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Homoclinic crossing in open systems: Chaos in periodically perturbed monopole
plus quadrupolelike potentials

P. S. Letelier* and A. E. Motter†

Departamento de Matema´tica Aplicada-IMECC, Universidade Estadual de Campinas (UNICAMP), 13081-970 Campinas, Braz
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The Melnikov method is applied to periodically perturbed open systems modeled by an inverse-square-law
attraction center plus a quadrupolelike term. A compactification approach that regularizes periodic orbits at
infinity is introduced. The~modified! Smale-Birkhoff homoclinic theorem is used to study transversal ho-
moclinic intersections. A larger class of open systems with degenerated~nonhyperbolic! unstable periodic
orbits after regularization is also briefly considered.@S1063-651X~99!06110-3#

PACS number~s!: 05.45.2a, 45.05.1x, 95.10.Ce
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I. INTRODUCTION

Since the pioneering work of Poincare´ @1# in celestial me-
chanics in which the mathematical basis of determinis
chaos in compact phase space systems was laid down
study of homoclinic phenomena in closed systems with
perbolic unstable periodic orbits has allowed the understa
ing of a rich variety of nonlinear effects in physics, chem
try, and biology@2#. Due to its universality, models in whic
unstable periodic orbits are subjected to small periodic p
turbations has become one of the main paradigms of de
ministic chaos@3#. An analytical tool to study such models
the Melnikov method@4–6# in connection with the Smale
Birkhoff homoclinic theorem @7,8#, and Kolmogorov-
Arnold-Moser~KAM ! theory in the Hamiltonian case@9#.

The Melnikov function describes the transversal dista
between the stable and unstable manifolds associated t
unstable periodic orbit. Its isolated odd zeros indicate tra
versal intersections between these manifolds, and hence
onset of chaos@10#. Examples of applications of the Meln
kov method in gravitation are the motion of particles in p
turbed two- and three-dimensional Sta¨ckel potentials@11,12#,
the chaotic evolution of cosmological models@13#, the study
of orbits around a black hole perturbed by either grav
tional radiation@14# or an external quadrupolar shell@15#,
and the bounded motion of particles in a periodically p
turbed attractive center described by a monopole plus a
drupolelike potential were considered in Ref.@16#.

The Melnikov method has also been used in many ot
branches of physics. We find examples of applications of
method to the study of Josephson junctions@17,18#, planar
periodic vortical flows@19#, solitons @20#, liquid crystals
@21#, and transfer dynamics of quasiparticles@22#.

Even for the Hamiltonian systems, fundamental questi
about chaos in noncompact phase space systems remain
answered. Among the more important unsolved questions
the notion of chaos itself and the lack of an adequate the
to deal with it. Partial results obtained in this area are
fractal techniques in scattering processes@23#, these are nu-
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merical techniques that present some difficulties due to
existence of different time scales for nearly bounded scat
ing. They are inadequate to the study of chaotic behav
arising from separatrices between bounded and unboun
orbits. Furthermore, they are unable to present a comp
description of the chaotic motion as the one provided
analytical methods in the closed system case.

The aim of this paper is to study the homoclinic pheno
enon for a class of open systems that by a suitable chang
coordinates can be approached in terms of an adequate
mulation of the Melnikov method and Smale-Birkhoff ho
moclinic theorem. The change of coordinates regularizes
unstable periodic orbit at infinity and it compactifies the r
gion of interest of the phase space; however, the phase s
as a whole remains noncompact. Alas the resulting unst
periodic orbit is typically nonhyperbolic and the standa
stable manifold theorem, needed to state the Melnik
method @10#, does not apply. McGehee@24# extended this
theorem to degenerated cases in the context of the New
ian three body problem. Xia@25#, and Dankowicz and
Holmes@26#, among others, used McGehee’s result in co
nection with the Melnikov method and Smale-Birkhoff h
moclinic theorem to study the nonintegrability of the thr
body problem.

Here we consider the equatorial motion of a particle mo
ing in a potential described by a monopolar term plus a q
drupolelike contribution. This potential models the gravit
tional attraction of a galaxy bulge or any nonspheric
celestial body; it also arises in general relativity in the stu
of the motion of a test particle around a Schwarzschild bla
hole, the quadrupole term being a general relativistic eff
associated to the angular momentum of the particle in
reduced two-dimensional phase space, see for instance
@27#.

