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Correlation decay in quantum chaotic billiards with bulk or surface disorder
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We study the decay properties of correlation functions in quantum billiards with surface or bulk disorder.
The quantum system is modeled by means of a tight-binding Hamiltonian with diagonal disorder, solved on
L XL clusters of the square lattice. The correlation function is calculated by launching the syste iato
a wave function of the regulaiclean system and following its time evolution. The results show that the
correlation function decays exponentially with a characteristic correlation imerse of the Lyapunov
exponeni\). For small enough disorder the Lyapunov exponent is approximately given by the imaginary part
of the self-energy induced by disorder. On the other hand, if the scaling of the Lyapunov exponentisvith
investigated by keeping constahtL, where | is the mean free path, the results show that1/L.
[S1063-651%9900607-9

PACS numbes): 05.45.Mt, 03.65.Sq

I. INTRODUCTION Laughlin’s suggestion in the sense that chaos induces a re-
laxation time whose inverse approximately gives the
The Lyapunov exponent in quantum systems whose clag-yapunov exponenf2,11,13, some important differences
sical analogs behave chaotically are commonly investigate@etween the two approaches are discussed besee Sec.
by studying the stability of periodic orbits of the classical V).
system[1]. The procedure consists of launching the quantum
system att=0 along a periodic orbit, and calculating the
overlap between the wave functiontat0 and that at a finite A. Hamiltonian

time. The time decay of this correlation function gives the Tpg tight-binding Hamiltonian used in this work includes
Lyapunov exponent. Although the procedure is straightforone atomic orbital per lattice site and a hopping term re-

ward, only few studies of the dynamical behavior of quan-stricted to nearest-neighbors sites. This Hamiltonian can be
tum chaotic systems have yet been publisfieed]. written as

In this paper we investigate correlation functions in quan-
tum billiards with either bulk or surface disorder. Our model A= wele—
consists of a simple tight-binding Hamiltonian with diagonal =
disorder solved on regulaisquare clusters of the square A
lattice. Thus, while the shape of the system is regular, disorwhere the operatar; destroys an electron on siteandV;; is
der triggers the expected complex behavior. Two types ofhe hopping integral between sitegndj (the symbok(ij)
bulk disorder are investigated, namely, the standard bulk disdenotes that the sum is restricted to nearest neighboj.sites
order in which all sites are assumed to have atomic levelyvVe takeV;;=V=1 and the lattice constant as the unit of
with random energiesL? impurities,L being the linear size length. The energy of the atomic orbital at lattice sites;
of the clustey or with only 4L bulk impurities[5]. The latter ~is randomly chosen betweeaW/2 and W/2 according to
has in common with the surface disorder model the fact thathree different models in which the sum in the first term of
in both cases the density of impurities decreases with the siZdamiltonian(1) runs over:(a) all lattice sites(b) only over
of the system. We show that the last two models behave in 4L randomly chosen bulk sites, aid) only over the surface
very similar way. The case of surface disorder can be als§ites. For the remaining lattice sites we take=0. Calcula-
viewed as an efficient implementation of surface roughnesons have been carried out on clusters of sizes up=®3.
[6-8]. The scaling of the magnitudes investigated here witfAveraging sets include around %@0° energy levels. The
the size of the system was investigated keeping constant tiechwarz algorithm was used to compute the whole spectrum
ratio I/L, wherel is the mean free path of the systdsee [13]
[9,10 and below. The results show that in all cases inves-
tigated here, and for sufficiently small values of the disorder
parameter, the Lyapunov exponent is given by the imaginary The dynamical behavior of Hamiltoniafl) was investi-
part of the self-energy or, equivalently, the relaxation time,gated as follows. The wave functions of the chaotic billiard
induced by disorder. Although this result is consistent withare

Il. MODEL AND METHODS

> Vicle, (1)
(i)

