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Chaos and reconnection in relativistic cyclotron motion in an elliptically polarized electric field

Duck-Hee Kwon and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
(Received 13 May 1999

A theoretical study of the relativistic cyclotron motion occurring in a uniform magnetic field and an oscil-
lating electric field of arbitrary polarization is performed, which aims at determining the effect of the ellipticity
and the strength of the electric field upon the integrability or nonintegrability of the system. Unless a circularly
polarized electric field is used, the cyclotron system is nonintegrable and displays stochastic behavior in the
region where resonance islands overlap. It is found, however, that the stochastic layers become increasingly
thin as the polarization angle is moved closer towa¥@ (circular polarization If the polarization angle is
held fixed and the electric field amplitude is increased, the Kolmogorov-Arnold-Moser curves separating the
resonance islands experience a reconnection process through which the islands are topologically rearranged.
When the rearrangement is accomplished, the phase space is occupied mostly by regular trajectories.
[S1063-651%9902710-5

PACS numbd(s): 05.45—a, 41.75-i

I. INTRODUCTION . By -~ By -
A=—7yex+ 7X6y (4)
Charged particles moving at relativistic velocities in elec-

tric and magnetic fields are encountered often in various aryere and throughout the paper, Gaussian units are used. The

eas of physics including accelerator physics, plasma physicggmiltonian for the particle is given by
and optics. The question concerning the integrability of the

motion of such patrticles is of great importance, because cha- 9B, |2 9B, |2
otic behavior is known to have negative effects upon the H= \/ P,+—y]| c®+ Py— ——X c2+mac?
performance of such devices as the cyclotron, tokamak, and 2¢c 2¢c
free-electron laserl—7]. A detailed investigation of the dy- _ _ .
namics of relativistic particles may thus r?elp find a wa;/ of GEpx cosot—qEoy cog wt = ¢). ®
suppressing chaos and thereby enhancing the performance Iﬂfroducing dimensionless parametf®
the devices.
It has been shown recen{—10] that the relativistic cy- . o . P, . Py
clotron motion can exhibit chaos when the electric field is X= EX’ y= Ey, Py= me! Y me’
linearly polarized and sufficiently strong, while it is always
integrable when the electric field is circularly polarized. In
this paper, we carry out a detailed investigation of how the =t A= A _ 98B0 a= 9Eo
characteristics of the cyclotron motion changes, i.e., how the ' me’ mcw’ mcw’
system changes from integrable to nonintegrable and vice
versa, as the polarization state of the electric field is varied ahe Hamiltonian can be rewritten as
a fixed field amplitude, or as the amplitude of the electric
field is varied at a fixed angle of polarization. ) ORI
H= \/ PX+Ey + Py—EX +1
Il. SYSTEM
—axcost—aycogt—¢). (6)

We consider the relativistic motion of a particle of mass

and chargey in a uniform magnetic field, : I . .
9% g This Hamiltonian can be transformed into a form having one

degree of freedom by a series of three canonical transforma-
tions (XinPXvpy)_>(X1yIP_Xvpy)H(Ql!QZ!PlvF)Z)

and a transverse time-periodic electric field of arbitrary po-—(d,Q,p,P) generated, respectively, by

larization,

é = BOéZ y (1)

A= o~ Q.
FZ(X!y1PX1Py): Px_§y

X+ Py, (7)

E=E, coswte,+ Eqcog wt—¢)e,, (2)

where g; denotes a unit vector along thedirection. The
scalar and vector potentiajs andA can be taken to be

~ P 2
X Q ' ( )
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FIG. 2. Rotation numbep about the central fixed point for the

FIG. 1. Poincaremaps for the case when the dimensionless¢2S€{2=2.0 anda=2.85. The polarization anglé is (a) 0, (b)

magnetic and electric field amplitudes are given, respectively, b

0 =2.0 anda=2.85. The polarization angl¢ is (a) 0, (b) #/6, (c)
/3, and(d) /2.

a N -~
F2(Q1,Q2,p,P)=Q,P+Qip— aP sin(t—¢)+aQ; sint

2 2

+a—cos{2t—¢)— sm¢ t. (9

The final transformed Hamiltonian takes the form

H=\(QQ)?+P%+1+ %P cost—aQcogt— ¢),

(10

which leads immediately to the equations of motion

dQ P

_- — t 11

~ QQ)2+P2+1 Qcos (11
dP 0%Q .

