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We study a generic but simple nonintegrable quantaamy-bodysystem oflocally interacting particles,
namely, a kicked-parametet,{/) model of spinless fermions on a one-dimensional lat(eguivalent to a
kicked HeisenbergXX-Z chain of 1/2 spins The statistical properties of the dynamiggiantum ergodicity
and quantum mixingand the nature of quantum transport in thermodynamic limiare considered as the
kick parametergwhich control the degree of nonintegrabilitgre varied. We find and demonstrdtallistic
transport and nonergodic, nonmixing dynami@siplying infinite conductivity at all temperaturesn the
integrable regime of zero or very small kick parameters, and more generally and importantly, also in the
nonintegrableregime ofintermediatevalues of kicked parameters, whereas only for sufficiently large kick
parameters do we recover quantum ergodicity and mixing implying nofuifflisive) transport. We propose
an order parametdcharge stiffnes®) which controls the phase transition from nonmixing and nonergodic
dynamics(ordered phasd) >0) to mixing and ergodic dynamidslisordered phas®& =0) in the thermody-
namic limit. Furthermore, we finéxponential decay of time correlation functioimsthe regime of mixing
dynamics. The results are obtained consistently within three different numerical and analytical appi@aches:
time evolution of a finite system and direct computation of time correlation functioih$ull diagonalization
of finite systems and statistical analysis of stationary data,(i@ndalgebraic construction of quantum invari-
ants of motion of an infinite system, in particular the time-averaged observiBlE363-651X99)10710-3

PACS numbeps): 05.45-a, 05.30.Fk, 72.10.Bg

[. INTRODUCTION systems with Hamiltoniankl (7) which explicitly depend on
time 7. Therefore the entire Hilbert space of many-body
It has been a common belief for a long time that a largequantum configurationg~ock spacgis dynamically acces-
system of sufficiently many interacting particles should uni-sible, and the “microcanonical” average of amtensiveor
formly fill the entire available phase space. This is known adocal observable, represented by an operatoreads
the ergodic hypothesjsone of the cornerstones of statistical

mechanics, and is a necessary assumption to justify the use (AY= lim E 1)

of canonical ensembles and a derivation of fundamental laws Letrl

of statistical physics, such as transport ld@sg., Ohm’s law

or Fourier’s law. If the system possesses a group of exact geometric or dy-

However, the proof of this, together with the precise con-namical symmetries, the trace in Ed) may be considered
ditions for the validity of the ergodic hypothesis is still one only over a specific symmetry class of the Fock space with
of the most fundamental unsolved problems of theoreticafespect to the symmetry group. For example, if the system is
physics. Even in the context of purely classical dynamics, th@utonomousgH/d7=0, energy is conserved, and E{)
ergodic theony[1,2], though it is an involved and beautiful should be replaced by the average over a specific “energy
mathematical discipline, can make strong statements only fothell”; or, as often, if the numbeN of particles (or the
a very limited class of systems, while generic dynamical sysParticle density p=N/L) is preserved, then the micro-
tems, especially those consisting of many interacting parc@nonical average should be performed over the Fock sub-
ticles, are far from being understod8—8]. Even less is SPace of fixed densitiN-particle configurations
known about ergodic properties of geneguantummany-
bod . . . . . . L tr(Aé[p,_]’N)

y systems, which is precisely the objective of this paper. (Ay,= lim ——2==
A closed(finite) and bounded quantum system of sizand Lee T 0N
with a finite numbem of particles has a discrete spectrum,
hence its time evolution is quasiperiodic, and accordingly itwhere[x] is an integer part ok, and 6., is a standard
is nonergodic and nonmixing, as we shall define belowKronecker symbol. When we want to keep the sizen
However, in the thermodynamic lim(TL), of diverging size  average2) fixed and finite, we writd A)- . Although in this
L— o and density of particleg= N/L fixed, the spectrum of abstract discussion we would like to avoid the notion of tem-
the quantum propagator may accuire a continuous compgeraturd 9], one may also think of Eq$1) or (2) as canoni-
nent, and one may expect genuine properties of quanturmal averages at very large or infinite temperatug,
ergodicity and quantum mixing to set in provided the =(kgT) !—0.
strength of the nonlinear interaction is sufficiently strong. In  As we shall often speak about the “thermodynamic
this paper we deal with general nonautonomous many-bodlmit” throughout this paper we must define the precise
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meaning of these words: The fact that the propettis valid ~ wWhich belongs to the circular orthogonal or circular unitary
in the TL, say that the quantitfi(L) has a valueF,,, can be ~ensembléCOE or CUR [12]. For a finite but increasing size
understood eithefi) in a weakersense, i.e./(L) mayor L, the dimension of the Fock spageé=tr1 is finite and
may notbe defined for an infinitel(=%) system butF(L) diagonal elements of the Floquet map$are pseudorandom
approaches,, as we approach the TL, lim ., F(L)=F.: numbers with zero mean and decreasing magnitude,
or (ii) in astrongersense, i.e., the property is well defined ~ [(alU"a)|=0(N "9, so we find(AU")~(A)/N—0 as
for an infinite systenl. =, and is therein satisfied. When- L—.
ever the propertyd is defined for a finite system as well, ~ Therefore, provided that the Floquet matrix in a generic
then(ii) implies (i) and wewill safely use definitiori). This ~ basis(alU|a’) has a COE or CUE structure, one may argue
will be used througout most of the papéBecs. I-I\y,  that the quasienergy becomes irrelevant in the TL, just as it
whereas in Sec. V we shall deal with operator algebra ovePecomes irrelevant in the classical limit{0) of chaotic
infinite systems and only there may we understand TL withone-particle and few-particle systemis3,14. Note that in a
assumptior(ii). specific class of dynamical system a more formal and close
The system is defined to liantum ergodidf the time ~ analogy between the TL and tiguasjclassical limit has
average ofalmost) any observablia the Heisenberg picture recently been establish¢ds].

A(7) is equal to the microcanonical average times a unit However, since we have rpriori theoretical arguments
operator(over the corresponding desymmetrized Fock subt0 predict COE or CUE structure of the many-body Floquet
space matrix, we must emphasize that the full Fock space ergodic-

ity (3), as required for almost any obserbaBle the case of
— 1T periodic time-dependent Hamiltonian is a mustronger
A:=lim TJ'O drA(7)=(A)1. (3 condition than Eq(5). Therefore, we stress right at the outset
T that our numerical results strongly support the full Fock
. space ergodicity of typical observables in our two-parameter
Isri]t;/hc?f ;E;Srﬁc\ll\égirg No/nLe g:se";ecr(;;giné O;tT)O t:;):é ihgo.hl?j OlePamily of quantum many-body dynamical systems, when the
! . ' ' ; integrability breaking parameters are sufficiently lar@gee
define th_e ergodlcny through tk}e spectral resolution of theSec. IV B for a detailed numerical analysis of spectral func-
relevant invariant operatop=/p'dE,, namely, tions of typical observables, while all the other numerical
o results in the paper, on quantum mixing and ergodicity in
Azf (A),dE, . (4) Secs. lll and V, respectively, are fully consistent.
Alternatively, one generally defines quantum ergodicity in
more rigorous but essentially equivalent w&ef. [16],
g.(B6)], namely by writing the expectation value of E8)
in an arbitrarynormalizedstate| ¢):

When the microcanonical average does not depend on t
eigenvalues of the symmetry operations cqurantum num-
bers e.g., when thespectral functionis a constant(A),
=(A), then definition(4) is equivalent to a simple ori&qg. L
3)]. i _
In this paper we will consider the case opariodic time T'Tlffo dr(¢A(T)|¢)=(A). ©
dependenHamiltonian, say with periog, H(7+p)=H(7),
where the dynamics is fully described by iterating timétary L i .
quantum propagator over one period of tiiee., the Flo- Quantum ergodicity is now defindd6] by requiring Eq.(6)

quet map which is defined as a time-ordered producfor anyobservabled and for(almost) anypure state ). The
phrasealmost (again refers to the case of a time-periodic

U ::Te)(.q_'fgdﬂ_!(T)/h]'. In such a case, operatk, or any Hamiltonian. The set of statég) for which Eq.(6) may be
well defined function of iff(U) [10,11, is a conserved quan- ;14104 e g., the eigenstatesldf has a measure zero in the
tity, f(U)=f(U), and we must use a definition of quantum fy|| Fock space in the TL. In such a case, definiti@ is
ergodicity (4) instead of Eq.(3). If U=J" e '"?dE, is a  equivalent to the full Fock space ergodicitg) or, asL
spectral resolution of the quasienergy with the spectral pa-,« (A ), the matrix ofU in almost any(generi¢ Fock
rameter g e[ —,7), then we should define the quantum space basis looks more and more like a member of an
ergodicity as N-dimensional COE or CUE. However, the last definition of
quantum ergodicity6) is somehow more robust than ES)
re since observabl& may here be completely arbitrary. Even if
A J (A)dE, (5 - S
-7 A=f(U), it is true for almost any stathy) that one may
consider ¢/|U"|¢) (n#0) as a diagonal element of a unitary
for some spectral functiofA),. However, if we restrict pseudorandom matrix which is expected to fluctuate around
ourselves only to such observableswhich are “orthogo-  zero asO(N ™), and hence vanishes in the TW{-x).
nal” to all nonzero powers otJ, i.e., which satisff AU") An even stronger ergodic property guantum mixing
=0, for al n=*=1,%2,..., then the spectral function is which is defined very generally according to Rdfs6—1§
trivial, (A),=(A), and the simple definitio3) applies. In  as follows: A quantum many-body system is called quantum
fact, this is true fomlmost anyobservable in the TL provided mixing in the TL if the time correlation function of afal-
that (as we approach the TL, large but finit¢ the matrix of  mos}) arbitrary pair of quantum observables in the Heisen-
the propagatoU in an eigenbasika) of a generic observable berg representation, i.e., fgalmost) any observable (&)
A, Ala)=ala), behaves as a unitary pseudorandom matrixand forany observable Br), decays to zero:
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Cal(7):=(A()B(0)) ~(AX(B), im Cag(r)=0. (7 w38 COSM)<%J(O)J(T)>M_ ®

