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Correlation decay in quantum chaotic billiards with bulk or surface disorder
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We study the decay properties of correlation functions in quantum billiards with surface or bulk disorder.
The quantum system is modeled by means of a tight-binding Hamiltonian with diagonal disorder, solved on
L3L clusters of the square lattice. The correlation function is calculated by launching the system att50 into
a wave function of the regular~clean! system and following its time evolution. The results show that the
correlation function decays exponentially with a characteristic correlation time~inverse of the Lyapunov
exponentl). For small enough disorder the Lyapunov exponent is approximately given by the imaginary part
of the self-energy induced by disorder. On the other hand, if the scaling of the Lyapunov exponent withL is
investigated by keeping constantl /L, where l is the mean free path, the results show thatl}1/L.
@S1063-651X~99!00607-8#

PACS number~s!: 05.45.Mt, 03.65.Sq
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I. INTRODUCTION

The Lyapunov exponent in quantum systems whose c
sical analogs behave chaotically are commonly investiga
by studying the stability of periodic orbits of the classic
system@1#. The procedure consists of launching the quant
system att50 along a periodic orbit, and calculating th
overlap between the wave function att50 and that at a finite
time. The time decay of this correlation function gives t
Lyapunov exponent. Although the procedure is straightf
ward, only few studies of the dynamical behavior of qua
tum chaotic systems have yet been published@1–4#.

In this paper we investigate correlation functions in qua
tum billiards with either bulk or surface disorder. Our mod
consists of a simple tight-binding Hamiltonian with diagon
disorder solved on regular~square! clusters of the square
lattice. Thus, while the shape of the system is regular, dis
der triggers the expected complex behavior. Two types
bulk disorder are investigated, namely, the standard bulk
order in which all sites are assumed to have atomic lev
with random energies (L2 impurities,L being the linear size
of the cluster! or with only 4L bulk impurities@5#. The latter
has in common with the surface disorder model the fact
in both cases the density of impurities decreases with the
of the system. We show that the last two models behave
very similar way. The case of surface disorder can be a
viewed as an efficient implementation of surface roughn
@6–8#. The scaling of the magnitudes investigated here w
the size of the system was investigated keeping constan
ratio l /L, where l is the mean free path of the system~see
@9,10# and below!. The results show that in all cases inve
tigated here, and for sufficiently small values of the disor
parameter, the Lyapunov exponent is given by the imagin
part of the self-energy or, equivalently, the relaxation tim
induced by disorder. Although this result is consistent w
PRE 601063-651X/99/60~1!/391~7!/$15.00
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Laughlin’s suggestion in the sense that chaos induces a
laxation time whose inverse approximately gives t
Lyapunov exponent@2,11,12#, some important difference
between the two approaches are discussed below~see Sec.
IV !.

II. MODEL AND METHODS

A. Hamiltonian

The tight-binding Hamiltonian used in this work include
one atomic orbital per lattice site and a hopping term
stricted to nearest-neighbors sites. This Hamiltonian can
written as

Ĥ5(
i

v i ĉi
†ĉi2(̂

i j &
Vi j ĉi

†ĉ j , ~1!

where the operatorĉi destroys an electron on sitei, andVi j is
the hopping integral between sitesi and j ~the symbol^ i j &
denotes that the sum is restricted to nearest neighbor si!.
We takeVi j 5V51 and the lattice constant as the unit
length. The energy of the atomic orbital at lattice sitesi, v i ,
is randomly chosen between2W/2 and W/2 according to
three different models in which the sum in the first term
Hamiltonian~1! runs over:~a! all lattice sites,~b! only over
4L randomly chosen bulk sites, and~c! only over the surface
sites. For the remaining lattice sites we takev i50. Calcula-
tions have been carried out on clusters of sizes up toL563.
Averaging sets include around 163103 energy levels. The
Schwarz algorithm was used to compute the whole spect
@13#.

