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Homoclinic crossing in open systems: Chaos in periodically perturbed monopole
plus quadrupolelike potentials
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The Melnikov method is applied to periodically perturbed open systems modeled by an inverse-square-law
attraction center plus a quadrupolelike term. A compactification approach that regularizes periodic orbits at
infinity is introduced. The(modified Smale-Birkhoff homoclinic theorem is used to study transversal ho-
moclinic intersections. A larger class of open systems with degene(atathyperboli¢ unstable periodic
orbits after regularization is also briefly considerg81063-651X99)06110-3

PACS numbds): 05.45—-a, 45.05+x, 95.10.Ce

[. INTRODUCTION merical techniques that present some difficulties due to the

existence of different time scales for nearly bounded scatter-

Since the pioneering work of Poincdre| in celestial me- ing. They are inadequate to the study of chaotic behavior

chanics in which the mathematical basis of deterministicarising from separatrices between bounded and unbounded

chaos in compact phase space systems was laid down, tﬁébits. Furthermore, they are unable to present a complete
study of homoclinic phenomena in closed systems with hydescription of the chaotic motion as the one provided by

perbolic unstable periodic orbits has allowed the understandnalytical methods in the closed system case.

ing of a rich variety of nonlinear effects in physics, chemis- 1he aim of this paper is to study the homoclinic phenom-

try, and biology[2]. Due to its universality, models in which €n°n for a class of open systems that by a suitable change of

unstable periodic orbits are subjected to small periodic perc0rdinates can be approached in terms of an adequate for-

turbations has become one of the main paradigms of deteF[“Jlation of the Melinikov method and Smale-Birkhoff ho-

e . .__moclinic theorem. The change of coordinates regularizes the
ministic chaog3]. An analytical tool to study such models is o . 2 . A
the Melnikov method4—6] in connection with the Smale- unstable periodic orbit at infinity and it compactifies the re

. L gion of interest of the phase space; however, the phase space
Birkhoff homoclinic theorgm [7.8], af“’ 'Kolmogorov- as a whole remains noncompact. Alas the resulting unstable
Arnold-Moser(KAM ) theory in the Hamiltonian cad®)].

. . ) : eriodic orbit is typically nonhyperbolic and the standard
The Melnikov function describes the transversal distanc table manifold theorem, needed to state the Melnikov

between the stable and unstable manifolds associated to Aethod[10], does not apply. McGehe@4] extended this
unstable periodic orbit. Its isolated odd zeros indicate transgheorem to degenerated cases in the context of the Newton-
versal intersections between these manifolds, and hence thgn three body problem. Xid25], and Dankowicz and
onset of chao$10]. Examples of applications of the Melni- Holmes[26], among others, used McGehee’s result in con-
kov method in gravitation are the motion of particles in per-nection with the Melnikov method and Smale-Birkhoff ho-
turbed two- and three-dimensional 8tel potential§11,12,  moclinic theorem to study the nonintegrability of the three
the chaotic evolution of cosmological modéls3], the study  body problem.

of orbits around a black hole perturbed by either gravita- Here we consider the equatorial motion of a particle mov-
tional radiation[14] or an external quadrupolar sh¢ll5], ing in a potential described by a monopolar term plus a qua-
and the bounded motion of particles in a periodically per-drupolelike contribution. This potential models the gravita-
turbed attractive center described by a monopole plus a quaional attraction of a galaxy bulge or any nonspherical
drupolelike potential were considered in REE6)]. celestial body; it also arises in general relativity in the study

The Melnikov method has also been used in many otheof the motion of a test particle around a Schwarzschild black
branches of physics. We find examples of applications of thiiole, the quadrupole term being a general relativistic effect
method to the study of Josephson juncti¢t®,18, planar  associated to the angular momentum of the particle in the
periodic vortical flows[19], solitons[20], liquid crystals reduced two-dimensional phase space, see for instance Ref.
[21], and transfer dynamics of quasipartic[@g]. [27].