Note that formula7) implies that the TL [ —) should be
considered prior to the time limitr—oo, since these two
limits do not generally commutel8]. Again, in the case of

The transport is diffusive, and the system behaves @aera
mal conductoy if zero-frequency(dc) conductivity is finite,

dditional t o o’ (0)<, which means that the time integral of the current-
additional symmetry, or conserve@uasjenergy, mixing current correlation function should be finite; this is true if the

ov_efr separate symmtehtry CI‘?SSGE Cin be Stl;}d'id’ ask well @stem is mixing and if time correlations decay sufficiently
uniform mixing over the entire Fock spadavhich makes ¢ o4 "o o it is sufficient thd((1/L)J(0)3(n))|<C| |~ * for
sense when the microcanonical averaggectral functions §omeC>O anda>1

of A andB do not depend on quantum numbers or spectra On the other hand, if the transport is ballistic, dc conduc-

parameters such g&=N/L, E, or ¢]. tivity divergeso’(0)=0< and frequency dependent conduc-
In Ref. [18] quantum mixing of a system of interacting .tivitz can t?e Writ(te% as a sum gf a—fu):mti(?n spike and a
bosons has been related to a hard chaos of the correspond||q§gularizeol conductivity:

classicallmean field model. However, general quantum sys-

tems need not possess the classical limit; when they do, the e

general definition$3)—(7) go over to the correct definitions o' (0)=Ddé(w)+o,dw), D=Iim f ' (w)dow.

of classical ergodicity and mixing of the corresponding clas- e~07 "¢

sical counterparts. )

It is easy to see that the same implication holds as in th
classical mechanid®]: Quantum mixing(7) implies quan-
tum ergodicity (3). To establish this, observe that, as a
simple consequence of E(), the time-averaged correlation
function should vanish: T

o1
D=pD;, D= lim lim>—=- 7TCkA(7')dT. (10)

Fhe weightD is known as acharge stiffnesgor Drude
weight, and is proportional to the averaged current-current
time correlator

_ 11T T—ol—w
CAB:: I|m ?J dTCAB(T)ZO.

T /0 Therefore, the nonvanishing charge stiffn&s#0, mean-
_ i . ing a ballistic electronic transport, is a sufficient condition
Assuming that the order of the time average and the MICOfor deviation from quantum ergodicity, €9, will be exten-

canonical average can be interchanged, the last fact Svely used as a quantitative indicator of quant(morjer-

equivalent to godicity throughout the rest of this paper.
_ _ In a generic integrable system one can find(gufinite)
(AB)—(A)(B)=((A—(A)1)B)=0. set of invariantextensiveobservables, the so-called con-

served charge®, . Mazur[24] and Suzuki25] proposed a
From here we immediately see that the observable in brack‘Parseval-like” inequality for the time-averaged autocorr-
ets should vanishA—(A)1=0, since observablB is arbi- elator of any extensive observatie
trary. The last argument can be reversed, so we see that

— 2
guantum ergodicity(3) is equivalent toC,g=0 for almost <£AQn>
arbitrary pair of observable&,B. D 22 L (11)
We expect that quantum mixing implies universal statis- AT~ 1.,
tical properties of energy specti@nd also universal statistics <[ Qn>

of occupation numbersl 9], matrix elements, etcdescribed

by random matrix theory12]. Random matrix spectral sta- using any suitablésubset of conserved chargé®,,}, such
tistics have indeed been demonstrated numerically for a fe\Nqat<(]_/|_)Qan>:o if n#m. For an integrable system one
strongly nonintegrable many-body systerf20]. On the  therefore proves idedballistic) transport D;>0) if at least
other hand, completely integrable quantum many-body Syspne term in an infinite sum on the right-hand side of &d)
temS(haVing an infinite set of independent conservation IaW%pp“ed to the current observable=J is nonvanishing
Q,,n=1,23...) are obviously nonergodic @,=Q, (which is typically the casd 22]. It is convenient to say that
#(Q)n1), and therefore nonmixing, and are characterized byQ,} is acompleteset of conserved charges if Ed.1) is an

the universal Poissonian spectral statisfi2@]. exactequalityfor any observablé\ [which is “square sum-
It has been pointed out recenfl®1,22 that integrability — mable,” {(1/L)A?)<].
typically implies nonvanishing stiffness, i.e., idéhhllistic) The important and delicate question is whether nonergod-

transport with infinite transport coefficientsr ideal insulat- icity of an integrable system in the TL can be structurally
ing state. Indeed, there is a direct implication of quantum stable against generic and finite nonintegrable perturbation.
mixing and quantum ergodicity on quantum transport. Ondn this paper we will present clear numerical evidence based
should simply inspect a Kubo formul23], which relates the on various different and independent numerical methods in
real part of the transport coefficient, e.g., electric conductivsupport of a conjecture claiming an affirmative answer to the
ity o’'(w), to the cosine transform of the autocorrelationabove question.

function of the electric current observallewritten for high Conjecture: Let H, be a continuous family ofeneric
temperaturegsmall 8) as infinite quantum many-body systems witbcal interaction
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[26], such thatH, is completely integrable whiléd, are  ments in support of our conjecture by discussing some rel-

nonintegrable for almost any+0. Then3\., such that all evant published and unpublished results, and conclude.

H, arenonergodicand nonmixingfor |[\|<\.. One impor-

tant consequence of this conjecture would be a large class of Il. MODEL

not only completely integrable but also nearly integrable _ _ _ _

many-body systems for which ideal transport and infinite N0 general analytical methods exist to deal with dynamics

conductance would be expected. of nonintegrable quantum many-body systems. A solition
In should be emphasized that the existence of quasit_heory based on inverse scattering and an algebraic Bethe

integrable dynamics, neither completely integrable nor er@nSatd28]is unfortunately applicable only to a limited class

godic, in the TL is also an interesting debated issue in th f very speC|aI_, completely m_tegrable F“a”y'b"dy systems.

context of many-body classical mechanics. For example, | herefore one is led to numerical experiments to learn about

X ' Tche dynamics of generic quantum many-body systems, en-

the case of a nonintegrable chain of classical anharmoni . . )
coupled oscillatoréthe Fermi-Pasta-Ulam problérma strong qourgged by the fa_ct that numerical and experlmen_tal inves-
tigations of dynamical systems of one or few particles has

deviation from ergod|C|ty was found '°r.‘9 ag8], and re- been a very fruitful area of resear¢chknown as quantum
cently _shown to imply anomglous clasglcal energy transpor&haos over the past 20 yeafd3,14. However, one should
[6], which has been only partially explained in terms of stan-,e yery careful in picking out the toy model, since the fact
dard chaos criterig8,7]. However, in this paper we consider {hat the dimensionality of the Hilbert spa@8ock space of
the problem in a purely quantum setting, in a fermionic orgyantum many-body stategrows exponentially with in-
spin system for which any kind of classical or quasiclassi-creasing system size makes a serious quantitative study of
cal limit cannot be defined, so the results based on classicghe TL almost prohibitive. Here we propose the simplest
dynamics cannot be directly related to our discussion. many-body system that we can think of: a one-dimensional
In Sec. Il we define a two parametric family of generic lattice of spinless fermions of side for reasons which will
nonintegrable many-body systerfiz7], namely, a kicked- become clear in Sec. lll, we decide to break integrability by
parameter ,VV) model of interacting spinless fermions, or taking a time-dependent interaction which is switched on
equivalently, a kicked Heisenbed§yX-Z spin+4 chain, and periodically by means ofs kicks. Therefore, the time-
describe the basic properties of the model. In Sec. Il wedependent Hamiltonian of our “kicked,l) model” (KtV)
show how efficient explicit time evolution of the above [27] reads
model of finite but quite large size can be computed, and

present results on extensive numerical computation of time iy

i : i i i H(n)= > [—it(cle; 1 +H.c)+8(nVnn;, 4].
correlation functions. By letting the siZe to increase and “5 2HMj i+ p it
inspecting TL, we clearly identify two regimes of quantum (12)

motion: the nonmixing regime for small and intermediate
values of kick parameters where time correlation functions.t
typically saturate to constant nonvanishing values, and aglat
exponentially mixingegime for sufficiently large values of
kick parameters where time correlation functions deeay
ponentially As a complementary approach to a direct time
evolution (time domain we perform, in Sec. IV, a complete
diagonalization of the stationary probleffrequency do-

andc; are fermionic creation and annihilation operators
isfying canonical anticommutation relations,
[¢;,Cil+ :=CiCk+ CuC;=0. [¢] ,c,], = 8 and nj=c]c; are
number operators, and periodic boundary conditions are im-
posedc =Cq. 8,(7)=2 - _..8(7—m) is a periodics func-

tion. We use units in whichh = (time between collisions)
main) for finite sizesL. Using the stationary data we com- _ (lattice spacingj=1. The hopping amplitudeand interac-
pute and analyze short- and long-range quasienergy level stion strengthV are independerikick) parameters. An impor-
tistics. By further inspecting a statistical distribution of t&nt and useful property of kicked systems like ELp) is
diagonal matrix elements of three typical observables, wdhe fact that the evolution propagator over one pe(ieio-
clearly demonstrate the full Fock space ergodi¢@yas we quet operatorfactorizes into the product of kinetic and po-
approach the TL for sufficiently large values of the kick pa-tential parts:

rameters, whereas for smaller values of the kick parameters
we find a manifestly nonergodic behavior: a nontrivial and
nonshrinking(as the sizd. increasegdistribution of diago-

u=“7exp( i f“dm(ﬂ) = exp(—iW)exp(—iT),
O+

nal matrix elements around a nonconstant spectral function. (13
By means of off-diagonal matrix elements of the current ob-

servableJ, we directly compute the conductance and the L-1

charge stlﬁngsﬁj. The o_btalned re§ults are in quantitative T=— %tz (e"f’c;r+1cj+e"¢’cfcj+1), (14)
agreement with a direct time evoluti¢8ec. Ill). In Sec. V j=0

we outline a completely different and independent method of

computing time-averaged observables and quantitative indi- L-1

cators of quantum ergodicity such as the charge stiffdgss W:vE ninj4 1. (15)
by making use of extensive computerized Lie algebra. This =0

third method, in contrast to the other two, refers directly to

infinite systems(infinite latticesL=«) and, again, gives We have used a Peierls phagein order to introduce a
compatible results. In Sec. VI we give some additional arguyparticle current
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L-1
I=(IUT(93¢)Ul4-0=3i 2, (¢/6j+16[aC))
(16)