In Sec. II the fixed saddle points associated to the mo
pole plus quadrupole system, as well as the coordinate tr
formation that regularizes these points at infinity, are stud
In the next section we present some mathematical prel
naries and the Melnikov method. The equations of mot
are used to reduce this method to the analysis of sim
graphics. We find that the perturbation induces transve
homoclinic orbits in some ranges of the parameters, and
apply the modified Smale-Birkhoff homoclinic theorem
verify the presence of a symbolic dynamic equivalent to
3920 © 1999 The American Physical Society
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PRE 60 3921HOMOCLINIC CROSSING IN OPEN SYSTEMS: CHAOS . . .
Smale horseshoe map; see Ref.@10#. In Sec. IV the study of
the motion is completed with a presentation of Poincare´ sec-
tions that reveal different levels of chaotic behavior as
function of the parameters. Finally, in the last section,
make some remarks about the class of system in which
same kind of analysis can be performed.

II. HOMOCLINIC ORBIT AND PERTURBATIONS

We shall consider the orbit of a particle in a plane und
the influence of a force modeled by a potential with inve
square law plus a quadrupolelike term. It is convenient
work with dimensionless quantities. The motion of the p
ticle is described by@16#

H05
p2

2
1

1

2r 2
2

1

r
2

b

r 3 S p5
dr

dt D , ~1!

wherer, p, t, H0, andb are dimensionless quantities propo
tional to, respectively, the radius, the radial momentum,
time, the Hamiltonian function, and the quadrupole mom
of the attraction center. The effective potential

Ve f f5
1

2r 2
2

1

r
2

b

r 3
, ~2!

is presented in Fig. 1 for different values of the parame
b>0.

The natural space to study a periodically perturbed pla
system isR23S1, where the unstable periodic orbits have
proper meaning@10#. In the corresponding unperturbed a
tonomous case the phase space is inR2 and the unstable
periodic orbits reduce to fixed saddle points. The unsta
periodic orbits are also reduced to fixed saddle points for
maps defined on Poincare´ sectionsR23$t0%,R23S1.

The above system presents a homoclinic loop associ
to the hyperbolic fixed saddle point at (r ,p)5(r M,0), where
1/r M51/6b1A(1/6b)221/3b, for b limited by 1/16,b
,1/12. This case is important in the study of bounded orb
and was explored in Ref.@16#.

In the present work we study the instabilities of u
bounded orbits, the relevant values of the parameter arb
51/16 and 0<b,1/16. Let H050, if b51/16 the points

FIG. 1. The effective potential@Ve f f(r )# for b51/10 ~bottom
curve!, b51/12, b51/14, b51/16, b51/18, and b50 ~top
curve!, where the last one represents a monopolar potential.
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r 5r M51/4 and r 5` on the r axis represent fixed point
such that the particle takes infinity time to reach to or
depart from each of these points. For zero energy still, i
<b,1/16, the motion of the particle is restricted to the r
gion between r 5r 2 and r 5`, where 1/r 251/4b
2A(1/4b)221/b, and only the last point represents a fixe
point in this range of values ofb.

Since the orbits of interest are in a semi-infinity regi
bounded away from the origin, we can compactify this p
of the phase space with a change of the position coordin
like r 5ua with a,0. We find that the transformationr
51/u2 allows us to model the problem in a way similar
Refs. @24–26#. This new coordinate regularizes the fixe
point at infinity that now is at the point (u,p)5(0,0). The
zero energy orbits generate a heteroclinic loop forb51/16
associated to the hyperbolic fixed saddle point at (u,p)
5(2,0) and the degenerated fixed saddle point at (u,p)
5(0,0), and a homoclinic loop for 0<b,1/16 associated to
the degenerated fixed saddle point at (u,p)5(0,0). Degen-
erated in the sense that both eigenvalue of the linear
vector field are zero, as can be seen from the Hamilton
equations

du

dt
52

1

2
u3p, ~3!

dp

dt
52u41u623bu8. ~4!

The points (u,p)5(2,0) and (u,p)5(0,0) correspond to, re
spectively, the hyperbolic fixed saddle point at (r ,p)
5(1/4,0) forb51/16 and the degenerated fixed saddle po
at (r ,p)5(`,0) for 0<b<1/16. The homoclinic and hetero
clinic loops are defined by the intersection between the sta
and unstable manifolds on the (u,p) plane. The homoclinic
loop for b51/18 is shown in Fig. 2 and the heteroclinic on
is presented in Fig. 3.