B. Correlation functions

The dynamical behavior of Hamiltonian~1! was investi-
gated as follows. The wave functions of the chaotic billia
are
391 ©1999 The American Physical Society
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uca&5(
i 51

N

aa i u i &, ~2!

whereaa i is the amplitude of the eigenstatea on the lattice
site i. At t50, the disordered system is launched onto
eigenfunction of the ordered cluster~billiard! characterized
by a wave vectork

uC~0!&5ufk&5 (
a51

N

bakuca&, ~3!

where the constantsbak are given by

bak5^caufk&. ~4!

The time dependent wave function of the disordered sys
is

uC~ t !&5 (
a51

N

bake
2 i t eauca&. ~5!

whereea is the energy of the eigenstatea of the disordered
system. As the unit of energy is the hopping integral (V), the
time is measured in units of\/V. Finally, the correlation
function is given by

C~ t !5^C~0!uC~ t !&. ~6!

In carrying out the numerical calculations we have launch
the system att50 always onto the same ordered eigensta
We have taken an eigenstate with momentumk
5(p/4,3p/8) and chosenL in such a way that this state wa
always an eigenstate of the system (L57,15,23, . . . ,63).
This procedure reduces statistical errors in a way chea
than averaging over a finite energy range. We have chec
that the results do not significantly depend on the cho
ordered eigenstate.

C. Self-energy

We calculate the self-energy induced by disorder in
ordered state of momentumk and energyek from Dyson’s
equation,

Ŝ~ek![Ĝ0
21~ek!2^Ĝ~ek!&21, ~7!

where Ŝ is the self-energy operator,Ĝ0 the unperturbed
Green function associated to the nondiagonal term of Ha
tonian ~1!, and ^Ĝ& the perturbed Green function averag
over disorder realizations. Then, in order to calculate
matrix elementS(k,k;ek), we only have to determine th
inverse of the averaged perturbed Green function in
k-space basis using the site representation. The details o
calculation are discussed in Refs.@9,10#.

The qualitative behavior of the selfenergy can be obtai
by second-order perturbation theory@14#. Averaged real-
space matrix elements of the self-energy operator are
proximately given by

S~ i , j ;ek!'d i j ^v i
2&G0~ i ,i ;ek!, ~8!
n
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for those sitesi for which the diagonal energyv i fluctuates.
tranforming tok-space and using a rough approximation f
the imaginary part of the diagonal elements of the unp
turbed Green function (Im@G0( i ,i ;ek)#;p/(4d), with d be-
ing the dimension of the physical space!, we obtain for sur-
face disorder or 4L bulk impurities

Im S~k,k;ek!'2
p

24L
W2. ~9!

This indicates that, within the limits of validity of the ap
proximations used to derive this equation, the effects ofL
bulk impurities and of surface disorder are very similar. I
stead for bulk disorder (L2 impurities! this equation is re-
placed by

Im S~k,k;ek!'2
p

24L

W2L

4
. ~10!

Equations~11! and ~12! indicate that the effects of surfac
and bulk disorder can be made very similar if

Wsurface
2 'LWbulk

2 /4, ~11!

for a given linear sizeL of the system.
The effect of disorder can also be characterized by me

of the relaxation time. Using the approximation of Eq.~8! it
is easy to show that@14#

tk5
1

2uIm S~k,k;ek!u
, ~12!

or, equivalently, by the mean free pathl k which is defined as

l k[vktk , ~13!

wherevk is the velocity of a state with momentumk. The
mean free path is measured in units of the lattice constana,
and the relaxation time in units of the ratio\/V.

In investigating the scaling of the magnitudes herew
studied with the size of the systemL, we keep the ratiol /L
constant. This is accomplished by keeping constantW for
surface disorder and 4L bulk impurities, and the right-hand
side ~RHS! of Eq. ~11! for bulk disorder. This procedure
impedes localization in the case of bulk disorder and allo
a meaningful comparison of the different models. On t
other hand, this ensures that not only the models with eit
4L bulk impurities or surface disorder@6#, but also that with
L2 impurities, will show signs of chaotic behavior~eigenval-
ues distributed according to the Wigner-Dyson distributio!.