(which is divided byt for conveniencg elsewhere we set

¢:=0. Note that the kinetic energyas well as the currert
arediagonalin momentum representation:

L-1
thkZO (1- cogsk)n,, (17)
L-1
J:kZO sin(sk)ny, (18

wheres=2/L, while the tilde refers to momentum repre-

sentation of field operators:
L-1
=L 2> expisjkic;, N=CLCk. (19)
j=o0

Using a well known Jordan-Wigner transformatifizg]
one can map one-dimensiordD) lattice of spinless fermi-
ons to a sping chain described by Pauli operatonqt
=(of*io))/\2 ando], namely,

-1
crj*=\/§chexp(i772 nj,),
/=0

(20
(TJZ: 2n] - 1,
which satisfy canonical commutation relations

[ot ,a’ﬁ]Ziz eﬂvnaf’ﬁjk, v, me{x,y,z}.
n

In fact, the Jordan-Wigner transformatig20) maps KV
model on a kicked Heisenbed)X-Z chain:

H(m) =T+ 8,(nW, (22)
L-1
T=it2 (ofol, tolal ), (22)
i=0
L-1
W=3V 2, (dfof,,+200). (23
j=0

The last term of potential23) is irrelevant since the tota
spin S,=3_gof=N—3L is a constant of motior,U,S,]
=0.

Interaction strengthV is a cyclic parameter V
=V(mod 27 ), since the spectrum &¥/V is a set of integers

[see Eq(15)]. The KtV model is integrable and solvable in

three speciallimiting) cases(1) at=0, 1D Ising model{2)

V=0(mod 27), 1D free fermions, or equivalently, a 1D

HeisenbergXX 3-spin chain; and3) tV—0 and A=t/V

finite (continuous-timg 1D Heisenberg{XZ 3-spin chains.
Fort#0, V#0 (mod 2r), the KtV model is expected to

be nonintegrable, possibly quantum ergodic, and mixing.
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To conclude this section, let us list the symmetries of a
general KV model(for arbitraryt andV): In addition to the
trivial conservation law, namely, the number or density of
particles

N

L-1
NZE njv P:E, [U;N]:Ov (24)
J=0

and the total quasimomentukie {0,1, ... L —1} which is
defined as an eigenvalue of a unitary translational symmetry
operationS,

L-1
S= exp(isK)= exp( iskzo kﬁk), [U,S]=0, (25

the KtV model has two(geometri¢ “reflection” symme-
tries: theparity transformation

P ¢j—cL_;, PU=UP, P?=1, (26)
and, for even sizé, the particle-hole transformation
R: ¢j—(-1ic/, RU=UR, R*=1. (27

Note on notation: Symbols wearing a “hat” denote linear
transformations over the operator space of quantum observ-
ables.

lll. FIRST METHOD: DIRECT TIME EVOLUTION
AND CORRELATION FUNCTIONS

For a fixed sizel and a fixed number of fermion, a
unitary quantum many-body madg [Eq. (13)] acts over a
Fock space of dimension

N= (28

L)_ L!
N/~ NE(L=N)!

The dynamics of a given initial many-body statg0)) is a
simple iteration of the Floquet map

|(m)) =Ulg(m—1))=U"(0)). (29
Many-body state$) can be expanded in a complete basis

of the Fock spacéof Slater determinantsfor which we may
choose eitheposition stateslabeled by sets oN ordered

integersfz(jl, cedN)

D=cj ¢ J0), 0<ji<---<jy<L,  (30)

or momentum statetabeled by sets dfl ordered integerk,

|;2>:Ekl. . .EkN|o>, 0<k;<---<ky<L. (3D

An important observation, implicitly made already in Sec. Il,
Egs. (13), (15, and (17), is that the kinetic propagator
exp(—iT) is diagonal in the momentum representation while
the potential propagator exp{W) is diagonal in the position
representation:
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= (K| exp—iT)[K") where J(m)=U"JU™ and T'(m)=UTT’U™. Note that
(J);=(T')5=0. These two observables belong to different
symmetry classes with respect to the parity operation

:
Ug

N
= 5,;,,;/exp( it Z [cogsk,)— 1]) , (32)
" PI=-J3P, PT=T'P, 37)

W he . >,
7T =(il exp(—iw)lj") so we choose both to check whether many-body dynamics

N may depend on the symmetry class with respect to generic
=8 nexp —iV X 8 g (33  ‘reflection” symmetry. Conveniently, both observablds

o nn' =1 InIn andT’ are diagonal in momentum representation,
Therefore, one may formulate a very efficient algorithm to . R N _
perform an explicit time evolution of many-body states, pro- Jky=Jiky, Ji= Z sin(sky,), (38)
vided that it is possible to switch between the two represen- n=1
tations(30) and(31) as efficiently as in the problem of one N
kicked quantum particl&l=1, e.g., the kicked rotdr30] or DN — T |E o
kicked Harper mode[31], by means of the fast Fourier T'lky=Tglk),  Tg= ,Zl cogsky), (39
transformationFFT) algorithm. Indeed, we succeeded in de-

veloping a fast algorithm which performs such an antisym-o the time autocorrelation functions can be computed from
metrized multidimensional discrete Fourier transformation the time evolution of acomplete set of A7 (=A) initial

- momentum statek’,
Fik=(ilk) (39)

in roughly N log, NV floating point operation$FPO’s. The 1 i o
algorit%my is ba?szed on a ?agtorizat?on of nsite discrete Calm)= W kZ Ak/EIZ ARPRATT),
Fourier transformation into the product efL log, L two-site

transformations parametrized with X2 submatrices \yhereA is any observable which is diagonal in momentum
(a.,B;7,0)j;r, which are successively applied to pairs of cre-pasis(here eitherd or T'), and

ation operators, d‘T,c},)<—(ac;‘+,8c;r,,yc;r+ 5ch,), in all

Slater determinanlﬁncfn|0) which contain a particle at sites P (M) = (K| p(m))|2=|(k|UMK")|2. (41

j orj’. (One should be careful in dealing with fermionic

signs of Slater determinants when sorting the factors in th¥vhen the dimensionalitp/becomes prohibitively large, we
productanan|0>.) In case whenlL=2P, factorization of Suggest estimating the microcanonical averagés by tak-
FFT to a chain of two-sitéin such case unitajytransforma- ing a smaller 3\’ </\Cb“t uniformly rand,om_)sarrlple of
tions is easily deduced by inspecting a conventional FFF\" initial ~ states |k’),  (-)=(1LN")Z5(k'[-[k")}(1
algorithm(such as the one implemented in Red2]), while  +O(1/\/A7)). Therefore, numerical computation of the cor-
for more general lattice sizdsve have so far implemented relation functionC,(m) for m=1, ... M can be performed
such a Fermionic FFT (FFFT) algorithm for L in ~(2MA A log, N)/L FPO’s. Reduction for a factor [1/
=10, 12, 15, 20, 24, 30, and #@ve factorized the optimal with respect to a naive FPO count is due to translational
schemes developed by Winogr@B]. Our FFFT algorithm  symmetry (25), since one can simultaneously simulate the

requires almost no extra storage apart from a vectok af dynamics ofL different states with different values of the
numbers where the quantum many-body state is store@onserved total momentui==)_,k/(mod L).

(40

Therefore, map (13 is iterated on a vectoryy(m) Let us for the time being fix the density of particlps
=(k|¢(m)), using the matrix composition =N/L=1/4. We have performed extensive numerical com-
putations of time correlation functionby means of explicit
U=F*U“FUT (35  time evolution(40)], for sizesL=8, 12, 16, 20, 24, and 32

(at L=32 the dimensionality of the Fock subspaceN5
=10518300), and systematically scanned the parameter
Tl k > | space (,V). We have clearly identified two regimes where
halization ofU and expansion of time-evolving std#(Mm)) e were able to probe the TL, i.e., where time correlation

in terms of eigenstates &f. _ _ functions turned out to be stable against the variation of the
Let us now consider the time autocorrelation functions of

in roughly 2\log, N FPQO'’s per time step, which is by far
superior to “brute-force” methods based on complete diago

“ ‘L system sizd._:
two “generic” observables, namely, the currehand res- (i) The quantum ergodic and mixing regime for suffi-
caled traceless kinetic energy: ciently large values of parameteand for any value of pa-
1 rameter V [away from the “integrable axis” V
C5(m) ’=[<‘](0)J(m)>t =0(mod 27)]. In this regime, time correlation functions are

rapidly decreasingcaset=V=4 is shown in Fig. 1L How-
1 1 (36) ever, for a finite sizd. the quantum system is almost never
L ey / L T mixing, so correlation functions saturate, on a time scale
Cr(m) L (TOT (M), T t T-N m(L), to a small but nonvanishing value of the stiffness
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L=32 — |
L=24 ----

L=20
L=16
L=12 --- 7

0.06

C(m)

0.04

......

0.02

30 60
m (discr.time)

FIG. 1. Current autocorrelation functid®,(m) against discrete
time m for quantum ergodicte= V=4, lower set of curves for vari-
ous sizesl) and intermediatet&EV=1, upper set of curvgege-
gimes, with densityp= % Averaging over the entire Fock space is
performed, N' =N, for L<20, whereas random samples &f'
=12 000 and 800 initial states have been usedLfer24 and 32,
respectively.

