zero crossings were also recorded. Time serie
the extrema of a selected variable were used by Lorentz@27#.

For each state, after all transients had died out, we ca
lated the data on 5000 zero crossings. The time span of
data was thus 163ms. In a real magnetic film, the Bloch wa
may not move for such a long time as it would interact w
the other walls. The unphysical length of the data series
used to discuss the properties of the method developed
but we show below that the number of data required to d
tinguish between states is only a few tens of zero crossi

B. Stationary chaotic states

For the purpose of this study the range of wall heig
from h53.5– 6mm was examined with a step equal to 0.0
mm, which is of the order of changes of height accessible
a magnetic film produced by epitaxy. The specific heig
range was chosen because, for the material parameters
here, it has been shown earlier@15–18# which dynamical
states exist for several values of the height of the wall an
drive field magnitude fixed at 12.0 Oe. Apart from two pe
odic states, a period-2 state existing in the range ofh be-
tween 1.2–3.0mm and a period-4 state identified earlier
h54.0mm, there exist chaotic states of which five were ch
sen:C1 ~h53.5 mm!, C2 ~h54.5 mm!, C3 ~h55.0 mm!, C4
~h55.5 mm!, and C5 ~h56.0 mm!. The details of the time
evolution of the system and the phase portraits for th
states have been published elsewhere@15–18#. It is also
known that for the relatively low magnitude of the drive fie
used here and in the range of wall height between 3.0 and
mm only two coherent spacial structures~Bloch lines! propa-
gate alongw(z,t) @15,18#. The number of Bloch lines in-
creases sharply and may change with the time for w
heights larger than 5.0mm. As found below, in this range o
the wall height the complexity of the states of the syst
increases rapidly with the system size.

C. Nonstationary time series

In order to verify the efficiency of the method present
in identifying transitions between states during nonstation
ity, an artificial test time series was considered. Thetw time
series calculated for the statesC1 andC3 were combined to
h
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form alternating segments of equal length in such a way
one segment was taken from one state and the next seg
from the other. The segments taken from each state did
repeat and resulted from the natural evolution of the resp
tive states. The length of each segment was 500 points
the length of the whole time series was 5000. The segm
were normalized so as to have the same mean and varia
This test signal mimics a particularly vicious case of cha
chaos intermittency@1,28# in which the different chaotic
phases are difficult to distinguish.

A different type of nonstationarity studied was obtain
by simulating a slow, steady increase of the drive field in
range from 20–35 Oe and the wall height fixed ath
51.1mm. The properties of the wall for this set of param
eters had not been studied earlier.~Here we present only the
results for the range from 25.8–26.2 Oe. The results in
rest of the drive field range studied were similar!. During the
evolution of the system every 7000 ns, the drive field ma
nitude was incremented stepwise within a predefined ran
The drive field increment was set to 0.001 Oe. The z
crossings were registered within a 5000-ns period after w
ing 2000 ns to be sure that all transients had ended.
calculations during each constant drive phase of this pro
dure were performed as for the stationary state.

IV. SYMBOLIC DYNAMICS AND SEQUENTIAL
ORDER PARAMETER

To calculate algorithmic complexity as the sequential
der parameter the following procedure was applied.

The one-dimensional time series to be analyzed was
bedded in anm-dimensional delay coordinate space with t
use of the Takens theorem@29#. Next, the following method
of symbolic coding was used:~i! define a time window
containing a fixed number of pointsN, ~ii ! for the given time
window calculate an averageak , wherek51, . . . ,m is the
index of the delay coordinate, and~iii ! within the time win-
dow, associate anm-dimensional vector consisting of th
symbolsCk(t) with each point of the delay coordinate spa
trajectory:

Ck~ t !50 if x@ t1~k21!t#<ak2«,

Ck~ t !51 if ak2«,x@ t1~k21!t#,ak1«,

Ck~ t !52 if x@ t1~k21!t#>ak2«

for k51,2, . . . ,m,

where x is the signal analyzed,t is the index of the time
series~integer time!, andt is the Takens delay.

For one-dimensional maps, the choice of the number
symbols used is typically related to the number of critic
points of the map@4# but in our case such an analysis
impossible for the return maps obtained for the domain w
are extremely complex, higher-order sets. Moreover, the c
ing threshold« for each control parameter value would ha
to be determined separately, which would make the anal
too complicated. In any case, it may seem at first glance
two symbols would be enough to code a time series obtai
numerically. We found it necessary to add the middle sy
bol ‘‘1’’ to avoid the artifacts due to the error in the dete
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3976 PRE 60T. BUCHNER AND J. J. Z˙EBROWSKI
mination of the length of the orbit. The value of« was set to
0.1, which is twice the numerical time step.