The validity of Eqs.~9! and ~10! is illustrated in Fig. 1,
where the results given by those equations along with
numerical results for the imaginary part of the self-energy
the three models of disorder here considered, are shown.
noted that for small values of the disorder parameter Eqs.~9!
and~10! fit very approximately the numerical results. Inste
as the strength of disorder increases, the value of the s
energy for the model with 4L impurities, saturates. This is
consequence of a gradual decoupling of the impurities fr
the rest of the cluster, due to the very different values of
diagonal term in Hamiltonian~1! associated to the impurity
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sites and to the rest of the cluster sites. This decoupling d
also occur in the case of surface disorder@9#. In fact for large
W the surface layer decouples from the inner cluster of lin
size L22, leading tol→`, or, alternatively, a self-energ
tending to zero. The reason why this is not observed in F
1 is the failure of perturbation theory as used here~see@9# for
a thorough discussion of this point!. Finally we note that the
numerical results also indicate that the real part of the s
energy is more than an order of magnitude smaller than
energy of the unperturbed eigenstate, for the largest value
the disorder parameter investigated here.

III. RESULTS

As indicated by the results and fitting of Fig. 2, the co
relation functionC(t) at short times behaves very approx
mately as@15–17#

C~ t !5exp~2@l1 i ek#t !, ~14!

wherel is the Lyapunov exponent~measured in units of the
hopping integralV). A fitting of the numerical results for the
absolute value ofC(t) at sufficiently short times allows to
determinel. At longer times the behavior ofC(t) is sub-
stantially more complex~see Fig. 3!. C(t) shows the typical
features of chaotic systems with regions in which it is fin
alternating with others where it is very small~this point is
further discussed below!. We have to point out that this be
havior ofC(t) is significantly different from that reported i
Refs. @3,4#, namely, Gaussian-like peaks with maxima
2pn/ek , n50,1,2, . . . , modulated by an exponential.

The Lyapunov exponent was obtained from fittings of t
time evolution of the modulus of the correlation function,
illustrated in Fig. 4. It is noted that the time range in whi
the exponential behavior holds increases with the sys
size. The numerical results forl as a function ofL are re-
ported in Fig. 5, whereas the fitted curves are reported
Table I. As pointed out above, the scaling ofl with L was

FIG. 1. Imaginary part of the self-energy induced by disorder
an eigenstate with momentumk5(p/4,3p/8), as a function of the
disorder parameter~see text!. The results correspond to 39339
clusters and 10 realizations of disorder. The symbols correspon
surface disorder~triangles!, 4L bulk impurities ~circles!, and L2

impurities ~squares!. The straight line is that given by Eqs.~9! and
~10!. Magnitudes are dimensionless: the self-energy andW are mea-
sured in units of the hopping energyV andL in units of the lattice
constanta.
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investigated keeping the ratiol /L constant@see discussion
concerning Eqs.~9!–~11!#. As shown in that table, in the
macroscopic limit (L→`) the Lyapunov exponent vanishe
as 1/L. The dependence ofl on the disorder parameter i
shown in Fig. 6 along with the self-energy derived from t
approximate expressions of Eqs.~9! and ~10!. The results

n

to

FIG. 2. Short time behavior of the real part of the correlati
function~filled circles! for the wave function of the quantum syste
with 4L bulk impurities, launched att50 on a wave function of the
ordered billiard with wave vectork5(p/4,3p/8) ~see text!. The
results correspond to a disorder parameterW54 and a linear size
L563. The continuous curve corresponds toC(t)
5cos(2.18t)exp(20.0279t). The unit of time is\/V, V being the
hopping energy.

FIG. 3. Long time behavior of the imaginary part of the corr
lation function for the quantum system with 4L bulk impurities.
The rest of the parameters as in Fig. 2.
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FIG. 4. Modulus of the correlation function~averaged over sev
eral realizations! versus time, for the wave function of the diso
dered system launched att50 on the wave function of the ordere
system with wave vectork5(p/4,3p/8) ~see text!. The results cor-
respond to a disorder parameterW54 and the following system
sizes:L57 ~broken line!, L523 ~continuous line!, andL563 ~dot-
ted line!. Inset: short time fittings ofC(t) with exp(2lt), l being
the Lyapunov exponent~see text!. Units as in Fig. 2.