LS

2M+1 ==

L_ .
D= lim

M — 0

Ch(m). (42)
M

(Here A=J or T'.) In order to avoid transient behavior at
small timesm and incorporating the time reversal symmetry,
Ci(m)=Ck(—m), time averages like Eq42) have been

numerically estimated aﬁ)kz[l/(M’+1)]Er2n'\i,M,C,K(m).
Sufficiently large averaging time scaléM’, ..., 2V'}

={30,...,60 for all sizesL<32 (and for most values of
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0.02 0.04 0.06 0.0?/L 0.1 0.12 014 0.16

0

FIG. 3. StiffnessD; vs 1L at a constant density=3 and for

different values of control parameters in quantum mixing, ergodic

regime,t=V=4 andt=V=2, and the intermediate regimes,

=1,V=2 andt=V=1. Other parameters are the same as in Fig. 1.

thermore, Fig. 2 gives clear numerical evidelfitether sup-
ported by results shown in Figs. 4 anfdd& the exponential
decay of time correlation functions in TlLor for times
smaller thanu(L) in a system of finite siz&]:

Ca(m)oc exp(—Aam),

ms1. (43

Henceforth, the stiffness should also vanish exponentially,

Dk’v exp(—AaL), as one approaches the Teuch behavior
was also observed in Rdi21], indicating exponential mix-
ing in the system sudied thef@1]). Indeed, in Fig. 3 we
examine 1L scaling of the charge stiffnes®} which is

(shown here fot=V=4 andt=V=2) a clear indication of

parameters,V) has been determined by direct inspection ofergodic and mixing behavior in the TID=0. In this re-

the correlation functiongsee Fig. 1 In Fig. 2 we plot cor-
relation functionsCj(m) for t=V=4 on a semilog scale,
and show that, as the sizeis increased, the saturatigor
Thoules$ time scaleu(L) increases, roughly ag(L)~L.
So the Thouless timg (L) clearly diverges in the TL. Fur-

0.1
0.011
— 0,001
g .....
(&)
0.0001 1 A
L=32 —
(=24 ----
L=20 -----
L=16 -
0.00001 - 0.034 exp(-0.19 m) ----- N
0 5 10 15 20 25 30 35 40 45 50
m, discr.time

FIG. 2. The lower set of curves€V=4) of Fig. 1 on semilog

gime, in the TL, Kubo -conductivity ¢'(w=0)
=3B3m__.Cy(m) is finite, ¢’ (0)<<, and the transport is
dissipative. Further, as shown in RE27], the time-averaged
current of the arbitrary initial momentum steit@) averages
to zeroJg =limy_..(1M)SM_(k'|I(m)|k’)=0, and the
aribtrary initial momentum statkE’) explores the entire ac-
cessible Fock space; i.ék|U™ k') are uniformly Gaussian
pseudorandom numbers when the discrete times suffi-
ciently large, say larger than the quantum mixing time.

0.1
0.014
E
S 0.0014 ~
Ss t=1.5Ve=2 —
o 1=1.75V=2 -
" e2V=2 e
t=2.5V=2 -
0.0001 4 . 1=3.V=2 -
1=4Va2 --ov
0 10 2 3 40 50 60 70 80
m, discr.time

FIG. 4. Current autocorrelation functio®;~3(m) for differ-

scale. To emphasize the exponential correlation decay, we also plent values of the parametefsee legendand a fixed value of the

the best exponential fit to the tail &};~*(m) (dash-dotted ling

parameteV. p=1/4.
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0.1 relations in all cases, except possibly at very small times
where other, smaller time scales may become important.

e — IV. SECOND METHOD: EXACT DIAGONALIZATION
OF STATIONARY PROBLEM OF FINITE SIZE

In a more complete but brute-force approach, one may try
to diagonalize the matrix of a one-period evolutigioque)
propagatotJ exactly for a finite sizeL, and compute inter-
esting dynamical quantities, such as conductivit{w) and
stiffnessD} , directly from the spectrunfie,} and the set of

: G ; L eigenstate$|n)} of the KtV mapU:
0 10 20 30 40 50 60 70 80
m, discr.time

Uln)=exp(—igy)|n), n=1...N (44)
FIG. 5. Kinetic autocorrelation functior@:~3(m) for different
values of the parametdr(see legendand a fixed value of the Again, it is easiest to work in the momentum ba@$) and
parameteV. p=1/4. Note that the same scale is used as in Fig. 4o yse the translational symmetry to decompose the matrix
Uik into blocks (with a fixed value of the total quasi-
momentunK) of dimensionVx~A/L. Only for blocks with

(i) Nonergodic and nonmixing regime for parameter K=0 andK=L/2 (if L is even does the parity operatioR
~1 (or smalley and for any value of the cyclic parame¥r  (26) commute with the translatioB[Eq. (25)], and it may be
Here time correlation function§,(m) do not decay to zero then used to reduce the dimensionality of the irreducible
but saturate, around a constant nonvanishing and typicallgiock further by a factor 2. The matridy i (for fixed K)
positive value of the stiffnes@k>0 (42), on a short time  has been computed, by means of a deéompos(ﬁﬁh and
scale whichdoes notdepend on the size (for sufficently  the FFFT algorithm, in roughly aA(JL)?log,\' FPO, and
large sizel ). In Fig. 1 we plot the time correlation functions further diagonalized by means of standard routines in
C,(m) for t=V=1. Please observe the very weak depentoughly a (\/L)® FPO, yielding a set of quasienergigs,}
dence on the size. In Fig. 3 we also show thel/scaling of  ang eigenstate&k|n).
the charge stiffnesB} for the cases=V=1 andt=1 and
V=2, which clearly indicate a finite extrapolatétb 1/
=0) thermodynamic value of the stiffness. This should be
considered as evidence of nonmixing and nonergodic behav- In the so-called quantum chaology of simgfew) body
iors in TL. Since in this parameter ranges th&vKmodel is  nonintegrable system there is a famous conjecture due to
also nonintegrable, we will refer to this regimeiatermedi-  Bohigas, Giannoni, and Schni24], supported by numerous
ate quantum dynamicghis behavior corresponds to ideal, numerical[35] and theoretical argumeni86], claiming that
ballistic transport with an infinite Kubo conductivitgy=o.  hard chaogergodicity, mixing, and positive Lyapunov expo-
Furthermore, in Refl27] it was shown that in this interme- nents of a classical counterpart results in universal statistical
diate regime the time-averagégersistentcurrent isnonva-  properties of a systemigjuasjenergy spectrum given by the
nishing and proportional to the initial currentJg \]_k appropriate ensemble_of random_matri@bg]. _On the other _
—ady, a=2D,/[p(1—p)] (which is the most direct hand, integrable classical dynamics results in universal Pois-

probe of ideal, ballistic transportand that an arbitrary time- Sonian statistics aflocally) uncorrelatedquasjenergy levels
evolving initial momentum state)™ E’) remains strongly [37]. Intermediate statistics, which are neither random matrix

| L9 o . . 2 theory(RMT) nor Poissonian, are fouri®8,39 for systems
ocalizedin a nontrivial subregion of dynamically accessible . S oo .
Fock space. whose classm_al dyn_amlcs |s_|n_termed|érmxed) with regu-
. o o lar and chaotic motion coexisting in phase space. The con-

One may use a charge S“fff‘ess of an l|nf|n|te Systzm nection between integrability and nonintegrability and statis-
as an order parameter controliing tﬂpnamlca_l phase ran- - 4ics was recently investigated in a few well known examples
sition from a disordered phasguantum ergodic and mixing ¢ \onjinear many-body systentsorrelated fermions or in-
dynamics characterized bip,; =0 to an ordered phas@on-  teracting spin chainswhich do not possess a well defined
ergodic and nonmixing dynamicsharacterized bYD y>0.  ¢jassical limit[20]. It has been shown that quantum integra-
The transition point is characterized by diverging correlationbi”ty’ or (strong nonintegrability, of the quantum many-
time (or mixing time) scale,\;*, which diverges when one pody model again correspond to Poissonian, or RMT, behav-
approaches the transition from above, say, with paraneterior of level statistics, respectively. No attempt has been made
decreasing toward a certain critical curyg¢V). Of course, there[20], however, to understand the intermediate situation,
in the ordered phasé<t,(V) andD7>0, the time correla- or the thermodynamic limit.
tions have an infinite rangeC () #0. The transition is Inspired by quantum chaos, we analyzed the statistical
illustrated in Figs. 4 and 5 by plotting correlation functions properties of the quasienergy spectrym,} of the KtV
for both observablesZ;(m) (Fig. 4 andC+(m) (Fig. 5), for ~ model, and searched for signatures of ergodicity and mixing
different values of parametdrand fixed paramete¥=2.  of the underlying quantum many-body dynamics in the TL.
The estimate of the critical parameter here isFor comparison with other results, the density will be again
1.4<t.(V=2)<1.5. Observe thexponentialdecay of cor- fixed top=1/4 in the numerical presentation which follows.

A. Spectral statistics
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First we have analyzed the common short-range statistic, 14
namely, the integratedcumulative nearest neighbor level (a)
spacing distributionV(S), giving the probability that a ran-
dom normalized spacing between two adjacent eigenphases
S, =(NM27L) (@ 1— @) is smaller tharS

=06 —
1=1.0
tald oo

t=2.5
Poisson/Semi-P./GOE -~

W(S)

1w,
W(S)=— S— . 45
(S M; 0(S—S,) (45)

For moderate values of the site<20, the average in Eg.
(45) has been computed over all’ =\ states from allL
blocks (symmetry classesvhich are labeled by the value of
the total quasimomentur. (Note that blocks foK =K’
andK=L—K’ are related by a parity transformati¢26), _
and give identical(subspectra, so one has to diagonalize L=16 -
only [L/2+ 1] different blocks of matrixUy i, .) However, 0.8 Poisson/GOE -~
for a larger sizeL =24 we already havé\x~5608, so we ’
averaged only over one class of fixed quasimomentum, 0.6 -
namely,K=1, A" =AN;~MN/L. (We have carefully checked
that the statistical properties of partial subspectra are inde- 0.4
pendent of the symmetry class labeled by the quasi-
momentumk.)

