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Ergodic properties of a generic nonintegrable quantum many-body system
in the thermodynamic limit
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~Received 18 August 1998; revised manuscript received 29 March 1999!

We study a generic but simple nonintegrable quantummany-bodysystem oflocally interacting particles,
namely, a kicked-parameter (t,V) model of spinless fermions on a one-dimensional lattice~equivalent to a
kicked HeisenbergXX-Z chain of 1/2 spins!. The statistical properties of the dynamics~quantum ergodicity
and quantum mixing! and the nature of quantum transport in thethermodynamic limitare considered as the
kick parameters~which control the degree of nonintegrability! are varied. We find and demonstrateballistic
transport and nonergodic, nonmixing dynamics~implying infinite conductivity at all temperatures! in the
integrable regime of zero or very small kick parameters, and more generally and importantly, also in the
nonintegrableregime of intermediatevalues of kicked parameters, whereas only for sufficiently large kick
parameters do we recover quantum ergodicity and mixing implying normal~diffusive! transport. We propose
an order parameter~charge stiffnessD) which controls the phase transition from nonmixing and nonergodic
dynamics~ordered phase,D.0) to mixing and ergodic dynamics~disordered phase,D50) in the thermody-
namic limit. Furthermore, we findexponential decay of time correlation functionsin the regime of mixing
dynamics. The results are obtained consistently within three different numerical and analytical approaches:~i!
time evolution of a finite system and direct computation of time correlation functions,~ii ! full diagonalization
of finite systems and statistical analysis of stationary data, and~iii ! algebraic construction of quantum invari-
ants of motion of an infinite system, in particular the time-averaged observables.@S1063-651X~99!10710-3#

PACS number~s!: 05.45.2a, 05.30.Fk, 72.10.Bg
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I. INTRODUCTION

It has been a common belief for a long time that a la
system of sufficiently many interacting particles should u
formly fill the entire available phase space. This is known
the ergodic hypothesis, one of the cornerstones of statistic
mechanics, and is a necessary assumption to justify the
of canonical ensembles and a derivation of fundamental l
of statistical physics, such as transport laws~e.g., Ohm’s law
or Fourier’s law!.

However, the proof of this, together with the precise co
ditions for the validity of the ergodic hypothesis is still on
of the most fundamental unsolved problems of theoret
physics. Even in the context of purely classical dynamics,
ergodic theory@1,2#, though it is an involved and beautifu
mathematical discipline, can make strong statements only
a very limited class of systems, while generic dynamical s
tems, especially those consisting of many interacting p
ticles, are far from being understood@3–8#. Even less is
known about ergodic properties of genericquantummany-
body systems, which is precisely the objective of this pap
A closed~finite! and bounded quantum system of sizeL and
with a finite numberN of particles has a discrete spectrum
hence its time evolution is quasiperiodic, and accordingl
is nonergodic and nonmixing, as we shall define belo
However, in the thermodynamic limit~TL!, of diverging size
L→` and density of particlesr5N/L fixed, the spectrum of
the quantum propagator may accuire a continuous com
nent, and one may expect genuine properties of quan
ergodicity and quantum mixing to set in provided t
strength of the nonlinear interaction is sufficiently strong.
this paper we deal with general nonautonomous many-b
PRE 601063-651X/99/60~4!/3949~20!/$15.00
e
-
s

se
s

-

l
e

or
-
r-

r.

,
it
.

o-
m

y

systems with HamiltoniansH(t) which explicitly depend on
time t. Therefore the entire Hilbert space of many-bo
quantum configurations~Fock space! is dynamically acces-
sible, and the ‘‘microcanonical’’ average of anintensiveor
local observable, represented by an operatorA, reads

^A&5 lim
L→`

tr A

tr 1
. ~1!

If the system possesses a group of exact geometric or
namical symmetries, the trace in Eq.~1! may be considered
only over a specific symmetry class of the Fock space w
respect to the symmetry group. For example, if the system
autonomous,]H/]t[0, energy is conserved, and Eq.~1!
should be replaced by the average over a specific ‘‘ene
shell’’; or, as often, if the numberN of particles ~or the
particle density r5N/L) is preserved, then the micro
canonical average should be performed over the Fock s
space of fixed density~N-particle! configurations

^A&r5 lim
L→`

tr ~Ad [rL],N!

tr d [rL],N
, ~2!

where @x# is an integer part ofx, and dm,n is a standard
Kronecker symbol. When we want to keep the sizeL in
average~2! fixed and finite, we writêA&r

L . Although in this
abstract discussion we would like to avoid the notion of te
perature@9#, one may also think of Eqs.~1! or ~2! as canoni-
cal averages at very large or infinite temperature,b
5(kBT)21→0.

As we shall often speak about the ‘‘thermodynam
limit’’ throughout this paper we must define the preci
3949 © 1999 The American Physical Society
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meaning of these words: The fact that the propertyA is valid
in the TL, say that the quantityF(L) has a valueF` , can be
understood either~i! in a weakersense, i.e.,F(L) may or
may notbe defined for an infinite (L5`) system butF(L)
approachesF` as we approach the TL, limL→`F(L)5F` ;
or ~ii ! in a strongersense, i.e., the propertyA is well defined
for an infinite systemL5`, and is therein satisfied. When
ever the propertyA is defined for a finite system as wel
then~ii ! implies ~i! and wewill safely use definition~i!. This
will be used througout most of the paper~Secs. I–IV!,
whereas in Sec. V we shall deal with operator algebra o
infinite systems and only there may we understand TL w
assumption~ii !.

The system is defined to bequantum ergodicif the time
average of(almost) any observablein the Heisenberg picture
A(t) is equal to the microcanonical average^A& times a unit
operator~over the corresponding desymmetrized Fock s
space!

Āª lim
T→`

1

TE0

T

dtA~t!5^A&1. ~3!

In the case where one has a constant of motion, e.g., a
sity of particlesr5N/L ~or energyE5H, etc.!, one should
define the ergodicity through the spectral resolution of
relevant invariant operator,r5*r8dEr8 , namely,

Ā5E ^A&r8dEr8 . ~4!

When the microcanonical average does not depend on
eigenvalues of the symmetry operations orquantum num-
bers, e.g., when thespectral functionis a constant,̂ A&r

[^A&, then definition~4! is equivalent to a simple one@Eq.
~3!#.

In this paper we will consider the case of aperiodic time
dependentHamiltonian, say with periodp, H(t1p)5H(t),
where the dynamics is fully described by iterating theunitary
quantum propagator over one period of time, i.e., the Flo-
quet map which is defined as a time-ordered prod
UªT̂ exp@2i*0

pdtH(t)/\#. In such a case, operatorU, or any
well defined function of itf (U) @10,11#, is a conserved quan
tity, f (U )̄5 f (U), and we must use a definition of quantu
ergodicity ~4! instead of Eq.~3!. If U5*2p

p e2 iwdEw is a
spectral resolution of the quasienergy with the spectral
rameterwP@2p,p), then we should define the quantu
ergodicity as

Ā5E
2p

p

^A&wdEw ~5!

for some spectral function̂A&w . However, if we restrict
ourselves only to such observablesA, which are ‘‘orthogo-
nal’’ to all nonzero powers ofU, i.e., which satisfŷ AUn&
50, for all n561,62, . . . , then the spectral function i
trivial, ^A&w[^A&, and the simple definition~3! applies. In
fact, this is true foralmost anyobservable in the TL provided
that ~as we approach the TL,L large but finite! the matrix of
the propagatorU in an eigenbasisua& of a generic observable
A, Aua&5aua&, behaves as a unitary pseudorandom ma
er
h

-

n-

e

he

t

a-

x

which belongs to the circular orthogonal or circular unita
ensemble~COE or CUE! @12#. For a finite but increasing size
L, the dimension of the Fock spaceN5tr 1 is finite and
diagonal elements of the Floquet mapsUn are pseudorandom
numbers with zero mean and decreasing magnitu
u^auUnua&u5O(N 21/2), so we find ^AUn&;^A&/N→0 as
L→`.

Therefore, provided that the Floquet matrix in a gene
basis^auUua8& has a COE or CUE structure, one may arg
that the quasienergy becomes irrelevant in the TL, just a
becomes irrelevant in the classical limit (\→0) of chaotic
one-particle and few-particle systems@13,14#. Note that in a
specific class of dynamical system a more formal and cl
analogy between the TL and the~quasi!classical limit has
recently been established@15#.

However, since we have noa priori theoretical arguments
to predict COE or CUE structure of the many-body Floqu
matrix, we must emphasize that the full Fock space ergo
ity ~3!, as required for almost any obserbableA in the case of
periodic time-dependent Hamiltonian is a muchstronger
condition than Eq.~5!. Therefore, we stress right at the outs
that our numerical results strongly support the full Fo
space ergodicity of typical observables in our two-parame
family of quantum many-body dynamical systems, when
integrability breaking parameters are sufficiently large.~See
Sec. IV B for a detailed numerical analysis of spectral fun
tions of typical observables, while all the other numeric
results in the paper, on quantum mixing and ergodicity
Secs. III and V, respectively, are fully consistent.!

Alternatively, one generally defines quantum ergodicity
a more rigorous but essentially equivalent way@Ref. @16#,
Eq. ~B6!#, namely by writing the expectation value of Eq.~3!
in an arbitrarynormalizedstateuc&:

lim
T→`

1

TE0

T

dt^cuA~t!uc&5^A&. ~6!

Quantum ergodicity is now defined@16# by requiring Eq.~6!
for anyobservableA and for(almost) anypure stateuc&. The
phrasealmost ~again! refers to the case of a time-period
Hamiltonian. The set of statesuc& for which Eq.~6! may be
violated, e.g., the eigenstates ofU, has a measure zero in th
full Fock space in the TL. In such a case, definition~6! is
equivalent to the full Fock space ergodicity~3! or, as L
→` (N→`), the matrix ofU in almost any~generic! Fock
space basis looks more and more like a member of
N-dimensional COE or CUE. However, the last definition
quantum ergodicity~6! is somehow more robust than Eq.~3!
since observableA may here be completely arbitrary. Even
A5 f (U), it is true for almost any stateuc& that one may
consider̂ cuUnuc& (nÞ0) as a diagonal element of a unita
pseudorandom matrix which is expected to fluctuate aro
zero asO(N 21/2), and hence vanishes in the TL (N→`).

An even stronger ergodic property isquantum mixing,
which is defined very generally according to Refs.@16–18#
as follows: A quantum many-body system is called quant
mixing in the TL if the time correlation function of an~al-
most! arbitrary pair of quantum observables in the Heise
berg representation, i.e., for(almost) any observable A(t)
and forany observable B(t), decays to zero:
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CAB~t!ª^A~t!B~0!&2^A&^B&, lim
t→`

CAB~t!50. ~7!

Note that formula~7! implies that the TL (L→`) should be
considered prior to the time limit,t→`, since these two
limits do not generally commute@18#. Again, in the case of
additional symmetry, or conserved~quasi!energy, mixing
over separate symmetry classes can be studied, as we
uniform mixing over the entire Fock space@which makes
sense when the microcanonical averages~spectral functions!
of A and B do not depend on quantum numbers or spec
parameters such asr5N/L, E, or w].