The explicit integration of the homoclinic and heteroclin
loops will be necessary to apply the Melnikov method a
can be obtained from the first integral of motion (H050).
For b50 we find

FIG. 2. The level curves of the HamiltonianH0 for b51/18.
The homoclinic loop associated to (u,p)5(0,0) is the curve that
contains that point.
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3922 PRE 60P. S. LETELIER AND A. E. MOTTER
t~v !56
~11v !~22v !1/2

3v2/3
, ~5!

wherev51/r , the time origin is take in the symmetry poin
of loop, and the sign refers to the upper~1! and lower
(2) parts of the loop. Analogously, for 0,b,1/16 it reads

t~v !56A2

bH ~2v11v2!F~d,q!22~v11v2!E~d,q!

3v2
2 v1

3/2

1
v1v21~2v11v2!v

3v1v2
2 A v22v

~v12v !v3J ~6!

with

d5arcsinAv1~v22v !

v2~v12v !
, q5Av2

v1
, ~7!

whereF(d,q) and E(d,q) are elliptic integrals of the firs
and second type in the Legendre normal form~Ref. @28#, p.
224!, and v651/4b6A(1/4b)221/b are the roots ofVe f f
50. Moreover, forb51/16 we get

t~v !56H A2

3 S 1

v3/2
2

1

~4/3!3/2D 1
1

2A2
S 1

Av
2

1

A4/3
D

1
1

8A2
lnF S 22Av

21Av
D S 21A4/3

22A4/3
D G J ~8!

with the choicet(4/3)50, wherev54/3 is the local mini-
mum of Ve f f .

Now, let us consider the Hamiltonian~1! perturbed by a
periodic multipolar term of the form

H5H01«H1 , ~9!

H15r 2n cos~Vt ! ~n>2!, ~10!

FIG. 3. The level curves of the HamiltonianH0 for b51/16.
The curves that represent the invariant manifolds, which define
heteroclinic loop, associated to the points (u,p)5(0,0) and (u,p)
5(2,0) are the curves that contain those points.
wheren52 is dipolar,n53 is quadrupolar, etc. These pe
turbations can model the attraction due to a distribution
masses with periodic motions that are placed inside
planet orbit.

We shall consider our attraction center with a fix to
mass. In other words, we excluded the monopolar casen
51) that represents a periodic variation of the mass.

In the next sections we study how these perturbations
affect the dynamical of the system.

III. MELNIKOV METHOD

Powerful tools to study near integrable systems are Me
kov type of techniques that detect transversal intersect
between the stable and unstable manifolds associated
unstable periodic orbit. The presence of such transversa
tersections is a guarantee of complicated dynamics an
some cases leads to a symbolic dynamics equivalent to
Smale horseshoe@10#.

In order to simplify the analysis it is convenient to a
stract a little from the particular problem presented above
what follows the loops are on theX plane and the manifolds
are in the (X,u) space, whereu[t mod 2p/V so that
(X,u)PR23S1, andSu0

denotes the sectionu5u0. We con-
sider a Hamiltonian of the form

H̃~X,t !5H̃0~X!1«H̃1~X,t ! ~H̃1 2p/V2periodic in t !,
~11!

whereH̃0 is integrable with homoclinic~heteroclinic! loop G
associated to somehyperbolicfixed saddle point~s!. Under
hyperbolicity hypothesis it can be shown that for sufficien
small « the invariant manifolds are only deformed, and po
sibly their intersections become transversal, see for insta
Ref. @10#.

Let X0 be a point onG andXs/u(u0 ,«) be points on the
stable/unstable manifolds such that they are onSu0

, in the

line perpendicular toG3$u0% at X0 and whose trajectories
take the least amount of time to reach/depart any sm
neighborhood of the unstable periodic orbit. A computa
measure of the transversal distance between the stable
unstable manifolds onSu0

, which defines the Melnikov func-

tion, is given by the zero order term of 1/«@H̃0„X
u(u0 ,«)…

2H̃0„X
s(u0 ,«)…# @29#. In fact, if Xs/u(t;u0 ,«) denotes the

time evolution under H̃ such that Xs/u(u0 ;u0 ,«)
5Xs/u(u0 ,«), and X0(t) denotes the time evolution unde

H̃0 such thatX0(0)5X0,

H̃0„X
s/u~u0 ,«!…2H̃0„X

s/u~6`;u0 ,«!…

5E
6`

u0 dH̃0

dt
@Xs/u~ t;u0 ,«!#dt

5E
6`

u0 dH̃0

dt
@X0~ t2u0!,t#dt1O~«2!. ~12!

