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Chaos and reconnection in relativistic cyclotron motion in an elliptically polarized electric field

Duck-Hee Kwon and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 13 May 1999!

A theoretical study of the relativistic cyclotron motion occurring in a uniform magnetic field and an oscil-
lating electric field of arbitrary polarization is performed, which aims at determining the effect of the ellipticity
and the strength of the electric field upon the integrability or nonintegrability of the system. Unless a circularly
polarized electric field is used, the cyclotron system is nonintegrable and displays stochastic behavior in the
region where resonance islands overlap. It is found, however, that the stochastic layers become increasingly
thin as the polarization angle is moved closer towardp/2 ~circular polarization!. If the polarization angle is
held fixed and the electric field amplitude is increased, the Kolmogorov-Arnold-Moser curves separating the
resonance islands experience a reconnection process through which the islands are topologically rearranged.
When the rearrangement is accomplished, the phase space is occupied mostly by regular trajectories.
@S1063-651X~99!02710-5#

PACS number~s!: 05.45.2a, 41.75.2i
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I. INTRODUCTION

Charged particles moving at relativistic velocities in ele
tric and magnetic fields are encountered often in various
eas of physics including accelerator physics, plasma phy
and optics. The question concerning the integrability of
motion of such particles is of great importance, because c
otic behavior is known to have negative effects upon
performance of such devices as the cyclotron, tokamak,
free-electron laser@1–7#. A detailed investigation of the dy
namics of relativistic particles may thus help find a way
suppressing chaos and thereby enhancing the performan
the devices.

It has been shown recently@8–10# that the relativistic cy-
clotron motion can exhibit chaos when the electric field
linearly polarized and sufficiently strong, while it is alway
integrable when the electric field is circularly polarized.
this paper, we carry out a detailed investigation of how
characteristics of the cyclotron motion changes, i.e., how
system changes from integrable to nonintegrable and
versa, as the polarization state of the electric field is varie
a fixed field amplitude, or as the amplitude of the elect
field is varied at a fixed angle of polarization.

II. SYSTEM

We consider the relativistic motion of a particle of massm
and chargeq in a uniform magnetic field,

BW 5B0êz , ~1!

and a transverse time-periodic electric field of arbitrary p
larization,

EW 5E0 cosvtêx1E0 cos~vt2f!êy , ~2!

where êi denotes a unit vector along thei direction. The
scalar and vector potentialsw andAW can be taken to be

w52xE0 cosvt2yE0 cos~vt2f!, ~3!
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AW 52
B0

2
yêx1

B0

2
xêy . ~4!

Here and throughout the paper, Gaussian units are used
Hamiltonian for the particle is given by

H5AS Px1
qB0

2c
yD 2

c21S Py2
qB0

2c
xD 2

c21m2c4

2qE0x cosvt2qE0y cos~vt2f!. ~5!

Introducing dimensionless parameters@9#

x̂5
v

c
x, ŷ5

v

c
y, P̂x5

Px

mc
, P̂y5

Py

mc
,

t̂5vt, Ĥ5
H

mc2
, V5

qB0

mcv
, a5

qE0

mcv
,

the Hamiltonian can be rewritten as

Ĥ5AS P̂x1
V

2
ŷD 2

1S P̂y2
V

2
x̂D 2

11

2ax̂ cost̂2aŷ cos~ t̂2f!. ~6!

This Hamiltonian can be transformed into a form having o
degree of freedom by a series of three canonical transfor
tions (x̂,ŷ,P̂x ,P̂y)→( x̃,ỹ,P̃x ,P̃y)→(Q1 ,Q2 ,P1 ,P2)
→(q,Q,p,P) generated, respectively, by

F2~ x̂,ŷ,P̃x ,P̃y!5S P̃x2
V

2
ŷD x̂1 P̃yŷ, ~7!

F2~ x̃,ỹ,P1 ,P2!5~P21V x̃!ỹ1P1S x̃1
P2

V D , ~8!

and
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F2~Q1 ,Q2 ,p,P!5Q2P1Q1p2
a

V
p sin~ t̂2f!1aQ1 sin t̂

1
a2

4V
cos~2 t̂2f!2

a2

2V
sinf• t̂ . ~9!

