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The probability distribution of a complexity measure is used to characterize chaotic states: an estimator of
the algorithmic complexity of a time series of symbolic words is calculated within a fixed length time window,
which sweeps through the time series analyzed. The words are derived through a symbolic dynamics scheme
applied in anm-dimensional delay coordinate space. Time intervals instead of the variables of the system are
used. The chaotic states of a model of a magnetic domain wall are characterized better by the methods
presented than with the use of fractal dimensions and new intermittent states of the system were easily
identified. Using an artificial nonstationary signal composed of different chaotic states of the Bloch wall as a
test for chaos-chaos intermittency we demonstrate that the method developed is suitable for the detection and
characterization of intermittency. It is also shown that nonstationarity in the form of a slow monotonic drift in
the control parameter may extend the stability range of periodic states of the spatially extended system
studied—a trackinglike phenomendi$1063-651X99)11510-1

PACS numbeis): 05.45—a, 75.10.Hk, 75.60.Ch

[. INTRODUCTION bolic dynamics, we use an estimator of the algorithmic com-
plexity [10] of a time series of symbolic words. The words
To quantify the properties of chaotic states of nonlinearare derived through a symbolic dynamics scheme defined in
dynamical systems, complexity measures such as fractal dsuch a way that it maps a trajectory from ardimensional
mensions, Liapunov exponents, and various types of entrop§felay coordinate space into thedimensional symbol space
[1] are often applied. The major drawback of many complex{multidimensional coding6,8,9)). We verify the usefulness
ity measures used to characterize the properties of chaotRf this approach to the_ analysis of nonstationary data..
states is that they are defined for trajectories of infinite S€arching for the kind of data, which may be relatively
lengths. This is because the dynamical systems analyzed a§@Slly extracted from a time series, we discuss the use of

assumed to be ergodj2]. One way of characterizing a sys- tim::‘ intertva(ljl_s getwéeen zero crt%ssings I(t)f th_?hv?hriablesl Of. thef
tem, which may not be ergodic, is to study the probabilitySys em studied and compare the resuts wi € analysis o

distribution of the given complexity measure. Such an ap_the successive extrema of the variables of the system. We

X - . . show that the approach described is able to arrange in pa-
proach was implemented [i§] where the probability distri- rameter space the chaotic states of a model of a spatially

bution of the Iocal.l_.iapunov expongnts of a classical cluster xtended system with solitons—the Bloch magnetic domain
Ars, whose ergodicity depends on its energy, was analyzeg, ) [11_18—according to their complexity. The states of
for a set of increasing values of the lengths into which thne Bloch wall may be more precisely identified by time
trajectory of the system was partitioned. Conclusions as t¢hiervals than by using just the system variables. We demon-
the properties of the states at different energy levels wergyrate this by studying newly identified intermittency states
drawn from the shape of the probability distributions of theassociated with a symmetry breaking phenomenon. Forming
local Liapunov exponents. an artificial nonstationary signal composed of different cha-
Ergodicity is questionable especially when nonstationarityotic states of the Bloch wall, we show that the method de-
of the system is expected. The aim of this paper is to showeloped is able to analyze chaos-chaos intermittency, i.e.,
that complex chaotic states may be characterized by thiglentify in the signal the phases with a different level of
probability distribution of a complexity measure calculatedcomplexity and precisely identify moments of rapid switch-
within a fixed length time window, which sweeps throughing between these phases. Thus, the method is also suitable
the time series analyzed. We show that the method devefor the analysis of nonstationary signals. Next, we analyze
oped is equally well suited to analyze nonstationary states ahe effect of a slow monotonic drift in the control parameter
chaotic systems as well as intermittency. The complexitythe drive field magnitudeon the dynamics of the Bloch
measures mentioned earlier typically quantify the statisticalvall and find that such a drift may stabilize some of its
properties of the state analyzed. Instead, symbolic dynamigseriodic states. The possible reasons for this effect are dis-
[4] may be applied5—-9] to detect the sequential order in the cussed.
signal, ignoring information about the details of the trajec-
tory in phase space. As the complexity measure in the sym- Il. THE MODEL
We analyzed the model of a spatially extended, micro-
*Electronic address: buchner@if.pw.edu.pl magnetic system—a magnetic domain wall of the Bloch-type
TElectronic address: zebra@if.pw.edu.pl (Fig. 1. This system has been studied in the past in several
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Bloch wall explicitly into the equations of motion and affects the dy-
\ Bloch line namics of our system through the number of spatial grid
/ points used in the numerical integration with the distance
between grid points fixed.
H, The initial conditions given above used with our model of
PSR 2 the Bloch wall(Fig. 1) would result in the numerical equiva-
I e ' lent of the well-known Walker moddl19]: a spatially uni-