In Fig. 6(@) we showW(S) for size L=24 and several
different values of parametdr(and fixedV=2), covering
the transition from nonergodic to ergodic and mixing quan- 0
tum dynamics. We find an almost Poissonian behavior
Wp(S)=1— exp(—9 for smallt and excellent RMT behav- ) ) ] o
ior Weo(S)=1— exp(—mS¥4) (the Wigner surmise ap- FIG. 6 Cumulative quasilevel spacing distributioh§S) for a
proximating the statistics of the infinitely dimensional circu- q_uarter-f|||edp:1/4 KtV model. In.(a) we plot W(S) for several
lar orthogonal ensembléCOE) [12], due to time-reversal d|ffergnt values_o_f parameteranc_i T'Xed parametev (see Iegen)_j
symmetry for t>t (V). In the (more interestingregion of covering the mixing and nonmixing transition, and for maximal

) di d 054 vV find i di computable sizé. =24. With dotted curves we plot, for compari-
intermediate dynamics-1t<t(V) we find intermediate sta- son, the theoretical, Poissonian, semi-Poissonian, and Wigner

tistics interpolating between Poissonian and C@Ee Fig.  (cop), distributions. In(b) we showW(S) for fixed kick param-

6). Interestingly, the level statistics close to the critical pointeterst=1 andv=2, and for different sizek =16, 20, and 24. In

(for t=1.4V=2) seems to be well captured by the so-calledihe insets we plot the same objects on a log-log scale to emphasize

semi-Poisson modeWsy(S) =1—(1+2S)exp(—29) [40]  the small spacing behavior. Please observe the trend toward linear

which has been recently used to model the critical level starepulsion[quadratic forw(S—0)=S?], even in the intermediate

tistics of 3D Anderson moddK1]. Since it is impossible to  regime.

make statements about the TL of level statistics based on

results for a fixed sizé& =24, in Fig. @b) we show the de- than-Poissonian-level clustering causing faster-than-linear

pendence ofN(S) on the sizel for fixed parameters=1  growth of 3(S) [Fig. 7(@)]. For finite sizeL =24, strong

andV=2 (in the regime of nonergodic dynamjc#\lthough level clustering affects also long-range statistics in the re-

the intermediat&V(S) statistic is closer to Poissonian than to gime with mixing dynamics in TL; that is, far=2.5 we find

COE, it is being shifted slightly closer to COE as we ap-good agreement with COE statistics only for relatively small

proach the TL(increase the sizk), especially in the region spectral rangeS< S,,,~ 10". It has been checked, however,

of small spacingsS. This increase of level repulsion as we that the agreement with COE improves to hold on longer

approach the TL eliminates possible fears of accidental integquasienergy rangesS(,, increases as either the kick pa-

grability of KtV model in the claimed intermediate regime. rametert or the sizelL are increased. In the intermediate
Second, we have analyzed the long-range spectral statigegime 1~t<t.(V), the number variance approaches that of

W(S)

0.2

tics, namely, the number variance an uncorrelated sequenc?(S)~S, as we approach the TL
) ) ) [see Fig. o) for the caset=1 andV=2]. However, for
249 =(n(S)*) S, (46) finite L, the phenomenon of saturation sets in, see R,

namely when the scaled energy rarge S* is of the order

giving the variance of the numbex(S) of normalized(un- of the density of states,

folded) levels (V/27L) ¢, in a randomly chosen interval of
length S. [Note that(n(S))=S.] For Paissonian and COE S*=0.5VIL, (47)
models we expecE2(S)=S and 32,4 S)~ (2/72)In(279),

respectively. Here, one should note huge degeneracies in the., when the energy rand& becomes comparable to the
integrable limitt=0 of the Ising model(which are quite length of quasienergy spectrum. The numerical factor 0.5 in
common in integrable quantum many-body models in genEq. (47) is of phenomenological origin. Indeed for data of
eral). For small kick parameters we hence find stronger- Fig. 7, forL=12, 16, 20, and 24, the maxima of the number
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eigenphase eigenphase
7 FIG. 8. Diagonal matrix elements of kinetic energyT'|n) vs
T the eigenphase,,, in the intermediate regime£V=1), (a) for

L=16, (b) for L=20, and(c) for L=24, and in the quantum er-

godic regime {=V=4), (d) for L=16, (e) for L=20, and(f) for
FIG. 7. Number varianc&?(S) on a log-log scale for exactly | =24. Note that the ordinate scale is inflated by a factor 4 in the

the same parametewith an extra data irib) for L=12] as in Fig. quantum ergodic regimgd)—(f)].

6.

variance lie at 9, 55, 390, and 2800, whereas theoretical vakuperimpose the data for all the symmetry classes labeled by
ues ofS* [Eq. (47)] are 9.1, 56.9, 387.5, 2804, respectively. the values of the total quasimomentur=B <L, whereas
for L=24 we compute diagonal matrix elements only for
two blocks with total quasimomentuki=1 and 5, and care-
fully check that the results do not dependknwe note that
the distribution of points ¢,,{(n|T’|n)) on the cylinder

In this subsection we will analyze the statistical distribu—[_ 77,77) X R is nontrivial and fa|r|y stable against the varia-
tion of diagonal matrix elements of a few typical observ-tion of the sizel (perhaps it is a multifractal, but the statis-
ables, in particular as a function of the spectral parameter—tics is here too poor to investigate this question in more
the quasienergye,—in order to understand the typical detai). The points ¢,,(n|T’|n)) do not seem to converge
behavior of the spectral functions and the nature of quanturfy the spectral curveg(,(T),) asL—», where the spectral
ergodicity as discussed in Sec. |. Here we consider threginction(T),, should be determined in general as an average

typical observables, namely, the particle curr@fiEgs.(16)  of diagonal matrix elementé|T’|n) in a narrow quasien-
and (38)], the traceless kinetic enerdy’ [Egs. (14) and  ergy interval

(39)], and the potential enerd/ [Eq. (15)]. The first two are

B. Diagonal matrix elements, spectral functions,
and quantum ergodicity

diagonal in the momentum basis, so their diagonal matrix len_¢l<0

elements are calculated using the set of eigenstates in the ; (n[T'[n)

momentum basis{n|J[n>:EQJ.,;|<IZ|n>|2, whereas the po- (M= lim lim ——r=5 , (49
tential operatorW is diagonal in the position basis, so we 5—0L— E 1

first use FFFT(34) in order to transform the eigenstates from n

momentum to position basi@'eln):EgFjjg(lﬂn), and then
use the formula <n|W|n>=2;Wf|<f|n)|2, where Wj  where the order of the limits is cruicial, of course. In Fig. 9
=VEnn 6, +1- we show the overall distribution of diagonal matrix elements
We again consider the regime of intermediate dynamics a#7/d(n|T’[n) and in Table | we give the widths of such
t=V=1 and the strongly nonintegrable regime of presum_diStribUtiOI’lS, namely, the standard deviatiensof distribu-
ably ergodic and mixing dynamics at=V=4, both at a tions of diagonal matrix elements of all the three observables
particle densityp=1/4. In Figs. §2)—8(c) we plot the scatter Ae{J,T',W}, which are defined simply asoj
diagram of diagonal matrix elements of the kinetic energy=(L/A)=_,((n|A|n)—(A))2. In this intermediate regime
(n|T’|n) vs the value of the quasi-energy,, for three dif- we find that the widthsr, are stable(or even slightly in-
ferent system sizds= 16, 20, and 24. Fot =16 and 20, we creasgas we increase the site which is incompatible with
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dP/d<T>
dP/d<T>

<T>

FIG. 9. The distribution of diagonal matrix elements of the ki- FIG. 10. The distribution of diagonal matrix elements of the
netic energy(n|T’|n) in the regime of intermediate dynamics ( kinetic energy(n|T’|n) in the regime of ergodic dynamics=£V
=V=1) for three different sizek =16, 20, and 24. =4) for three different sizek = 16,20, and 24. The smooth curves

are the best fitting Gaussiafthe widths are given in Table.l
any of the two definitions of quantum ergodicitigs. (3)
and (5)]. Note that in the completely integrable case, say ifany observable of the forA=X;a; wherea; is some local
V=0, the witdth of the distribution of diagonal matnxzele- operator density, for exampl(e]i>/L=<T’2>/|-~%P(l_P)
ments can be calculated analytically, since th&] o7,  [27]. One may check that all the last three columns of Table
=02=(3%)=N(L—N)/(2L—2)=1%p(1-p)L+0O(1), so |indeed obey scaling49).
the width even diverges as L in TL. Therefore, our numerical results strongly support the full

On the other hand, the situation is completely different forFock space ergodicity of thetk model for sufficiently large
substantially larger kick parameters, say ferV=4, where  values of the kick parameters, since for all the three typical
the system exhibits uniformly mixing behavior as investi- observables that we have considered, the spectral function is
gated in Sec. IlI. In Figs. @)—8(f) we show that the scatter- a constan{A),=(A), and a randomly chosen diagonal ma-
ing of diagonal matrix element®|T’|n) around the micro- trix element(n|A|n) would lie within arbitrarily small dis-
canonical averagéT’)=0 is uniform (independent of the tance from the microcanonical avera¢) for sufficiently
value of the quasienergy,) and that the width of the swarm large sizeL.
of points strongly decreases as the diziacreases. Further,
we show in Fig. 10 that the distribution of diagonal matrix
elementgn|T’|n) is in a very good agreement withGauss- _ _
ian. This finding also supports the hypothesis tﬁ&“) are From the corpplete set of eigenstates in the momentum
statistically equivalent to the eigenstates of a circular randonfepresentation{k|n), it is also easy to compute the off-
matrix. The width of the Gaussian distribution decreasegliagonal matrix elements of the current observable
with increasing sizd, and we expect that the scaling with
size L should be universal for any spatially homogeneous <n|‘]|m>:2 Jg(n|l2)<|2| m). (50)
observableA, [A,S]=0, namely, K

C. Off-diagonal matrix elements and integrated conductance

aAzconstx%/, N= ( II:I) (490 Again, one should make use of translational symme28y,
since[ S,J]=0, to point out that matrix elements are nonva-

tnishing only within a fixed quasimomentum block,

#Kn=(n|J|m)y=0. In order to obtain the numerical results

presented in this subsection we have averaged over the entire

Fock space(all K), except again fol.=24 andp=1/4,

where we have averaged only over a block with quasimo-
TABLE |. Standard deviations of the diagonal matrix elementsmentum,K,: 1. The real pgrt of .h|gh—temp.erature electric

of the three observablels T', andW, in the regime of intermediate conductivity (8) can be(for fixed sizeL) rewritten as

(t=V=1) and ergodic {=V=4) dynamics.