The final transformed Hamiltonian takes the form

H5A~VQ!21P2111
a

V
P cost̂2aQ cos~ t̂2f!,

~10!

which leads immediately to the equations of motion

dQ

dt̂
5

P

A~VQ!21P211
1

a

V
cost̂ , ~11!

dP

dt̂
52

V2Q

A~VQ!21P211
1a cos~ t̂2f!. ~12!

In the next sections we present Poincare´ maps obtained in
(Q,P) space by numerically integrating Eqs.~11! and ~12!
for different values of the polarization anglef and dimen-
sionless electric field amplitudea. The dimensionless mag
netic field amplitudeV is held fixed atV52.0 in all com-
putations.

III. POINCARE´ MAPS AT DIFFERENT
POLARIZATION ANGLES

Figure 1 shows Poincare´ maps for four different values o
the polarization angle,f50, p/6, p/3, andp/2, at a fixed

FIG. 1. Poincare´ maps for the case when the dimensionle
magnetic and electric field amplitudes are given, respectively,
V52.0 anda52.85. The polarization anglef is ~a! 0, ~b! p/6, ~c!
p/3, and~d! p/2.
 valuea52.85 of the electric field amplitude. Atf50 ~linear

polarization!, one observes chaotic orbits covering the reg
where the primary 3:1 resonance islands and the secon
3:1 resonance islands overlap. The two rings of the 3:1 re
nance islands, which are merged and reconnected aa
52.85, will eventually experience a topological rearrang
ment if the electric field amplitude is further increased. T
details of this reconnection process@11–14# will be de-
scribed in Sec. V. Atf5p/6 andp/3, no appreciable cha
otic motion is seen; in fact, there is no evidence for t
formation of the secondary 3:1 resonance, while a pair of
resonances is seen to appear atf5p/6 and a 2:1 resonanc
appears atf5p/3. At f5p/2 ~circular polarization!, an in-
finity of primary 3:1 periodic orbits exists, but the islan
structure is not shown.

In order to confirm the existence or nonexistence of
resonance islands seen in Fig. 1, we have calculated the
tation number

r~r 0 ,u0!5 lim
N→`

1

2pN (
n51

N

~un2un21!, ~13!

where (r ,u) denotes the polar coordinates of (Q,P) andun

is calculated at timet̂52np. The rotation number yields the
average fraction of a revolution per iteration for an or
starting at (r 0 ,u0). In Fig. 2 we show the calculated rotatio
numberr about the central 1:1 resonance elliptic fixed po
versus the distancer 0 of the initial point from the central
fixed point, where the initial points are chosen along the l
connecting the central fixed point and one of the ellip
fixed points of the primary 3:1 resonance and where the
rameter values forV and a are chosen as in Fig. 1. Figur
2~a! drawn atf50 shows a broad plateau ofr5 1

3 corre-
sponding to the region where the primary 3:1 resonance

s
y

FIG. 2. Rotation numberr about the central fixed point for the
caseV52.0 anda52.85. The polarization anglef is ~a! 0, ~b!
p/6, ~c! p/3, and~d! p/2.
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land and the secondary 3:1 resonance island reconnect.
ure 2~b! drawn atf5p/6 has a plateau ofr5 1

3 indicating
the presence of the primary 3:1 resonance but no secon
3:1 resonance, and a plateau ofr5 3

7 which upon close in-
spection reveals a double structure corresponding to the
7:3 resonance islands seen in Fig. 1~b!. At f5p/3 the maxi-
mum value of the rotation number is increased as seen f
Fig. 2~c!, and the rotation number exhibits a plateau ofr
5 1

2 indicating the presence of the 2:1 resonance island s
in Fig. 1~c!. Another single plateau ofr5 1

3 at this anglef
5p/3 indicates that the primary 3:1 resonance exists but
the secondary 3:1 resonance. Atf5p/2 @Figs. 1~d! and
2~d!# no plateau is seen as the primary 3:1 resonance is
has a zero size. In fact, the 3:1 periodic points exist conti
ously on an invariant surface@15,16#, i.e., there is an infinity
of 3:1 periodic orbits. Thus the map is indicative of int
grable motion.