Even for the Hamiltonian systems, fundamental questions In Sec. Il the fixed saddle points associated to the mono-
about chaos in noncompact phase space systems remain togisle plus quadrupole system, as well as the coordinate trans-
answered. Among the more important unsolved questions afermation that regularizes these points at infinity, are studied.
the notion of chaos itself and the lack of an adequate theorin the next section we present some mathematical prelimi-
to deal with it. Partial results obtained in this area are thenaries and the Melnikov method. The equations of motion
fractal techniques in scattering procesg23), these are nu- are used to reduce this method to the analysis of simple

graphics. We find that the perturbation induces transverse

homoclinic orbits in some ranges of the parameters, and we
*Electronic address: letelier@ime.unicamp.br apply the modified Smale-Birkhoff homoclinic theorem to
"Electronic address: motter@ime.unicamp.br verify the presence of a symbolic dynamic equivalent to a
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FIG. 1. The effective potentiglVq¢¢(r)] for 8=1/10 (bottom
curve, B=1/12, p=1/14, B=1/16, B=1/18, and B=0 (top
curve, where the last one represents a monopolar potential.

Smale horseshoe map; see Ré&f)]. In Sec. IV the study of
the motion is completed with a presentation of Poincare-
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FIG. 2. The level curves of the Hamiltonid, for 3=1/18.
The homoclinic loop associated tai,p)=(0,0) is the curve that
contains that point.

r=ry=21/4 andr=« on ther axis represent fixed points

tions that reveal different levels of chaotic behavior as asuch that the particle takes infinity time to reach to or to
function of the parameters. Finally, in the last section, wedepart from each of these points. For zero energy still, if O
make some remarks about the class of system in which the g8<1/16, the motion of the particle is restricted to the re-

same kind of analysis can be performed.

I. HOMOCLINIC ORBIT AND PERTURBATIONS

gion betweenr=r_ and r=o, where 1If¥_=1/48
—/(1/48)?— 1B, and only the last point represents a fixed
point in this range of values 8.

Since the orbits of interest are in a semi-infinity region

We shall consider the orbit of a particle in. a plgne_ underyounded away from the origin, we can compactify this part
the influence of a force modeled by a potential with inverseys the phase space with a change of the position coordinate

square law plus a quadrupolelike term. It is convenient t
work with dimensionless quantities. The motion of the par-
ticle is described by16]

wherer, p, t, Hp, andB are dimensionless quantities propor-

1

2r?

_dr
P= Gt

B
3

r

2

Qike r=u* with a<0. We find that the transformation

=1/u? allows us to model the problem in a way similar to
Refs. [24—-26. This new coordinate regularizes the fixed
point at infinity that now is at the pointu(p)=(0,0). The
zero energy orbits generate a heteroclinic loop Ser 1/16
associated to the hyperbolic fixed saddle point afp}
=(2,0) and the degenerated fixed saddle point wip)
=(0,0), and a homoclinic loop for€ 8<1/16 associated to

tional to, respectively, the radius, the radial momentum, thehe degenerated fixed saddle point atp) =(0,0). Degen-

time, the Hamiltonian function, and the quadrupole momen
of the attraction center. The effective potential

1

2r?

Veti=——S — = — (2

is presented in Fig. 1 for different values of the paramete
B=0.

The natural space to study a periodically perturbed planar

system isR?x S, where the unstable periodic orbits have a
proper meaning10]. In the corresponding unperturbed au-
tonomous case the phase space istfnand the unstable

erated in the sense that both eigenvalue of the linearized
vector field are zero, as can be seen from the Hamiltonian
equations

du 1,
T L (©)
"
d — 4 6 8
gt Ut —3BU°. (4)

The points (1,p) =(2,0) and (1,p)=(0,0) correspond to, re-

periodic orbits reduce to fixed saddle points. The unstablepectively, the hyperbolic fixed saddle point at,[)
periodic orbits are also reduced to fixed saddle points for the=(1/4,0) for 8= 1/16 and the degenerated fixed saddle point

maps defined on PoincasectionsR?x {t,} CRZx St.

at (r,p) = (,0) for 0<8=<1/16. The homoclinic and hetero-

The above system presents a homoclinic loop associateglinic loops are defined by the intersection between the stable

to the hyperbolic fixed saddle point at,p) =(ry,0), where
1/ry=1/6B8+ \(1/68)%>—1/3B, for B limited by 1/16<p

and unstable manifolds on the,p) plane. The homoclinic
loop for B=1/18 is shown in Fig. 2 and the heteroclinic one

<1/12. This case is important in the study of bounded orbitgs presented in Fig. 3.

and was explored in Ref16].