In Ref. @18# quantum mixing of a system of interactin
bosons has been related to a hard chaos of the correspo
classical~mean field! model. However, general quantum sy
tems need not possess the classical limit; when they do
general definitions~3!–~7! go over to the correct definition
of classical ergodicity and mixing of the corresponding cl
sical counterparts.

It is easy to see that the same implication holds as in
classical mechanics@2#: Quantum mixing~7! implies quan-
tum ergodicity ~3!. To establish this, observe that, as
simple consequence of Eq.~7!, the time-averaged correlatio
function should vanish:

C̄ABª lim
T→`

1

TE0

T

dtCAB~t!50.

Assuming that the order of the time average and the mic
canonical average can be interchanged, the last fac
equivalent to

^ĀB&2^A&^B&5^~Ā2^A&1!B&50.

From here we immediately see that the observable in bra
ets should vanish,Ā2^A&150, since observableB is arbi-
trary. The last argument can be reversed, so we see
quantum ergodicity~3! is equivalent toC̄AB50 for almost
arbitrary pair of observablesA,B.

We expect that quantum mixing implies universal sta
tical properties of energy spectra~and also universal statistic
of occupation numbers@19#, matrix elements, etc.! described
by random matrix theory@12#. Random matrix spectral sta
tistics have indeed been demonstrated numerically for a
strongly nonintegrable many-body systems@20#. On the
other hand, completely integrable quantum many-body s
tems~having an infinite set of independent conservation la
Qn , n51,2,3. . . ) are obviously nonergodic (Qn̄5Qn
Þ^Q&n1), and therefore nonmixing, and are characterized
the universal Poissonian spectral statistics@20#.

It has been pointed out recently@21,22# that integrability
typically implies nonvanishing stiffness, i.e., ideal~ballistic!
transport with infinite transport coefficients~or ideal insulat-
ing state!. Indeed, there is a direct implication of quantu
mixing and quantum ergodicity on quantum transport. O
should simply inspect a Kubo formula@23#, which relates the
real part of the transport coefficient, e.g., electric conduc
ity s8(v), to the cosine transform of the autocorrelati
function of the electric current observableJ, written for high
temperatures~small b) as
as
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s8~v!5 1
2 bE

2`

`

cos~vt!K 1

L
J~0!J~t!L dt. ~8!

The transport is diffusive, and the system behaves as anor-
mal conductor, if zero-frequency~dc! conductivity is finite,
s8(0),`, which means that the time integral of the curren
current correlation function should be finite; this is true if t
system is mixing and if time correlations decay sufficien
fast, e.g., it is sufficient thatu^(1/L)J(0)J(t)&u,Cutu2a for
someC.0 anda.1.

On the other hand, if the transport is ballistic, dc condu
tivity divergess8(0)5` and frequency dependent condu
tivity can be written as a sum of ad-function spike and a
regularized conductivity:

s8~v!5Dd~v!1s reg~v!, D5 lim
e→0

E
2e

e

s8~v!dv.

~9!

The weight D is known as acharge stiffness~or Drude
weight!, and is proportional to the averaged current-curr
time correlator

D5bDJ , DA5 lim
T→`

lim
L→`

1

2TLE2T

T

CAA
L ~t!dt. ~10!

Therefore, the nonvanishing charge stiffnessDJÞ0, mean-
ing a ballistic electronic transport, is a sufficient conditio
for deviation from quantum ergodicity, soDJ will be exten-
sively used as a quantitative indicator of quantum~non!er-
godicity throughout the rest of this paper.

In a generic integrable system one can find an~infinite!
set of invariantextensiveobservables, the so-called con
served chargesQn . Mazur @24# and Suzuki@25# proposed a
‘‘Parseval-like’’ inequality for the time-averaged autocor
elator of any extensive observableA,

DA>(
n

U K 1

L
AQnL U2

K 1

L
Qn

2L , ~11!

using any suitable~sub!set of conserved charges$Qm%, such
that ^(1/L)QnQm&50 if nÞm. For an integrable system on
therefore proves ideal~ballistic! transport (DJ.0) if at least
one term in an infinite sum on the right-hand side of Eq.~11!
applied to the current observableA5J is nonvanishing
~which is typically the case! @22#. It is convenient to say tha
$Qn% is acompleteset of conserved charges if Eq.~11! is an
exactequality for any observableA @which is ‘‘square sum-
mable,’’ ^(1/L)A2&,`].

The important and delicate question is whether nonerg
icity of an integrable system in the TL can be structura
stable against generic and finite nonintegrable perturbat
In this paper we will present clear numerical evidence ba
on various different and independent numerical methods
support of a conjecture claiming an affirmative answer to
above question.

Conjecture: Let Hl be a continuous family ofgeneric
infinite quantum many-body systems withlocal interaction
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@26#, such thatH0 is completely integrable whileHl are
nonintegrable for almost anylÞ0. Then'lc , such that all
Hl arenonergodicandnonmixingfor ulu,lc . One impor-
tant consequence of this conjecture would be a large clas
not only completely integrable but also nearly integra
many-body systems for which ideal transport and infin
conductance would be expected.

In should be emphasized that the existence of qu
integrable dynamics, neither completely integrable nor
godic, in the TL is also an interesting debated issue in
context of many-body classical mechanics. For example
the case of a nonintegrable chain of classical anharm
coupled oscillators~the Fermi-Pasta-Ulam problem!, a strong
deviation from ergodicity was found long ago@5#, and re-
cently shown to imply anomalous classical energy transp
@6#, which has been only partially explained in terms of sta
dard chaos criteria@8,7#. However, in this paper we conside
the problem in a purely quantum setting, in a fermionic
spin-12 system for which any kind of classical or quasiclas
cal limit cannot be defined, so the results based on class
dynamics cannot be directly related to our discussion.

In Sec. II we define a two parametric family of gener
nonintegrable many-body systems@27#, namely, a kicked-
parameter (t,V) model of interacting spinless fermions, o
equivalently, a kicked HeisenbergXX-Z spin-12 chain, and
describe the basic properties of the model. In Sec. III
show how efficient explicit time evolution of the abov
model of finite but quite large sizeL can be computed, an
present results on extensive numerical computation of t
correlation functions. By letting the sizeL to increase and
inspecting TL, we clearly identify two regimes of quantu
motion: the nonmixing regime for small and intermediat
values of kick parameters where time correlation functio
typically saturate to constant nonvanishing values, and
exponentially mixingregime for sufficiently large values o
kick parameters where time correlation functions decayex-
ponentially. As a complementary approach to a direct tim
evolution~time domain! we perform, in Sec. IV, a complet
diagonalization of the stationary problem~frequency do-
main! for finite sizesL. Using the stationary data we com
pute and analyze short- and long-range quasienergy leve
tistics. By further inspecting a statistical distribution
diagonal matrix elements of three typical observables,
clearly demonstrate the full Fock space ergodicity~3! as we
approach the TL for sufficiently large values of the kick p
rameters, whereas for smaller values of the kick parame
we find a manifestly nonergodic behavior: a nontrivial a
nonshrinking~as the sizeL increases! distribution of diago-
nal matrix elements around a nonconstant spectral funct
By means of off-diagonal matrix elements of the current o
servableJ, we directly compute the conductance and t
charge stiffnessDJ . The obtained results are in quantitativ
agreement with a direct time evolution~Sec. III!. In Sec. V
we outline a completely different and independent method
computing time-averaged observables and quantitative i
cators of quantum ergodicity such as the charge stiffnessDJ ,
by making use of extensive computerized Lie algebra. T
third method, in contrast to the other two, refers directly
infinite systems~infinite lattices L5`) and, again, gives
compatible results. In Sec. VI we give some additional ar
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ments in support of our conjecture by discussing some
evant published and unpublished results, and conclude.

II. MODEL

No general analytical methods exist to deal with dynam
of nonintegrable quantum many-body systems. A solit
theory based on inverse scattering and an algebraic B
ansatz@28# is unfortunately applicable only to a limited clas
of very special, completely integrable many-body system
Therefore one is led to numerical experiments to learn ab
the dynamics of generic quantum many-body systems,
couraged by the fact that numerical and experimental inv
tigations of dynamical systems of one or few particles h
been a very fruitful area of research~known as quantum
chaos! over the past 20 years@13,14#. However, one should
be very careful in picking out the toy model, since the fa
that the dimensionality of the Hilbert space~Fock space of
quantum many-body states! grows exponentially with in-
creasing system sizeL makes a serious quantitative study
the TL almost prohibitive. Here we propose the simple
many-body system that we can think of: a one-dimensio
lattice of spinless fermions of sizeL; for reasons which will
become clear in Sec. III, we decide to break integrability
taking a time-dependent interaction which is switched
periodically by means ofd kicks. Therefore, the time-
dependent Hamiltonian of our ‘‘kicked (t,V) model’’ (KtV)
@27# reads

H~t!5 (
j 50

L21

@2 1
2 t~cj

†cj 111H.c.!1dp~t!Vnjnj 11#.

~12!

cj
† and cj are fermionic creation and annihilation operato

satisfying canonical anticommutation relation
@cj ,ck#1ªcjck1ckcj50. @cj

† ,ck#15d jk and nj5cj
†cj are

number operators, and periodic boundary conditions are
posedcL[c0 . dp(t)5(m52`

` d(t2m) is a periodicd func-
tion. We use units in which\5(time between collisions)
5(lattice spacing)51. The hopping amplitudet and interac-
tion strengthV are independent~kick! parameters. An impor-
tant and useful property of kicked systems like Eq.~12! is
the fact that the evolution propagator over one period~Flo-
quet operator! factorizes into the product of kinetic and po
tential parts:

U5T̂ expS 2 i E
01

11

dtH~t! D 5 exp~2 iW!exp~2 iT !,

~13!

T52 1
2 t (

j 50

L21

~eifcj 11
† cj1e2 ifcj

†cj 11!, ~14!

W5V(
j 50

L21

njnj 11 . ~15!

We have used a Peierls phasef in order to introduce a
particle current
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J5~ i /t !U†~]/]f!Uuf505 1
2 i (

k50

L21

~cj
†cj 112cj 11

† cj !

~16!

~which is divided byt for convenience!; elsewhere we se
fª0. Note that the kinetic energyT as well as the currentJ
arediagonal in momentum representation:

T5t (
k50

L21

„12 cos~sk!…ñk , ~17!

J5 (
k50

L21

sin~sk!ñk , ~18!

wheres52p/L, while the tilde refers to momentum repre
sentation of field operators:

c̃k5L21/2(
j 50

L21

exp~ is jk!cj , ñk5 c̃k
†c̃k . ~19!

Using a well known Jordan-Wigner transformation@29#
one can map one-dimensional~1D! lattice of spinless fermi-
ons to a spin-12 chain described by Pauli operatorss j

6

5(s j
x6 is j

y)/A2 ands j
z , namely,

s j
15A2cj

† expS ip (
j 850

j 21

nj 8D ,

~20!
s j

z52nj21,

which satisfy canonical commutation relations

@s j
m ,sk

n#5 i(
h

emnhs j
hd jk , m,n,hP$x,y,z%.