IV. BIRTH OF THE SECONDARY 3:1 RESONANCE

The primary 3:1 resonance exists for all nonzero value
the dimensionless electric field amplitudea for all polariza-
tions. On the other hand, the secondary 3:1 resonance is
at some critical value of the field amplitude, which depen
on the polarization state of the electric field. In this sect
we investigate the birth process of the secondary 3:1 re
nance. We first present Fig. 3 in which Poincare´ maps com-
puted atf50 and at the values of the electric field amp
tude a just below and above the birth of the secondary
resonance are shown. Ata52.36, at which Fig. 3~a! is
drawn, the secondary 3:1 resonance is not born yet. Figu
shows that ata52.36 the rotation number about the cent
fixed point has a local minimum value slightly higher than1

3 .
Thus, at a slightly higher valuea52.361 25 of the electric
field amplitude, the secondary 3:1 resonance in the form

FIG. 3. Poincare´ maps for the casef50 andV52.0. The di-
mensionless electric field amplitudea is ~a! 2.36, ~b! 2.361 25,~c!
2.395 25, and~d! 2.41.
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dimerized chain@11# or zero dispersion nonlinear resonanc
@17# appears as seen from Fig. 3~b!. As a is increased to
2.395 25, the central island gets squeezed by the hyperb
fixed points of the secondary 3:1 resonance until eventu
these hyperbolic fixed points are absorbed by the cen
fixed point @12,18,19#, as seen from Fig. 3~c!. Figure 3~d!
indicates that asa is increased beyond 2.395 25, the hype
bolic fixed points reappear as they move outward from
central fixed point, which results in a topological rearrang
ment that converts the dimerized chain into a Poinca´-
Birkhoff ~PB! chain @11#.

The disappearance and reappearance of the hyper
fixed points of the secondary 3:1 resonance can also be
fied by calculating the residueR defined by@16,19#

R5@22Tr~A!#/4, ~14!

where Tr(A) represents the trace of matrixA which governs
the motion of nearby orbits of ak periodic orbit and is re-
lated with the following equations:

x05Tk~x0!,

Dxn1k5A•Dxn , x5x01Dx,

where T represents the original map. The residue take
value 0,R,1 for an elliptic orbit andR,0 or R.1 for a
hyperbolic orbit. In Fig. 5 we show the residue of the hyp
bolic fixed point of the secondary 3:1 resonance as a func
of the electric field amplitudea. The residue is less than zer
except in the small neighborhood abouta52.395 25, which

FIG. 4. Rotation numberr about the central fixed point for the
casef50, V52.0, anda52.36.

FIG. 5. ResidueR of the hyperbolic secondary 3:1 resonan
point vsa for the casef50 andV52.0.
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indicates that ata52.395 25 the absorption of the hyperbol
fixed point into the elliptic fixed point occurs.

For other polarizations of the electric field, the second
3:1 resonance appears at a greater value ofa than that found
above for linear polarization. We can estimate the value oa
at which the secondary 3:1 resonance begins to appear
lytically as follows. We first perform a canonical transform
tion

P5A2VJ cosQ,

Q5A2J

V
sinQ,

upon the Hamiltonian of Eq.~10! and obtain, for the trans
formed Hamiltonian,

H~J,Q, t̂ !5A2VJ111
a

AV
AJ$A12 sinf cos~Q2 t̂1a!

1A11 sinf cos~Q1 t̂1b!%, ~15!

where

tana5
cosf

12 sinf
,

tanb5
cosf

11 sinf
.