Thus in the homoclinic case the Melnikov function can
written as

e
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M ~u0!5
1

«E2`

` dH̃0

dt
@X0~ t !,t1u0#dt,

S 1

«

dH̃0

dt
5$H̃0 ,H̃1% D , ~13!

where$.,.% are the usual Poisson brackets.
The implicit function theorem allows us to conclude th

if M (u0) has simple zeros, then, for sufficiently small« the
invariant manifolds intersect transversely for someu0. On
the other hand, ifM (u0) is bounded away from zero, the
the invariant manifolds do not intersect for allu0.

Now let us take the map defined by system~3!–~4! on an
arbitrary section. After a scale change in thep coordinate it
reads

uk115uk2Cuk
3@pk1O~4!#, ~14!

pk115pk2Cuk
3@uk1O~3!#, ~15!

where C5A2p/V. Here the standard Melnikov metho
breaks down because of the degeneracy of the saddle p
McGehee@24#, Xia @25#, Dankowicz and Holmes@26# stud-
ied systems of this class in the context of the three b
problem, where they established the fundamental res
needed to support the Melnikov method: structural stabi
of the unstable periodic orbits~trivial in our case since the
degenerated unstable periodic orbit remains fixed!; existence
of local stable and unstable analytic manifoldsC` close to
those of the unperturbed case@24,26#; solutions on the per-
turbed and the unperturbed manifolds approach to the
stable periodic orbit at a similar rate@25,26#. Following the
proofs step-by-step we can observe that all the essentia
pothesis involved to achieve their results are also satisfie
the above system. Thus these statements apply to Eqs.~14!–
~15! allowing the expansion in Eq.~12! that justifies the use
of Melnikov method in the present problem.

Another important result whose standard form assum
hyperbolicity is the Smale-Birkhoff homoclinic theorem.
was given a formulation of this theorem that is valid for t
degenerated problem of Sitnikov@26#, which is grounded on
a suitable approximation of the linearization of the map
the neighborhood of the saddle point. Since such approxi
tion results in the same expressions for the case of E
~14!–~15!, we conclude that the Smale-Birkhoff homoclin
theorem applies to the above system. Thus transversa
moclinic intersections in our problem lead to the Sm
horseshoe.

Now we shall apply Melnikov method to Eq.~1! sub-
jected to the perturbations~10!. In the homoclinic case (0
<b,1/16) we find for the Melnikov function

M ~u0!5E
2`

1`

nr2n21 cos@V~ t1u0!#
dr

dt
dt

522n sin~Vu0!K~V!, ~16!

K~V![E
0

v2

vn21 sin@Vt~v !#dv, ~17!
t

int.

y
lts
y

n-

y-
by

s

a-
s.

o-

where we have fixedX05@v(0),p(0)# as the symmetry
point on the loop and the integrandt(v) means the positive
branch of Eqs.~5!–~6!. Thus the Melnikov function has
simple zeros as long asK(V)Þ0. With the changet→v we
pass from an infinite interval in Eq.~16! to a finite one in Eq.
~17!, and it allows us to studyK(V) using graphics. Al-
though u (r 51/u2) is important to justify the Melnikov
method, we have great freedom in the choice of a coordin
to study the results. The most simple one that is adequa
this end is the coordinatev51/r .

The integrand ofK(V) is formed by the product of an
oscillating function and a polynomial. Near the origin th
oscillation is a rapid one, sincet→` as the particle goes to
the unstable periodic orbit. In Fig. 4 we show a graph
sin@Vt(v)# for b51/25, and several values ofV. For V.4
we will have more zeros in the interval shown in the figu
For V,1 the curve will look like the one forV51. Since
the area under the curves are clearly not null the integra
sin@Vt(v)# is nonzero forb51/25 and 0,V<4. The cases
of interest aren>2, where we will have a more favorabl
situation. We have transverse homoclinic orbits in all the
cases. To better understand this behavior we show in Fig
graph of the integrand ofK(V) for b51/25, V53 and dif-
ferent values ofn. For 0<b,1/16 the graphics of sin@Vt(v)#
will look like the one for b51/25, with almost the same
upper bound forV. See for instance Fig. 6, where we pl

FIG. 4. f [sin@Vt(v)# for b51/25, andV51 ~bottom curve!,
V52, V53, andV54 ~top curve!.