form precession in the azimuthal angtéz,t) would last for
/ ever. The motion of the wall would be either running—
; ,__/4 . ____//_____ __\ _____ . oscillatory or with a constant velocity—if the external drive

field H, is less than the Walker critical field,, (a charac-
. teristic of the magnetic material[18,19—here H,,
/ \ =10.92 O¢. The uniform precession mode is unstable, how-

magnetic domain magnetic domain ever. WherH,>H,, and the symmetry of the system is bro-

) ) ) ) _ ken(in our case by a 0.08% change of the drive field at an

_ FIG. 1. Schematic of the Bloch magnetic domain wall in a thin o hirarily chosen, single spatial grid point for two time
film of uniaxial magnetic material of thickness The arrows inside steps coherent spacial structures—Bloch lin@g. 1)—are
the domain wall mark the direction of the magnetization. Within thegenerated at drives above the Walker fi¢l7,18. The
Bloch wall and within the Bloch line only the central magnetization Bloch lines connect regions of magnetic moménts at the en-
vectors are marked. ergy minimum orientations ate=nw, n=0,=1,*2,
+3, ... andpass through the energy maximum located ex-
actly in between, ap=n/2.

One or several of such coherent spatial structures are
present during the motion of the Bloch wall in any one of the

contexts[11-18. It is described by a pair of nonlinear par-
tial differential equations of motion, which can be derived
from the Landau-Lifshitz-Gilbert equatidi 7,18:

2A e states studied below. Their number depends on the state but
q=7vyA|27M sin(2<p)—VF +alo, (1) is, in general, greater when the height of the wall is in-
creased. Soliton properties of the coherent spatial structures
oA 2 ) of the Bloch wall[17] are an important feature of the system.
o=1H,+ _(?_2 _aﬂ 2) The soliton properties of the Bloch lines are retained, even
AM 9z A’ though the system is dissipative, provided the drive field Hz

is large enough to compensate for the dissipalibfi. The

where thez variable is perpendicular to the surface of the propagation of solitons along the Bloch wall of a finite
magnetic film in which the domain wall residegz,t) is the  height results in nonmonotonic correlations of the dynamics
position of the wall,¢(z,t) is the azimuthal angle between occurring at remote parts of the wdR0,21. The fractal
the magnetization vector and the wall surfalde,is the spa-  dimensions and the spatial distribution of the dimension
tially uniform and constant in time drive fieldy is the phe-  along the wall height were calculated in Refd1,12. In
nomenological damping constant,is the gyromagnetic ra- particular, it was found that the values of the fractal dimen-
tio, 47M is the saturation magnetizatioA,is the exchange sions do not differ significantly for the different chaotic
constant, andrA is the Bloch wall width. The azimuthal states(only by about 20%
angleg is given in radians while the position of the walis For the drive fieldH, greater than the Walker field the
given in units of the wall width paramete. specific mode of motion of the wall depends on a combina-

The model of the Bloch wall may only be analyzed by tijon of control parameters: the drive field magnitudgand
numerical means. Below we used the explicit finite differ-the heighth of the wall. For the magnitude of the drive,
ence scheme dfL8] with the same time step as used thereset at 12 Oe, i.e., 1.08 Oe above the Walker field, depending
(0.05 ng. This scheme is extremely stable and, in the presengn the height of the wall, periodic or chaotic states of the
study, has enabled us to calculate trajectories of the Blocyall with coherent spatial structures occusee also
wall exceeding 163us in length, i.e., 3.28 10° numerical [15,16,18). These structures are confined to the variable
time steps. For initial conditions, we assumed that the wall isy(z,t) while q(z,t), i.e., the position of the wall, undergoes
flat [q(z,0)=0] and that all the magnetic moments lie in the g vibration forced by the propagation of the Bloch line.
plane of the wal[ ¢(z,0)=0]. As in[18] we assumed force-
free boundary conditions neglecting the surface stray field.