In the present work we study the instabilities of un-
bounded orbits, the relevant values of the parameterBare
=1/16 and B<=8<1/16. LetHy=0, if B=1/16 the points

The explicit integration of the homoclinic and heteroclinic
loops will be necessary to apply the Melnikov method and
can be obtained from the first integral of motioH4=0).
For =0 we find
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FIG. 3. The level curves of the Hamiltonigr, for 3=1/16.
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wheren=2 is dipolar,n=3 is quadrupolar, etc. These per-
turbations can model the attraction due to a distribution of
masses with periodic motions that are placed inside the
planet orbit.

We shall consider our attraction center with a fix total
mass. In other words, we excluded the monopolar case (
=1) that represents a periodic variation of the mass.

In the next sections we study how these perturbations can
affect the dynamical of the system.

Ill. MELNIKOV METHOD

Powerful tools to study near integrable systems are Melni-
kov type of techniques that detect transversal intersections
between the stable and unstable manifolds associated to a

The curves that represent the invariant manifolds, which define theinstable periodic orbit. The presence of such transversal in-

heteroclinic loop, associated to the pointsgg) =(0,0) and (,p)
=(2,0) are the curves that contain those points.

(1+v)(2-v)"?
t(v)= iT, 5)
wherev=1/r, the time origin is take in the symmetry point
of loop, and the sign refers to the uppefr) and lower
(—) parts of the loop. Analogously, for<0B<1/16 it reads

t(v)== \[%l

(2v+v_)F(6,9)—2(v. +V_)E(4,q)

3v2y 3/2
ViV_+(2vi+Vv_)v V_—V
LY ( +2 ) ®
3v,v? (vi—Vv)V3
with
B o vi(v_o—v) e
5= arcsm\/m, =1/ v (7)

whereF(6,q) andE(8,q) are elliptic integrals of the first
and second type in the Legendre normal fdiRef. [28], p.

224), andv. =1/48+ \/(1/48)%>—1/B are the roots oWy
=0. Moreover, for3=1/16 we get

t(v)=i[\/_§(i 1 ) 1(1 1)

3 V3/2 4/3 3/2 2\/— \/— \/4_/3
2—W\[2+ \/4_/3) ®
( 2+ 2—4/3

with the choicet(4/3)=0, wherev=4/3 is the local mini-
mum of Vg¢s.

Now, let us consider the Hamiltoniaii) perturbed by a
periodic multipolar term of the form

H=Ho+eH,, 9

H;=r""coqQt) (n=2), (10

tersections is a guarantee of complicated dynamics and in
some cases leads to a symbolic dynamics equivalent to the
Smale horseshdd.0].

In order to simplify the analysis it is convenient to ab-
stract a little from the particular problem presented above. In
what follows the loops are on the plane and the manifolds
are in the K,#) space, whered=tmod27/Q} so that
(X,0) e R?X S', andX , denotes the sectiofi= 6,. We con-

sider a Hamiltonian of the form

(H, 2m/Q— periodicin t),
(11

H(X,t)=Ho(X)+eH1(X,t)

whereHj is integrable with homoclini¢heteroclinig loop I
associated to somhkyperbolicfixed saddle poiris). Under
hyperbolicity hypothesis it can be shown that for sufficiently
small ¢ the invariant manifolds are only deformed, and pos-
sibly their intersections become transversal, see for instance
Ref.[10].

Let X, be a point orl" and X¥Y(#6,,£) be points on the
stable/unstable manifolds such that they areiq,g, in the

line perpendicular td”x{#6,} at Xo and whose trajectories
take the least amount of time to reach/depart any small
neighborhood of the unstable periodic orbit. A computable
measure of the transversal distance between the stable and
unstable manifolds oB 4, Which defines the Melnikov func-

tion, is given by the zero order term ofslﬂo(xu(eo,s))
—Ho(X%(89,€))] [29]. In fact, if X¥U(t;6,,e) denotes the

time evolution under H such that X¥Y(6,;6,¢)
=X%Y(6y,e), and X,(t) denotes the time evolution under

H, such thatXy(0)=Xo,

Ho(X¥(6g,&))— Ho(XIU(£; 6,¢))

90dF| U
—J+ T [X (t;00,e)]dt

fo d~
f T [Xo(t 6,),t]dt+O(e?). (12

Thus in the homoclinic case the Melnikov function can be
written as
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1 (= d~HO
M(8)= ;ffo[XO(t)’t—F 0o]dt,

1 dH,

dt

13

{Ho,ﬁ1}>,

where{.,.} are the usual Poisson brackets.