In fact, the Jordan-Wigner transformation~20! maps KtV
model on a kicked HeisenbergXX-Z chain:

H~t!5T1dp~t!W, ~21!

T5 1
4 t (

j 50

L21

~s j
xs j 11

x 1s j
ys j 11

y !, ~22!

W5 1
4 V(

j 50

L21

~s j
zs j 11

z 12s j
z!. ~23!

The last term of potential~23! is irrelevant since the totalz
spin Sz5( j 50

L21s j
z5N2 1

2 L is a constant of motion,@U,Sz#
50.

Interaction strength V is a cyclic parameter V
[V(mod 2p ), since the spectrum ofW/V is a set of integers
@see Eq.~15!#. The KtV model is integrable and solvable i
three special~limiting! cases:~1! a t50, 1D Ising model;~2!
V50(mod 2p ), 1D free fermions, or equivalently, a 1D
HeisenbergXX 1

2 -spin chain; and~3! tV→0 and D5t/V
finite ~continuous-time!, 1D HeisenbergXXZ 1

2 -spin chains.
For tÞ0, VÞ0 (mod 2p ), the KtV model is expected to

be nonintegrable, possibly quantum ergodic, and mixing.
To conclude this section, let us list the symmetries o
general KtV model~for arbitraryt andV): In addition to the
trivial conservation law, namely, the number or density
particles

N5 (
j 50

L21

nj , r5
N

L
, @U,N#50, ~24!

and the total quasimomentumKP$0,1, . . . ,L21% which is
defined as an eigenvalue of a unitary translational symm
operationS,

S5 exp~ isK!5 expS is(
k50

L21

kñkD , @U,S#50, ~25!

the KtV model has two~geometric! ‘‘reflection’’ symme-
tries: theparity transformation

P̂: cj→cL2 j , P̂U5UP̂, P̂251̂, ~26!

and, for even sizeL, the particle-hole transformation

R̂: cj→~21! j cj
† , R̂U5UR̂, R̂251̂. ~27!

Note on notation: Symbols wearing a ‘‘hat’’ denote line
transformations over the operator space of quantum obs
ables.

III. FIRST METHOD: DIRECT TIME EVOLUTION
AND CORRELATION FUNCTIONS

For a fixed sizeL and a fixed number of fermionsN, a
unitary quantum many-body mapU @Eq. ~13!# acts over a
Fock space of dimension

N5S L
ND5

L!

N! ~L2N!!
. ~28!

The dynamics of a given initial many-body stateuc(0)& is a
simple iteration of the Floquet map

uc~m!&5Uuc~m21!&5Umuc~0!&. ~29!

Many-body statesuc& can be expanded in a complete ba
of the Fock space~of Slater determinants!, for which we may
choose eitherposition states, labeled by sets ofN ordered
integersjW5( j 1 , . . . ,j N),

u jW&5cj 1
•••cj N

u0&, 0, j 1,•••, j N,L, ~30!

or momentum states, labeled by sets ofN ordered integerskW ,

ukW &5 c̃k1
••• c̃kN

u0&, 0,k1,•••,kN,L. ~31!

An important observation, implicitly made already in Sec.
Eqs. ~13!, ~15!, and ~17!, is that the kinetic propagato
exp(2iT) is diagonal in the momentum representation wh
the potential propagator exp(2iW) is diagonal in the position
representation:
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UkW ,kW8
T

ª^kW u exp~2 iT !ukW8&

5dkW ,kW8expS i t (
n51

N

@cos~skn!21# D , ~32!

U jW, jW8
W

ª^ jWu exp~2 iW!u jW8&

5d jW, jW8expS 2 iV (
n,n851

N

d j n8 , j n11D . ~33!

Therefore, one may formulate a very efficient algorithm
perform an explicit time evolution of many-body states, p
vided that it is possible to switch between the two repres
tations~30! and ~31! as efficiently as in the problem of on
kicked quantum particleN51, e.g., the kicked rotor@30# or
kicked Harper model@31#, by means of the fast Fourie
transformation~FFT! algorithm. Indeed, we succeeded in d
veloping a fast algorithm which performs such an antisy
metrized multidimensional discrete Fourier transformatio

F jW,kW5^ jWukW & ~34!

in roughly N log2 N floating point operations~FPO’s!. The
algorithm is based on a factorization of anL-site discrete
Fourier transformation into the product of;L log2 L two-site
transformations parametrized with 232 submatrices
(a,b;g,d) j j 8 , which are successively applied to pairs of cr
ation operators, (cj

† ,cj 8
† )←(acj

†1bcj 8
† ,gcj

†1dcj 8
† ), in all

Slater determinantsPncj n

† u0& which contain a particle at site

j or j 8. ~One should be careful in dealing with fermion
signs of Slater determinants when sorting the factors in
product Pncj n

† u0&.) In case whenL52p, factorization of

FFT to a chain of two-site~in such case unitary! transforma-
tions is easily deduced by inspecting a conventional F
algorithm~such as the one implemented in Ref.@32#!, while
for more general lattice sizes@we have so far implemente
such a Fermionic FFT ~FFFT! algorithm for L
510, 12, 15, 20, 24, 30, and 40# we factorized the optima
schemes developed by Winograd@33#. Our FFFT algorithm
requires almost no extra storage apart from a vector ofN c
numbers where the quantum many-body state is sto
Therefore, map ~13! is iterated on a vectorckW(m)
5^kW uc(m)&, using the matrix composition

U5F* UWFUT ~35!

in roughly 2N log2 N FPO’s per time step, which is by fa
superior to ‘‘brute-force’’ methods based on complete dia
nalization ofU and expansion of time-evolving stateuc(m)&
in terms of eigenstates ofU.

Let us now consider the time autocorrelation functions
two ‘‘generic’’ observables, namely, the currentJ and res-
caled traceless kinetic energyT8:

CJ
L~m!ª

1

L
^J~0!J~m!&r

L

~36!

CT
L~m!ª

1

L
^T8~0!T8~m!&r

L , T85
1

t
T2N
-
-

-

-

e

T

d.

-

f

where J(m)5U†mJUm and T8(m)5U†mT8Um. Note that
^J&r

L5^T8&r
L50. These two observables belong to differe

symmetry classes with respect to the parity operation

P̂J52JP̂, P̂T85T8P̂, ~37!

so we choose both to check whether many-body dynam
may depend on the symmetry class with respect to gen
‘‘reflection’’ symmetry. Conveniently, both observablesJ
andT8 are diagonal in momentum representation,

JukW &5JkWukW &, JkW5 (
n51

N

sin~skn!, ~38!

T8ukW &5TkW
8ukW &, TkW

852 (
n51

N

cos~skn!, ~39!

so the time autocorrelation functions can be computed fr
the time evolution of a~complete! set of N8 (5N) initial
momentum stateskW8,

CA~m!5
1

LN8
(
kW8

8

AkW8(
kW

AkWpkWkW8~m!, ~40!

whereA is any observable which is diagonal in momentu
basis~here eitherJ or T8), and

pkWkW8~m!5u^kW uc~m!&u25u^kW uUmukW8&u2. ~41!

When the dimensionalityN becomes prohibitively large, we
suggest estimating the microcanonical averages~36! by tak-
ing a smaller 1!N8!N but uniformly random sample o

N8 initial states ukW8&, ^•&5(1/N8)(
k8W
8 ^k8W u•uk8W &„1

1O(1/AN8)…. Therefore, numerical computation of the co
relation functionCA(m) for m51, . . . ,M can be performed
in ;(2MN8N log2 N)/L FPO’s. Reduction for a factor 1/L
with respect to a naive FPO count is due to translatio
symmetry ~25!, since one can simultaneously simulate t
dynamics ofL different states with different values of th
conserved total momentumK5(n51

N kn8(mod L).
Let us for the time being fix the density of particlesr

5N/L51/4. We have performed extensive numerical co
putations of time correlation functions@by means of explicit
time evolution~40!#, for sizesL58, 12, 16, 20, 24, and 32
~at L532 the dimensionality of the Fock subspace isN
510 518 300), and systematically scanned the param
space (t,V). We have clearly identified two regimes whe
we were able to probe the TL, i.e., where time correlat
functions turned out to be stable against the variation of
system sizeL:

~i! The quantum ergodic and mixing regime for suf
ciently large values of parametert and for any value of pa-
rameter V @away from the ‘‘integrable axis’’ V
50(mod 2p )]. In this regime, time correlation functions ar
rapidly decreasing~caset5V54 is shown in Fig. 1!. How-
ever, for a finite sizeL the quantum system is almost nev
mixing, so correlation functions saturate, on a time sc
m(L), to a small but nonvanishing value of the stiffness
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DA
L5 lim

M→`

1

2M11 (
m52M

M

CA
L~m!. ~42!

~Here A5J or T8.! In order to avoid transient behavior a
small timesm and incorporating the time reversal symmet
CA

L(m)5CA
L(2m), time averages like Eq.~42! have been

numerically estimated asDA
L5@1/(M 811)#(m5M8

2M8 CA
L(m).

Sufficiently large averaging time scale$M 8, . . . ,2M 8%
5$30, . . . ,60% for all sizesL<32 ~and for most values o
parameterst,V) has been determined by direct inspection
the correlation functions~see Fig. 1!. In Fig. 2 we plot cor-
relation functionsCJ

L(m) for t5V54 on a semilog scale
and show that, as the sizeL is increased, the saturation~or
Thouless! time scalem(L) increases, roughly asm(L);L.
So the Thouless timem(L) clearly diverges in the TL. Fur-

FIG. 1. Current autocorrelation functionCJ(m) against discrete
time m for quantum ergodic (t5V54, lower set of curves for vari-
ous sizesL) and intermediate (t5V51, upper set of curves! re-
gimes, with densityr5

1
4 . Averaging over the entire Fock space

performed,N 85N, for L<20, whereas random samples ofN 8
512 000 and 800 initial states have been used forL524 and 32,
respectively.

FIG. 2. The lower set of curves (t5V54) of Fig. 1 on semilog
scale. To emphasize the exponential correlation decay, we also
the best exponential fit to the tail ofCJ

L532(m) ~dash-dotted line!.
,

f

thermore, Fig. 2 gives clear numerical evidence~further sup-
ported by results shown in Figs. 4 and 5! of the exponential
decay of time correlation functions in TL@or for times
smaller thanm(L) in a system of finite sizeL]:

CA~m!} exp~2lAm!, m@1. ~43!