B. Correlation functions
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N for those sites for which the diagonal energy; fluctuates.
|z,/;a>=2 a,ili), (2)  tranforming tok-space and using a rough approximation for
=1 the imaginary part of the diagonal elements of the unper-
turbed Green function (Ip6q(i,i; €,) ]~ 7/(4d), with d be-
ing the dimension of the physical spacee obtain for sur-
face disorder or & bulk impurities

wherea,; is the amplitude of the eigenstadeon the lattice
site i. At t=0, the disordered system is launched onto al
eigenfunction of the ordered clustérilliard) characterized
by a wave vectok

M3 (k,K; €0~ — — W2 9
\ M (ki €)== 5, WP ©)

¥ (0))=|d)= 2, bakltha), )

(0=l ;1 ) This indicates that, within the limits of validity of the ap-

_ proximations used to derive this equation, the effectslof 4
where the constants, are given by bulk impurities and of surface disorder are very similar. In-
stead for bulk disorderL( impuritie9 this equation is re-
Dok = (¥al i) 4 placed by
The time dependent wave function of the disordered system o WAL
IS |m2(k,k;6k)%—mT. (10
N
|W(t))= >, bye ey, (5) Equations(_ll) and (12) indicate that the effects of surface
a=1 and bulk disorder can be made very similar if

wheree,, is the energy of the eigenstadeof the disordered Wgurfac? ngulkm, (1)

system. As the unit of energy is the hopping integkd),(the
time is measured in units of/V. Finally, the correlation for a given linear sizé. of the system.
function is given by The effect of disorder can also be characterized by means

of the relaxation time. Using the approximation of E8) it
C(t)=(V(0)|¥(1)). 6) s easy to show thdtL4]

In carrying out the numerical calculations we have launched 1

the system at=0 always onto the same ordered eigenstate. Tk:m'
We have taken an eigenstate with momentukn ek
=(/4,37/8) and choselh in such a way that this state was
always an eigenstate of the systetn=(7,15,23...,63).
This procedure reduces statistical errors in a way cheaper =07 (13)
than averaging over a finite energy range. We have checked KTk

that the results do not significantly depend on the Choseﬂ/herevk is the velocity of a state with momentuki The

ordered eigenstate. mean free path is measured in units of the lattice constant
and the relaxation time in units of the ratidV.
C. Self-energy In investigating the scaling of the magnitudes herewith

We calculate the self-energy induced by disorder in arftudied with the size of the systeip we keep the ratid/L

ordered state of momentutnand energye, from Dyson’s ~ constant. This is accomplished by keeping constantor
equation, surface disorder andl4bulk impurities, and the right-hand
side (RHS of Eq. (11) for bulk disorder. This procedure
i(fk)zéél(fk)%é(fk))*l, (7) impedes localization in the case of bulk disorder and allows
a meaningful comparison of the different models. On the
o - other hand, this ensures that not only the models with either
where X is the self-energy operatoG, the unperturbed ) 1 impurities or surface disord€6], but also that with
Green function associated to the nondiagonal term of Hamily 2 impurities, will show signs of chaotic behavitgigenval-

tonian (1), and(G) the perturbed Green function averagedyes distributed according to the Wigner-Dyson distribution
over disorder realizations. Then, in order to calculate the The validity of Eqgs.(9) and (10) is illustrated in Fig. 1,
matrix elements (k,k;ec), we only have to determine the where the results given by those equations along with the
inverse of the averaged perturbed Green function in theumerical results for the imaginary part of the self-energy in
k-space basis using the site representation. The details of thge three models of disorder here considered, are shown. It is
calculation are discussed in Ref$,10]. noted that for small values of the disorder parameter [9)s.
The qualitative behavior of the selfenergy can be obtaineénd(10) fit very approximately the numerical results. Instead
by second-order perturbation theof$§4]. Averaged real- as the strength of disorder increases, the value of the self-
space matrix elements of the self-energy operator are agmergy for the model with 4 impurities, saturates. This is a
proximately given by consequence of a gradual decoupling of the impurities from
o ) o the rest of the cluster, due to the very different values of the
2(1,]5 €)=~ Gij{ o) Goli i €0), (8 diagonal term in Hamiltoniaril) associated to the impurity