FIG. 5. Lyapunov exponentl for surface disorder~triangles!,
bulk disorder withL2 impurities ~squares!, and 4L bulk impurities
~circles! as a function of the system sizeL. The wave number of the
ordered wave function into which the system was launchedt
50 is k5(p/4,3p/8). The results correspond to the following va
ues of the disorder parameterW: surface disorderW2516 ~open
triangles!, 4L bulk impuritiesW2516 ~open circles!, andL2 impu-
rities,W2L/455 ~filled squares! and 27.5~open squares!. The fitted
curves are given in Table I. All magnitudes are dimensionlessW
andl are measured in units of the hopping energyV andL in units
of the lattice constant.
indicate that for small values of the disorder parameter
Lyapunov exponent coincides with the imaginary part of t
self-energy. This is further illustrated by the fact that the tw
magnitudes scale as 1/L in the largeL limit. Moreover, the
results of Table I show that the constant that multiplies
term 1/L in the fittings of the numerical results is very sim
lar to that of Eqs.~9! and~10!. The agreement is particularl
important for small values of the disorder parameter as in
cated by the results for both types of bulk disorder shown
that table. At largeW, the Lyapunov exponent for bulk dis
order and 4L bulk impurities is still surprisingly very similar
to the imaginary part of the self-energy. We do not have
sound explanation for this agreement~see below!. This is not
the case of surface disorder for which the Lyapunov ex
nent in the highW limit significantly differs from the imagi-
nary part of the self-energy, being instead similar to t
Lyapunov exponent for 4L impurities. The different beha
iors of the two magnitudes may be a consequence of
problems found in the calculation of the self-energy d
cussed above.

It is interesting to note that a behavior of the correlati
function like that of Eq.~14! for all times should have only
been expected if the distribution of weightsbak in Eq. ~3! or,
alternatively, the Fourier transform ofC(t), would have had
a Lorentzian shape, namely,

S~e!5
l

p@l21~e2ek!2#
. ~15!

In such a case the variance of this distribution would ha
completely determined the decay ofC(t), and, thus, coin-
cided with the Lyapunov exponent. The long time behav
of the correlation function shown in Fig. 3 clearly sugge
that this is not the case. This is further illustrated by t
numerical results for the variances of the distribution of the
weightsbak in Eq. ~3! reported in Figs. 7 and 8 and in Tab
I. As shown in those figures neither the scaling ofs nor its
dependence on the disorder parameter coincide with thos
the Lyapunov exponent discussed above.

IV. DISCUSSION

The results of the previous section indicate that
Lyapunov exponent has no relation withs and, instead, is
given by the imaginary part of the self-energy for small v
ues of the disorder parameter. In this section we first disc
an analytical derivation ofs that supports the numerical re
sults. We also justify the relation betweenl and the imagi-
nary part of the self-energy.

The accuracy of our numerical results fors is supported
by an analytic~and approximate! derivation of the scaling of
this variance withL, which closely follows the numerica
procedures used to obtain the results of Figs. 7 and 8. Le
expand an eigenstate of the ordered system with wave ve
k and energyek , in terms of thea eigenstates of the disor
dered system. The average energy^e& is then given by

^e&5^kuĤuk&5ek1^kuV̂uk&, ~16!
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TABLE I. Fittings of the numerical results for the Lyapunov exponent (l) and the variance of the
distribution of disordered eigenfunctions (s), as a function of the system sizeL, for the various models of
disorder investigated in this work~see text!. The fitted curves arel5aL211bL23 and s5cL21/2

1dL23/2. The results correspond to the case in which the disordered system was launched att50 on the
wave function of the ordered system with wave vectork5(p/4,3p/8) ~see text!. The mean free pathl of this
wave function is also given. All magnitudes are dimensionless:W, l, ands are measured in units of th
hopping energyV, andL in units of the lattice constanta.