Henceforth, the stiffness should also vanish exponentia
DA

L; exp(2lAL), as one approaches the TL~such behavior
was also observed in Ref.@21#, indicating exponential mix-
ing in the system sudied there@21#!. Indeed, in Fig. 3 we
examine 1/L scaling of the charge stiffnessDJ

L which is
~shown here fort5V54 andt5V52) a clear indication of
ergodic and mixing behavior in the TL,DJ

`50. In this re-
gime, in the TL, Kubo conductivity s8(v50)
5 1

2 b(m52`
` CJ(m) is finite, s8(0),`, and the transport is

dissipative. Further, as shown in Ref.@27#, the time-averaged
current of the arbitrary initial momentum stateukW8& averages
to zero J̄kW85 limM→`(1/M )(m51

M ^kW8uJ(m)ukW8&50, and the

aribtrary initial momentum stateukW8& explores the entire ac
cessible Fock space; i.e.,^kW uUmukW8& are uniformly Gaussian
pseudorandom numbers when the discrete timem is suffi-
ciently large, say larger than the quantum mixing time.

lot

FIG. 3. StiffnessDJ vs 1/L at a constant densityr5
1
4 and for

different values of control parameters in quantum mixing, ergo
regime, t5V54 and t5V52, and the intermediate regimes,t
51, V52 andt5V51. Other parameters are the same as in Fig

FIG. 4. Current autocorrelation functionsCJ
L532(m) for differ-

ent values of the parametert ~see legend! and a fixed value of the
parameterV. r51/4.
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~ii ! Nonergodic and nonmixing regime for parametet
;1 ~or smaller! and for any value of the cyclic parameterV.
Here time correlation functionsCA(m) do not decay to zero
but saturate, around a constant nonvanishing and typic
positive value of the stiffnessDA

L.0 ~42!, on a short time
scale whichdoes notdepend on the sizeL ~for sufficently
large sizeL). In Fig. 1 we plot the time correlation function
CJ(m) for t5V51. Please observe the very weak depe
dence on the sizeL. In Fig. 3 we also show the 1/L scaling of
the charge stiffnessDJ

L for the casest5V51 andt51 and
V52, which clearly indicate a finite extrapolated~to 1/L
50) thermodynamic value of the stiffness. This should
considered as evidence of nonmixing and nonergodic be
iors in TL. Since in this parameter ranges the KtV model is
also nonintegrable, we will refer to this regime asintermedi-
ate quantum dynamics. This behavior corresponds to idea
ballistic transport with an infinite Kubo conductivitys5`.
Furthermore, in Ref.@27# it was shown that in this interme
diate regime the time-averaged~persistent! current isnonva-

nishing and proportional to the initial current JkW8 , J̄kW8
5aJkW8 , a52DJ /@r(12r)# ~which is the most direct
probe of ideal, ballistic transport!, and that an arbitrary time
evolving initial momentum stateUmukW8& remains strongly
localizedin a nontrivial subregion of dynamically accessib
Fock space.

One may use a charge stiffness of an infinite systemDJ
`

as an order parameter controlling thedynamical phase tran-
sition from a disordered phase~quantum ergodic and mixing
dynamics! characterized byDJ

`50 to an ordered phase~non-
ergodic and nonmixing dynamics! characterized byDJ

`.0.
The transition point is characterized by diverging correlat
time ~or mixing time! scale,lJ

21 , which diverges when one
approaches the transition from above, say, with paramet
decreasing toward a certain critical curvetc(V). Of course,
in the ordered phase,t,tc(V) andDJ

`.0, the time correla-
tions have an infinite range,CA(`)Þ0. The transition is
illustrated in Figs. 4 and 5 by plotting correlation functio
for both observables,CJ(m) ~Fig. 4! andCT(m) ~Fig. 5!, for
different values of parametert and fixed parameterV52.
The estimate of the critical parameter here
1.4,tc(V52),1.5. Observe theexponentialdecay of cor-

FIG. 5. Kinetic autocorrelation functionsCT
L532(m) for different

values of the parametert ~see legend! and a fixed value of the
parameterV. r51/4. Note that the same scale is used as in Fig
lly

-

e
v-

n
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relations in all cases, except possibly at very small tim
where other, smaller time scales may become important

IV. SECOND METHOD: EXACT DIAGONALIZATION
OF STATIONARY PROBLEM OF FINITE SIZE

In a more complete but brute-force approach, one may
to diagonalize the matrix of a one-period evolution~Floquet!
propagatorU exactly for a finite sizeL, and compute inter-
esting dynamical quantities, such as conductivitys8(v) and
stiffnessDA

L , directly from the spectrum$wn% and the set of
eigenstates$un&% of the KtV mapU:

Uun&5 exp~2 iwn!un&, n51 . . .N. ~44!

Again, it is easiest to work in the momentum basis~31! and
to use the translational symmetry to decompose the ma
UkW ,kW8 into blocks ~with a fixed value of the total quasi
momentumK) of dimensionNK'N/L. Only for blocks with
K50 andK5L/2 ~if L is even! does the parity operationP̂
~26! commute with the translationS@Eq. ~25!#, and it may be
then used to reduce the dimensionality of the irreduci
block further by a factor 2. The matrixUkW ,kW8 ~for fixed K)
has been computed, by means of a decomposition~35! and
the FFFT algorithm, in roughly a (N/L)2log2N FPO, and
further diagonalized by means of standard routines
roughly a (N/L)3 FPO, yielding a set of quasienergies$wn%
and eigenstateŝkW un&.

A. Spectral statistics

In the so-called quantum chaology of simple~few! body
nonintegrable system there is a famous conjecture du
Bohigas, Giannoni, and Schmit@34#, supported by numerou
numerical@35# and theoretical arguments@36#, claiming that
hard chaos~ergodicity, mixing, and positive Lyapunov expo
nents! of a classical counterpart results in universal statisti
properties of a system’s~quasi!energy spectrum given by th
appropriate ensemble of random matrices@12#. On the other
hand, integrable classical dynamics results in universal P
sonian statistics of~locally! uncorrelated~quasi!energy levels
@37#. Intermediate statistics, which are neither random ma
theory~RMT! nor Poissonian, are found@38,39# for systems
whose classical dynamics is intermediate~mixed! with regu-
lar and chaotic motion coexisting in phase space. The c
nection between integrability and nonintegrability and sta
tics was recently investigated in a few well known examp
of nonlinear many-body systems~correlated fermions or in-
teracting spin chains! which do not possess a well define
classical limit@20#. It has been shown that quantum integr
bility, or ~strong! nonintegrability, of the quantum many
body model again correspond to Poissonian, or RMT, beh
ior of level statistics, respectively. No attempt has been m
there@20#, however, to understand the intermediate situati
or the thermodynamic limit.

Inspired by quantum chaos, we analyzed the statist
properties of the quasienergy spectrum$wn% of the KtV
model, and searched for signatures of ergodicity and mix
of the underlying quantum many-body dynamics in the T
For comparison with other results, the density will be ag
fixed to r51/4 in the numerical presentation which follow

.
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First we have analyzed the common short-range stati
namely, the integrated~cumulative! nearest neighbor leve
spacing distributionW(S), giving the probability that a ran
dom normalized spacing between two adjacent eigenph
Sn5(N/2pL)(wn112wn) is smaller thanS:

W~S!5
1

N8
(

n
8 u~S2Sn!. ~45!

For moderate values of the sizeL<20, the average in Eq
~45! has been computed over allN85N states from allL
blocks~symmetry classes! which are labeled by the value o
the total quasimomentumK. „Note that blocks forK5K8
and K5L2K8 are related by a parity transformation~26!,
and give identical~sub!spectra, so one has to diagonali
only @L/211# different blocks of matrixUkW ,kW8 .… However,
for a larger sizeL524 we already haveNK'5608, so we
averaged only over one class of fixed quasimoment
namely,K51, N85N1'N/L. ~We have carefully checked
that the statistical properties of partial subspectra are in
pendent of the symmetry class labeled by the qu
momentumK.!

In Fig. 6~a! we showW(S) for size L524 and severa
different values of parametert ~and fixedV52), covering
the transition from nonergodic to ergodic and mixing qua
tum dynamics. We find an almost Poissonian behav
WP(S)512 exp(2S) for small t and excellent RMT behav
ior WCOE(S)512 exp(2pS2/4) ~the Wigner surmise ap
proximating the statistics of the infinitely dimensional circ
lar orthogonal ensemble~COE! @12#, due to time-reversa
symmetry! for t.tc(V). In the ~more interesting! region of
intermediate dynamics 1;t,tc(V) we find intermediate sta
tistics interpolating between Poissonian and COE~see Fig.
6!. Interestingly, the level statistics close to the critical po
~for t51.4,V52) seems to be well captured by the so-cal
semi-Poisson modelWSP(S)512(112S)exp(22S) @40#
which has been recently used to model the critical level
tistics of 3D Anderson model@41#. Since it is impossible to
make statements about the TL of level statistics based
results for a fixed sizeL524, in Fig. 6~b! we show the de-
pendence ofW(S) on the sizeL for fixed parameterst51
andV52 ~in the regime of nonergodic dynamics!. Although
the intermediateW(S) statistic is closer to Poissonian than
COE, it is being shifted slightly closer to COE as we a
proach the TL~increase the sizeL), especially in the region
of small spacingsS. This increase of level repulsion as w
approach the TL eliminates possible fears of accidental i
grability of KtV model in the claimed intermediate regime

Second, we have analyzed the long-range spectral st
tics, namely, the number variance

S2~S!5^n~S!2&2S2, ~46!

giving the variance of the numbern(S) of normalized~un-
folded! levels (N/2pL)wn in a randomly chosen interval o
length S. @Note that^n(S)&5S.# For Poissonian and COE
models we expectSP

2(S)5S and SCOE
2 (S)'(2/p2)ln(2pS),

respectively. Here, one should note huge degeneracies i
integrable limit t50 of the Ising model~which are quite
common in integrable quantum many-body models in g
eral!. For small kick parameterst, we hence find stronger
ic,
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than-Poissonian-level clustering causing faster-than-lin
growth of S2(S) @Fig. 7~a!#. For finite sizeL524, strong
level clustering affects also long-range statistics in the
gime with mixing dynamics in TL; that is, fort52.5 we find
good agreement with COE statistics only for relatively sm
spectral rangesS<Smax;101. It has been checked, howeve
that the agreement with COE improves to hold on long
quasienergy ranges (Smax increases!, as either the kick pa-
rameter t or the sizeL are increased. In the intermedia
regime 1;t,tc(V), the number variance approaches that
an uncorrelated sequence,S2(S);S, as we approach the TL
@see Fig. 7~b! for the caset51 and V52]. However, for
finite L, the phenomenon of saturation sets in, see Ref.@42#,
namely when the scaled energy rangeS5S* is of the order
of the density of states,

S* 50.5N/L, ~47!

i.e., when the energy rangeS* becomes comparable to th
length of quasienergy spectrum. The numerical factor 0.5
Eq. ~47! is of phenomenological origin. Indeed for data
Fig. 7, forL512, 16, 20, and 24, the maxima of the numb

FIG. 6. Cumulative quasilevel spacing distributionsW(S) for a
quarter-filledr51/4 KtV model. In ~a! we plot W(S) for several
different values of parametert and fixed parameterV ~see legend!
covering the mixing and nonmixing transition, and for maxim
computable sizeL524. With dotted curves we plot, for compar
son, the theoretical, Poissonian, semi-Poissonian, and Wi
~COE!, distributions. In~b! we showW(S) for fixed kick param-
eterst51 andV52, and for different sizesL516, 20, and 24. In
the insets we plot the same objects on a log-log scale to empha
the small spacing behavior. Please observe the trend toward li
repulsion @quadratic forW(S→0)}S2], even in the intermediate
regime.
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variance lie at 9, 55, 390, and 2800, whereas theoretical
ues ofS* @Eq. ~47!# are 9.1, 56.9, 387.5, 2804, respective