The implicit function theorem allows us to conclude that

if M(6y) has simple zeros, then, for sufficiently smalthe
invariant manifolds intersect transversely for sofge On
the other hand, iM(6,) is bounded away from zero, then
the invariant manifolds do not intersect for ajl.

Now let us take the map defined by syst&-(4) on an
arbitrary section. After a scale change in fheoordinate it
reads

Ugs 1= Ug— CUS[ pe+O(4)], (14)

Prs1=Px— CUs[ U+ O(3)], (15)

where C=2#/Q. Here the standard Melnikov method

breaks down because of the degeneracy of the saddle po"ﬂﬁough u (r=1M

McGehed 24], Xia [25], Dankowicz and Holmef26] stud-
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FIG. 4. f=sifQt(v)] for B=1/25, andQ)=1 (bottom curve,
0=2,0=3, andQ)=4 (top curvs.

where we have fixedXy=[v(0),p(0)] as the symmetry
point on the loop and the integram(v) means the positive
branch of Egs.(5)—(6). Thus the Melnikov function has
simple zeros as long d§(Q) # 0. With the changé—v we
pass from an infinite interval in E416) to a finite one in Eq.
(17), and it allows us to studK({)) using graphics. Al-

2) is important to justify the Melnikov
method, we have great freedom in the choice of a coordinate

led systems of this class in the context of the three body, g4y the results. The most simple one that is adequate to
problem, where they established the fundamental resultﬁ,]is end is the coordinate= 1/r

needed to support the Melnikov method: structural stability

of the unstable periodic orbit&rivial in our case since the
degenerated unstable periodic orbit remains fixesistence
of local stable and unstable analytic manifold$ close to
those of the unperturbed cak®4,2€]; solutions on the per-

turbed and the unperturbed manifolds approach to the uny,

stable periodic orbit at a similar raf@5,26. Following the

proofs step-by-step we can observe that all the essential h¥

pothesis involved to achieve their results are also satisfied
the above system. Thus these statements apply to(Ed)s-
(15) allowing the expansion in Eq12) that justifies the use
of Melnikov method in the present problem.

Another important result whose standard form assume
hyperbolicity is the Smale-Birkhoff homoclinic theorem. It
was given a formulation of this theorem that is valid for the

degenerated problem of Sitnik§26], which is grounded on

a suitable approximation of the linearization of the map in

The integrand oK ((}) is formed by the product of an
oscillating function and a polynomial. Near the origin this
oscillation is a rapid one, sinde~ as the particle goes to
the unstable periodic orbit. In Fig. 4 we show a graph of
sinQt(v)] for B=1/25, and several values 6f. For )3>4
ve will have more zeros in the interval shown in the figure.
For A<1 the curve will look like the one fof)=1. Since

he area under the curves are clearly not null the integral of
bgir[ﬂt(v)] is nonzero forB=1/25 and 6<()<4. The cases
of interest aren=2, where we will have a more favorable
situation. We have transverse homoclinic orbits in all these
cases. To better understand this behavior we show in Fig. 5 a
§raph of the integrand df (Q}) for 8=1/25, =3 and dif-
ferent values oh. For 0< 3<1/16 the graphics of sjft(v)]
will look like the one for 8=1/25, with almost the same
upper bound foK). See for instance Fig. 6, where we plot

the neighborhood of the saddle point. Since such approxima-

tion results in the same expressions for the case of Eqs 5
(14)—(15), we conclude that the Smale-Birkhoff homoclinic
theorem applies to the above system. Thus transversal ho
moclinic intersections in our problem lead to the Smale 3
horseshoe.
Now we shall apply Melnikov method to Edl) sub- & 5
jected to the perturbationd.0). In the homoclinic case (0
<B<1/16) we find for the Melnikov function 1
A
oo dr 0 7
M(eo)zf nr " lcog Q(t+ 00)]adt T
Cw -1
0 0.5 1 1.5 2 2.5
=—-2nsin(Q6y)K(Q), (16 v
v FIG. 5. The integrandk=v""1siMQt(v)] of K(Q) for g8
K(Q)Ef V' lsif Qt(v)]dv, (17) =1/25, =3, andn=2 (bottom curvg¢, n=3 and n=4 (top
0 curve.
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FIG. 6. f=sifQt(v)] for the monopolar potentiald=0) with
Q=1 (bottom curve, =2, O=3, andQ)=4 (top curve.