Ill. THE DATA
aq ~0 A. Data reduction methods
gz Studying spatially extended systems, described by partial
differential equations we typically obtain a large amount of
5'_<P:O 3) information, which needs to be reduced in order to be ana-
iz lyzed efficiently. The reduction must not distort or ignore

any important information about the studied state. The

As the control parameters, the drive field magnititle  method that has focused much attention recently is to use

and the distance between the surfaces of the film, i.e., théme intervals between characteristic events during the evo-
height of the wallh were used. The latter does not enterlution of a dynamical systerf22,23. This type of time se-
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ries, which seems to be natural for biomedical researcliorm alternating segments of equal length in such a way that

[24,25, has not been widely used with physical models andone segment was taken from one state and the next segment

systems so faf26)]. from the other. The segments taken from each state did not
The idea was applied in the following steps. First, therepeat and resulted from the natural evolution of the respec-

analysis was limited to the projection of the phase portrait tdive states. The length of each segment was 500 points and

the midplane of the film. The phase portrait was constructedhe length of the whole time series was 5000. The segments

in the frame moving with the wall by subtracting at eachwere normalized so as to have the same mean and variance.

time step the average wall position and the average azilhis test signal mimics a particularly vicious case of chaos-

muthal angle. Although the system is spatially extended, i€haos intermittency[1,28] in which the different chaotic

has been shown befofd5-18 that the projection of the Phases are difficult to distinguish.

phase portrait to the midplane is sufficient to distinguish be- A different type of nonstationarity studied was obtained

tween different states. The results below will be given for theby simulating a slow, steady increase of the drive field in the

variable ¢(t); however, similar results were also obtainedrange from 20-35 Oe and the wall height fixed hat

for the wall positiong(t). Next, the time intervalg, be- ~=1.1um. The properties of the wall for this set of param-

tween consecutive zero crossings in the positive directioters had not been studied earligiere we present only the

were found for the chosen variable. All the time intervigs ~ results for the range from 25.8-26.2 Oe. The results in the

form a one-dimensional time series in which each OﬁDit rest of the drive field range studied were SIn’)lJ@UI’II’Ig the

fact, half of the orbit length is represented by a single value. €volution of the system every 7000 ns, the drive field mag-

Local extrema, namely, the minima of the variableg(t) nitude was incremented stepwise within a predefined range.

between zero crossings were also recorded. Time series ¢ drive field increment was set to 0.001 Oe. The zero

the extrema of a selected variable were used by Lof@iz crossings were registered within a 5000-ns period after wait-
For each state, after all transients had died out, we calcind 2000 ns to be sure that all transients had ended. The

lated the data on 5000 zero crossings. The time span of og@lculations during each constant drive phase of this proce-

data was thus 168s. In a real magnetic film, the Bloch wall dure were performed as for the stationary state.

may not move for such a long time as it would interact with

the other walls. The unphysical length of the data series was  1V. SYMBOLIC DYNAMICS AND SEQUENTIAL

used to discuss the properties of the method developed here ORDER PARAMETER

but we show below that the number of data required to dis-

tinguish between states is only a few tens of zero crossing To calculate algorithmic complexity as the sequential or-

%er parameter the following procedure was applied.