This scaling law is derived from a simple assumption tha
each quasimomentum block of the mat(iXA|n’) is a Ny

~ NiL-dimensional GOE matrix with the variance which is
determined from the constrai#?)/L=0(1) that is true for

n+m
] 1
t=1 V=1 t=4 V=4 a'(w)=ngm |<n|J|m)|25p Z(w_¢m+¢“) )

L gy o1 ow gy a1 aw (51

16 0.8927 1.1056 0.4437 0.3212 0.2720 0.5536
20 09647 1.2178 0.4955 0.1495 0.1203 0.2507 In order to avoid an awkward smoothing procedure, and to

24 1.0430 1.3185 0.5347 0.0628 0.0467 0.0973 Simplify the notation, we introduce a scaled integrated con-
ductivity I'(w),
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FIG. 11. We show the integrated conductahida) for a cyclic FIG. 12. We show the integrated conductah'ogw) for a quar-
chain of sizeL =24 and parameteV=2, and for several different ter filled p=1/4 cyclic chain at=1 andV=2 (in the nonergodic
values of parametdr(see legend In the inset we show the same regime and for different sizes =24, 20, 16, and 12. In the inset
plot on a semilog scale in order to illustrate the zero frequencywe show the same plot on a semilog scale in order to illustrate the
jump—the charge stiﬁnes@j. convergence of the charge stiffness. Observe that the size of the

horizontal plateau at small frequencies shrinks-e&m/L.

L ~ 2 (0+0 )
I(w)= Efo o' (v)dv of direct time evolution discussed in Sec. Il over the more
common frequency-domain approach presented here.
5 ) An interesting conjecture has been put forward in Ref.
Y % [(n|I[mM)[?6(w+0—[pm— bnl"), [21] (and critically debated in Reff43,44)), namely that the
’ half-filled p=1/2 integrablet-V model should exhibit prop-
(52)  erties of an ideal insulator at all temperatures wiient (in
) ) o our notation. The insulating behavior is characterized by
where |7]|f=:m|n{|7]_|,27r—|77|}, and H(X) IS a. Heaviside D‘TZIOC(O):O and (ZB)UI(O):(d/dw)lx(o):O, so the
step funct_|on. Th? mtegratgd conductivity(w) is a MONo- time correlation functionC,(7) should be an oscillatory
tonically increasing function on the frequency interval function in order to be integrated to zero.
we[0,7], starting from the charge stiffness We have found numerical evidence @it least approxi-
IL(0)=D" (59) mately insulating behavior even in the nonintegrable half-
3 filled KtV model, whenv>t. In Fig. 13 we demonstrate a
double transition from théfor approximately insulating re-
gime (for example, fot=0.4 andV=1) to ideally conduct-
1 ing regime(example fort=V=1) to the normally conduct-
IY(7)= —<J2>";_ (54) ing regime(example fort=4.5 andvV=1) for a half-filled
L KtV model onL =16 sites.

n#m

and satisfying the sum rule on the other end,

Note again that the current variance can be compl2&{

1,0 NL-N) | 1 0124

RS >p—m—w(l—p)+0 - 69 ol
In Fig. 11 we plot the integrated conductivity(w) for dif- 0.08
ferent values of the kick paramete(fixed V=2) for con- — 001
stant sizelL =24 and densityp= 1/4, showing the transition S 008y I/ )
from ergodicDj~0 to nonergodid®}>0 dynamics, consis- 00ad | 7
tent with results of direct time evolution of Sec. Ill. In Fig. /' slope 1 =
12 we analyze the dependencelbfw) on sizel for fixed 0.024] 0.0014 [ slpe2 -
values of parameters in the nonergodic regimel, V=2, 4 0.01 0.1 i
and p=1/4. Note that for small frequencies, 1'(w) is 0% 05 1 15 2 25 3
rougly constant over the frequency intervalso)swi, w

whose width is determined by the Thouless time of a finite FIG. 13. Integrated conductandé(w) for a half-filled (o

systemp(L)~L, namely,a_),L( =2m/L. Note that the expres-  _ 15y cyclic chain of sizé. = 16 is shown for three different values
sion for stiffnesgEq. (53)] is not completely consistent with  of parametet (and fixed parametev=1), demonstrating a double
the correct definitior(10), since the time-limitr—o is im-  transition from insulatothere fort=0.4) to ideal conductothere
plicit in Eq. (53) before the TL of increasing can be con-  for t=1) to a normal conductothere fort=4.5) as the kick pa-
sidered, whereas the correct order of limits is just the opporametert is increased. In the inset we show the same three curves
site. (This proves another advantage of the numerical studyn a log-log scale.
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V. THIRD METHOD: ALGEBRAIC CONSTRUCTION The second essential mathematical concept iuthigary
OF TIME-AVERAGED OBSERVABLES Heisenberg-Floquet mapJ,q:4—4, which propagates
FOR INFINITE SYSTEM quantum observables in Heisenberg representation for one

A large amount of numerical evidence has been presenteRfriod of time, starting at some timge [0,1):
in the previous two sections in support of the conjecture put

forward in Sec. I. However, all this evidence is based on UadA(n+m)=A(p+m+1)=UTA(n+mU, (59
computations on many-body systems of finite dizeand the . A
TL has been speculated by extrapolation to=10. One may (U,qA|UqB)=(A|B). (60

still have doubts about whether in a nonintegrable system

that is close to an integrable one, quantum ergodicity may-or example, for thétV model(in spin representatio(21)
squeeze in very slowly for large sizesbeyond the scope of Wwhich is, for algebraic convenience, used in this seg¢tioa
numerical observation. Therefore, as a complementary altehave

native, one would like to have a method of computation of

time correlators, likeD, [Eq. (42)], which would directly — U|,_1,= exp(—iztH;)exp(—iV(Ho+3S,))exp —iztH,),
operate with infinite systems on infinite lattides: «. In this (61
section we elaborate such a method of computation of opera-

tor valued time average of an observaBli the Heisenberg With the potential and kinetic generators

representation

1 M Hoz%j;x 0']2(sz+1, (62
A= lim m mZM A(m) (56)

M— o - 0
) ) ) ) le%'E (Uraf+l+0;0;r+l).
The method is specially designed for kicked systems whose j==e
propagators can be decomposed into several noncommutinL? o ] )
parts [45] and will be imp'emented to Compute time- nlike in Sec. ”I, here we have taken the time StepS in the
1 . . _ 1 - -
averaged observables in an infinité\Kmodel, in particular Middle between the kicksy=z, in order to fully exploit the

J and T', and the corresponding correlators, such as théime-r(_eversal symmetry of the pmb'ef“- Note.that the time
charge st,iffnes@ ' évolution of observables which are diagonal in momentum
J .

representation, likd andT’, is not affected by the shify of
_ the origin of the stroboscopic map. The Floquet-Heisenberg
A. Mathematical structures map can be written explicitly using exponentials of the ad-

The first essential mathematical structure used in this sed!nt maps
tion is the Hilbert space opseudolocalquantum observ- N
ables. Even in the general setting we assume that the evolu-Uag= exdizt(adH)]exdiV(adH;)]exdizt(adHg)].
tion propagator preserves the number of partic[ds,p] (63
=0. So we again fix the density of particlesand consider ) ) o . .
observableg over a Fock'subspace of quantum states with Since the density (or magnetizationM=p—3 in spin-
a given density parameter. Such observables preserve the formulation is fixed, the total spir§, in Eq. (61) generates

number of particles;A,p]=0. an irrelevant overall phase which does not influence the evo-
Let us define thecalar productof two extensiveobsery-  1Ution of observables. N
ablesA andB as The time average of the observalgbelf-adjoint operator
Ain Eq. (56) is a solution of the fixed-point equation for the
o1 L /L Floguet-Heisenberg map,
(A|B)= I|mE<ATB>p= EATB (57)
L ’ U A=A, (64)

We note that Eq(57) has all the necessary properties of aTime averaging in operator space can also be written in

scalar(innen product: it is linear in the right factor, positive, t -
. erms of an orthogonal projectéty onto the null space of
and (A|B)=(B|A)*. Note also that averaging over half- 1- 0, namely g pro) v P
— Yads )

filed states is, in the TL, equivalent to the “grand-

canonical” average(-),-1=(-). 1 M
The observabld is called weakly local or pseudolocal, if A=P.A  Pi= lim —— gm 65
|A|?:=(A]A)<=. Pseudolocal observable constitute a v IV | m:E—M o (69

Hilbert space denoted byl. There is alinear subspace
1" C U of pseudolocal observables such thaf A,B]=AB The property
—BA is pseudolocal for any pseudolodak 4I. For any such
Ael’, the scalar produdt57) is an invariant bilinear form Py=P? (66)
with respect to thedjoint map(adA)B=[A,B], namely,
is easily proved by writing a time-average lin{&5) in an
((adA™)B|C)=(B|(adA)C). (58)  equivalent, Gaussian way,
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w ae? i L
Py= lim > exp(—i(m/M)»)0OT, . xe:T(l_e_EUad)_l(l_e_EUadl) A