the graphics of sif2t(v)] for the monopolar attraction center
(B=0) for the same values @ employed in Fig. 4. There-
fore we have transverse homoclinic orbits for Alllimited
by 0<pB<1/16.

For this range of parameters the Smale-Birkhoff ho-
moclinic theorem implies the existence of a hyperbolic in-
variant set for which the action of aMth iterate of the map
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FIG. 7. The positive branch of E¢8): t(v) goes to+« atv
=0 andv=4, but has small values at almost every point of the
interval 0<v<4.

The orbits in the heteroclinic loop are less symmetrical than
in the homoclinic one, and consequently the Melnikov func-
tion has simple zeros when at least one of the integrals of the
previous formula is different from zero. The integrand¥gf

and K oscillate very rapidly near the unstable periodic or-
bits. To better understand this behavior we show in Fig. 7 a

has a symbolic dynamic equivalent to that of the Smalegraphic of the positive branch of E(8). The functiont(v)

horseshoe map. Some important consequences of this res
are sensitive dependence on initial conditiarcharacteristic
of chaog; nonexistence of real analytic integral of motion
(nonintegrable systemexistence of infinitely many periodic
orbits with arbitrary large periodevhose number increases
exponentially with the perigg capture of orbits by the sys-
tem (in both directions of timg

It is illustrative to see how the chaotic orbits look in the
original noncompactified coordinategp. Due to the lack of

bas small values for a large range of valuesy paind hence

K. will result nonzero values for smaf). Indeed, we show

in Fig. 8 a graph of cd$)(v)] for different values of(}.
Since cosine is an even function, the same figure is valid for
the negative branch. Fd&2>3 we will have more zeros in
the interval X v<4. For <0.5 the curves will look like
the one forQ) =0.5. For small values af the integraK . will

be nonzero for 82Q0=<3. Due to the change of sign of
cogQt(v)] nearv=4, the upper bound fof) decrease with

an extra integral of motion the particle can have a highlyn. But it is clear from Fig. 8 that for each will exist an

erratic motion and have access to a two dimensional regio
of the phase space. The sensitive dependence on initial co
dition implies that the evolution of two infinitesimally near
points in the space,p can result in two completely different

bounded orbits, in two completely different unbounded or-

npper bound)(n)>0 such thaK will be nonzero, leading
te the presence of transversal heteroclinic orbits, fer(D
<Q0(n).

IV. POINCARE SECTIONS METHOD

bits, or even in one bounded and one unbounded orbit. Orbits

that are bounded for at<O can go to infinite fot— + oo,
and orbits of particles coming from infinite can remain
bounded for allt>0. However, regular orbits are also
present and in particular there is a family of periodic orbits.

Let us consider the heteroclinic cag8es 1/16. The Melni-
kov method obtained from E12) applies to each branch of
the loop. The distance betweeX¥Y(+x;f,,e) and
XSU(£0;6,,0) is of order O(g). Therefore
Ho(X¥U(+: 6y,¢)) is of orderO(e?). Then, this term can
be neglected and the Melnikov function reads

M (6o)=2nsin(Q 6y)K<(Q)—2n cogQ )K(Q),
(18
KS(Q)Efov’v"—lsirmt(v)]dv,
(19
KC(Q)Efohvn_lcos{ﬂt(v)]dv.