The one-dimensional time series to be analyzed was em-
bedded in am-dimensional delay coordinate space with the
For the purpose of this study the range of wall heightuse of the Takens theoref#9]. Next, the following method

from h=3.5—-6um was examined with a step equal to 0.0050f symbolic coding was used:(i) define a time window
um, which is of the order of changes of height accessible ircontaining a fixed number of poinb¢, (ii) for the given time

a magnetic film produced by epitaxy. The specific heightwindow calculate an averagg, wherek=1, ... m s the
range was chosen because, for the material parameters usadex of the delay coordinate, artiii ) within the time win-
here, it has been shown earligt5—18 which dynamical dow, associate am-dimensional vector consisting of the
states exist for several values of the height of the wall and aymbolsC,(t) with each point of the delay coordinate space
drive field magnitude fixed at 12.0 Oe. Apart from two peri- trajectory:

odic states, a period-2 state existing in the rangén dfe-

B. Stationary chaotic states

tween 1.2—-3.Qum and a period-4 state identified earlier at Cu(t)=0 if x[t+(k=1)7]<ax—e,
h=4.0um, there exist chaotic states of which five were cho- ]

sen:C1 (h=3.5 um), C2 (h=4.5 um), C3 (h=5.0 um), C4 Ct)=1 if ay—e<x[t+(k—1)7]<acte,
(h=5.5 um), andC5 (h=6.0 um). The details of the time )

evolution of the system and the phase portraits for these Cut)=2 if x[t+(k—1)7]=a—¢
states have been published elsewhglB-18. It is also

known that for the relatively low magnitude of the drive field for k=12,...m,

used here and in the range of wall height between 3.0 and 5.0 . . . . .
um only two coherent spacial structur@och lineg propa- wh_erex is the _5|gnal a”"’!'yzed' is the index of the time
gate alonge(z,t) [15,18. The number of Bloch lines in- serles(lntege_r t'me'_ andr is the Takens_delay.

creases sharply and may change with the time for wall For one-dlm_ensmqal maps, the choice of the numb_gr of
heights larger than 5.0m. As found below, in this range of symbols used is typically related to the number of critical

the wall height the complexity of the states of the syster’rpomts 9f the mag4] but in our case such an analy§|s 1S
increases rapidly with the system size. impossible for the return maps obtained for the domain wall

are extremely complex, higher-order sets. Moreover, the cod-
ing thresholds for each control parameter value would have
to be determined separately, which would make the analysis
In order to verify the efficiency of the method presentedtoo complicated. In any case, it may seem at first glance that
in identifying transitions between states during nonstationartwo symbols would be enough to code a time series obtained
ity, an artificial test time series was considered. Théime  numerically. We found it necessary to add the middle sym-
series calculated for the stated andC3 were combined to bol “1” to avoid the artifacts due to the error in the deter-

C. Nonstationary time series
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FIG. 2. Series of time intervals, for the chaotic state€1, C3,
andC5.

Interval index

mination of the length of the orbit. The value ofvas set to FIG. 3. The time intervals$, (curvea) and the corresponding
0.1, which is twice the numerical time step. extremagps (curveb) for the chaotic stat€3.

Each point in them-dimensional delay coordinate space
was thus represented by a single point in the correspondin
m-dimensional coding space, i.e., by a symbolic wordrof
letters. After coding all the points in a time window, the
algorithmic complexity was computed with each wordnof
symbols treated as a single element in the algorithm.

Algorithmic complexity counts the number of words that
a string of length. may be decomposed into. The procedure
introduced first by Lempel and Ziv is the followi@0]. The
word wy is the first symbol in the string. The word, 4 is
the shortest word followingv, that cannot be decompose
into wg,wq,...,w,. Formally algorithmic complexity is de-

|%entified from Fig. 2 as intermittent. A separate study of the
properties of this state is in preparation. Stafds andC5
seem more chaotic tha@3 although the nature of these
states seems to be different.

Figure 3 depicts the time dependence of the extrema
(curve b) and the corresponding time intervals between
crossings(curve a) for stateC3. In the laminar regions the
orbits have the same length but also have their minima at the
d same point, i.e., at the local minimum of energy in the vicin-

ity of ¢=—a in the moving frame. During the turbulent
fined in the limit of L —oo. phase, the trajectories oscillate around the local maximum of