FIG. 5. The integrandk[vn21 sin@Vt(v)# of K(V) for b
51/25, V53, and n52 ~bottom curve!, n53 and n54 ~top
curve!.
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3924 PRE 60P. S. LETELIER AND A. E. MOTTER
the graphics of sin@Vt(v)# for the monopolar attraction cente
(b50) for the same values ofV employed in Fig. 4. There
fore we have transverse homoclinic orbits for allb limited
by 0<b,1/16.

For this range of parameters the Smale-Birkhoff h
moclinic theorem implies the existence of a hyperbolic
variant set for which the action of anNth iterate of the map
has a symbolic dynamic equivalent to that of the Sm
horseshoe map. Some important consequences of this r
are sensitive dependence on initial condition~a characteristic
of chaos!; nonexistence of real analytic integral of motio
~nonintegrable system!; existence of infinitely many periodic
orbits with arbitrary large periods~whose number increase
exponentially with the period!; capture of orbits by the sys
tem ~in both directions of time!.

It is illustrative to see how the chaotic orbits look in th
original noncompactified coordinatesr ,p. Due to the lack of
an extra integral of motion the particle can have a hig
erratic motion and have access to a two dimensional reg
of the phase space. The sensitive dependence on initial
dition implies that the evolution of two infinitesimally nea
points in the spacer ,p can result in two completely differen
bounded orbits, in two completely different unbounded
bits, or even in one bounded and one unbounded orbit. O
that are bounded for allt,0 can go to infinite fort→1`,
and orbits of particles coming from infinite can rema
bounded for all t.0. However, regular orbits are als
present and in particular there is a family of periodic orb

Let us consider the heteroclinic caseb51/16. The Melni-
kov method obtained from Eq.~12! applies to each branch o
the loop. The distance betweenXs/u(6`;u0 ,«) and
Xs/u(6`;u0 ,0) is of order O(«). Therefore
H0„X

s/u(6`;u0 ,«)… is of orderO(«2). Then, this term can
be neglected and the Melnikov function reads

M ~u0!52n sin~Vu0!Ks~V!22n cos~Vu0!Kc~V!,
~18!

Ks~V![E
0

v2

vn21 sin@Vt~v !#dv,

~19!

Kc~V![E
0

v2

vn21 cos@Vt~v !#dv.

FIG. 6. f [sin@Vt(v)# for the monopolar potential (b50) with
V51 ~bottom curve!, V52, V53, andV54 ~top curve!.
-
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e
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n
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its
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The orbits in the heteroclinic loop are less symmetrical th
in the homoclinic one, and consequently the Melnikov fun
tion has simple zeros when at least one of the integrals of
previous formula is different from zero. The integrands ofKs
and Kc oscillate very rapidly near the unstable periodic o
bits. To better understand this behavior we show in Fig.
graphic of the positive branch of Eq.~8!. The functiont(v)
has small values for a large range of values ofv, and hence
Kc will result nonzero values for smallV. Indeed, we show
in Fig. 8 a graph of cos@Vt(v)# for different values ofV.
Since cosine is an even function, the same figure is valid
the negative branch. ForV.3 we will have more zeros in
the interval 1,v,4. For V,0.5 the curves will look like
the one forV50.5. For small values ofn the integralKc will
be nonzero for 0,V<3. Due to the change of sign o
cos@Vt(v)# nearv54, the upper bound forV decrease with
n. But it is clear from Fig. 8 that for eachn will exist an
upper boundVo(n).0 such thatKc will be nonzero, leading
to the presence of transversal heteroclinic orbits, for 0,V
<Vo(n).

IV. POINCARÉ SECTIONS METHOD

The system~9! has four parameters,b, n, V, and«. In
opposition to the Melnikov method, Poincare´ sections
method is able to predict results only for fixed values

FIG. 7. The positive branch of Eq.~8!: t(v) goes to6` at v
50 andv54, but has small values at almost every point of t
interval 0,v,4.