Each point in them-dimensional delay coordinate spa
was thus represented by a single point in the correspon
m-dimensional coding space, i.e., by a symbolic word ofm
letters. After coding all the points in a time window, th
algorithmic complexity was computed with each word ofm
symbols treated as a single element in the algorithm.

Algorithmic complexity counts the number of words th
a string of lengthL may be decomposed into. The procedu
introduced first by Lempel and Ziv is the following@10#. The
word w0 is the first symbol in the string. The wordwk11 is
the shortest word followingwk that cannot be decompose
into w0 ,w1 ,...,wk . Formally algorithmic complexity is de
fined in the limit ofL→`.

We use algorithmic complexity as a local measure
computing its estimator in a short moving window conta
ing a fixed number of data@6,8,30#. As the window is
moved, a time series of the estimator is produced. The p
erties of the state analyzed are described by the propertie
the probability distribution of the estimator of algorithm
complexity: the mean value, the position of maximum of t
distribution, the minimum and maximum value of the es
mator, etc. This kind of approach has already been succ
fully used for nonstationary systems@6,8,9#. In most of our
calculations, we used the window lengthN equal to 100 but
the values of: 10, 20, 50, 100, 200, and 500 were also s
ied.

Algorithmic complexity vanishes for periodic signa
@10#. The estimator of algorithmic complexity has low valu
for periodic motion whereas for chaotic motion it typical
does not exceed about one half of the window length. T
moving average and the variance were also calculated fo
same window length for comparison.

V. RESULTS

A. Time intervals of chaotic states

Figure 2 depicts examples of the dependence of the t
intervals between zero crossingstw on the time for the cha-
otic statesC1, C3, andC5, respectively. StateC1 is chaotic
despite the patterns visible in Fig. 2. StateC3 containing the
laminar regions not present in statesC1 and C5 may be

FIG. 2. Series of time intervalstw for the chaotic statesC1, C3,
andC5.
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identified from Fig. 2 as intermittent. A separate study of t
properties of this state is in preparation. StatesC1 andC5
seem more chaotic thanC3 although the nature of thes
states seems to be different.

Figure 3 depicts the time dependence of the extre
~curve b! and the corresponding time intervals betwe
crossings~curve a! for stateC3. In the laminar regions the
orbits have the same length but also have their minima at
same point, i.e., at the local minimum of energy in the vic
ity of w52p in the moving frame. During the turbulen
phase, the trajectories oscillate around the local maximum
energy atw52p/2. One must remember that the system
spatially extended so that it tends towards a global minim
of energy. Thus it is not necessary that the value of
azimuthal anglew at the midpoint of the Bloch wall have th
orientation of the minimum of energy. It may be seen th
the local minima, although unstable, still possess some
tracting properties. A more detailed discussion of the pr
lem of the local and global minima of energy requiring t
examination of the system in space variables is in prep
tion.

For chaotic states the relation betweentw and ws is not
trivial. The laminar phases for the intermittent states likeC3
are synchronized in both variables~they begin and end at th
same time! but we found that the maptw5tw(ws) is ex-
tremely complex. Note also that during the laminar pha
the intercrossing intervals stay almost constant while the
trema of the variables drift~Fig. 3!.

Figure 4 depicts the natural measures constructed f
the time series of 5000 data points for statesC1, C3, andC5.
The well discernible peaks in the distribution for stateC3 in
this figure correspond to the two characteristic lengths
frequently visited orbits visible in Fig. 3. The right pea
corresponds to the orbits ending nearw52p that are
present during the laminar phase, whereas the left peak
responds to those ending nearw50. Both of the peaks of the
distribution are located in the vicinity of the equivalent loc
minima of energy. The shape of the distribution forC3 in-
dicates a symmetry breaking effect while the two peaks
tained forC1 are symmetric. For stateC5 the natural mea-

FIG. 3. The time intervalstw ~curve a! and the corresponding
extremaws ~curveb! for the chaotic stateC3.
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sure contains no high peaks, which means that in this s
there are no orbits of preferred length.