We use algorithmic complexity as a local measure bye”er_gﬁ at‘P:_dW/dz' Onhe must r;:membedr thatlthbe Isys_te_m IS
computing its estimator in a short moving window contain-SPatially extended so that it tends towards a global minimum

ing a fixed number of datd6,8,30. As the window is of energy. Thus it is not necessary that the value of the

moved, a time series of the estimator is produced. The progiZimuthal anglep at the midpoint of the Bloch wall have the
erties of the state analyzed are described by the properties §fi€ntation of the minimum of energy. It may be seen that

the probability distribution of the estimator of algorithmic M€ local minima, although unstable, still possess some at-
complexity: the mean value, the position of maximum of thelracting properties. A more detailed discussion of the prob-

distribution, the minimum and maximum value of the esti- lem O_f th_e local and global _minima of energy r_eq_uiring the

mator, etc. This kind of approach has already been succesgX@mination of the system in space variables is in prepara-

fully used for nonstationary systerf§,8,9. In most of our 10N _ _ .

calculations, we used the window lendthequal to 100 but _ For chaotic states the relation betwegnand ¢ is not

the values of: 10, 20, 50, 100, 200, and 500 were also studrivial. The laminar phases for the intermittent states (k2

ied. are synchronized in both variablébey begin and end at the
Algorithmic complexity vanishes for periodic signals Same time but we found that the map,=t,(¢s) is ex-

[10]. The estimator of algorithmic complexity has low values {fémely complex. Note also that during the laminar phases

for periodic motion whereas for chaotic motion it typically the intercrossing mtervals stay almost constant while the ex-

does not exceed about one half of the window length. Thdréma of the variables driftFig. 3.

moving average and the variance were also calculated for the Figure 4 depicts the natural measures constructed from
same window length for comparison. the time series of 5000 data points for stdfds C3, andC5.

The well discernible peaks in the distribution for st&t® in

this figure correspond to the two characteristic lengths of
V. RESULTS frequently visited orbits visible in Fig. 3. The right peak
corresponds to the orbits ending near — 7 that are
present during the laminar phase, whereas the left peak cor-

Figure 2 depicts examples of the dependence of the timeesponds to those ending nea+ 0. Both of the peaks of the

intervals between zero crossingson the time for the cha- distribution are located in the vicinity of the equivalent local
otic statesC1, C3, andC5, respectively. Stat€1 is chaotic minima of energy. The shape of the distribution ©38 in-
despite the patterns visible in Fig. 2. St&@8 containing the dicates a symmetry breaking effect while the two peaks ob-
laminar regions not present in stat€d and C5 may be tained forC1l are symmetric. For state5 the natural mea-

A. Time intervals of chaotic states
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sure contains no high peaks, which means that in this state
there are no orbits of preferred length.

Above we have seen that the different states of the Bloch
wall studied here certainly exhibit a different level of com-
plexity. StateC3 contains the most laminar regions and is
thus less complex than the other chaotic states presented. It is
interesting that although the states for smaller wall hefght
also contain only two Bloch lines their complexity is higher.
The states for largdn contain more Bloch linegl16,18 and
their complexity increases with an increasing thickness of
the film, as will be shown below.

B. Choice of variable and method of data reduction

Due to the effect of the repeller situated in phase space at
(0,0) (around which the trajectory spiral]¢6,18) the time
evolution of the series derived from the azimuthal angle
¢(z,t) are somewhat more complicated than those for
q(z,t). Although the time series df, were used here for the
algorithmic complexity calculations, the results for the time
series of the maximag and the corresponding time series
for variableq(z,t) made for comparison were very similar.
Due to the coarse graining of the symbolic coding proce-
dures used here, the choice of the variable of the system was
found to have no effect on the assessment of the relative
level of complexity of chaotic stateg31 —C5. In intermittent
states such a83 andC4 the intercrossing intervals seem to
be better suited for the analysis of the chaotic state because
during the laminar phases, they remain almost constant while
the extrema of the variables driffig. 3.