(12

or, equivalently, by the mean free pdihwhich is defined as
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FIG. 1. Imaginary part of the self-energy induced by disorder on 05 g ]
an eigenstate with momentukns= (7/4,37/8), as a function of the
disorder parametefsee text The results correspond to 389
clusters and 10 realizations of disorder. The symbols correspond to '
surface disordeftriangles, 4L bulk impurities (circles, and L? Lo

impurities (squares The straight line is that given by Eq®) and 0 5 10 15 20 25 30

(10). Magnitudes are dimensionless: the self-energy\&rate mea- ¢

sured in units of the hopping eneryyandL in units of the lattice

constanta. FIG. 2. Short time behavior of the real part of the correlation
function (filled circles for the wave function of the quantum system

sites and to the rest of the cluster sites. This decoupling doegith 4L bulk impurities, launched at=0 on a wave function of the

also occur in the case of surface disorf#r In fact for large  ordered billiard with wave vectok=(m/4,3m/8) (see text The

W the surface layer decouples from the inner cluster of linearesults correspond to a disorder paraméter 4 and a linear size

sizeL—2, leading tol —, or, alternatively, a self-energy L=63. The continuous curve corresponds  taC(t)

tending to zero. The reason why this is not observed in Fig=C0S(2.18)exp(—0.0279). The unit of time ish/V, V being the

1 is the failure of perturbation theory as used Heg=[9] for ~ hOPPINg energy.

a thorough discussion of this pojnFinally we note that the . _ ) )

numerical results also indicate that the real part of the selfinvestigated keeping the ratidL constant[see discussion

energy is more than an order of magnitude smaller than th§°ncerning Eqs(9)—(11)]. As shown in that table, in the

energy of the unperturbed eigenstate, for the largest values §&croscopic limit L — ) the Lyapunov exponent vanishes
the disorder parameter investigated here. as 1L. The dependence of on the disorder parameter is

shown in Fig. 6 along with the self-energy derived from the

approximate expressions of Eq®) and (10). The results
IIl. RESULTS PP P C( ) ( )

1.0

As indicated by the results and fitting of Fig. 2, the cor-
relation functionC(t) at short times behaves very approxi-
mately ag15-17

C(t)=exp —[N+ig]t), (14 05

where\ is the Lyapunov exponeriineasured in units of the
hopping integraV). A fitting of the numerical results for the
absolute value of2(t) at sufficiently short times allows to
determineA. At longer times the behavior dE(t) is sub-
stantially more complexsee Fig. 3. C(t) shows the typical
features of chaotic systems with regions in which it is finite
alternating with others where it is very smathis point is
further discussed belowWe have to point out that this be- 05
havior of C(t) is significantly different from that reported in
Refs. [3,4], namely, Gaussian-like peaks with maxima at
2mn/e, n=0,1,2 ..., modulated by an exponential.

The Lyapunov exponent was obtained from fittings of the
time evolution of the modulus of the correlation function, as -1.0
illustrated in Fig. 4. It is noted that the time range in which
the exponential behavior holds increases with the system
size. The numerical results far as a function of. are re- FIG. 3. Long time behavior of the imaginary part of the corre-
ported in Fig. 5, whereas the fitted curves are reported imation function for the quantum system with_4bulk impurities.
Table I. As pointed out above, the scalingofwith L was  The rest of the parameters as in Fig. 2.
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FIG. 4. Modulus of the correlation functidiaveraged over sev-
eral realizationsversus time, for the wave function of the disor-
dered system launched &t 0 on the wave function of the ordered
system with wave vectde= (7/4,37/8) (see text The results cor-
respond to a disorder paramedf=4 and the following system
sizes:L =7 (broken ling, L =23 (continuous ling andL =63 (dot-
ted line. Inset: short time fittings o€(t) with exp(—A\t), N being

0.2

0.0

E. LOUIS, J. A. VERG,B, AND E. CUEVAS

the Lyapunov exponer(see text Units as in Fig. 2.