B. Diagonal matrix elements, spectral functions,
and quantum ergodicity

In this subsection we will analyze the statistical distrib
tion of diagonal matrix elements of a few typical obser
ables, in particular as a function of the spectral paramete
the quasienergywn—in order to understand the typica
behavior of the spectral functions and the nature of quan
ergodicity as discussed in Sec. I. Here we consider th
typical observables, namely, the particle currentJ @Eqs.~16!
and ~38!#, the traceless kinetic energyT8 @Eqs. ~14! and
~39!#, and the potential energyW @Eq. ~15!#. The first two are
diagonal in the momentum basis, so their diagonal ma
elements are calculated using the set of eigenstates in
momentum basis,̂nuJun&5(kWJkWu^kW un&u2, whereas the po-
tential operatorW is diagonal in the position basis, so w
first use FFFT~34! in order to transform the eigenstates fro
momentum to position basiŝjWun&5(kWF jW,kW^kW un&, and then
use the formula ^nuWun&5( jWWjWu^ jWun&u2, where WjW

5V(n,n8d j n8 , j n11.
We again consider the regime of intermediate dynamic

t5V51 and the strongly nonintegrable regime of presu
ably ergodic and mixing dynamics att5V54, both at a
particle densityr51/4. In Figs. 8~a!–8~c! we plot the scatter
diagram of diagonal matrix elements of the kinetic ene
^nuT8un& vs the value of the quasi-energywn , for three dif-
ferent system sizesL516, 20, and 24. ForL516 and 20, we

FIG. 7. Number varianceS2(S) on a log-log scale for exactly
the same parameters@with an extra data in~b! for L512] as in Fig.
6.
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superimpose the data for all the symmetry classes labele
the values of the total quasimomentum 0<K,L, whereas
for L524 we compute diagonal matrix elements only f
two blocks with total quasimomentumK51 and 5, and care-
fully check that the results do not depend onK. We note that
the distribution of points (wn ,^nuT8un&) on the cylinder
@2p,p)3R is nontrivial and fairly stable against the varia
tion of the sizeL ~perhaps it is a multifractal, but the statis
tics is here too poor to investigate this question in mo
detail!. The points (wn ,^nuT8un&) do not seem to converg
to the spectral curve (w,^T&w) asL→`, where the spectra
function ^T&w should be determined in general as an aver
of diagonal matrix elementŝnuT8un& in a narrow quasien-
ergy interval

^T&w5 lim
d→0

lim
L→`

(
n

uwn2wu,d

^nuT8un&

(
n

uwn2wu,d

1

, ~48!

where the order of the limits is cruicial, of course. In Fig.
we show the overall distribution of diagonal matrix elemen
dP/d^nuT8un& and in Table I we give the widths of suc
distributions, namely, the standard deviationssA of distribu-
tions of diagonal matrix elements of all the three observab
AP$J,T8,W%, which are defined simply as sA

2

5(1/N)(n51
N (^nuAun&2^A&)2. In this intermediate regime

we find that the widthssA are stable~or even slightly in-
crease! as we increase the sizeL, which is incompatible with

FIG. 8. Diagonal matrix elements of kinetic energy^nuT8un& vs
the eigenphasewn , in the intermediate regime (t5V51), ~a! for
L516, ~b! for L520, and~c! for L524, and in the quantum er
godic regime (t5V54), ~d! for L516, ~e! for L520, and~f! for
L524. Note that the ordinate scale is inflated by a factor 4 in
quantum ergodic regime@~d!–~f!#.
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any of the two definitions of quantum ergodicity@Eqs. ~3!
and ~5!#. Note that in the completely integrable case, say
V50, the witdth of the distribution of diagonal matrix ele
ments can be calculated analytically, since then@27# sT8

2

5sJ
25^J2&5N(L2N)/(2L22)5 1

2 r(12r)L1O(1), so
the width even diverges as;AL in TL.

On the other hand, the situation is completely different
substantially larger kick parameters, say fort5V54, where
the system exhibits uniformly mixing behavior as inves
gated in Sec. III. In Figs. 8~d!–8~f! we show that the scatter
ing of diagonal matrix elementŝnuT8un& around the micro-
canonical averagêT8&50 is uniform ~independent of the
value of the quasienergywn) and that the width of the swarm
of points strongly decreases as the sizeL increases. Further
we show in Fig. 10 that the distribution of diagonal matr
elementŝ nuT8un& is in a very good agreement with aGauss-

ian. This finding also supports the hypothesis that^kW un& are
statistically equivalent to the eigenstates of a circular rand
matrix. The width of the Gaussian distribution decrea
with increasing sizeL, and we expect that the scaling wit
size L should be universal for any spatially homogeneo
observableA, @A,S#50, namely,

sA5const3
L

N , N5S L
ND . ~49!

This scaling law is derived from a simple assumption t
each quasimomentum block of the matrix^nuAun8& is a NK
'N/L-dimensional GOE matrix with the variance which
determined from the constraint^A2&/L5O(1) that is true for

FIG. 9. The distribution of diagonal matrix elements of the
netic energŷ nuT8un& in the regime of intermediate dynamicst
5V51) for three different sizesL516, 20, and 24.

TABLE I. Standard deviations of the diagonal matrix eleme
of the three observablesJ, T8, andW, in the regime of intermediate
(t5V51) and ergodic (t5V54) dynamics.

t51 V51 t54 V54

L sJ sT8 sW sJ sT8 sW

16 0.8927 1.1056 0.4437 0.3212 0.2720 0.553
20 0.9647 1.2178 0.4955 0.1495 0.1203 0.250
24 1.0430 1.3185 0.5347 0.0628 0.0467 0.097
f

r

m
s

s

t

any observable of the formA5( jaj whereaj is some local
operator density, for examplêJ2&/L5^T82&/L' 1

2 r(12r)
@27#. One may check that all the last three columns of Ta
I indeed obey scaling~49!.

Therefore, our numerical results strongly support the f
Fock space ergodicity of the KtV model for sufficiently large
values of the kick parameters, since for all the three typi
observables that we have considered, the spectral functio
a constant̂ A&w[^A&, and a randomly chosen diagonal m
trix element^nuAun& would lie within arbitrarily small dis-
tance from the microcanonical average^A& for sufficiently
large sizeL.

C. Off-diagonal matrix elements and integrated conductance

From the complete set of eigenstates in the momen
representation,̂ kW un&, it is also easy to compute the off
diagonal matrix elements of the current observable

^nuJum&5(
kW

JkW^nukW &^kW um&. ~50!

Again, one should make use of translational symmetry~25!,
since@S,J#50, to point out that matrix elements are nonv
nishing only within a fixed quasimomentum block,Kn
ÞKm⇒^nuJum&50. In order to obtain the numerical resul
presented in this subsection we have averaged over the e
Fock space~all K), except again forL524 and r51/4,
where we have averaged only over a block with quasim
mentum K51. The real part of high-temperature electr
conductivity ~8! can be~for fixed sizeL) rewritten as

s8~v!5
pb

LN (
n,m

nÞm

u^nuJum&u2dpS 1

2p
~v2fm1fn! D .

~51!

In order to avoid an awkward smoothing procedure, and
simplify the notation, we introduce a scaled integrated c
ductivity I L(v),

FIG. 10. The distribution of diagonal matrix elements of t
kinetic energy^nuT8un& in the regime of ergodic dynamics (t5V
54) for three different sizesL516,20, and 24. The smooth curve
are the best fitting Gaussians~the widths are given in Table I!.
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I L~v!5
2

bE0

v10

s8~n!dn

5
1

LN (
n,m

nÞm

u^nuJum&u2u~v102ufm2fnu8!,

~52!

where uhu8ªmin$uhu,2p2uhu%, and u(x) is a Heaviside
step function. The integrated conductivityI L(v) is a mono-
tonically increasing function on the frequency interv
vP@0,p#, starting from the charge stiffness

I L~0!5DJ
L , ~53!

and satisfying the sum rule on the other end,

I L~p!5
1

L
^J2&r

L . ~54!

Note again that the current variance can be computed@27#:

1

L
^J2&r

L5
N~L2N!

2L~L21!
5 1

2 r~12r!1OS 1

L D . ~55!

In Fig. 11 we plot the integrated conductivityI L(v) for dif-
ferent values of the kick parametert ~fixed V52) for con-
stant sizeL524 and densityr51/4, showing the transition
from ergodicDJ

L'0 to nonergodicDJ
L.0 dynamics, consis-

tent with results of direct time evolution of Sec. III. In Fig
12 we analyze the dependence ofI L(v) on sizeL for fixed
values of parameters in the nonergodic regimet51, V52,
and r51/4. Note that for small frequenciesv, I L(v) is
rougly constant over the frequency interval 0<v<v

*
L ,

whose width is determined by the Thouless time of a fin
systemm(L);L, namely,v

*
L 52p/L. Note that the expres

sion for stiffness@Eq. ~53!# is not completely consistent with
the correct definition~10!, since the time-limitt→` is im-
plicit in Eq. ~53! before the TL of increasingL can be con-
sidered, whereas the correct order of limits is just the op
site. ~This proves another advantage of the numerical st

FIG. 11. We show the integrated conductanceI L(v) for a cyclic
chain of sizeL524 and parameterV52, and for several differen
values of parametert ~see legend!. In the inset we show the sam
plot on a semilog scale in order to illustrate the zero freque
jump—the charge stiffnessDJ

L .
l

e

-
y

of direct time evolution discussed in Sec. III over the mo
common frequency-domain approach presented here.!

An interesting conjecture has been put forward in R
@21# ~and critically debated in Refs.@43,44#!, namely that the
half-filled r51/2 integrablet-V model should exhibit prop-
erties of an ideal insulator at all temperatures whenV.t ~in
our notation!. The insulating behavior is characterized b
DJ

`5I `(0)50 and (2/b)s8(0)5(d/dv)I `(0)50, so the
time correlation functionCJ(t) should be an oscillatory
function in order to be integrated to zero.

We have found numerical evidence of~at least approxi-
mately! insulating behavior even in the nonintegrable ha
filled KtV model, whenV.t. In Fig. 13 we demonstrate
double transition from the~for approximately! insulating re-
gime ~for example, fort50.4 andV51) to ideally conduct-
ing regime~example fort5V51) to the normally conduct-
ing regime~example fort54.5 andV51) for a half-filled
KtV model onL516 sites.

y

FIG. 12. We show the integrated conductanceI L(v) for a quar-
ter filled r51/4 cyclic chain att51 andV52 ~in the nonergodic
regime! and for different sizesL524, 20, 16, and 12. In the inse
we show the same plot on a semilog scale in order to illustrate
convergence of the charge stiffness. Observe that the size o
horizontal plateau at small frequencies shrinks as;2p/L.