C. Complexity of chaotic states

The results of algorithmic complexity calculations for
statesC1—-C5 are depicted in Figs. 5 and 6. In Fig. 5 one
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may see that the shape of distributions of this measure is n@3 andCa4.
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uniform. The distributionsC1,C5, and to some extert2, 1.6 — a)

seem to form a family of reversed Poisson-like distributions. 0.8 N e

Such a shape of the distribution of the local order parameter - '”“‘"“’“MNV

was observed and is typical for the chaotic std&9,30. 0.0 -

State C3 has a dominantly bimodal distribution whereas 32 1

stateC4 has a wide Poisson-like distribution of the algorith- 24 b) i, | ”/WW

mic complexity. Analyzing the distributions of algorithmic 186 _"W\'_-_AA_\,WMJVM"\“W !

complexity we may conclude the following. g C'1 C) cs
(a) The type of chaotic behavior for statl is different 80 — ) C2 ¢c3 C4

than for stateC2. Indeed, earlier investigations showed that T4 ﬂ"} rﬁwﬂ%

there is a periodic state in the region in between st@tes 40 ':M“ ' I - =

and C2 [17], which may result in a change of the type of o2 M s I I

chaotic behavior.

(b) The broad distributions for stat€33 andC4 clearly
indicate intermittency: these states are mixtures of phases
with different levels of complexity. The distribution f@@4
is the only one which is Poisson-like with the maximum at
the left.

(c) The type of chaotic behavior for state5 and the
states for even higher values of the wall height is such that
they are more chaotic than the other states. From earlier in-
vestigation we know that at these values of wall height the
generation of a large number of Bloch lines occurs and their T
number increases with the height of the wall17,18. It is 3 4 5 6
interesting that stat€€1, which contains only two Bloch
lines, has a similar average complexity. Note, however, that
the distributions foiC1 andC5 have a very different shape FIG. 7. Moving variancecurve a), moving averagécurve b),

with the tail for C1 extending towards very low complexity ang algorithmic complexitycurve ¢) as a function of the wall

levels. N _ ~ height every 0.005um. Bifurcation diagram depicted by dots. Al-
The average or the position of the maximum of the histo-gorithmic complexity of the chaotic stat€@d —C5 studied in[14—
gram may be taken as the quantitative order parameter. If we7] denoted by crosses.

analyze the position of the maximum, we may see that state
C4 is the most ordered where@4 or C5 are the least. For When the method of time intervals was used it became
intermittent states when the distribution is nonunimodal bepossible to identify state§3 andC4 as intermittent by sim-
cause the signal consists of two different phases, such guly looking at the behavior of the intervals with the time
order parameter will show some change when the controlFig. 2). There are, however, certain situations when such
parameter is varied but the determination of the true charaqualitative distinction is not enough because it says nothing
ter of the state requires a further analysis of the shape of thabout the relative order of two given states. The idea of
distribution. characterizing complexity of different states of the dynami-
If just the time interval time series is analyzed, the rela-cal system by single values of the order parameter is useful
tion between state€3 andC4 seems uncledfFig. 6). State when we have to analyze the system behavior in a wide
C3 seems to be apparently more ordered t@@nand has range of parameters to discern regions of different dynamics.
easy to distinguish periods of laminar and turbulent phaseThe systems for which such an approach will be even more
On the other hand, one should keep in mind that the estimazonstructive are nonstationary systems with nonquasistatic
tor of the algorithmic complexity is calculated in a time win- parameter changes, as biological systems, where we have to
dow of a fixed length(100). The finite time window intro- monitor a system subject to unknown changes of the param-
duces a time scale into the observation. As can be seen frogters.
the dominant magnitude of the algorithmic complexity in  The results of the calculation of algorithmic complexity
Fig. 6, stateC4 is otherwise less ordered th@3. However, obtained when the wall height was changed with the small
the lengths of the laminar phases are of the order of théncrement of 0.005um are depicted in Fig. 7 together with
window length, causing the complexity to decrease for briefthe bifurcation diagram, which was formed by plotting all
periods of the time. This shifts the maximum of the distribu-the attractor orbit lengths corresponding to each wall height
tion to the left. Thus, the local measures such as algorithmiin a separate vertical line. The algorithmic complexity plot
complexity do exhibit fluctuations but the latter are in fact(curve c) is accompanied by the moving averag@eirve b)
related to the local properties of the signal studied. If theand the moving variancéurve a) calculated in the sliding
window length chosen for the calculations were an order ofime window of the same length equal to 100. It can be seen
magnitude smaller, the complexity of sta@3 would be that regions of intermittent or periodic behavior in which the
lower than the complexity of stat€4. To conclude, the values of algorithmic complexity are lower are frequent in
choice of the window lengtiN is in fact the choice of the parameter space. Stat€8 andC4 are located in such re-
minimum time scale of a signal to which the local measure igjions. There is no visible effect of the characteristic length of
to be sensitive to. the system(the soliton width 0.3um) on the level of