Another transformation (J,Q)→(I ,C6) with the generating
function

S1~ I ,Q!5I ~Q1 t̂1b! ~16!

or

S2~ I ,Q!5I ~Q2 t̂1a! ~17!

leads to the Hamiltonian in the central 1:1 resonance fra

H8~ I ,C6!5A2VI 116I 1
a

AV
A16 sinfAI cosC6 ,

~18!

where the fast oscillating term of Eq.~15! is ignored. We
note that, when the electric field is~nearly! linearly polar-
ized, the 1:1 resonance point rotates clockwise in (Q,P)
space and the transformation with the generating functionS2

should be taken. On the other hand, if the electric field
~nearly! circularly polarized, the 1:1 resonance point rota
counterclockwise and the transformation with the genera
function S1 is to be chosen. The fixed point (I f 6 ,C f 6) of
the 1:1 resonance satisfiesdC6 /d t̂5dI/d t̂50, where

dC6

d t̂
5

V

A2VI 11
611

a

AV
A16 sinf

1

2AI
cosC6 ,

~19!
y

na-

e,

s
s
g

dI

d t̂
5

a

AV
A16 sinfAI sinC6 . ~20!

For the case when the transformation with the genera
functionS2 is taken, we obtain from Eq.~20! C f 250 or p.
WhenC f 2 is 0, the eigenvalue of the linearized equations
Eqs.~19! and ~20! is imaginary and the corresponding fixe
point (P1) is elliptic. WhenC f 2 is p and the electric field
amplitudea is below a certain critical value, two roots ofI f 2

exist, one of which gives an elliptic fixed point (P2, imagi-
nary eigenvalue! and the other a hyperbolic fixed point~real
eigenvalue!. If a is increased above the critical value, th
elliptic fixed point (P2) and the hyperbolic fixed point dis
appear by inverse tangent bifurcation@8,20#. For the case
when the transformation with the generating functionS1 is
taken, only one root forI f 1 exists corresponding toC f 1

5p, which gives an elliptic fixed point (P1).
We now wish to calculate the rotation frequencyv6

about the elliptic fixed pointP1. Expanding the Hamiltonian
H8 about the fixed point (I f 6 ,C f 6), we obtain approxi-
mately @8,16#

H8~DI 6 ,DC6!.
DI 6

2

2G6
1

1

2
F6DC6

2 , ~21!

where

1

G6
52

V2

~2VI f 611!3/2
2

a

4AV

A16 sinf

I f 6
3/2

cosC f 6 ,

~22!

F652
a

AV
A16 sinfAI f 6 cosC f 6 . ~23!

The rotation frequency of the motion about the elliptic fix
point in the rotating frame is given by

v65AF6 /G6

5F a

AV
A16 sinfAI f 6cosC f 6H V2

~2VI f 611!3/2

1
a

4AV

A16 sinf

I f 6
3/2

cosC f 6J G 1/2

. ~24!

The secondary 3:1 resonance hasv25u 1
3 21u5 2

3 and v1

5 1
3 2(21)5 4

3 . The value ofa at whichv2 is 2
3 or v1 is 4

3

for a given polarization angle gives the electric field amp
tude at which the secondary 3:1 resonance is born at
polarization angle. These values ofa as calculated from Eq
~24! are listed in Table I for several different polarizatio
angles along with the values determined numerically fr
Poincare´ maps. The analytical values atf50, p/12,p/6,
and p/4 were estimated by computingv2 , while those at
f5p/3 and 0.49p were obtained by computingv1 . The
analytical values agree well with the numerical values.
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V. RECONNECTION OF THE PRIMARY
AND SECONDARY 3:1 RESONANCE

ISLANDS

As mentioned in Sec. III, the primary 3:1 resonance
lands and the secondary 3:1 resonance islands underg
connection@11–14# asa is increased from below to above
certain critical value. In order to investigate the change
motion in phase space before and after the reconnection
present Fig. 6. In Figs. 6~a!–6~d!, we show Poincare´ maps at
a fixed angle off50 for four different values of the dimen
sionless electric field amplitude,a52.70, 3.25, 3.40, and
3.60. At a52.70 we see two rings, primary and seconda
of 3:1 resonances separated by KAM curves. The KA

TABLE I. The values of the dimensionless electric field amp
tude at which the secondary 3:1 resonance is born, which are
tained analytically from Eq.~24! and numerically from Poincare´
maps.