M— oo 27TM m=—®

. . - _ ae’ o .
Without loss of generality we will in the following as- _2 > > e (Emegnomp

sume that observabkis tracelesgA)=0, such agd andT’. A i=0 M=o

Note that the generalized stiffne@2) can be written simply a2 = o

o =5 2, AP 2 e

— p=—o q=[p/2|
Da=(AlA). (67) 2z =
— 2 A(pe (PPl (72)
B. Time average from variational principle in operator space 7\(1 e)r

The scaledor normalized time average of a self-adjoint |n the limit e—0, the last expressiofv2) is proportional to
operatorA=AT, X=A/||A|, can be obtained from waria-  the time average
tional principle in operator spacethat is, as an extremum

(maximum of an actions(X), X = [im X :4—aK (73)
€ )\ "
e—0
s(X)=0,
axS0= Evaluation
S(X) =3 (XA (AIX) = 3| (XIA) 2, (68) a= (AlX)—a DA
Y

with constraints
fixes the value of the Lagrange multiplier

(1= 09 X)12= (X|(1=0,H (1= 0,)[X)=0, (69 \=4D (74
—4D,.
(X]X)=constk =, 70 The unitarity[Eq. (60)] and invarianced Eq. (64)] have the

) ] — — following very important consequence:
that is, Eqs(68)—(70) imply X=aA, wherea=||A|"1 if X

is normalized asX|X)=1. Since the constrain69) is ho- (NK):(NK):(NA)- (75)
mogeneous, the corresponding Lagrange multiplier is diverg-

ing. Hence, we suggest to write the constrained variationghssuming thaiX is nonvanishing so that{((X)>0, and that
problem[Egs. (68)~(70)] in the compact form X andA are proportional one can write

o — —
Im—s{X)=0 = X=aA, acC, ~ XA (XA
JMSX X0 X|X)X (76)
(71)
$e(X)=3(X|A) [P~ N[l e H(1—e Ug)X|? Taking the scalar product of the last equation withone

obtains a very useful expression for the stiffness:

where\ is another Lagrange multiplier associated with the

2
second constrainf70). Indeed, for smalk one may write |(AIX)]

X 7

S{(X)=3|(X|A)?= 3A(X]X)
CIn(e 2 e Y)|(1- Oad)X||2+O(e) C. Nl,-lm(-EI’ICé| appllcatlon-
However, the maximization of functiona(68) and (71)
so homogeneous constraif@9) follows automatically as=  in the huge infinitely dimensional operator spates not
—0 in order to make the acticsy(X) regular(and maximagl  convenient for practical calculation. Instead, we suggest es-
ate=0. Let us now show that the above variational problemtimating the time-averaged observable by solving the
(71 has the correct solutiof66). We differentiate action variational problem(71) in a finite-dimensional subspace
(72), IM(A)C 4 (the Galerkin-like approach in operator spada
fact, we devise a special sequence of truncated “minimal
A P o invariant” operator spaces . 9,(A)CMy,q1(A) ... CU
&SE(XE)Z(NXE)A—?(l—e Uag)(1—€e “Ugg) X, which in the limit p— (after closurg contain the time
averageA. Thus the solutionX, of the variational problems
=0, (71) on spacesn, should converge to the proper scaled time
averageX of observableA.
and writea=(A|X). This equation can be solved explicity ~ Let s={aHy+ B8H;;a,B8cC} be a two-dimensional lin-
for X.: ear vector space spanned by the two generators of motion,
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H,,a=0 and 1[Eq. (62)]. Let us define theninimal invari- TABLE 1l. Dimensions of the truncated minimal invariant
ant operator space containing,/as the closure of linear spaces and of the null spaces of truncated adjoint maps for different
combinations of all products of adjoint generatordHad«  orders of truncatiom.

=0 and 1 onA:
P d(J) dpo(d) dpa(d)  dp(T')  dpo(T)  dpa(T")
M(A)=U,_o(ads)"A. (78 4 1 1 1 1 0 1
M(A) is indeed the minimalthough infinitely dimensional 2 2 0 2 2 0 1
in general operator space containingy with the invariance 3 4 2 2 4 1 2
property 4 7 3 3 6 2 1
5 12 6 4 10 4 5
(adH )M(A) =IM(A), «=0,1, 6 21 9 7 15 5 2
(79 7 38 16 12 25 9 10
U g9M(A)=IM(A), Vt,V. 8 69 27 21 40 12 7
_ _ o . 9 126 48 38 66 22 21
From the construction of the time avera@®), it is obvious 230 84 68 107 33 22
that A e 91(A). We now construct the countable basis of theq1 419 153 123 178 60 51
spaceMi(A) ordered by the order of locality as follows: We 12 763 273 223 293 91 66
assign an observabIEquC to an ordered pair of integers 13 1393 493 409 494 162 137
(g,c), order g andcode ¢ 0<c<29"! with g—1 binary 14 - - - 831 257 202
digits c,,c=39"1¢c, 2", namely,
Hq,c:(adch,l)(adch,z)' . ~(adHcl)A- (80) belong to a negative and positive parity symmetry class, re-

spectively, with respect to parity operati¢26).

Since not alll observableﬁqlc up to a given maximal order Let us now define a sequence wfincated minimal in-
p.q<p, are linearly independent we perform Gram-SchmitVariant operator spacesontainingA,

orthogonalization with respect to the scalar prod&ah .

My(A)= UPZs(ads)"A, p=12..., (83

Gao/V(GqelGgo)y Ggo#0
={ % aclGac e with dimensionsd,(A) :=dim 91,(A). Linear spaceli,(A)

ac™ =
0, Gqc=0, contains operators derived frafnby composition of genera-
(1.0)<(q,0) (81)  tors adH, up to order p. Due to binary code construction
& —f ’ D ’ G (G .IFi (80) we have a strict upper bound on the growth of dimen-
a.c” Mac™ “) r,0(GrplHg,c)- sions of the truncated spac#®,(A),
The nonzero observabl&, . form the orthonormal basis of do(A)=2P7Y (84)

IM(A). Note that observables,, . are strictly local operators
of orderq: in the case of spin representation of\Kmodel, = however, actual dimensions may grow considerably more

they are represented as expansions slowly (due to systematic linear dependences amidpg);
that is, forA=J and A=T', by computer algebra up tp

Gq 62501812 . gZ(’)il ----- SqZSOS]_ _____ . (82) = 14th order(see Table i, we find empirically
, ) o ] dp(J)~1.82871, dy(T')~1.68 . (85

in terms of spatially homogeneous finite products of field

operators: LetH,,, «=0 and 1, denote real and symmetéigermit-
® ian in general matrices of linear maps and, on 9t,(A)
7 = > o055 ... g% with images orthogonally projected back 2 ,(A). It fol-
SoS1e e Sq &, T L ira lows from the construction that they havgenerally a

block-banded structure, where the blocks correspond to ob-
wheres, €{0,+,—,z} and a?= 1. The(averagg number of  servables with a fixed orde.
nonzero terms in expansioii82) was found to grow expo-
nentially at approximately the same rate for both observables (GgcladH, |Gy ¢)=0, if |[q—q'|#1. (86)
under study, for eitheA=J or A=T', namely, as
The truncated adjoint maps, , have nontrivial null spaces

#{g(S](,)zl ----- sq¢0}m05x 25511

which may be further reduced by a factor 2, or even by a
factor 4 if p=1, using the symmetrie® [Eq. (26)], and R
[Eq.(27)] (the latter may be used onlyf=3). Note that the ~ with dimensionsd,, ,(A):=dim9, ,(A) which increase ap-
entire linear spac&i(A) has the same symmetry properties proximately with the same exponent@gA) [Eq. (85)] (see
as observablé\ for example, the spac®t(J) and 9M(T’) Table 1I).

Mp,o(A)={BeMy(A);[H,,B]e My 1(A) —‘Jﬁp(A)}&,8
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By means of truncated adjoint malg , we construct an
approximate Floquet-Heiseberg matrid,, which is a
d,(A)-dimensionalunitary matrix over the truncated space
My(A):

Up: exqi%th’l)quiVHpvo)eXF(i%th’l). (88)
Now we are ready to solve the variational probl¢Eys.
(68)—(71)] in the truncated spacgt,(A). We note an impor-
tant “experimental” observatiofwhose theoretical under-
standing is stil lackingnamely, that the matrid—U, pos-
sesses a high-dimensional null space

MY (A)={B e M,(A);U,B=B},

whose dimensiod (A) :=dim 9t (A) is, for oddp, indepen-
dent of parametersandV and equal to the dimension of the
null space ofH, ;:

di-1(A)=da—14(A). (89
Note also that for odd order of truncatign=2l—1, the
elements of null spacBemg(A) are spanned by combina-
tions of evenpowers of generators only, i.eB(Gy )=0,
which is due to time-symmetric constructiom€ 3) of the
evolution operatot) .4 (63).

The scalar products (57) for different values of the den-,
sity p are nondegenerate with respect to each other, an

therefore the dimensions of various linegsubspaces,
dp(A),dp,a(A),dg(A), (see Table Il do not dependn the
density parametes.

The constraint(69) is now equivalent to restricting the
variation (68) to the subspac@tg(A). Hence the “trun-
cated” scaled time-averaged observakjgis a maximum of
the quadratic formX,|A)(A|X,) on MY(A) with a normal-
ization constraint X,|X,)=1. In other words, ifF,, n

=1,... ,d:=d,§’(A) is an orthonormal basis of the null-space

m;’(A), and, if (x4, ... ,Xq) is a normalized eigenvector of
the (positive definite¢ dxd matrix eigenvalue problem,

> (Fl A)(AIF )Xo =X,

with the maximaleigenvaluef, then

xp=; FoX, (90)

is a solution of the variational problefigs. (68)—(71)] in
the truncated spac8l,(A). In the limit p— o we expect to
recover an exact time average

lim X,=X=A|"*A.

p—oe

(91)
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FIG. 14. The logarithm of the relative norht,(X) of the nor-
malized time-averaged currenX=J/|J| in a quarter-filled p
=1/4) infinite KtV model is plotted againgbdd) orderq=2I-1,
for a square mesh of parameténdV. The three different curves

each graph, thick, medium, and thin, refer to three different
orders of truncation of operator spacess 11, 9, and 7, respec-
tively.