Above we have seen that the different states of the Bl
wall studied here certainly exhibit a different level of com
plexity. StateC3 contains the most laminar regions and
thus less complex than the other chaotic states presented
interesting that although the states for smaller wall heighh
also contain only two Bloch lines their complexity is highe
The states for largerh contain more Bloch lines@16,18# and
their complexity increases with an increasing thickness
the film, as will be shown below.

B. Choice of variable and method of data reduction

Due to the effect of the repeller situated in phase spac
(0,0) ~around which the trajectory spirals@16,18#! the time
evolution of the series derived from the azimuthal an
w(z,t) are somewhat more complicated than those
q(z,t). Although the time series oftw were used here for the
algorithmic complexity calculations, the results for the tim
series of the maximaws and the corresponding time serie
for variableq(z,t) made for comparison were very simila
Due to the coarse graining of the symbolic coding pro
dures used here, the choice of the variable of the system
found to have no effect on the assessment of the rela
level of complexity of chaotic statesC1 –C5. In intermittent
states such asC3 andC4 the intercrossing intervals seem
be better suited for the analysis of the chaotic state bec
during the laminar phases, they remain almost constant w
the extrema of the variables drift~Fig. 3!.

C. Complexity of chaotic states

The results of algorithmic complexity calculations f
statesC1 –C5 are depicted in Figs. 5 and 6. In Fig. 5 on
may see that the shape of distributions of this measure is

FIG. 4. Natural measure of the time intervalstw for the chaotic
statesC1, C3, andC5.
te
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FIG. 5. Probability distributions of the algorithmic complexityC
for the chaotic states. Note the different shape of histograms for
intermittent statesC3 andC4.

FIG. 6. Algorithmic complexity and the variabletw for states
C3 andC4.
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uniform. The distributionsC1,C5, and to some extentC2,
seem to form a family of reversed Poisson-like distributio
Such a shape of the distribution of the local order param
was observed and is typical for the chaotic states@8,9,30#.
State C3 has a dominantly bimodal distribution where
stateC4 has a wide Poisson-like distribution of the algorit
mic complexity. Analyzing the distributions of algorithmi
complexity we may conclude the following.

~a! The type of chaotic behavior for stateC1 is different
than for stateC2. Indeed, earlier investigations showed th
there is a periodic state in the region in between statesC1
and C2 @17#, which may result in a change of the type
chaotic behavior.

~b! The broad distributions for statesC3 andC4 clearly
indicate intermittency: these states are mixtures of pha
with different levels of complexity. The distribution forC4
is the only one which is Poisson-like with the maximum
the left.

~c! The type of chaotic behavior for stateC5 and the
states for even higher values of the wall height is such
they are more chaotic than the other states. From earlie
vestigation we know that at these values of wall height
generation of a large number of Bloch lines occurs and th
number increases with the height of the wallh @17,18#. It is
interesting that stateC1, which contains only two Bloch
lines, has a similar average complexity. Note, however,
the distributions forC1 andC5 have a very different shap
with the tail for C1 extending towards very low complexit
levels.

The average or the position of the maximum of the his
gram may be taken as the quantitative order parameter. I
analyze the position of the maximum, we may see that s
C4 is the most ordered whereasC1 or C5 are the least. Fo
intermittent states when the distribution is nonunimodal
cause the signal consists of two different phases, such
order parameter will show some change when the con
parameter is varied but the determination of the true cha
ter of the state requires a further analysis of the shape of
distribution.

If just the time interval time series is analyzed, the re
tion between statesC3 andC4 seems unclear~Fig. 6!. State
C3 seems to be apparently more ordered thanC4 and has
easy to distinguish periods of laminar and turbulent pha
On the other hand, one should keep in mind that the esti
tor of the algorithmic complexity is calculated in a time wi
dow of a fixed length~100!. The finite time window intro-
duces a time scale into the observation. As can be seen
the dominant magnitude of the algorithmic complexity
Fig. 6, stateC4 is otherwise less ordered thanC3. However,
the lengths of the laminar phases are of the order of
window length, causing the complexity to decrease for b
periods of the time. This shifts the maximum of the distrib
tion to the left. Thus, the local measures such as algorith
complexity do exhibit fluctuations but the latter are in fa
related to the local properties of the signal studied. If
window length chosen for the calculations were an orde
magnitude smaller, the complexity of stateC3 would be
lower than the complexity of stateC4. To conclude, the
choice of the window lengthN is in fact the choice of the
minimum time scale of a signal to which the local measure
to be sensitive to.
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When the method of time intervals was used it beca
possible to identify statesC3 andC4 as intermittent by sim-
ply looking at the behavior of the intervals with the tim
~Fig. 2!. There are, however, certain situations when su
qualitative distinction is not enough because it says noth
about the relative order of two given states. The idea
characterizing complexity of different states of the dynam
cal system by single values of the order parameter is us
when we have to analyze the system behavior in a w
range of parameters to discern regions of different dynam
The systems for which such an approach will be even m
constructive are nonstationary systems with nonquasis
parameter changes, as biological systems, where we ha
monitor a system subject to unknown changes of the par
eters.