80

60
Orbit length [ns]

40

20

Wall height (um)
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complexity as the wall height is varied. 2
The moving average as well as the variance are not suit-
able as quantitative measures of complexity. This is particu-
larly well visible for the periodic window at arounti
=4.0um, which was not detected by either of them. These
guantities do not describe the nonlinear dynamics of the sys-
tem. Note that in certain parameter ranges of the control
parameter in Fig. 7, a number of periodic windows can be
easily identified by the downward spikes of the algorithmic
complexity that are not always visible in the bifurcation dia-

normalized t(p
o

gram. Note also that the algorithmic complexity is much -2
easier to calculate automatically than any fractal dimension 80
so that we could relatively easily perform the calculations for
500 states, as depicted in Fig. 7, on a standard PC. 80
>
D. The choice of parameters of the embedding é__a,o
The probability distributions of algorithmic complexity 5
for all chaotic state€1—-C5 were calculated with the value 3 10
of the delayr varied from 1 to 20 and for embedding dimen- FS
sions from 1 to 5. The relative properties of the distributions % 5
of algorithmic complexity for the different chaotic states re- S :
mained unchanged for a relatively wide range of embedding < 0 1 7 1
IIII[IIII[IIII]IIITj

dimensions and delay times. We consider the embedding di-
mensionm=4 or m=5 optimal for the purpose of the as- 0 100%terggﬂgdex3000 4000

sessment of the relative complexity of the chaotic states. For

m=1 the shape of the distributions does not change with the FIG. 8. Artificial nonstationary signdturvea) and algorithmic
control parameter. The nature of the signal may not be assomplexity for window lengthN= 100 (curve b) and for N=10
certained as the differences in positions of the distributiongcurvec). Moments of switching marked below by the square wave.
are of the order of 5%. On the other hand, the increase of th&verage algorithmic complexity folC1 and C3 is marked by
embedding dimension above=5 leads to very complex dashed horizontal lines.

shapes of the distributions of algorithmic complexity. Fur- , )
thermore, an embedding dimension between 4 and 5 agreéQ%' The ab_ove result may be obtained only if the observa-
very well with the calculations of the fractal dimensions for 1On Window is shorter than the mean value of the length of
the chaotic states of the Bloch wall where it was found thatN® Phases of different statéa this case the length of such
the correlation dimension does not exceed [45,12. We phases is 500 This is a clear advantage of the estimator of

found the optimal delay to be=4 because for this value all 2/gorithmic complexity calculated as a local measure over
the typical features of algorithmic complexity distributions f[he same quantity _ca_llculated _fro_m _the def_|n|t|0_n_, 1.€., inclug-
are clearly visible. Finally we have usee-4 andm=5 as N9 the limit to infinity. In this limit, the identification of
the optimal reconstruction parameters. Embedding a ond2N@ses of different states would be impossible.

dimensional signal using the Takens theorem combined with The length of the qbservaﬂon window may be made even
the m-dimensional symbolic coding enables us to achieveShorter than 100, Wh!Ch gnables us to detect better the very
more sensitivity moment of phase switching, not only its presence. Note that