The system(9) has four parameterg3, n, 2, ande. In
opposition to the Melnikov method, Poincarsections
method is able to predict results only for fixed values of

1 \
o 0
-1
0 2 4
v

FIG. 8. g=cogQt(v)] for B=1/16, and(2=0.5 (top curve, ()
=1, 0=2, andQ =3 (bottom curve.
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FIG. 9. The Poincarsections for@ 8=1/25,n=2, Q=1, ande=0.003;(b) 8=1/25, n=5, 0 =1, ande=0.003;(c) B=1/25, n
=2,0=0.1, ande =0.003;(d) B=1/25,n=2, O =5, ande =0.003;(e) B=1/25,n=2, O =1, ande=0.01;(f) 8=0,n=2, Q=1, and
£=0.003;(g) B=1/16,n=2, O =1, ande=0.003.

these parameters. However, the Poinaaethod can locate stricted the study to sections built @gh=0, but for a large

the regular and irregular regions and provide a qualitativenumber of different values of the parametgrsn, (2, ande.

idea of chaotic behavior. We included() values which would require a more elaborate
The perturbed phase space isRAXS! and the maps numerical computation of the Melnikov function. In Fig. 9

defined on different values of the angular variabdle we show the Poincarsections for some select values @f

=t mod 27/} are topologically conjugated. So we have re-n, (), ande. The general aspect of the sections is represented
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FIG. 9. (Continued.

in this figure, with the predominance of irregular behaviorrespectively, whereB=1/25, =1, and £=0.003. As a
near the destroyed invariant loop and the presence of a regéunction of(), the most chaotic behavior occurs for frequen-
lar region near the center. cies of the same order of the angular frequencies of the orbits
A careful analysis of the Poincaections reveals that in the local minimum oV, from (4/3Y for 8=1/16 to 1
chaos increases with which is natural since the major con- for =0. It is a reasonable result since for sméll the
tribution of the perturbation comes from>1. In Figs. 9a) system is almost autonomous, and for large frequencies the
and 9b) we show the Poincarsections fom=2 andn=5, particle feels only an average of the multipolar motion that
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goes to zero fof)—oo. In Figs. 9a), 9(c), and 9d) we show same compactification applies to every inner-multipolar ex-
Poincaresections forQ=1, 0=0.1, andQ)=5, respec- pansion model with nonzero monopolar contribution. In such
tively, where=1/25,n=2, ande =0.003. Also, the chaos cases we can allow non-Hamiltonian perturbations of the
increases strongly with the “size” of the perturbatienin  form f(u,t,e) in the equation corresponding to E¢),
Figs. 9a) and 9e) we show the Poincarsections fore wheref is an analytic function of its variables, periodictin
=0.003 ande=0.01, respectively, wher@=1/25, n=2, satisfyingf(u,t,0)=0 and of ordeiO(u®).
andQ=1. These systems represent very general situations. In the
The form of the orbits change wit]3, since there is a gravitational case, for instance, they can model a potential
change in the destroyed loop, but the relative chaotic area afue to a mass distribution moving periodically with reflec-
the section is almost independent of the valuggofn Figs.  tion symmetry. This includes all planar potential written as
9(a), 9(f), and 9g) we show the Poincarsections for3 Fourier expansion in time together with an inner-multipolar
=1/25, =0, and B=1/16, respectively, wherea=2, () expansion in space variable. A specific example is provided
=1, ande=0.003. In particular, the cagg=1/16 presents by a Newtonian binary system perturbed by gravitational ra-
two unstable periodic orbits and no higher chaotic behaviodiation. This system models the long-term dynamical evolu-

seems to be associated to it. tion of binary systems of stars due to the emission and ab-
sorption of gravitational radiatiof80].
V. FINAL REMARKS In electromagnetic systems we can have a different situa-

tion. The possible absence of monopolar contribution creates

~Making use of a compactification procedure and exteny difficulty in transforming the map equations into the ana-
sions of the standard Melnikov method and Smale-Birkhoffiytic form (14)—(15). The solution may be found using the

homoclinic theorem, we have detected transverse homoclinicassasayas-Fontich-Nunes's result, which establishes the

and heteroclinic orbits and Smale horseshoe in periodicallyelnikov method for systems with parabolic degenerated

perturbed monopolet quadrupolelike potential. Moreover saddle pointg31]. A suitable compactification to treat the
the compactified coordinates have proved useful to work ouglectromagnetic case is under study.

the Poincaresection method.
Although we have studied only one particular system, we
stress that the approach is general and can be applied to a ACKNOWLEDGMENTS
large class of open systems. The mathematical results depend
essentially on the presence of the monopolar term in the The authors are thankful to CNPq and Fapesp for finan-
unperturbed equations. Thus the same approach and with tle&l support.
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