The results of the calculation of algorithmic complexi
obtained when the wall height was changed with the sm
increment of 0.005mm are depicted in Fig. 7 together wit
the bifurcation diagram, which was formed by plotting a
the attractor orbit lengths corresponding to each wall hei
in a separate vertical line. The algorithmic complexity p
~curve c! is accompanied by the moving average~curve b!
and the moving variance~curve a! calculated in the sliding
time window of the same length equal to 100. It can be s
that regions of intermittent or periodic behavior in which t
values of algorithmic complexity are lower are frequent
parameter space. StatesC3 andC4 are located in such re
gions. There is no visible effect of the characteristic length
the system~the soliton width 0.3mm! on the level of

FIG. 7. Moving variance~curve a!, moving average~curve b!,
and algorithmic complexity~curve c! as a function of the wall
height every 0.005mm. Bifurcation diagram depicted by dots. A
gorithmic complexity of the chaotic statesC1 –C5 studied in@14–
17# denoted by crosses.
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complexity as the wall height is varied.
The moving average as well as the variance are not s

able as quantitative measures of complexity. This is part
larly well visible for the periodic window at aroundh
54.0mm, which was not detected by either of them. The
quantities do not describe the nonlinear dynamics of the
tem. Note that in certain parameter ranges of the con
parameter in Fig. 7, a number of periodic windows can
easily identified by the downward spikes of the algorithm
complexity that are not always visible in the bifurcation d
gram. Note also that the algorithmic complexity is mu
easier to calculate automatically than any fractal dimens
so that we could relatively easily perform the calculations
500 states, as depicted in Fig. 7, on a standard PC.

D. The choice of parameters of the embedding

The probability distributions of algorithmic complexit
for all chaotic statesC1 –C5 were calculated with the valu
of the delayt varied from 1 to 20 and for embedding dime
sions from 1 to 5. The relative properties of the distributio
of algorithmic complexity for the different chaotic states r
mained unchanged for a relatively wide range of embedd
dimensions and delay times. We consider the embedding
mensionm54 or m55 optimal for the purpose of the as
sessment of the relative complexity of the chaotic states.
m51 the shape of the distributions does not change with
control parameter. The nature of the signal may not be
certained as the differences in positions of the distributi
are of the order of 5%. On the other hand, the increase of
embedding dimension abovem55 leads to very complex
shapes of the distributions of algorithmic complexity. Fu
thermore, an embedding dimension between 4 and 5 ag
very well with the calculations of the fractal dimensions f
the chaotic states of the Bloch wall where it was found t
the correlation dimension does not exceed 2.5@11,12#. We
found the optimal delay to bet54 because for this value a
the typical features of algorithmic complexity distribution
are clearly visible. Finally we have usedt54 andm55 as
the optimal reconstruction parameters. Embedding a o
dimensional signal using the Takens theorem combined w
the m-dimensional symbolic coding enables us to achie
more sensitivity.

E. Nonstationary data

The results of the analysis of the artificially created no
stationary data is depicted in Fig. 8. The segments of d
from statesC1 andC3 normalized as to have the same me
and variance are alternating as shown by the rectang
curve. The topmost curve~curvea! shows the data wherea
curvesb and c show the algorithmic complexity calculate
for the time window length 100 and 10, respectively. T
dashed lines in Fig. 8 mark the levels of complexity f
statesC1 andC3.

It may be seen that algorithmic complexity detects
changes of state even if the mean and the variance do
change from one segment to the other significantly. Note
the magnitude of algorithmic complexity of the normaliz
signal is the same as in Fig. 5~distribution maxima! for the
nonnormalized data. For the window of length 100 the d
ference in complexity between the states is of the orde
it-
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50%. The above result may be obtained only if the obser
tion window is shorter than the mean value of the length
the phases of different states~in this case the length of suc
phases is 500!. This is a clear advantage of the estimator
algorithmic complexity calculated as a local measure o
the same quantity calculated from the definition, i.e., inclu
ing the limit to infinity. In this limit, the identification of
phases of different states would be impossible.