even for the extreme value of window lendth= 10 (curve
b) the moment of switching is detected although both states
are not as clearly discerned as in case of the window length
The results of the analysis of the artificially created non-N=100 (curve c). For the curved andc the value of the
stationary data is depicted in Fig. 8. The segments of dataoding parametee was set to 0.001, which enhanced the
from state<C1 andC3 normalized as to have the same meansensitivity. This indicates that for the detection of the mo-
and variance are alternating as shown by the rectangulanent of switching, two-symbol coding is better than three-
curve. The topmost curveeurve a) shows the data whereas symbol coding. In general, the value ofshould exceed the
curvesb and c show the algorithmic complexity calculated noise level in the system studied no matter what the source
for the time window length 100 and 10, respectively. Theof the noise. The noise may be external but it also may be a
dashed lines in Fig. 8 mark the levels of complexity for property of the measureme(s.g., the error of the estimation
statesC1 andC3. of the orbit length. Neglecting this requirement causes mis-
It may be seen that algorithmic complexity detects theleading effects obtained for the periodic states. On the other
changes of state even if the mean and the variance do nbtnd, this parameter should be as low as possible, otherwise
change from one segment to the other significantly. Note thasome details in the signal relevant to the dynamics would be
the magnitude of algorithmic complexity of the normalized ignored.
signal is the same as in Fig.(Bistribution maxima for the The results for the nonstationary slowly varying drive
nonnormalized data. For the window of length 100 the dif-field are the following. The bifurcation diagram and the al-
ference in complexity between the states is of the order ofjorithmic complexity curve are depicted in Fig. 9 together

E. Nonstationary data
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28 = control algorithm perturbations were applied in our case. It is
58 < probable that multistability plays a role in this effect.
goo Algorithmic complexity within the stability range of peri-
93 g odic solutions fluctuates in a nonstationary case. These fluc-
Lo o 5 tuations are the direct consequence of fluctuations in the
EY EC- lengths of the orbit that are of the order of 0.5 (@9 time
’§8 9 ‘é; step$, which are not visible in the bifurcation diagram due to
fz”o N O the scale used. Note that there are no such fluctuations at the
= right end of the stability range of the new periodic solution.
o O Also, there is a drop in the complexity at 26 Oe in the sta-
2 tionary case, which indicates a narrow periodic window.
Nonstationarity stabilizes and extends the stability range of
this window.
[w]
29 o
'g‘? g VI. CONCLUSIONS
§'°O° The chaotic states of a complex system—the model of a
33 =t magnetic domain wall—were analyzed. We applied a multi-
'é?r R dimensional form of symbolic dynamics to andimensional
£a = delay coordinate reconstruction of the trajectory of the sys-
5N = 'gw tem. A local measure: a short window estimator of the algo-
g’o N 2 rithmic complexity of the series of words obtained from the
8 symbolic coding was used as the sequential order parameter
o and compared with the mean and the variance calculated in a

100

sliding window.

We demonstrated that this method is suitable for the char-
acterization of states of different complexity, especially if the
system behavior is to be analyzed in a wide range of the

258 259 260 261 262 control parameter. It is also suitable for the detection of in-
Hz (Qe) termittency and chaos-chaos intermittency because the
method allows us to identify phases of different dynamics in

FIG. 9. Fragment of the bifurcation diagram as a function of thea signal, even when there is no difference in the mean and
magnitude of the drive field for the constant wall height o variance, and has the ability to detect precisely the
=1.1um and the resultant algorithmic complexity curve for the moments of switching between different phases in the
stationary and nonstationary changes in the drive field. signal. This last property makes the method suitable

. . . . for the analysis of nonstationary systems with step-wise
with the results for stationary calculations in the same rang@hanges of the control parameter. Altering the window
added for comparison. It may be seen that for the nonstatior]—ength enables us to choose the minimum time scale to
ary case, there exists a periodic solution at about 26 Oe Vigyhich the order parameter will be sensitive. Such a charac-
ible in the stationary case only as a narrow window. ThiSigrization seems to yield more information than a fractal
periodic state in the nonstationary case is sensitive to thﬁnalysis applied earlier to the same chaotic sttéslZ and
history of evolution of the system. For a different scenario Ofcertainly is better able to discern the different states of the
the drive field increments and different lengths of the Ste%ystem.
this effect may not occur in this range of the drive field.  rqr nonstationary changes of the drive field we observed
However, it was observed frequently during the calculationgne extension of the stability of the periodic solution onto a

for various nonstationarity scenarios. The effect discusseg;qer parameter range. This phenomenon may be similar to
here seems to be the equivalent to tracking observed Um”acking in simple mapg31].

now in mapg 31]. In this phenomenon the stability range of

the periodic orbit may be extended by applying small ACKNOWLEDGMENT

changes of the system parameter. The phenomenon observed

in the domain wall under a slowly varying drive seems to be This work was supported financially by the KBN Grant
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