FIG. 5. Lyapunov exponent for surface disordeftriangles,
bulk disorder withL? impurities (squares and 4. bulk impurities
(circles as a function of the system size The wave number of the
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indicate that for small values of the disorder parameter the
Lyapunov exponent coincides with the imaginary part of the
self-energy. This is further illustrated by the fact that the two
magnitudes scale asllin the largeL limit. Moreover, the
results of Table | show that the constant that multiplies the
term 1L in the fittings of the numerical results is very simi-
lar to that of Eqs(9) and(10). The agreement is particularly
important for small values of the disorder parameter as indi-
cated by the results for both types of bulk disorder shown in
that table. At largéW, the Lyapunov exponent for bulk dis-
order and 4 bulk impurities is still surprisingly very similar

to the imaginary part of the self-energy. We do not have a
sound explanation for this agreemésege below This is not

the case of surface disorder for which the Lyapunov expo-
nent in the highw limit significantly differs from the imagi-
nary part of the self-energy, being instead similar to the
Lyapunov exponent for 4L impurities. The different behav-
iors of the two magnitudes may be a consequence of the
problems found in the calculation of the self-energy dis-
cussed above.

It is interesting to note that a behavior of the correlation
function like that of Eq.(14) for all times should have only
been expected if the distribution of weights, in Eq. (3) or,
alternatively, the Fourier transform @f(t), would have had
a Lorentzian shape, namely,

A
S(e)=

B 77[)\2+(e—ek)2]' a9

In such a case the variance of this distribution would have
completely determined the decay 6ft), and, thus, coin-
cided with the Lyapunov exponent. The long time behavior
of the correlation function shown in Fig. 3 clearly suggests
that this is not the case. This is further illustrated by the
numerical results for the varianeeof the distribution of the
weightsb . in Eq. (3) reported in Figs. 7 and 8 and in Table

I. As shown in those figures neither the scalingoohor its
dependence on the disorder parameter coincide with those of
the Lyapunov exponent discussed above.

IV. DISCUSSION

The results of the previous section indicate that the
Lyapunov exponent has no relation with and, instead, is
given by the imaginary part of the self-energy for small val-
ues of the disorder parameter. In this section we first discuss
an analytical derivation ofr that supports the numerical re-
sults. We also justify the relation betweeanand the imagi-
nary part of the self-energy.

The accuracy of our numerical results f@ris supported
by an analytidand approximatederivation of the scaling of

ordered wave function into which the system was launchet at this variance withL, which closely follows the numerical
=0 isk=(/4,3m/8). The results correspond to the following val- Procedures used to obtain the results of Figs. 7 and 8. Let us

ues of the disorder paramet@f surface disordeiV?=16 (open
triangles, 4L bulk impuritiesW?= 16 (open circley andL? impu-
rities, W2L/4=5 (filled squaresand 27.5open squar@sThe fitted
curves are given in Table I. All magnitudes are dimensionlegs:
and\ are measured in units of the hopping eneggndL in units
of the lattice constant.

expand an eigenstate of the ordered system with wave vector
k and energy,, in terms of thea eigenstates of the disor-
dered system. The average ene(gy is then given by

(e)=(k[Alk)= e+ (K| V[K), (16)
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TABLE |I. Fittings of the numerical results for the Lyapunov exponexj @nd the variance of the
distribution of disordered eigenfunctiong’), as a function of the system site for the various models of
disorder investigated in this worksee text The fitted curves arév=alL™*+bL~% and o=cL~?
+dL™%2 The results correspond to the case in which the disordered system was launtkedl @ the
wave function of the ordered system with wave veéter(w/4,37/8) (see text The mean free pathof this
wave function is also given. All magnitudes are dimensionl®és\, and o are measured in units of the
hopping energy/, andL in units of the lattice constarat

Disorder N a [Egs.(9) o c [Egs.(21)
Disorder parameter I/L a b and(10)] c d and(22)]
Surface W2=16 045 2.7 —47.4 2.09 264 —-2.71 2.31
Bulk (L2) LW?/4=5 1.68 0.54 —5.7 0.65 1.29 -0.24 1.29
LW?/4=275 043 2.88 -27.3 3.6 3.03 -0.57 3.03
Bulk (4L) W2=4 1.82 0.48 —3.42 0.52 1.16 -0.002 1.16
W2=16 0.61 187 —-9.19 2.09 2.33 —0.62 2.31

whereV is the perturbing part of the Hamiltonian operator . 1 ,
[diagonal term in Eq(7)]. On the other hand, the average of (k|V2[k)= g > chof, (19b
the energy square is '