FIG. 13. Integrated conductanceI L(v) for a half-filled (r
51/2) cyclic chain of sizeL516 is shown for three different value
of parametert ~and fixed parameterV51), demonstrating a double
transition from insulator~here fort50.4) to ideal conductor~here
for t51) to a normal conductor~here for t54.5) as the kick pa-
rametert is increased. In the inset we show the same three cu
on a log-log scale.
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V. THIRD METHOD: ALGEBRAIC CONSTRUCTION
OF TIME-AVERAGED OBSERVABLES

FOR INFINITE SYSTEM

A large amount of numerical evidence has been prese
in the previous two sections in support of the conjecture
forward in Sec. I. However, all this evidence is based
computations on many-body systems of finite sizeL, and the
TL has been speculated by extrapolation to 1/L50. One may
still have doubts about whether in a nonintegrable sys
that is close to an integrable one, quantum ergodicity m
squeeze in very slowly for large sizesL, beyond the scope o
numerical observation. Therefore, as a complementary a
native, one would like to have a method of computation
time correlators, likeDA @Eq. ~42!#, which would directly
operate with infinite systems on infinite latticesL5`. In this
section we elaborate such a method of computation of op
tor valued time average of an observableA in the Heisenberg
representation

Ā5 lim
M→`

1

2M11 (
m52M

M

A~m!. ~56!

The method is specially designed for kicked systems wh
propagators can be decomposed into several noncomm
parts @45#, and will be implemented to compute time
averaged observables in an infinite KtV model, in particular
J̄ and T̄8, and the corresponding correlators, such as
charge stiffnessDJ .

A. Mathematical structures

The first essential mathematical structure used in this
tion is the Hilbert space ofpseudolocalquantum observ-
ables. Even in the general setting we assume that the ev
tion propagator preserves the number of particles,@U,r#
50. So we again fix the density of particlesr and consider
observablesA over a Fock~sub!space of quantum states wit
a given density parameterr. Such observables preserve t
number of particles,@A,r#50.

Let us define thescalar productof two extensiveobserv-
ablesA andB as

~AuB!5 lim
L→`

1

L
^A†B&r

L5 K 1

L
A†BL

r

. ~57!

We note that Eq.~57! has all the necessary properties of
scalar~inner! product: it is linear in the right factor, positive
and (AuB)5(BuA)* . Note also that averaging over hal
filled states is, in the TL, equivalent to the ‘‘grand
canonical’’ average,̂•&r5

1
2
[^•&.

The observableA is called weakly local or pseudolocal,
iAi2

ª(AuA),`. Pseudolocal observablesA constitute a
Hilbert space denoted byU. There is a linear subspace
U8#U of pseudolocal observablesA, such that@A,B#5AB
2BA is pseudolocal for any pseudolocalBPU. For any such
APU8, the scalar product~57! is an invariant bilinear form
with respect to theadjoint map(adA)B5@A,B#, namely,

„~adA†!BuC…5„Bu~adA!C…. ~58!
ed
t
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The second essential mathematical concept is theunitary

Heisenberg-Floquet mapÛad :U→U, which propagates
quantum observables in Heisenberg representation for
period of time, starting at some timehP@0,1):

ÛadA~h1m!5A~h1m11!5U†A~h1m!U, ~59!

~ÛadAuÛadB!5~AuB!. ~60!

For example, for theKtV model~in spin representation~21!
which is, for algebraic convenience, used in this section! we
have

Uuh51/25 exp„2 i 1
2 tH1)exp„2 iV~H01 1

2 Sz!…exp~2 i 1
2 tH1!,

~61!

with the potential and kinetic generators

H05 1
4 (

j 52`

`

s j
zs j 11

z , ~62!

H15 1
4 (

j 52`

`

~s j
1s j 11

2 1s j
2s j 11

1 !.

Unlike in Sec. III, here we have taken the time steps in
middle between the kicks,h5 1

2 , in order to fully exploit the
time-reversal symmetry of the problem. Note that the tim
evolution of observables which are diagonal in moment
representation, likeJ andT8, is not affected by the shifth of
the origin of the stroboscopic map. The Floquet-Heisenb
map can be written explicitly using exponentials of the a
joint maps

Ûad5 exp@ i 1
2 t~adH0!#exp@ iV~adH1!#exp@ i 1

2 t~adH0!#.
~63!

Since the densityr ~or magnetizationM5r2 1
2 in spin-12

formulation! is fixed, the total spinSz in Eq. ~61! generates
an irrelevant overall phase which does not influence the e
lution of observables.

The time average of the observable~self-adjoint operator!
A in Eq. ~56! is a solution of the fixed-point equation for th
Floquet-Heisenberg map,

ÛadĀ5Ā. ~64!

Time averaging in operator space can also be written
terms of an orthogonal projectorP̂U onto the null space of
12Ûad, namely,

Ā5 P̂UA, P̂U5 lim
M→`

1

2M11 (
m52M

M

Ûad
m . ~65!

The property

P̂U5 P̂U
2 ~66!

is easily proved by writing a time-average limit~65! in an
equivalent, Gaussian way,



-

t

r
n

he

m

y

es-

e

al

e

tion,

3962 PRE 60TOMAŽ PROSEN
P̂U5 lim
M→`

1

A2pM
(

m52`

`

exp„2 1
2 ~m/M !2

…Ûad
m .

Without loss of generality we will in the following as
sume that observableA is tracelesŝA&50, such asJ andT8.
Note that the generalized stiffness~42! can be written simply
as

DA5~AuĀ!. ~67!

B. Time average from variational principle in operator space

The scaled~or normalized! time average of a self-adjoin
operatorA5A†, X5Ā/iĀi , can be obtained from avaria-
tional principle in operator space, that is, as an extremum
~maximum! of an actions(X),

d

dX
s~X!50,

s~X!5 1
2 ~XuA!~AuX!5 1

2 u~XuA!u2, ~68!

with constraints

i~12Ûad!Xi25~Xu~12Ûad
21!~12Ûad!uX!50, ~69!

~XuX!5const,`, ~70!

that is, Eqs.~68!–~70! imply X5aĀ, wherea5iĀi21 if X
is normalized as (XuX)51. Since the constraint~69! is ho-
mogeneous, the corresponding Lagrange multiplier is dive
ing. Hence, we suggest to write the constrained variatio
problem@Eqs.~68!–~70!# in the compact form

lim
e→0

d

dX
se~X!50 ⇒ X5aĀ, aPC,

~71!
se~X!5 1

2 u~XuA!u22 1
2 lie21~12e2eÛad!Xi2

wherel is another Lagrange multiplier associated with t
second constraint~70!. Indeed, for smalle one may write

se~X!5 1
2 u~XuA!u22 1

2 l~XuX!

2 1
2 l~e222e21!i~12Ûad!Xi21O~e!,

so homogeneous constraint~69! follows automatically ase
→0 in order to make the actionse(X) regular~and maximal!
at e50. Let us now show that the above variational proble
~71! has the correct solution~56!. We differentiate action
~71!,

d

dX
se~Xe!5~AuXe!A2

l

e2
~12e2eÛad

21!~12e2eÛad!Xe

50,

and writea5(AuX). This equation can be solved explicitl
for Xe :
g-
al

Xe5
ae2

l
~12e2eÛad!21~12e2eÛad

21!21A

5
ae2

l (
n50

`

(
m50

`

e2(n1m)eÛad
n2mA

5
ae2

l (
p52`

`

A~p! (
q5up/2u

`

e2qe

5
ae2

l~12e2e!
(

p52`

`

A~p!e2(e/2)upu. ~72!

In the limit e→0, the last expression~72! is proportional to
the time average

X5 lim
e→0

Xe5
4a

l
Ā. ~73!

Evaluation

a5~AuX!5a
4DA

l

fixes the value of the Lagrange multiplier

l54DA . ~74!

The unitarity @Eq. ~60!# and invariance@Eq. ~64!# have the
following very important consequence:

~ĀuĀ!5~AuĀ!5~ĀuA!. ~75!

Assuming thatX is nonvanishing so that (XuX).0, and that
X and Ā areproportional, one can write

Ā5
~XuĀ!

~XuX!
X5

~XuA!

~XuX!
X. ~76!

Taking the scalar product of the last equation withA, one
obtains a very useful expression for the stiffness:

DA5
u~AuX!u2

~XuX!
. ~77!

C. Numerical application

However, the maximization of functionals~68! and ~71!
in the huge infinitely dimensional operator spaceU is not
convenient for practical calculation. Instead, we suggest
timating the time-averaged observableĀ by solving the
variational problem~71! in a finite-dimensional subspac
M(A),U ~the Galerkin-like approach in operator space!. In
fact, we devise a special sequence of truncated ‘‘minim
invariant’’ operator spaces . . .Mp(A),Mp11(A) . . . ,U,
which in the limit p→` ~after closure!, contain the time
averageĀ. Thus the solutionsXp of the variational problems
~71! on spacesMp should converge to the proper scaled tim
averageX of observableA.

Let s5$aH01bH1 ;a,bPC% be a two-dimensional lin-
ear vector space spanned by the two generators of mo
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Ha ,a50 and 1@Eq. ~62!#. Let us define theminimal invari-
ant operator space containing A, as the closure of linea
combinations of all products of adjoint generators adHa ,a
50 and 1 onA:

M~A!5øn50
` ~ads!nA. ~78!

M(A) is indeed the minimal~though infinitely dimensiona
in general! operator space containingA with the invariance
property

~adHa!M~A!5M~A!, a50,1,
~79!

ÛadM~A!5M~A!, ;t,V.

From the construction of the time average~65!, it is obvious
that ĀPM(A). We now construct the countable basis of t
spaceM(A) ordered by the order of locality as follows: W
assign an observableH̃q,c to an ordered pair of integers
(q,c), order q, and code c, 0<c,2q21 with q21 binary
digits cn ,c5(n51

q21cn2n21, namely,

H̃q,c5~adHcq21
!~adHcq22

!•••~adHc1
!A. ~80!

Since not all observablesH̃q,c up to a given maximal orde
p,q<p, are linearly independent we perform Gram-Schm
orthogonalization with respect to the scalar product~57!

Gq,c5H G̃q,c /A~G̃q,cuG̃q,c!, G̃q,cÞ0

0, G̃q,c50,
~81!

G̃q,c5H̃q,c2 (
(r ,b)

(r ,b),(q,c)

Gr ,b~Gr ,buH̃q,c!.

The nonzero observablesGq,c form the orthonormal basis o
M(A). Note that observablesGq,c are strictly local operators
of orderq: in the case of spin representation of KtV model,
they are represented as expansions

Gq,c5 (
s0 ,s1 , . . .sq

gq,c
s0s1 , . . . ,sqZs0s1, . . . ,sq

~82!

in terms of spatially homogeneous finite products of fie
operators:

Zs0s1 , . . . ,sq
5 (

j 52`

`

s j
s0s j 11

s1
•••s j 1q

sq ,

whereskP$0,1,2,z% ands j
051. The~average! number of

nonzero terms in expansions~82! was found to grow expo-
nentially at approximately the same rate for both observa
under study, for eitherA5J or A5T8, namely, as

#$gq,c
s0s1, . . . ,sqÞ0%'0.532.55q,

which may be further reduced by a factor 2, or even b
factor 4 if r5 1

2 , using the symmetriesP̂ @Eq. ~26!#, andR̂
@Eq. ~27!# ~the latter may be used only ifr5 1

2 ). Note that the
entire linear spaceM(A) has the same symmetry properti
as observableA, for example, the spaceM(J) and M(T8)
t

s

a

belong to a negative and positive parity symmetry class,
spectively, with respect to parity operation~26!.