=———— tacogt—¢). (12

dt VQQ)2+P2+1

In the next sections we present Poincaraps obtained in
(Q,P) space by numerically integrating Eqd.1) and (12)
for different values of the polarization angte and dimen-

sionless electric field amplitude The dimensionless mag-

netic field amplitudeQ) is held fixed at=2.0 in all com-
putations.

Ill. POINCARE MAPS AT DIFFERENT
POLARIZATION ANGLES

Figure 1 shows Poincaraaps for four different values of

the polarization anglep=0, 7/6, 7/3, and#/2, at a fixed

);7/6 (c) /3, and(d) /2.

valuea=2.85 of the electric field amplitude. A4=0 (linear
polarization, one observes chaotic orbits covering the region
where the primary 3:1 resonance islands and the secondary
3:1 resonance islands overlap. The two rings of the 3:1 reso-
nance islands, which are merged and reconnectec at
=2.85, will eventually experience a topological rearrange-
ment if the electric field amplitude is further increased. The
details of this reconnection proce$$l1-14 will be de-
scribed in Sec. V. Alp= /6 and /3, no appreciable cha-
otic motion is seen; in fact, there is no evidence for the
formation of the secondary 3:1 resonance, while a pair of 7:3
resonances is seen to appeatpat /6 and a 2:1 resonance
appears ath= /3. At ¢= /2 (circular polarizatiop, an in-
finity of primary 3:1 periodic orbits exists, but the island
structure is not shown.

In order to confirm the existence or nonexistence of the
resonance islands seen in Fig. 1, we have calculated the ro-
tation number

I|m %

N—>oo

p(ro,00)= —0h-1), (13

where ¢, 6) denotes the polar coordinates @,P) and 6,

is calculated at timé=2ns. The rotation number yields the
average fraction of a revolution per iteration for an orbit
starting at (g, 6g). In Fig. 2 we show the calculated rotation
numberp about the central 1:1 resonance elliptic fixed point
versus the distance, of the initial point from the central
fixed point, where the initial points are chosen along the line
connecting the central fixed point and one of the elliptic
fixed points of the primary 3:1 resonance and where the pa-
rameter values fof) anda are chosen as in Fig. 1. Figure
2(a) drawn at¢=0 shows a broad plateau pf=3 corre-
sponding to the region where the primary 3:1 resonance is-
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FIG. 4. Rotation numbep about the central fixed point for the
case¢p=0, (1=2.0, anda=2.36.

dimerized chaif11] or zero dispersion nonlinear resonance
[17] appears as seen from Fig(bg As a is increased to
2.395 25, the central island gets squeezed by the hyperbolic
fixed points of the secondary 3:1 resonance until eventually
these hyperbolic fixed points are absorbed by the central
2 ] 0 12 ] 0 1 fixed point[12,18,19, as seen from Fig.(8). Figure 3d)
Q Q indicates that asa is increased beyond 2.395 25, the hyper-
o, _ bolic fixed points reappear as they move outward from the
FIG. 3. Poincaremaps for the cas¢=0 andQ2=2.0. The di-  centra| fixed point, which results in a topological rearrange-
mensionless electric field amplitudeis (a) 2.36, (b) 2.361 25,(c) ment that converts the dimerized chain into a Poincare
2.39525, andd) 2.41. Birkhoff (PB) chain[11].
The di ran nd r ran f the hyperboli
land and the secondary 3:1 resonance islangj reconnect. Fiﬁked go(ijnf: g??r?easecc?or?d;ry g?lpfee:oﬁa(r:lieoca; ;SOyEz \t/)gri(-:

ure 2b) drawn at¢=m/6 has a plateau gi=35 indicating  fieq py calculating the residue defined by[16,19
the presence of the primary 3:1 resonance but no secondary