Polarization angle (f) Analytical Numerical

0 2.35 2.361
p/12 2.72 2.76
p/6 3.32 3.41
p/4 4.31 4.36
p/3 4.92 5.19

0.49p 4.75 5.11

FIG. 6. Poincare´ maps for the caseV52.0. The polarization
anglef and the dimensionless electric field amplitudea are, respec-
tively, ~a! 0, 2.70; ~b! 0, 3.25; ~c! 0, 3.40; ~d! 0, 3.60; ~e! p/6,
3.60; ~f! p/6, 3.90;~g! p/6, 4.0; and~h! p/6, 4.8.
-
re-

f
we

,

curves surround the center and the three secondary isla
whereas the three primary islands reside outside the K
curves. The secondary 3:1 resonance islands have notice
stochastic layers arising from the overlap with numero
nearby higher-order resonance islands@16,21#. The primary
3:1 resonance islands also have such stochastic layers
note, however, that these stochastic layers are bounde
KAM curves separating the two rings of 3:1 resonances
shown in Fig. 6~a!. At a52.85 the KAM curves are de
stroyed, the primary and secondary resonances overlap,
the chaotic orbits cover the entire overlapped region
shown in Fig. 1~a! in Sec. III. At a53.25, at which Fig. 6~b!
is drawn, one sees that new KAM curves appear that n
surround the center and the three primary 3:1 resonanc
lands. The three secondary islands, on the other hand
located outside the KAM curves. Comparing Fig. 6~b! with
Fig. 6~a!, it is clear that a topological rearrangement of t
resonance islands has occurred. At an even higher field
plitude (a53.40), the elliptic fixed points and the hyperbol
fixed points of the secondary 3:1 resonance are seen to
ish via inverse tangent bifurcation as shown in Fig. 6~c!
@8,22#. The elliptic fixed points and the hyperbolic points
the primary 3:1 resonance also vanish via inverse tang
bifurcation ata53.60, as shown in Fig. 6~d!.

We have also computed Poincare´ maps for the case of an
elliptically polarized electric field,f5p/6, which are shown
in Figs. 6~e!–6~h!. Here one finds essentially the same qua
tative behavior as for the case of a linearly polarized elec
field (f50); as the field amplitudea is increased, the for-
mation of stochastic layers which are the seed of chaos@23#
and reconnection of the KAM curves separating the t
rings of 3:1 resonance islands, the topological rearrangem
of the primary and secondary 3:1 resonance islands afte
connection, and the vanishing of the elliptic fixed points a
the hyperbolic fixed points via inverse tangent bifurcati
are all observed to occur.

The reconnection process at a relatively large polariza
angle is illustrated in Fig. 7, where Poincare´ maps atf
50.49p are shown at four different values of the electr
field amplitudea just below and above the reconnection.
addition, in Fig. 8 we show the diagram of the rotation nu
berr(r 0 ,u0) versus the distancer 0 @11# for the same param
eter values as in Fig. 7. Ata55.215 we see from Fig. 7~a!
that two Poincare´-Birkhoff ~PB! chains which represent th
primary and secondary 3:1 resonances separated by a K
barrier appear. The rotation number diagram of Fig. 8~a! has
a plateau which indicates the existence of the secondary
resonance islands. As the initial points (r 0 ,u0) are chosen
along the line connecting the central fixed point and one
the elliptic fixed points of the secondary 3:1 resonance,
presence of the primary 3:1 resonance in this diagram
represented only by the pointP of Fig. 8~a! havingr5 1

3 . We
mention here that the rotation number may not be define
a small interval aroundP @24#, because there is chaos nea
hyperbolic fixed point. The region to the immediate left
the plateau~or to the immediate right ofP! hasr, 1

3 , while
the region to the immediate right of the plateau~or to the
immediate left ofP) hasr. 1

3 , which indicates that both the
primary and secondary 3:1 resonances form PB chains.
ure 7~b! indicates that, whena is increased to 5.22, the sep
ratices of the primary and secondary 3:1 resonance isla

b-
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are united. The corresponding rotation number diagram
Fig. 8~b! shows a plateau surrounded by regions ofr, 1

3 ,
indicating that the plateau and the pointP which are clearly
separated in Fig. 8~a! are now merged. Ata55.225, we see
from Fig. 7~c! that a transition from the PB chains to dime
ized chains has occurred via a topological rearrangem
This transition produces in the rotation number diagram
Fig. 8~c! a sharp peak and a plateau, which indicate the p
ence of the primary and secondary 3:1 resonances, res
tively. One sees that both the sharp peak and the platea

FIG. 7. Poincare´ maps for the casef50.49p andV52.0. The
dimensionless electric field amplitudea is ~a! 5.215, ~b! 5.22, ~c!
5.225, and~d! 5.227.