X, in the Hilbert space of observabléiswe define aelative
norm N,(X) with respect to ordeq:

Nq<><>:§ [(X|Gq.0) 2. (92)

Since

||><||2=q§0 Ng(X), (93)

the inspection of the convergence of the sum on the right-
hand side of Eq(93) would give us an indication of the
convergence oK, [Eq. (91)] and thus of the nonergodicity
of the problem. As a second criterion of convergenceXof
we study thestability of X,, or of the relative norms
Nq(Xp),a=p, with respect to the variation of the truncation
orderp.

In Figs. 14 and 15 we show the relative norMg(X,) of
the normalized time average of the currdntFig. 14 and
kinetic energyT’ (Fig. 15 for several different orders of
truncationp (up top=11 forJ and up top=13 forT'). We
note that, for both observableX,, is quite stable against

However, if the system is ergodic, the time average shouldariation ofp, for t<1.4; also, in the same parameter range,

be zeroA=0 (note tha A)=0), so the(normalizabl limit

the coefficientdN,(X,) seem to be summable. The stiffness

(91) should not exist. In order to inspect the convergence oD, [Eq. (77)] may be rewritten in terms of relative norms as
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““““ I U e FIG. 16. Charge stiffnesB; vs kick parametet and constant
0.8 \\\ i parameteNV =2 for a quarter-filled chaip=1/4. Different curves
loge Ng I 5 } 3 refer to different system sizds=24, 20, and 16, while points rep-
Y N I resent the infinite-size stiffne$Eq. (77)] based on an extrapolated
£=0.2 \ L | algebraic time-averaged current invariant of motion. The truncation
- - s - order isp=11. In the inset we show the logarithmic slopef the
! [ I [ falloff of the relative normsN,(J)= exp(—sq) atq~p.

V=0.4 V=1.0 V=1.6 Ve2.2 V=2.8

expected to be still slightly overestimated. In Fig. 16 we
FIG. 15. Same as in Fig. 14 for the normalized time-averagedshow the dependence of the extrapolated charge stifibgss
kinetic energyX=T'/||T’|, but for larger truncation orderp=13  gn the parameter (and for fixedV=2) through the critical
(thick curves, p=11 (medium curvel andp=7 (thin curves. ranget~t.~1.45, and compare it with the charge stiffness
as computed from direct diagonalization of the finitevK
chains of sized =24, 20, and 16. When approaching the

D= (AA) N1(X) . (94) critical pointt., the fitted slopes linearly decreases to zero.
Z For larger values of parametets;t.(V), X, is not stable
& Ng(X) against variation op and the partial sums of relative norms

N4(X) are not converging. Therefora=0 andD,=0, and
In this regime whereX is convergent irtf, Nq(Xp) are good  the system is quantum ergodic. In Fig. 17 we plot a ftyl)
approximations ofNy(X) for g<p [apart from a constant phase diagram of th@xtrapolateficharge stiffnes®5. It is
renormalization prefactor which cancels out from exprescjear that this last method, since in operates with an infinite
sions like Eq.(94)], and we may write a good estimate for gystem, gives the most reliable results on the critical regions
the upper bound on the stiffness of transition between dynamical phases. However, no other
dynamical information on correlation functions is obtained
other than their time averages, so within the present method

N1 (X)
DR=|(A|X,) |2~ (A|A) 5———
> Ng(X)
q=1
N, (X
= (AlA) g (95)
> Ng(X)
q=1

However, we would like to have accurate approximations of
the stiffnessD} itself rather than just the upper bounds, so
we extrapolate the relative norn,(X)~Nq(X,) to orders
higher than the order of truncatiog>p, in an expression
for the stiffnes§Eq. (94)] by fitting the tail ofNg—5; 4 1(Xp)

at three pointsg=p—4, p—2, andp [note thatN,_(X,)
=0] with exponential ansatzNg-y1(Xp)* exp(=sq).
Since the actual rate of convergence N§(X)—0, asq
—o seems to be slower than exponentsge Figs. 14 and
15), the stiffness extrapolated in this wiq. (94)], Dg, is

FIG. 17. ¢,V) phase diagram of the charge stiffnd3s for a
quarter-filled p=1/4) infinite KtV model, as deduced from ax-

trapolatedtime-averaged currert
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we cannot make any claims on the stronger ergodic property Our second approach is a direct diagonalization of the
of quantum mixing. stationary quantum problem of finite size, and a calculation
Although the dynamical behavior of observables may inof dynamical properties, such as charge stiffness, conductiv-
principle depend on the symmetry class of observables witlity, etc., in the frequency domain. Also, traditional quantum
respect to, say, parity operatid26), we have found very signatures of chaos, such as level statistics, have been in-
similar ergodic, nonergodic, and critical regions, for the twospected and shown to correspond with the dynamical behav-
examples of opposite parity observablésndT’, that have ior. This approach is less computationally efficient in the
been studied. However, we should note that dynamical becase of the present model than the first one.
havior may also depend on the otlieontinuous conserved In the third approach, which is fully complementary to the
guantities, such as the densjty Our results for other values other two, we propose an algebraic method for computation
of density p indicate that the transition region between er-of time-averaged observables of an infinite system. Thus we
godic and nonergodic dynamics moves to slightly smallercan make very precise statements on the quantum ergodicity
values of parameteras p approaches 1/2. Due to particle- of an infinite system, which are in complete agreement with
hole transformatiofEq. (27)], the dynamics forp=p’ is  the extrapolated results of calculations on finite systems.
equivalent to the dynamics for=1—p’. The above results are claimed to be the evidence for the
We should note that in a recent paé6] a very similar ~ validity of the conjecture in Sec. |, namely, that the generic
algebraic approach was used in order to compute numerfjuantum many-body system in the TL may not be quantum
cally the pseudolocal quantum invariants of motion. In theergodic(or mixing) if it is sufficiently close to an integrable
regime of nonergodic dynamics one or two convergedsystem in parameter space. Recent numerical results on
pseudolocal invariants of motion were found, whereas in théransport in the extendethonintegrablg Hubbard model
regime of ergodic dynamics, consistently, no nontrivial in-[43] are compatible with the above conjecture. The transition
variants of motion were found. Then by using a formifg.  between nonergodic and ergodic dynamics when the external
(11)] of Mazur[24] and Suzuki25], the time-averaged cor- parameters are increased has the properties(dymamical
relation of kinetic energyD; has been computed by means phase transition and should be further studied theoretically.
of an expansion in terms of pseudolocal invariants, givingThe first such attempt to do this was undertaken in Re],
results which are in good agreement with the results of directvhere a discretized nonintegrable quantum field mdatel
calculations on finite systems. We believe that our variathe continuum limit was mapped on a quantum chaotic
tional approach in the space of observables presented hererigdel of a single particle on a 2D tor(is the quasiclassical
(in general, possibly nonintegrable cas® improvement of limit), and the transition from nonergodic and nonmixing
the Mazur-Suzuki approadl24,25 to the calculation or es- dynamics to ergodic and mixing dynamics of the quantum
timation of time-averaged correlators. Within Mazur formulafield model has been identified with the stochastic transition
(11) one is typically able to write only the inequalitgne  from regular to chaotic motion.
lower bound on the stiffnegssince the set oknown local We have also given a clear evidence on the nontrivial
invariants of motion may b&complete existence ofnixing quantum motiom the KtV model in the
TL with exponentiallydecreasing time correlation functions,
provided the externalkick) parameters are large enough
(above the critical valugs Such quantum mixing behavior
VI. CONCLUSIONS AND DISCUSSION may be a source of trulghaotic and macroscopically irre-
versible quantum motion of many-body systerf¥%7]. Note
In this paper we have presented three complementarthat macroscopic irreversibility as a consequenceaafdis-
(mainly numerical and computer-algebraigpproaches to sipativebut strongly nonintegrable quantum many-body dy-
the dynamics of nonintegrable quantum many-body systemsamics has been recently observed experimenfasy.
in the thermodynamic limitTL), demonstrated and studied = One might doubtfully argue that our quite surprising find-
in a kicked ¢,V) model of spinless fermions. We have beening on structurally stable nonergodic quantum motion in the
primarily interested in the structural stability of nonergodic TL (formulated as the conjecture in Sg¢anhay be just an-
guantum motion and the transition from nonergodic and nonether peculiarity of physics in one-dimension, and as such
mixing to ergodic/mixing dynamics in the TL. should not be expected to hold in interacting quantum sys-
The first approach that we used is a direct time evolutiortems in more than one spatial dimension. Being aware of this
of a finite quantum systeniwhich may be in the present fear we have straightforwardly extended outVKmodel
model performed very efficiently by means of the so-called Egs.(12) and(13)] to a rectangular periodic; XL, lattice
fermionic fast Fourier transformatiprand computation of in two spatial dimensions, with isotropic hopping in two or-
time correlation functions of generic quantum observablesthogonal directions and-kicked isotropic nearest neighbor
The sizelL of the system is systematically increased, and thénteraction. An efficient direct time evolution of the 20K
TL is speculated based on extrapolation tb%0. For suf- model has been implemented analogously along the lines
ficiently large values of kick parameters, we have founddescribed in Sec. Ill, and its time correlation functions have
guantum mixing andexponentialdecay of time correlation been computed accordingly, though due to the greater com-
functions, while for smaller, intermediate values'1) of  putational complexity only for relatively small lattices of
kick parameters, we have found nonmixing quantum motiorsizes up to & 5. We should stress that we were again able to
characterized by saturating, nonvanishing time correlatioidentify quite clearly the two regimes of quantum motion
functions. which have been roughly stable against the variation of the



PRE 60 ERGODIC PROPERTIES OF A GENERI. .. 3967

lattice size, namely(i) a quantum mixing regime for suffi- ACKNOWLEDGMENTS
ciently larget andV, and more importantly(ii) a quantum
nonergodic and nonmixing regime fojt|~|V|~3 (or The author is grateful to P. Prelas for many stimulat-
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