3:1 resonance, and a plateaum# ¢ which upon close in- R=[2—Tr(A)]/4, (14)
spection reveals a double structure corresponding to the twin
7:3 resonance islands seen in Fih)1At ¢= 7/3 the maxi- Wwhere Tr@A) represents the trace of matdxwhich governs
mum value of the rotation number is increased as seen frofhe motion of nearby orbits of & periodic orbit and is re-
Fig. 2(c), and the rotation number exhibits a plateaupof lated with the following equations:
=3 indicating the presence of the 2:1 resonance island seen K
in Fig. 1(c). Another single plateau =3 at this angleg Xo=T"(Xo),
= 7r/3 indicates that the primary 3:1 resonance exists but not
the secondary 3:1 resonance. &t= /2 [Figs. 1d) and
2(d)] no plateau is seen as the primary 3:1 resonance islanghere T represents the original map. The residue takes a
has a zero size. In fact, the 3:1 periodic points exist continuyg|ye 0<R<1 for an elliptic orbit andR<0 or R>1 for a
ously on an invariant surfadés, 16, i.e., there is an infinity  pyherholic orbit. In Fig. 5 we show the residue of the hyper-
of 3:1 periodic orbits. Thus the map is indicative of inte- pic fixed point of the secondary 3:1 resonance as a function
grable motion. of the electric field amplitude. The residue is less than zero
except in the small neighborhood abaut 2.395 25, which

AXy i k=A-AX,, X=Xt AX,

IV. BIRTH OF THE SECONDARY 3:1 RESONANCE

The primary 3:1 resonance exists for all nonzero values of 00010
the dimensionless electric field amplituddor all polariza- 0.0005 -
tions. On the other hand, the secondary 3:1 resonance is born
at some critical value of the field amplitude, which depends 0.0000
on the polarization state of the electric field. In this section '
we investigate the birth process of the secondary 3:1 reso-
nance. We first present Fig. 3 in which Poincaraps com- -0.0005
puted at¢p=0 and at the values of the electric field ampli-
tude a just below and above the birth of the secondary 3:1 -0.0010F
resonance are shown. At=2.36, at which Fig. &) is
drawn, the secondary 3:1 resonance is not born yet. Figure 4 00015 e s 299 240

shows that ab=2.36 the rotation number about the central
fixed point has a local minimum value slightly higher than
Thus, at a slightly higher valua=2.361 25 of the electric FIG. 5. ResidueR of the hyperbolic secondary 3:1 resonance
field amplitude, the secondary 3:1 resonance in the form of goint vsa for the casep=0 andQ=2.0.

a
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indicates that aa=2.395 25 the absorption of the hyperbolic dl a
fixed point into the elliptic fixed point occurs. —=—J1* sing\I sin¥. . (20
For other polarizations of the electric field, the secondary dt Vo

3:1 resonance appears at a greater valuetbfn that found

above for linear polarization. We can estimate the valua of For the case when the transformation with the generating
at which the secondary 3:1 resonance begins to appear arfanction S_ is taken, we obtain from Eq20) ¥;_=0 or .
lytically as follows. We first perform a canonical transforma- WhenW;_ is 0, the eigenvalue of the linearized equations of

tion Egs.(19) and(20) is imaginary and the corresponding fixed
point (P,) is elliptic. WhenW;_ is 7 and the electric field
P=2Q0JcosO, amplitudea is below a certain critical value, two roots lgf_
exist, one of which gives an elliptic fixed poinP§, imagi-
2] nary eigenvalueand the other a hyperbolic fixed poifreal
Q= \fﬁsin(é), eigenvalug If a is increased above the critical value, the

elliptic fixed point (P,) and the hyperbolic fixed point dis-
appear by inverse tangent bifurcatip®,20]. For the case
when the transformation with the generating functi®n is
taken, only one root fot;, exists corresponding t&
=, which gives an elliptic fixed pointK,).