FIG. 8. Rotation numberr about the central fixed point for th
caseV52.0 andf50.49p. The dimensionless electric field ampl
tudea is ~a! 5.215,~b! 5.22, ~c! 5.225, and~d! 5.227.
of

nt.
f
s-
ec-
are

surrounded by regions ofr, 1
3 , confirming that two dimer-

ized chains exist. Ata55.227, we see from Fig. 7~d! that the
elliptic fixed points and the hyperbolic fixed points of th
secondary 3:1 resonance vanish via inverse tangent bifu
tion. The rotation number diagram of Fig. 8~d! is thus char-
acterized by the absence of the plateau ofr5 1

3 .
Poincare´ maps and the rotation number diagrams at a

larization angle off5p/3 are presented in Figs. 9 and 1
respectively. A comparison of Figs. 9 and 10 with Figs.

FIG. 9. Poincare´ maps for the casef5p/3 andV52.0. The
dimensionlees electric field amplitudea is ~a! 5.20, ~b! 5.211, ~c!
5.215, and~d! 5.22.

FIG. 10. Rotation numberr about the central fixed point for the
caseV52.0 andf5p/3. The dimensionless electric field ampl
tudea is ~a! 5.20 and~b! 5.211.
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and 8 shows that there are some interesting differences
tween the reconnection process atf5p/3 and that atf
50.49p. From Fig. 9~a! we see that ata55.20, two PB
chains constitute the primary and secondary 3:1 resonan
In contrast to the situation of Fig. 7~a!, the elliptic fixed
points of the secondary 3:1 resonance lie along the s
directions from the center as the elliptic fixed points of t
primary 3:1 resonance. The rotation number diagram of F
10~a! thus shows two separate plateaus. Asa55.211, we see
from Fig. 9~b! that reconnection has occurred and thus
two plateaus are merged in Fig. 10~b!. When a is further
increased, the central island and the primary 3:1 islands
pand and squeeze the elliptic islands of the secondary
resonance, until eventually the islands disappear and only
hyperbolic fixed points remain, as can be seen from F
9~c! and 9~d!. We can ascertain the vanishing of the ellip
fixed point of the secondary 3:1 resonance by invesiga
the stability of the elliptic fixed point. The residueR of the
elliptic fixed point of the secondary 3:1 resonance var
with a as shown in Fig. 11. Fora,5.22, the elliptic fixed
point is stable (0,R,1), but for a.5.22 the point is un-
stable (R,0).

We noted that different types of the reconnection proc
occur atf50.49p ~or atf close top/2) and atf5p/3 ~or
at f sufficiently away fromp/2), because the elliptic fixed
points of the secondary 3:1 resonance lie along the s
directions from the center as the elliptic fixed points of t
primary 3:1 resonance atf5p/3, while at f50.49p they
lie along the same directions as the hyperbolic fixed point
the primary 3:1 resonance. We use the secular perturba
theory@16,25# to analyze the change in the reconnection ty
that occurs when the anglef is changed. Choosing the gen
erating functionS1(I ,Q)5I (Q1 t̂1b), we first transform
the Hamiltonian of Eq.~15! to

H8~ I ,C1 , t̂ !5A2VI 111I 1
a

AV
A11sinfAI cosC1

1
a

AV
A12 sinfAI cos~C122 t̂1a2b!