Let us now define a sequence oftruncated minimal in-
variant operator spacescontainingA,

Mp~A!5øn50
p21~ads!nA, p51,2 . . . , ~83!

with dimensionsdp(A)ªdim Mp(A). Linear spaceMp(A)
contains operators derived fromA by composition of genera
tors adHa up to order p. Due to binary code constructio
~80! we have a strict upper bound on the growth of dime
sions of the truncated spacesMp(A),

dp~A!<2p21; ~84!

however, actual dimensions may grow considerably m
slowly ~due to systematic linear dependences amongH̃p,b);
that is, for A5J and A5T8, by computer algebra up top
514th order~see Table II!, we find empirically

dp~J!'1.825p21, dp~T8!'1.68p21. ~85!

Let Hp,a , a50 and 1, denote real and symmetric~Hermit-
ian in general! matrices of linear maps andHa on Mp(A)
with images orthogonally projected back toMp(A). It fol-
lows from the construction that they have~generally! a
block-banded structure, where the blocks correspond to
servables with a fixed orderq:

~Gq,cuadHauGq8,c8!50, if uq2q8uÞ1. ~86!

The truncated adjoint mapsHp,a have nontrivial null spaces

Np,a~A!5$BPMp~A!;@Ha ,B#PMp11~A!2Mp~A!%,
~87!

with dimensionsdp,a(A)ªdimNp,a(A) which increase ap-
proximately with the same exponent asdp(A) @Eq. ~85!# ~see
Table II!.

TABLE II. Dimensions of the truncated minimal invarian
spaces and of the null spaces of truncated adjoint maps for diffe
orders of truncationp.

p dp(J) dp,0(J) dp,1(J) dp(T8) dp,0(T8) dp,1(T8)

1 1 1 1 1 0 1
2 2 0 2 2 0 1
3 4 2 2 4 1 2
4 7 3 3 6 2 1
5 12 6 4 10 4 5
6 21 9 7 15 5 2
7 38 16 12 25 9 10
8 69 27 21 40 12 7
9 126 48 38 66 22 21
10 230 84 68 107 33 22
11 419 153 123 178 60 51
12 763 273 223 293 91 66
13 1393 493 409 494 162 137
14 - - - 831 257 202
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By means of truncated adjoint mapsHp,a we construct an
approximate Floquet-Heiseberg matrixUp , which is a
dp(A)-dimensionalunitary matrix over the truncated spac
Mp(A):

Up5 exp~ i 1
2 tHp,1!exp~ iVHp,0!exp~ i 1

2 tHp,1!. ~88!

Now we are ready to solve the variational problem@Eqs.
~68!–~71!# in the truncated spaceMp(A). We note an impor-
tant ‘‘experimental’’ observation~whose theoretical under
standing is stil lacking! namely, that the matrix12Up pos-
sesses a high-dimensional null space

Np
U~A!5$BPMp~A!;UpB5B%,

whose dimensiondp
U(A)ªdimNp

U(A) is, for oddp, indepen-
dent of parameterst andV and equal to the dimension of th
null space ofHp,1 :

d2l 21
U ~A!5d2l 21,1~A!. ~89!

Note also that for odd order of truncationp52l 21, the
elements of null spaceBPNp

U(A) are spanned by combina
tions of evenpowers of generators only, i.e., (BuG2l ,c)[0,
which is due to time-symmetric construction (h5 1

2 ) of the
evolution operatorÛad ~63!.

The scalar products (57) for different values of the de
sity r are nondegenerate with respect to each other,
therefore the dimensions of various linear~sub!spaces,
dp(A),dp,a(A),dp

U(A), ~see Table II! do not dependon the
density parameterr.

The constraint~69! is now equivalent to restricting th
variation ~68! to the subspaceNp

U(A). Hence the ‘‘trun-
cated’’ scaled time-averaged observableXp is a maximum of
the quadratic form (XpuA)(AuXp) on NU(A) with a normal-
ization constraint (XpuXp)51. In other words, if Fn , n
51, . . . ,dªdp

U(A) is an orthonormal basis of the null-spa
Np

U(A), and, if (x1 , . . . ,xd) is a normalized eigenvector o
the ~positive definite! d3d matrix eigenvalue problem,

(
n

~FmuA!~AuFn!xn5 f xm ,

with the maximaleigenvaluef, then

Xp5(
n

Fnxn ~90!

is a solution of the variational problem@Eqs. ~68!–~71!# in
the truncated spaceMp(A). In the limit p→` we expect to
recover an exact time average

lim
p→`

Xp5X5iAi21Ā. ~91!

However, if the system is ergodic, the time average sho
be zeroĀ50 ~note that̂ A&50), so the~normalizable! limit
~91! should not exist. In order to inspect the convergence
-
nd

ld

f

Xp in the Hilbert space of observablesU, we define arelative
norm Nq(X) with respect to orderq:

Nq~X!5(
c

u~XuGq,c!u2. ~92!

Since

iXi25 (
q50

`

Nq~X!, ~93!

the inspection of the convergence of the sum on the rig
hand side of Eq.~93! would give us an indication of the
convergence ofXp @Eq. ~91!# and thus of the nonergodicity
of the problem. As a second criterion of convergence ofX,
we study thestability of Xp , or of the relative norms
Nq(Xp),q<p, with respect to the variation of the truncatio
orderp.

In Figs. 14 and 15 we show the relative normsNq(Xp) of
the normalized time average of the currentJ ~Fig. 14! and
kinetic energyT8 ~Fig. 15! for several different orders o
truncationp ~up to p511 for J and up top513 for T8). We
note that, for both observables,Xp is quite stable agains
variation ofp, for t<1.4; also, in the same parameter rang
the coefficientsNq(Xp) seem to be summable. The stiffne
DA @Eq. ~77!# may be rewritten in terms of relative norms a

FIG. 14. The logarithm of the relative normNq(X) of the nor-

malized time-averaged currentX5 J̄/iJi in a quarter-filled (r
51/4) infinite KtV model is plotted against~odd! orderq52l 21,
for a square mesh of parameterst andV. The three different curves
on each graph, thick, medium, and thin, refer to three differ
orders of truncation of operator spaces,p511, 9, and 7, respec
tively.
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DA5~AuA!
N1~X!

(
q51

`

Nq~X!

. ~94!

In this regime whereX is convergent inU, Nq(Xp) are good
approximations ofNq(X) for q<p @apart from a constan
renormalization prefactor which cancels out from expr
sions like Eq.~94!#, and we may write a good estimate fo
the upper bound on the stiffness

DA
p5u~AuXp!u2'~AuA!

N1~X!

(
q51

p

Nq~X!

.~AuA!
N1~X!

(
q51

`

Nq~X!

5DA
` . ~95!

However, we would like to have accurate approximations
the stiffnessDA

` itself rather than just the upper bounds,
we extrapolate the relative normsNq(X)'Nq(Xp) to orders
higher than the order of truncation,q.p, in an expression
for the stiffness@Eq. ~94!# by fitting the tail ofNq52l 11(Xp)
at three points:q5p24, p22, andp @note thatNq52l(Xp)
50] with exponential ansatzNq52l 11(Xp)} exp(2sq).
Since the actual rate of convergence ofNq(X)→0, as q
→` seems to be slower than exponential~see Figs. 14 and
15!, the stiffness extrapolated in this way@Eq. ~94!#, DA

e , is

FIG. 15. Same as in Fig. 14 for the normalized time-avera

kinetic energyX5T̄8/iT8i , but for larger truncation orders,p513
~thick curves!, p511 ~medium curves!, andp57 ~thin curves!.
-

f

expected to be still slightly overestimated. In Fig. 16 w
show the dependence of the extrapolated charge stiffnesDJ

e

on the parametert ~and for fixedV52) through the critical
ranget;tc'1.45, and compare it with the charge stiffne
as computed from direct diagonalization of the finite KtV
chains of sizesL524, 20, and 16. When approaching th
critical point tc , the fitted slopes linearly decreases to zero
For larger values of parameters,t.tc(V), Xp is not stable
against variation ofp and the partial sums of relative norm

Nq(X) are not converging. Therefore,Ā50 andDA
`50, and

the system is quantum ergodic. In Fig. 17 we plot a full (t,V)
phase diagram of the~extrapolated! charge stiffnessDJ

e . It is
clear that this last method, since in operates with an infin
system, gives the most reliable results on the critical regi
of transition between dynamical phases. However, no o
dynamical information on correlation functions is obtain
other than their time averages, so within the present met

d

FIG. 16. Charge stiffnessDJ vs kick parametert and constant
parameterV52 for a quarter-filled chainr51/4. Different curves
refer to different system sizesL524, 20, and 16, while points rep
resent the infinite-size stiffness@Eq. ~77!# based on an extrapolate
algebraic time-averaged current invariant of motion. The trunca
order isp511. In the inset we show the logarithmic slopes of the

falloff of the relative normsNq( J̄)} exp(2sq) at q'p.

FIG. 17. (t,V) phase diagram of the charge stiffnessDJ for a
quarter-filled (r51/4) infinite KtV model, as deduced from anex-

trapolatedtime-averaged currentJ̄.
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we cannot make any claims on the stronger ergodic prop
of quantum mixing.

Although the dynamical behavior of observables may
principle depend on the symmetry class of observables w
respect to, say, parity operation~26!, we have found very
similar ergodic, nonergodic, and critical regions, for the tw
examples of opposite parity observables,J andT8, that have
been studied. However, we should note that dynamical
havior may also depend on the other~continuous! conserved
quantities, such as the densityr. Our results for other value
of densityr indicate that the transition region between e
godic and nonergodic dynamics moves to slightly sma
values of parametert as r approaches 1/2. Due to particle
hole transformation@Eq. ~27!#, the dynamics forr5r8 is
equivalent to the dynamics forr512r8.

We should note that in a recent paper@46# a very similar
algebraic approach was used in order to compute num
cally the pseudolocal quantum invariants of motion. In t
regime of nonergodic dynamics one or two converg
pseudolocal invariants of motion were found, whereas in
regime of ergodic dynamics, consistently, no nontrivial
variants of motion were found. Then by using a formula@Eq.
~11!# of Mazur @24# and Suzuki@25#, the time-averaged cor
relation of kinetic energyDT has been computed by mea
of an expansion in terms of pseudolocal invariants, giv
results which are in good agreement with the results of di
calculations on finite systems. We believe that our va
tional approach in the space of observables presented he
~in general, possibly nonintegrable case! an improvement of
the Mazur-Suzuki approach@24,25# to the calculation or es
timation of time-averaged correlators. Within Mazur formu
~11! one is typically able to write only the inequality~the
lower bound on the stiffness!, since the set ofknown local
invariants of motion may beincomplete.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have presented three complemen
~mainly numerical and computer-algebraic! approaches to
the dynamics of nonintegrable quantum many-body syst
in the thermodynamic limit~TL!, demonstrated and studie
in a kicked (t,V) model of spinless fermions. We have be
primarily interested in the structural stability of nonergod
quantum motion and the transition from nonergodic and n
mixing to ergodic/mixing dynamics in the TL.