upon the Hamiltonian of Eq.10) and obtain, for the trans-
formed Hamiltonian,

R a . . :
H(J,0,1)=2QJ+ 1+—I{V1- sing cogO® —t+ ) We now wish to calculate the rotation frequenay.
JQ t about the elliptic fixed poinP,. Expanding the Hamiltonian
: R H' about the fixed pointl¢. ,¥.), we obtain approxi-
+V1+ sing cog®+t+p)}, (15  mately[8,16]
where 2
H (Al AV )~ ——+>F, AW, (21)
_ cos¢ (Al ) 26, 2~ ~
tfana m,
where
_ cos¢
@NA= 1 sing 1 02 _a \TEsng
| | . G.  (01.+1® aja 12 "
Another transformation,®)— (1, ¥ ..) with the generating - (22)
function
S:(1,0)=1(0+1+p) (16 F+=—\/i_\/1t sing . cos¥y. . (23
* Q * *
or
. The rotation frequency of the motion about the elliptic fixed
S (1,0)=1(0—-t+a) (170 point in the rotating frame is given by
leads to the Hamiltonian in the central 1:1 resonance frame, T
a a QZ
H'(1,W.)=\20l+1*1+——=J1* sin¢\ cosV ., =|—V1* sing\l;.cos¥; { ——
O JO PVlrsCOSWre (201, +1)%?

(18)

where the fast oscillating term of E@L5) is ignored. We + m7
note that, when the electric field {wearly linearly polar- fx
ized, the 1:1 resonance point rotates clockwise @ K) . ,
space and the transformation with the generating fun@ion The secondary 3:1 resonance has=|3—1[=35 and w,
should be taken. On the other hand, if the electric field is=3—(—1)=3. The value ofa at whichw _ is § or . is
(nearly circularly polarized, the 1:1 resonance point rotatesfor a given polarization angle gives the electric field ampli-
counterclockwise and the transformation with the generatingude at which the secondary 3:1 resonance is born at that
function S, is to be chosen. The fixed point(. ,¥;.) of polarizatiqn angle. These values afs calculated from Eq.
the 1:1 resonance satisfid® . /di=dl/dt=0. where (24) are listed in Table | for several different polarization

- ' angles along with the values determined numerically from

3 1 Poincaremaps. The analytical values at=0, /12, 7/6,
_ +14 1+ sing——cosV, | and /4 were estimated by computing_, while those at
dt  V201+1 D) ¢2\/I_ - ¢=m/3 and 0.49r were obtained by computing. . The
(29 analytical values agree well with the numerical values.

(24)

a Jlxsing Hllz
cos¥y . .

dw. Q
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TABLE I. The values of the dimensionless electric field ampli- curves surround the center and the three secondary islands,
tude at which the secondary 3:1 resonance is born, which are olwhereas the three primary islands reside outside the KAM
tained analytically from Eq(24) and numerically from Poincare cyryes. The secondary 3:1 resonance islands have noticeable

maps. stochastic layers arising from the overlap with numerous
. ) ) nearby higher-order resonance islani6,21. The primary
Polarization angle ¢) Analytical Numerical 3:1 resonance islands also have such stochastic layers. We
0 2.35 2.361 note, however, that these stochastic layers are bounded by
w12 2.72 2.76 KAM curves separating the two rings of 3:1 resonances as
w6 3.32 3.41 shown in Fig. 6a). At a=2.85 the KAM curves are de-
wl4 4.31 4.36 stroyed, the primary and secondary resonances overlap, and
w3 4.92 519 the chaotic orbits cover the entire overlapped region as
0.497 4.75 511 shown in Fig. 1a) in Sec. Ill. Ata=3.25, at which Fig. &)

is drawn, one sees that new KAM curves appear that now
surround the center and the three primary 3:1 resonance is-

V. RECONNECTION OF THE PRIMARY lands. The three secondary islands, on the other hand, are
AND SECONDARY 3:1 RESONANCE located outside the KAM curves. Comparing FigbGwith
ISLANDS Fig. 6@a), it is clear that a topological rearrangement of the

) ) ] _ resonance islands has occurred. At an even higher field am-

As mentioned in Sec. Ill, the primary 3:1 resonance is-pjityde (a=3.40), the elliptic fixed points and the hyperbolic
lands and the secondary 3:1 resonance islands undergo igeq points of the secondary 3:1 resonance are seen to van-
connection11-14 asa is increased from below to above a jgp yia inverse tangent bifurcation as shown in Figc)6
certgln _crltlcal value. In order to investigate the chan_ge 0{8,22]. The elliptic fixed points and the hyperbolic points of
motion in phase space before and after the reconnection, Wge primary 3:1 resonance also vanish via inverse tangent
present Fig. 6. In Figs.(6)—6(d), we show Poincareaps at  pifyrcation ata=3.60, as shown in Fig.(6).