5H08~ I ,C1!1H18~ I ,C1 , t̂ !, ~25!

where the fast oscillating termH18(I ,C1 , t̂ ) is kept. In the
vicinity of the 1:1 resonance fixed point (I 1 f ,C1 f5p), this
Hamiltonian can be approximated as

FIG. 11. ResidueR of the elliptic secondary 3:1 resonance po
vs a for the casef5p/3 andV52.0.
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H8~z,q, t̂ !.
DI 2

2G1
1

1

2
F1DC1

2 1
a

AV
A12 sinfAI 1 f

3cos~DC122 t̂1a2b1p!,

5v1z1
a

AV
A12 sinfAI 1 f

3cosSA2z

R
sinq22 t̂2d D ,

5v1z1
a

AV
A12 sinfAI 1 f

3H (
n51

`

JnSA2z

R D cos~nq22 t̂2d!

1 (
m50

`

~21!mJmSA2z

R D cos~mq12 t̂1d!J ,

~26!

where

DI 5I 2I 1 f5A2Rz cosq, ~27!

DC15C12C1 f5A2z

R
sinq, ~28!

d5b2a2p, ~29!

and

v15AF1

G1
, ~30!

R5AG1F1. ~31!

G1 andF1 are given by Eqs.~22! and~23!, andJn denotes
the Bessel function of ordern. Noting that the 3:1 resonanc
point has the angular frequency1

3 2(21)5 4
3 in the rotating

frame, we use the second-order secular Lie perturba
theory @16,25# to obtain the Hamiltonian in the form

H̄8~ z̄,q̄, t̂ !5H̄08~ z̄ !1H̄18~ z̄ !1H̄28~ z̄ !

1F̄2~ z̄ !cos~3q̄24 t̂22d!, ~32!

where

H̄08~ z̄ !5v1z̄, ~33!

H̄18~ z̄ !50, ~34!
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H̄28~ z̄ !52
a2

V
~12 sinf!I 1 fw1

3H 1

v1
2 24

J1SA2z̄

R
D J18SA2z̄

R
D

1
1

v1
2 21

J2SA2z̄

R
D J28SA2z̄

R
D

1
9v1

9v1
2 24

J3SA2z̄

R
D J38SA2z̄

R
D J , ~35!

F̄2~ z̄ !52
a2

8V
~12 sinf!I 1 fv1F 1

~v121!~v122!

3H J1SA2z̄

R
D J28SA2z̄

R
D

22J2SA2z̄

R
D J18SA2z̄

R
D J

1
9

3v122
J3SA2z̄

R
D J08SA2z̄

R
D G . ~36!

In the above equations, the Bessel functions up to order 3
kept andJn8 represents the derivative of the Bessel funct

with respect to the new action variablez̄. H8( z̄,q̄, t̂ ) can be
reexpressed in the moving frame (ẑ,q̂5q̄24/3t̂22d/3) by
means of the generating functionŜ( ẑ,q̄)5(q̄24/3t̂

22d/3)ẑ as

H8~ ẑ,q̂ !5H̄08~ ẑ !1H̄28~ ẑ !2
4

3
ẑ1F̄2~ ẑ !cos~3q̂ !. ~37!

The 3:1 resonance fixed point (ẑ f ,q̂ f) satisfies dq̂/d t̂

5dẑ/dt50, where

dq̂

d t̂
5v12

4

3
1

]H̄28~ ẑ !

]ẑ
1

]F̄2~ ẑ !

]ẑ
cos 3q̂, ~38!

dẑ

d t̂
53F̄2~ ẑ ! sin 3q̂. ~39!

Equation~39! immediately yields 3q̂50 or p. The stability
of the fixed point is determined by the eigenvaluel of the
linearized equations of Eqs.~38! and ~39!, where

l259F̄2~ ẑ f !cos 3q̂ fS ]2H̄28~ ẑ f !

]ẑ2
1

]2F̄2~ ẑ f !

]ẑ2
cos 3q̂ f D .

~40!