Disorder
Disorder
parameter l /L a

l
b

a @Eqs.~9!
and ~10!# c

s
d

c @Eqs.~21!
and ~22!#

Surface W2516 0.45 2.7 247.4 2.09 2.64 22.71 2.31

Bulk (L2) LW2/455 1.68 0.54 25.7 0.65 1.29 20.24 1.29
LW2/4527.5 0.43 2.88 227.3 3.6 3.03 20.57 3.03

Bulk (4L) W254 1.82 0.48 23.42 0.52 1.16 20.002 1.16
W2516 0.61 1.87 29.19 2.09 2.33 20.62 2.31
or
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where V̂ is the perturbing part of the Hamiltonian operat
@diagonal term in Eq.~7!#. On the other hand, the average
the energy square is

^e2&5ek
212ek^kuV̂uk&1^kuV̂2uk&, ~17!

and, thus, the standard deviation is

s5A^e2&2^e&25A^kuV̂2uk&2^kuV̂uk&2. ~18!

Now we explicitly calculate the matrix elements of the pe
turbing potential and its square, averaged over disorder r
izations. To this end we expand the Bloch wave functions
the ordered system in terms of the atomic orbitalsu i & located
on sitesi as uk&5(1/L)( i 51

N cki u i &. The matrix elements are
then rewritten as

^kuV̂uk&5
1

L2 (
i

cki
2 v i , ~19a!

FIG. 6. Lyapunov exponentl as a function of the relevant dis
order parameter in each case (W2 for surface disorder and 4L bulk
impurities, andW2L/4 for L2 bulk impurities; see text!. The results
correspond to 39339 clusters. The rest of the parameters, symb
units, and procedures are those of Fig. 5. The straight line is tha
Eqs.~9! and ~10!.
-
al-
f

^kuV̂2uk&5
1

L2 (
i

cki
2 v i

2 , ~19b!

wherev i are the energies of the atomic orbitals located
impurity sitesi. Averaging over disorder realizations leads

^^kuV̂uk&&5
1

L2 (
i

cki
2 ^v i&50, ~20a!

^^kuV̂uk&2&5
1

L4 (
i

cki
2 (

j
ck j

2 ^v iv j&'
W2

3L3
, ~20b!

^^kuV̂2uk&&5
1

L2 (
i

cki
2 ^v i

2&'
W2

3L
. ~20c!

In deriving these results we have taken into account t
averaging over disorder realizations gives^v i&50, and,
^v iv j&5(W2/12)d i , j . Furthermore, we have takencki'1
for all i. This neglects all dependence onk. Then, the vari-
ance for surface disorder and 4L bulk impurities results to be

,
of

FIG. 7. Same as Fig. 5 for the half-widths of the distribution of
the weights of the wave functions of the disordered system@see Eq.
~3!#. s is measured in units of the hopping energy.
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s'AW2

3L
, ~21!

whereas for bulk disorder the result is

s'AW2L/4

3L
. ~22!

The accuracy of Eqs.~21! and ~22! is illustrated by the
results reported in Table I and Fig. 8. Although in all cas
the agreement with the numerical results is remarkable,
particularly important for bulk disorder. The reason why it
not so good for surface disorder is likely a consequence
the stronger breaking of translational invariance induced
surface disorder. This makes poorer the approximation
which we neglected the dependence of the matrix elem
of the potential onk @see discussion concerning Eqs.~20a!–
~20c!#. The agreement between the approximate formu
and the numerical results support our conclusion concern
the uncorrelation between the Lyapunov exponent ands.

The argument that justifies the relation between the ima
nary part of the self-energy and the Lyapunov exponent g
as follows. The correlation function can be written in term
of the self-energy as

C~ t !5^C~0!ue2 iĤ tC~0!&5^fkue2 i (Ĥ01Ŝ)tufk&, ~23!

where Ĥ0 is the nondiagonal part of Hamiltonian~1!. In
general the operatorŜ does not commute withĤ0 and the
calculation of this expectation value is not straightforwa
However, for small disorder the selfenergy is approximat
proportional to the unperturbed Green’s function@see Eq.
~8!# and, therefore, the two operators in the above equa
approximately commute. This leads to

C~ t !'exp@2 i „ek1S~k,k;ek!…t#. ~24!