a fixed angle ofp=0 for four different values of the dimen- We have also computed Poincaneps for the case of an
sionless electric field amplitud@=2.70, 3.25, 3.40, and gjiiptically polarized electric fieldg= /6, which are shown
3.60. Ata=2.70 we see two rings, primary and secondary,i, Figs. ge)—6(h). Here one finds essentially the same quali-
of 3:1 resonances separated by KAM curves. The KAMaiive behavior as for the case of a linearly polarized electric
field (¢=0); as the field amplitude is increased, the for-
mation of stochastic layers which are the seed of clhadk

and reconnection of the KAM curves separating the two
rings of 3:1 resonance islands, the topological rearrangement
of the primary and secondary 3:1 resonance islands after re-
connection, and the vanishing of the elliptic fixed points and
the hyperbolic fixed points via inverse tangent bifurcation
are all observed to occur.

The reconnection process at a relatively large polarization
angle is illustrated in Fig. 7, where Poincaneaps ate
=0.49r are shown at four different values of the electric
field amplitudea just below and above the reconnection. In
addition, in Fig. 8 we show the diagram of the rotation num-
berp(ry,6y) versus the distanag, [11] for the same param-
eter values as in Fig. 7. A4=5.215 we see from Fig.(@)
that two Poincardirkhoff (PB) chains which represent the
primary and secondary 3:1 resonances separated by a KAM
barrier appear. The rotation number diagram of Fig) 8as
a plateau which indicates the existence of the secondary 3:1
resonance islands. As the initial points,(6,) are chosen
along the line connecting the central fixed point and one of
the elliptic fixed points of the secondary 3:1 resonance, the
presence of the primary 3:1 resonance in this diagram is
represented only by the poiRtof Fig. 8@a) havingp=3. We
mention here that the rotation number may not be defined in
a small interval aroun® [24], because there is chaos near a
hyperbolic fixed point. The region to the immediate left of
the plateauor to the immediate right oP) hasp<%, while
the region to the immediate right of the plate@r to the

FIG. 6. Poincaremaps for the cas€ =2.0. The polarization immediate left ofP) hasp> 3, which indicates that both the
angle¢ and the dimensionless electric field amplitudere, respec- primary and secondary 3:1 resonances form PB chains. Fig-
tively, (a) 0, 2.70;(b) 0, 3.25;(c) 0, 3.40;(d) 0, 3.60;(e) =/6, ure 7Ab) indicates that, when is increased to 5.22, the sepa-
3.60; (f) 7/6, 3.90;(g) w/6, 4.0; and(h) /6, 4.8. ratices of the primary and secondary 3:1 resonance islands
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FIG. 7. Poincarenaps for the caseé=0.49r andQ=2.0. The FIG. 9. Poinca’remap_s for the casep=m/3 and(1=2.0. The
dimensionless electric field amplitudeis (a) 5.215, (b) 5.22, (c) dimensionlees electric field amplitudeis (a) 5.20, (b) 5.211,(c)
5.225, andd) 5.227. 5.215, andd) 5.22.

. 1 _ N
are united. The corresponding rotation number diagram O?urrounded by regions gi<3, confirming that two dimer

: : 1 ized chains exist. AA=5.227, we see from Fig.(@) that the
. B Shous & pateay surounded b resknsel . lipc xed poris and the hyperbolc e pois of
separated in Fig. (&) are now merged. Ad=5.225, we see ;econdary 3:1. resonance vgmsh via inverse tangent bifurca-
from Fig. 7(c) that a transition from the PB chains to dimer- tion. _The rotation number diagram of F'g('d% is thus char-
ized chains has occurred via a topological rearrangemeni?‘.c’[e”_ZeOI ,by the absence of th_e plateatpecfg_.
This transition produces in the rotation number diagram o .P0|_ncaremaps and the rotation number d|a}grams at a po-
Fig. 8(c) a sharp peak and a plateau, which indicate the preégrlzathn angle ofp= 77/.3 are presented in Figs. 9 anpl 10,
ence of the primary and secondary 3:1 resonances, resper(?-SpeCt'Vely' A comparison of Figs. 9 and 10 with Figs. 7
tively. One sees that both the sharp peak and the plateau are