When the polarization anglef5p/3 and dimensionless elec
tric field amplitudea54.93, which is slightly greater tha
the value at which the secondary 3:1 resonance begin
exist, two roots ofẑ f exist for 3q̂ f50, both of which have
positive values ofl2 and therefore yield hyperbolic fixe
re

to

points. For 3q̂ f5p, two roots ofẑ f corresponding to nega
tive values ofl2 exist, which means that the two fixed poin
are elliptic. Similarly, one can find that atf50.44p, two
roots of ẑ f corresponding to 3q̂ f50 yield one elliptic and
one hyperbolic fixed point, and two roots ofẑ f correspond-
ing to 3q̂ f5p also yield one elliptic and one hyperboli
fixed point. The types of the fixed points that exist atf
5p/3 andf50.44p are indicated in Figs. 12~a! and 12~b!,
respectively. It is clear that a change in reconnection ty
occurs asf is moved fromp/3 towardp/2.

Another interesting observation that can be made fr
Figs. 7 and 9 is that, at large angles off ~e.g.,f5p/3 and
f50.49p), stochastic layers are extremely thin. In fact, th
are not visible in Figs. 7 and 9. This is in clear distinction
the behavior at small polarization angles, e.g.,f50 andf
5p/6, where stochastic layers can easily be observed.

Finally we plot in Fig. 13 the critical field amplitudear ,
at which reconnection of the primary and secondary 3:1 re
nances occurs, as a function of the polarization anglef,
obtained numerically from Poincare´ maps. One sees that i
generalar increases asf is increased. The local maximum a
f'0.32p occurs probably due to the fact that at about t
angle the change of the reconnection type discussed a
occurs.

VI. CONCLUSION

The characteristics of the relativistic cyclotron motion
an elliptically polarized electric field depends critically upo

FIG. 12. The curve ofdq̂( ẑ)/d t̂ vs ẑ calculated from Eq.~38!.
Each fixed point is marked by ‘‘e’’ or ‘‘ h’’ according to whether it
is elliptic or hyperbolic. The polarization anglef and the dimen-
sionless electric field amplitudea are, respectively,~a! f5p/3, a
54.93 and~b! f50.44p, a54.774.
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the details of the reconnection process described in the
vious sections. Two important observations can be m
from the data we presented. First, an increase of the ele
field amplitude is not necessarily accompanied by an
crease of stochastic behavior. Stochastic layers that exi
the region of overlap between nearby resonance islands,
as those of Fig. 1~a!, largely disappear, when an electric fie
amplitude is increased and a topological rearrangemen
the resonance islands is accomplished@see Figs. 6~b!–6~d!#.
This is because, after the resonance islands merge and re
nect, they are reseparated by new invariant curves that
vent crossing of chaotic orbits. Thus, at electric field amp
tudes higher than the reconnection threshold, the phase s
is occupied mostly by regular trajectories. Second, stocha
layers become increasingly thin as the polarization is mo
away from linear toward circular, until they disappear tota
and the system becomes integrable when the electric fie

FIG. 13. The dimensionless critical electric field amplitudear

for reconnection of the primary and secondary 3:1 resonance
lands vs the polarization anglef for the caseV52.0.
y,

T

-

e-
e

ric
-
in
ch

of

on-
re-
-
ace
tic
d

is

circularly polarized. This can be clearly seen by compar
Figs. 6, 7, and 9.

We can thus conclude that cyclotron chaos can be at l
partly avoided either by employing a sufficiently strong ele
tric field to induce a topological rearrangement of islands
reconnection or by using a circularly polarized electric fie
or an elliptically polarized electric field sufficiently close to
circularly polarized electric field. The degrading of the c
clotron performance due to chaos can thus be largely
vented simply by choosing appropriately the amplitu
and/or polarization of the driving electric field.

Finally we mention that the question concerning the p
larization effect of an electric field is also an issue of gre
current interest in intense-field atomic physics in connect
with multiphoton ionization@26–29#, above-threshold ion-
ization @30#, stabilization, and high-harmonic generatio
@31,32#. From the fundamental viewpoint, it is natural to e
pect the ellipticity of the electric field to be an importa
factor determining the characteristics of the motion of t
particle that the field drives. Our study of the cyclotron m
tion has direct relevance to the study of atoms in an inte
laser field, in the sense that both the cyclotron and the a
in a strong laser field are examples of a strongly driven n
linear system. It is thus hoped that our study provides us
physical insights into the question of the polarization dep
dence of the motion of a driven nonlinear system at a fun
mental level.
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