2_ 2 Y (/2 where w; are the energies of the atomic orbitals located on
=€+ 2e(k|VIK)+ (k|V7| k), 1 ; U ) ; e
(€9 = et 2edk[VIk)+ (k[V7k) (7 impurity sitesi. Averaging over disorder realizations leads to

and, thus, the standard deviation is

o= WA —(e2=V(k|Vk)—(k|V|K)2. (18

Now we explicitly calculate the matrix elements of the per-

WVl = S chio=0, (208

2
turbing potential and its square, averaged over disorder real- ((kl\A/|k)2)=i > cZ > c2(wijw; )~ l (20b)
izations. To this end we expand the Bloch wave functions of [T a ey A T
the ordered system in terms of the atomic orbitgidocated
on sitesi as|k)=(1/L)=N;cli). The matrix elements are 1 W2
then rewritten as <<k|\‘/2|k>>:F Z c2{w?)~ 3 (200
- 1 )
<k|V|k>:F EI Cui@i (199 In deriving these results we have taken into account that

averaging over disorder realizations givés;)=0, and,
(wjwj)=(W?/12)s, ;. Furthermore, we have taker);~1

04 ) i .
for all i. This neglects all dependence knThen, the vari-
ance for surface disorder and dulk impurities results to be

03

1.2 .
|]\
< 02 10 r ’
08 g
01}
b 06 B B
Ssa.. Beol
n Qxii\a\ ‘EL_‘_B‘
4t R =
0.0 : : : . ‘ 0 L JRRR B
0 20 40 60 80 100 TR
W, WL/4 02 ¢ B
i is- 0.0 : : : : : ‘
FIG. 6. Lyapu.nov exponent as a functlon. of the relevant dis 0 10 20 30 40 50 60
order parameter in each cad&/ for surface disorder andl4bulk L

impurities, andW?L/4 for L2 bulk impurities; see text The results

correspond to 39 39 clusters. The rest of the parameters, symbols, FIG. 7. Same as Fig. 5 for the half-widéhof the distribution of
units, and procedures are those of Fig. 5. The straight line is that ahe weights of the wave functions of the disordered sy{tsre Eq.
Egs.(9) and(10). (3)]. o is measured in units of the hopping energy.
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12 - - - - - Lyapunov exponent is given by the imaginary part of the
A self-energy, in agreement with the numerical results dis-
10 r % cussed in the preceding section. However, there are no rea-
08 | A | sons why this argument should also hold at laMyeand,
A thus, it cannot explain the similarity between the two mag-
© 06" A 1 nitudes found numerically for both types of bulk disorder in
the whole range ofV explored in this work.
04 1 Note that the approximation used to derive E2f}) coin-
cides with that followed to write the relaxation time in terms
02 ¢ of the imaginary part of the self-energyee Ref[14]). This
0.0 , , , , , is in line with the expected equivalence between the relax-
0 2 4 6 8 10 ation time induced by disorder and the inverse of the
W, (WZL/4)”2 Lyapunov exponent which characterizes the decay of the cor-
relation function defined in E(6).
FIG. 8. Same as Fig. 6 for the half-widthof the distribution of It is interesting to comment on the argument put forward

the weights of the wave functions of the disordered syg®#® Eq.  py | qughlin to justify the existence of a relaxation time in-
(3)]. The straight line is that of Eq§21) and(22). Units as in Figs.  qyced by chaos. Laughlin approach considers classical par-
6and 7. ticles (electrong scattered by a crystalline array of hard
5 spheregatoms of radiusR with unit cell volume(}. This
_ /ﬂ 21) system behaves chaotically in the classical limit. The rate at
7= N3l which the electrons collide with the sphefeslaxation timé
is given by~ '=v(7R?/Q)~v w/R, wherev is the electron

whereas for bulk disorder the result is velocity. Then, the uncertainty in the impact parameter
evolves with time approximately 48,11,19
W-L/4
o=\ 3 (22) Ax(t)=Ax(0)e!". (25)