The length of the observation window may be made ev
shorter than 100, which enables us to detect better the
moment of phase switching, not only its presence. Note
even for the extreme value of window lengthN510 ~curve
b! the moment of switching is detected although both sta
are not as clearly discerned as in case of the window len
N5100 ~curve c!. For the curvesb and c the value of the
coding parameter« was set to 0.001, which enhanced t
sensitivity. This indicates that for the detection of the m
ment of switching, two-symbol coding is better than thre
symbol coding. In general, the value of« should exceed the
noise level in the system studied no matter what the sou
of the noise. The noise may be external but it also may b
property of the measurement~e.g., the error of the estimatio
of the orbit length!. Neglecting this requirement causes m
leading effects obtained for the periodic states. On the o
hand, this parameter should be as low as possible, other
some details in the signal relevant to the dynamics would
ignored.

The results for the nonstationary slowly varying driv
field are the following. The bifurcation diagram and the a
gorithmic complexity curve are depicted in Fig. 9 togeth

FIG. 8. Artificial nonstationary signal~curvea! and algorithmic
complexity for window lengthN5100 ~curve b! and for N510
~curvec!. Moments of switching marked below by the square wa
Average algorithmic complexity forC1 and C3 is marked by
dashed horizontal lines.
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with the results for stationary calculations in the same ra
added for comparison. It may be seen that for the nonstat
ary case, there exists a periodic solution at about 26 Oe
ible in the stationary case only as a narrow window. T
periodic state in the nonstationary case is sensitive to
history of evolution of the system. For a different scenario
the drive field increments and different lengths of the s
this effect may not occur in this range of the drive fie
However, it was observed frequently during the calculatio
for various nonstationarity scenarios. The effect discus
here seems to be the equivalent to tracking observed
now in maps@31#. In this phenomenon the stability range
the periodic orbit may be extended by applying sm
changes of the system parameter. The phenomenon obs
in the domain wall under a slowly varying drive seems to
a ‘‘self-tracking’’ effect as no external stochastic or cha

FIG. 9. Fragment of the bifurcation diagram as a function of
magnitude of the drive field for the constant wall heighth
51.1mm and the resultant algorithmic complexity curve for t
stationary and nonstationary changes in the drive field.
.

is
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is-
s
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.
s
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l
ved
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control algorithm perturbations were applied in our case. I
probable that multistability plays a role in this effect.

Algorithmic complexity within the stability range of peri
odic solutions fluctuates in a nonstationary case. These fl
tuations are the direct consequence of fluctuations in
lengths of the orbit that are of the order of 0.5 ns~10 time
steps!, which are not visible in the bifurcation diagram due
the scale used. Note that there are no such fluctuations a
right end of the stability range of the new periodic solutio
Also, there is a drop in the complexity at 26 Oe in the s
tionary case, which indicates a narrow periodic windo
Nonstationarity stabilizes and extends the stability range
this window.

VI. CONCLUSIONS

The chaotic states of a complex system—the model o
magnetic domain wall—were analyzed. We applied a mu
dimensional form of symbolic dynamics to anm-dimensional
delay coordinate reconstruction of the trajectory of the s
tem. A local measure: a short window estimator of the alg
rithmic complexity of the series of words obtained from t
symbolic coding was used as the sequential order param
and compared with the mean and the variance calculated
sliding window.

We demonstrated that this method is suitable for the ch
acterization of states of different complexity, especially if t
system behavior is to be analyzed in a wide range of
control parameter. It is also suitable for the detection of
termittency and chaos-chaos intermittency because
method allows us to identify phases of different dynamics
a signal, even when there is no difference in the mean
the variance, and has the ability to detect precisely
moments of switching between different phases in
signal. This last property makes the method suita
for the analysis of nonstationary systems with step-w
changes of the control parameter. Altering the windo
length enables us to choose the minimum time scale
which the order parameter will be sensitive. Such a char
terization seems to yield more information than a frac
analysis applied earlier to the same chaotic states@11,12# and
certainly is better able to discern the different states of
system.

For nonstationary changes of the drive field we obser
the extension of the stability of the periodic solution onto
wider parameter range. This phenomenon may be simila
tracking in simple maps@31#.
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