FIG. 8. g[cos@Vt(v)# for b51/16, andV50.5 ~top curve!, V
51, V52, andV53 ~bottom curve!.
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FIG. 9. The Poincare´ sections for~a! b51/25, n52, V51, and«50.003; ~b! b51/25, n55, V51, and«50.003; ~c! b51/25, n
52, V50.1, and«50.003;~d! b51/25, n52, V55, and«50.003;~e! b51/25, n52, V51, and«50.01; ~f! b50, n52, V51, and
«50.003;~g! b51/16, n52, V51, and«50.003.
tiv

e

te
9

ted
these parameters. However, the Poincare´ method can locate
the regular and irregular regions and provide a qualita
idea of chaotic behavior.

The perturbed phase space is inR23S1 and the maps
defined on different values of the angular variableu
5t mod 2p/V are topologically conjugated. So we have r
e

-

stricted the study to sections built onu50, but for a large
number of different values of the parametersb, n, V, and«.
We includedV values which would require a more elabora
numerical computation of the Melnikov function. In Fig.
we show the Poincare´ sections for some select values ofb,
n, V, and«. The general aspect of the sections is represen
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FIG. 9. ~Continued!.
io
eg

t
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n-
bits

the
at
in this figure, with the predominance of irregular behav
near the destroyed invariant loop and the presence of a r
lar region near the center.

A careful analysis of the Poincare´ sections reveals tha
chaos increases withn, which is natural since the major con
tribution of the perturbation comes fromv.1. In Figs. 9~a!
and 9~b! we show the Poincare´ sections forn52 andn55,
r
u-
respectively, whereb51/25, V51, and «50.003. As a
function ofV, the most chaotic behavior occurs for freque
cies of the same order of the angular frequencies of the or
in the local minimum ofVe f f , from (4/3)2 for b51/16 to 1
for b50. It is a reasonable result since for smallV the
system is almost autonomous, and for large frequencies
particle feels only an average of the multipolar motion th
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PRE 60 3927HOMOCLINIC CROSSING IN OPEN SYSTEMS: CHAOS . . .
goes to zero forV→`. In Figs. 9~a!, 9~c!, and 9~d! we show
Poincare´ sections forV51, V50.1, and V55, respec-
tively, whereb51/25, n52, and«50.003. Also, the chaos
increases strongly with the ‘‘size’’ of the perturbation«. In
Figs. 9~a! and 9~e! we show the Poincare´ sections for«
50.003 and«50.01, respectively, whereb51/25, n52,
andV51.

The form of the orbits change withb, since there is a
change in the destroyed loop, but the relative chaotic are
the section is almost independent of the value ofb. In Figs.
9~a!, 9~f!, and 9~g! we show the Poincare´ sections forb
51/25, b50, and b51/16, respectively, wheren52, V
51, and«50.003. In particular, the caseb51/16 presents
two unstable periodic orbits and no higher chaotic behav
seems to be associated to it.

V. FINAL REMARKS

Making use of a compactification procedure and ext
sions of the standard Melnikov method and Smale-Birkh
homoclinic theorem, we have detected transverse homoc
and heteroclinic orbits and Smale horseshoe in periodic
perturbed monopole1 quadrupolelike potential. Moreove
the compactified coordinates have proved useful to work
the Poincare´ section method.

Although we have studied only one particular system,
stress that the approach is general and can be applied
large class of open systems. The mathematical results de
essentially on the presence of the monopolar term in
unperturbed equations. Thus the same approach and wit
-
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nd
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the

same compactification applies to every inner-multipolar
pansion model with nonzero monopolar contribution. In su
cases we can allow non-Hamiltonian perturbations of
form f (u,t,«) in the equation corresponding to Eq.~4!,
wheref is an analytic function of its variables, periodic int,
satisfying f (u,t,0)50 and of orderO(u6).

These systems represent very general situations. In
gravitational case, for instance, they can model a poten
due to a mass distribution moving periodically with refle
tion symmetry. This includes all planar potential written
Fourier expansion in time together with an inner-multipo
expansion in space variable. A specific example is provid
by a Newtonian binary system perturbed by gravitational
diation. This system models the long-term dynamical evo
tion of binary systems of stars due to the emission and
sorption of gravitational radiation@30#.

In electromagnetic systems we can have a different si
tion. The possible absence of monopolar contribution crea
a difficulty in transforming the map equations into the an
lytic form ~14!–~15!. The solution may be found using th
Cassasayas-Fontich-Nunes’s result, which establishes
Melnikov method for systems with parabolic degenera
saddle points@31#. A suitable compactification to treat th
electromagnetic case is under study.
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