The accuracy of Eqs21) and (22) is illustrated by the This allows us to identify the Lyapunov exponentvith the
results reported in Table | and Fig. 8. Although in all casegnverse of the relaxation time™*. Transferring this argu-
the agreement with the numerical results is remarkable, it ignent to the quantum case has two main drawbakst is
particularly important for bulk disorder. The reason why it is well-known that a perfect periodic array of atoms does not
not so good for surface disorder is likely a consequence oproduce any scattering of quantum particlés] and, as a
the stronger breaking of translational invariance induced bgonsequencer=-. (i) In the absence of decoherence, a
surface disorder. This makes poorer the approximation ifpositive Lyapunov exponent, as implied by Eg5), is not
which we neglected the dependence of the matrix elemen@xpected in quantum mechanics; correlation functions, the
of the potential ork [see discussion concerning E¢g0a—  magnitudes commonly calculated in the quantum lirhjg],
(200]. The agreement between the approximate formulashow a decaying behavior and, thus, a Lyapunov exponent
and the numerical results support our conclusion concernintgss than zero. A further difference with respect to the
the uncorrelation between the Lyapunov exponent @nd present analysis is the fact that our relaxation time tends to

The argument that justifies the relation between the imagiinfinity in the thermodynamic limit. Ensuring that the system
nary part of the self-energy and the Lyapunov exponent goeldehaves chaoticallyenergy levels distributed according to
as follows. The correlation function can be written in termsWigner-Dyson statistigsgives 7L [see discussion below
of the self-energy as Eqg. (11) and Ref.[9]]. This should be contrasted with stan-

i o dard bulk disorder which leads to a finite relaxation time
C(t)=(¥(0)|e MW (0))=(p|e Mo g,), (23) independent of the system size and, for sufficiently large
systems, localization.

where I3|0 is the nondiagonal part of Hamiltoniafi). In
general the operatd¥ does not commute withi, and the V. CONCLUDING REMARKS
calculation of this expectation value is not straightforward. In thi K h q dv of the time d
However, for small disorder the selfenergy is approximately n this Work we nave presente a st.u. yoft e time decay
proportional to the unperturbed Green's functifsee Eq. of correlation functions in quantum billiards with bulk or

(8)] and, therefore, the two operators in the above equatioﬁurface disorder. Our results indicate that at least for small
approxirﬁately cor’r;mute This leads to values of the disorder parameter, the Lyapunov exponent is

approximately given by the imaginary part of the self-energy
C(t)~exd —i(ec+3(k,k;e))t]. (24) induced by disorder. The results were obtained in the regime
where no localization occurs and the systems show signs of
This is the behavior of the correlation function we found chaotic behavior(eigenvalues distributed according to the
numerically for small disorder. In fact, as the real part of theWigner-Dyson distribution This is achieved by keeping
self-energy is much smaller thasy (see abovg Eq. (24) constant/L, when eithelL or the disorder paramet®¥ are
gives a correlation function which oscillates with a periodic-varied. Under these conditions, the Lyapunov exponent is
ity given by»sk‘l and is modulated by a decaying exponentialproportional to 1., and thus vanishes in the largelimit.
as in Fig. 2. This indicates that at least for smdllthe = We have also shown that although our finding somehow
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agrees with Laughlin’s guess concerning the existence of arder as referred to ifb]) could make easier the analysis of
relaxation time induced by chaos, important differences bethese systems by means of the supersymmetric sigma model
tween the two approaches do exisee above [7,19.

An interesting by-product of our study is that our numeri-
cal and analytical results indicate that a model with an ACKNOWLEDGMENTS
amount of bulk impurities proportional to the linear size of
the systemL, behaves similarly to the model which only  This work was supported in part by the Spanish CICYT
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