The first approach that we used is a direct time evolut
of a finite quantum system~which may be in the presen
model performed very efficiently by means of the so-cal
fermionic fast Fourier transformation! and computation of
time correlation functions of generic quantum observab
The sizeL of the system is systematically increased, and
TL is speculated based on extrapolation to 1/L50. For suf-
ficiently large values of kick parameters, we have fou
quantum mixing andexponentialdecay of time correlation
functions, while for smaller, intermediate values (;1) of
kick parameters, we have found nonmixing quantum mot
characterized by saturating, nonvanishing time correla
functions.
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Our second approach is a direct diagonalization of
stationary quantum problem of finite size, and a calculat
of dynamical properties, such as charge stiffness, conduc
ity, etc., in the frequency domain. Also, traditional quantu
signatures of chaos, such as level statistics, have been
spected and shown to correspond with the dynamical beh
ior. This approach is less computationally efficient in t
case of the present model than the first one.

In the third approach, which is fully complementary to th
other two, we propose an algebraic method for computa
of time-averaged observables of an infinite system. Thus
can make very precise statements on the quantum ergod
of an infinite system, which are in complete agreement w
the extrapolated results of calculations on finite systems.

The above results are claimed to be the evidence for
validity of the conjecture in Sec. I, namely, that the gene
quantum many-body system in the TL may not be quant
ergodic~or mixing! if it is sufficiently close to an integrable
system in parameter space. Recent numerical results
transport in the extended~nonintegrable! Hubbard model
@43# are compatible with the above conjecture. The transit
between nonergodic and ergodic dynamics when the exte
parameters are increased has the properties of a~dynamical!
phase transition and should be further studied theoretica
The first such attempt to do this was undertaken in Ref.@15#,
where a discretized nonintegrable quantum field model~in
the continuum limit! was mapped on a quantum chao
model of a single particle on a 2D torus~in the quasiclassica
limit !, and the transition from nonergodic and nonmixin
dynamics to ergodic and mixing dynamics of the quant
field model has been identified with the stochastic transit
from regular to chaotic motion.

We have also given a clear evidence on the nontriv
existence ofmixing quantum motionin the KtV model in the
TL with exponentiallydecreasing time correlation function
provided the external~kick! parameters are large enoug
~above the critical values!. Such quantum mixing behavio
may be a source of trulychaotic and macroscopically irre-
versiblequantum motion of many-body systems@47#. Note
that macroscopic irreversibility as a consequence ofnondis-
sipativebut strongly nonintegrable quantum many-body d
namics has been recently observed experimentally@48#.

One might doubtfully argue that our quite surprising fin
ing on structurally stable nonergodic quantum motion in
TL ~formulated as the conjecture in Sec.I! may be just an-
other peculiarity of physics in one-dimension, and as su
should not be expected to hold in interacting quantum s
tems in more than one spatial dimension. Being aware of
fear we have straightforwardly extended our KtV model
@Eqs.~12! and ~13!# to a rectangular periodicL13L2 lattice
in two spatial dimensions, with isotropic hopping in two o
thogonal directions andd-kicked isotropic nearest neighbo
interaction. An efficient direct time evolution of the 2D KtV
model has been implemented analogously along the l
described in Sec. III, and its time correlation functions ha
been computed accordingly, though due to the greater c
putational complexity only for relatively small lattices o
sizes up to 635. We should stress that we were again able
identify quite clearly the two regimes of quantum motio
which have been roughly stable against the variation of
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lattice size, namely,~i! a quantum mixing regime for suffi
ciently larget and V, and more importantly,~ii ! a quantum
nonergodic and nonmixing regime forutu;uVu; 1

2 ~or
smaller!, although the system is not known to be analytica
integrable in the limitt→0,V→0. This result~whose details
will be published elsewhere! is a small piece of numerica
evidence for the validity of the conjecture in two spatial d
mensions.
-

es

o

al
le

d,
ne

-

,

s

ing

J

ACKNOWLEDGMENTS

The author is grateful to P. Prelovsˇek for many stimulat-
ing discussions. The numerical simulations in this work we
performed on a computer of Theoretical Physics divis
~F1! of Jozef Stefan Institute, Ljubljana. Their support,
well as the financial support by the Ministry of Science a
Technology of R. Slovenia, are gratefully acknowledged.
,

ys.

re
ar-

ely
-
ed

ys-
ics

I.

P.

ett.

r,
@1# I. Kornfeld, S. Fomin, and Ya. Sinai,Ergodic Theory
~Springer, New York, 1982!.

@2# V. I. Arnold and A. Avez,Ergodic Problems of Classical Me
chanics~Benjamin, New York, 1968!.

@3# M. Henon, inChaotic behaviour of Deterministic Systems, ed-
ited by G. Iooss, R.H.G. Helleman, and R. Stora, L
Houches 1981 Proceedings~North-Holland, Amsterdam,
1983!.

@4# G. Gallavotti and E.G.D. Cohen, Phys. Rev. Lett.74, 2694
~1995!; J. Stat. Phys.80, 931 ~1995!.

@5# E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, Los Alam
Report No. LA-1940, 1955~unpublished!; E. Fermi,Collected
Papers~University of Chicago Press, Chicago, 1965!, Vol. 2,
p. 978.

@6# S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett.78, 1896
~1997!; Physica D119, 140 ~1998!.

@7# D.L. Shepelyansky, Nonlinearity10, 1331~1997!.
@8# B.V. Chirikov and F.M. Izrailev, Dokl. Akad. Nauk SSSR166,

57 ~1967! @Sov. Phys. Dokl.11, 30 ~1966!#; B.V. Chirikov,
F.M. Izrailev, and V.A. Tayursky, Comput. Phys. Commun.5,
11 ~1973!.

@9# We would like to demonstrate statistical laws with minim
external randomness. Hence we think of an isolated system
to evolve with no contact with thermal reservoirs of any kin
since we would like to inspect how nonlinear interaction alo
can control the ergodic properties of dynamics.

@10# For example, one may generally takef (e2 iw)
5(n52`

` f ne2 inw to be a a strong limit of trigonometric poly
nomials, $ f n%Pl 2, such as are the projection operatorsEw

according to the spectral theorem for unitary operators@11#.
@11# N. Dunford and J.T. Schwartz,Linear Operators, Part II:

Spectral Theory~Interscience, New York, 1963!.
@12# M.L. Mehta, Random Matrices~Academic Press, London

1991!.
@13# M. Gutzwiller, Chaos in Classical and Quantum Mechanic,

~Springer-Verlag, New York, 1990!, F. Haake,Quantum Sig-
natures of Chaos~Springer-Verlag, Berlin, 1991!; Quantum
Chaos: Between Order and Disorder, edited by G. Casati and
B. Chirikov ~Cambridge University Press, Cambridge, 1995!.

@14# Chaos and Quantum Physics, edited by M.-J. Giannoni, A.
Voros, and J. Zinn-Justin, Les Houches 1989 Proceed
~North-Holland, Amsterdam, 1991!.

@15# T. Prosen, Phys. Rev. E60, 1658~1999!.
@16# S. Graffi and A. Martinez, J. Math. Phys.37, 5111~1996!.
@17# M. Lenci, J. Math. Phys.37, 5137~1996!.
@18# G. Jona-Lasinio and C. Presilla, Phys. Rev. Lett.77, 4322

~1996!; P. Castiglione, G. Jona-Lasinuo, and C. Presilla,
Phys. A29, 6169~1996!.

@19# V.V. Flambaum, F. Izrailev, and G. Casati, Phys. Rev. E54,
s

ft

s

.

2136~1996!; V.V. Flambaum, A.A. Gribakina, G.F. Gribakin
and I.V. Ponomarev, e-print, cond-mat/9711213.

@20# G. Montambaux, D. Poilblanc, J. Bellissard, and C. Sire, Ph
Rev. Lett.70, 497 ~1993!; D. Poilblanc, T. Ziman, J. Bellis-
sard, F. Mila, and G. Montambaux, Europhys. Lett.22, 537
~1993!; T.C. Hsu and J.C. Angles d’Auriac, Phys. Rev. B47,
14 291~1993!.

@21# X. Zotos and P. Prelovsˇek, Phys. Rev. B53, 983 ~1996!; H.
Castella, X. Zotos, and P. Prelovsˇek, Phys. Rev. Lett.74, 972
~1995!.

@22# X. Zotos, F. Naef, and P. Prelovsˇek, Phys. Rev. B55, 11 029
~1997!.

@23# R. Kubo, J. Phys. Soc. Jpn.12, 570 ~1957!.
@24# P. Mazur, Physica~Amsterdam! 43, 533 ~1969!.
@25# M. Suzuki, Physica~Amsterdam! 51, 277 ~1971!.
@26# Precise conditions on the ‘‘generic’’ class of interactions a

yet to be determined; here we show the conjecture for a p
ticular specific example and quote few other results~Sec. VI!.
However, we should stress that we have in mind only pur
deterministic systemsand nonrandom interactions, so Hamilto
nians Hl of infinite systems are supposed to be prescrib
using afinite amount of information.

@27# T. Prosen, Phys. Rev. Lett.80, 1808~1998!.
@28# V.E. Korepin, N. M. Bogoliubov, and A.G. Izergin,Quantum

Inverse Scattering Method and Correlation Functions~Cam-
bridge University Press, Cambridge, 1993!.

@29# P. Jordan and E. Wigner, Z. Phys.47, 631 ~1928!.
@30# G. Casati, B.V. Chirikov, F. M. Izrailev, and J. Ford, inSto-

chastic Behavior in Classical and Quantum Hamiltonian S
tems, edited by G. Casati and J. Ford, Lecture Notes in Phys
Vol. 93 ~Springer, New York, 1979!.

@31# R. Artuso, G. Casati, F. Borgonovi, L. Rebuzzini, and
Guarneri, Int. J. Mod. Phys. B8, 207 ~1994!.

@32# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
Flannery,Numerical Recipes, 2nd ed.~Cambridge University
Press, Cambridge, 1992!.

@33# S. Winograd,Arithmetic Complexity of Computations~SIAM,
Philadelphia, 1980!.

@34# O. Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. L
52, 1 ~1984!.

@35# O. Bohigas, inChaos and Quantum Physics~Ref. @14#!.
@36# A. V. Andreev, O. Agam, B.D. Simons, and B.L. Altshule

Phys. Rev. Lett.76, 3947~1996!.
@37# M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A156,

375 ~1977!.
@38# M.V. Berry and M. Robnik, J. Phys. A17, 2413~1984!.
@39# T. Prosen and M. Robnik, J. Phys. A27, 8059~1994!.
@40# E.B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E59,

R1315~1999!.



in

t,

.P

od
lso
tc.,

nt,

3968 PRE 60TOMAŽ PROSEN
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