This is the behavior of the correlation function we fou
numerically for small disorder. In fact, as the real part of t
self-energy is much smaller thanek ~see above!, Eq. ~24!
gives a correlation function which oscillates with a period
ity given byek

21 and is modulated by a decaying exponent
as in Fig. 2. This indicates that at least for smallW the

FIG. 8. Same as Fig. 6 for the half-widths of the distribution of
the weights of the wave functions of the disordered system@see Eq.
~3!#. The straight line is that of Eqs.~21! and~22!. Units as in Figs.
6 and 7.
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Lyapunov exponent is given by the imaginary part of t
self-energy, in agreement with the numerical results d
cussed in the preceding section. However, there are no
sons why this argument should also hold at largeW and,
thus, it cannot explain the similarity between the two ma
nitudes found numerically for both types of bulk disorder
the whole range ofW explored in this work.

Note that the approximation used to derive Eq.~24! coin-
cides with that followed to write the relaxation time in term
of the imaginary part of the self-energy~see Ref.@14#!. This
is in line with the expected equivalence between the rel
ation time induced by disorder and the inverse of t
Lyapunov exponent which characterizes the decay of the
relation function defined in Eq.~6!.

It is interesting to comment on the argument put forwa
by Laughlin to justify the existence of a relaxation time i
duced by chaos. Laughlin approach considers classical
ticles ~electrons! scattered by a crystalline array of ha
spheres~atoms! of radiusR with unit cell volumeV. This
system behaves chaotically in the classical limit. The rate
which the electrons collide with the spheres~relaxation time!
is given byt215v(pR2/V)'vp/R, wherev is the electron
velocity. Then, the uncertainty in the impact parameterDx
evolves with time approximately as@2,11,12#

Dx~ t !5Dx~0!et/t. ~25!

This allows us to identify the Lyapunov exponentl with the
inverse of the relaxation timet21. Transferring this argu-
ment to the quantum case has two main drawbacks.~i! It is
well-known that a perfect periodic array of atoms does
produce any scattering of quantum particles@18# and, as a
consequence,t5`. ~ii ! In the absence of decoherence,
positive Lyapunov exponent, as implied by Eq.~25!, is not
expected in quantum mechanics; correlation functions,
magnitudes commonly calculated in the quantum limit@1,3#,
show a decaying behavior and, thus, a Lyapunov expon
less than zero. A further difference with respect to t
present analysis is the fact that our relaxation time tend
infinity in the thermodynamic limit. Ensuring that the syste
behaves chaotically~energy levels distributed according t
Wigner-Dyson statistics! gives t}L @see discussion below
Eq. ~11! and Ref.@9##. This should be contrasted with stan
dard bulk disorder which leads to a finite relaxation tim
independent of the system size and, for sufficiently la
systems, localization.

V. CONCLUDING REMARKS

In this work we have presented a study of the time de
of correlation functions in quantum billiards with bulk o
surface disorder. Our results indicate that at least for sm
values of the disorder parameter, the Lyapunov exponen
approximately given by the imaginary part of the self-ener
induced by disorder. The results were obtained in the reg
where no localization occurs and the systems show sign
chaotic behavior~eigenvalues distributed according to th
Wigner-Dyson distribution!. This is achieved by keeping
constantl /L, when eitherL or the disorder parameterW are
varied. Under these conditions, the Lyapunov exponen
proportional to 1/L, and thus vanishes in the largeL limit.
We have also shown that although our finding someh
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agrees with Laughlin’s guess concerning the existence
relaxation time induced by chaos, important differences
tween the two approaches do exist~see above!.

An interesting by-product of our study is that our nume
cal and analytical results indicate that a model with
amount of bulk impurities proportional to the linear size
the systemL, behaves similarly to the model which on
includes surface disorder proposed in@6#. Describing chaotic
billiards by means of this type of bulk disorder~scaled dis-
cs

n-

is

.

a
-

n

order as referred to in@5#! could make easier the analysis
these systems by means of the supersymmetric sigma m
@7,19#.
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