0.336} (@)
0335 4
0334f ¢
(@) (®) ~
B
I 0332}
0334} Y t
[
0.330}
p
vvvvvv — - P i Jrm——Tt 1
! 0.328} \
0333 r
\ 0.326} \
Y 1 1 1 1
\
0332 \\ . : : A
0335 0.336} (b)
(© (d) 0.334}
).-’
0334 0332
[
P 0.330} '
Ian ‘
0333 _‘_’_-r
1 0.328}
i % I N 0.326} |
t "\\ r by N N N N Al
0332l —— 5 5 s s 2 00 05 10 15 20 25

l’0 ro ro
FIG. 8. Rotation numbep about the central fixed point for the FIG. 10. Rotation numbes about the central fixed point for the
case()=2.0 and¢=0.497. The dimensionless electric field ampli- case{)=2.0 and¢=w/3. The dimensionless electric field ampli-
tudeais (a) 5.215,(b) 5.22,(c) 5.225, andd) 5.227. tudeais (a) 5.20 and(b) 5.211.
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a
™, :w+§+ _\/1_ Sin¢\/|+f
-0.002 . L \/5
520 5.22 5.24

/2 A
a ><cos( ésinﬁ—Zt—&),

FIG. 11. Residud of the elliptic secondary 3:1 resonance point
vs a for the casep= /3 and(1=2.0.

=w. {+ i\/l— sin(,/;\/m
and 8 shows that there are some interesting differences be- Vo
tween the reconnection process &t /3 and that at¢ % 27
=0.497. From Fig. 9a) we see that aa=5.20, two PB x{ > Jn< \/:) cognd—2t— o)
chains constitute the primary and secondary 3:1 resonances. n=1 R

In contrast to the situation of Fig.(&, the elliptic fixed - 27

points of the secondary 3:1 resonance lie along the same n _qym ( /_) 1otes
directions from the center as the elliptic fixed points of the mzo (=1 R cosmd+2t+9),
primary 3:1 resonance. The rotation number diagram of Fig.

10(a) thus shows two separate plateaus.a&s5.211, we see

from Fig. 9b) that reconnection has occurred and thus the

two plateaus are merged in Fig. (bD Whena is further — where
increased, the central island and the primary 3:1 islands ex-
pand and squeeze the elliptic islands of the secondary 3:1 Al=1—1..=2RZ cosd 2
resonance, until eventually the islands disappear and only the o ¢ ' @7
hyperbolic fixed points remain, as can be seen from Figs.

9(c) and 9d). We can ascertain the vanishing of the elliptic 27 .
AV =V, -V = Esmz‘},

(26)

fixed point of the secondary 3:1 resonance by invesigating (28)
the stability of the elliptic fixed point. The residirof the

elliptic fixed point of the secondary 3:1 resonance varies

with a as shown in Fig. 11. Foa<5.22, the elliptic fixed o=p—a—m, (29)
point is stable (6<R<1), but fora>5.22 the point is un-

stable R<0). and

We noted that different types of the reconnection process
occur at¢p=0.49r (or at ¢ close tow/2) and at¢= 7/3 (or
at ¢ sufficiently away from/2), because the elliptic fixed _ Fyi (30)
points of the secondary 3:1 resonance lie along the same
directions from the center as the elliptic fixed points of the
primary 3:1 resonance at= /3, while at »=0.497 they —_—
lie along the same directions as the hyperbolic fixed points of R=VG.F,.
the primary 3:1 resonance. We use the secular perturbation
theory[16,25 to analyze the change in the reconnection typeG, andF, are given by Eqs(22) and(23), andJ,, denotes
that occurs when the angtg is changed. Choosing the gen- the Bessel function of order. Noting that the 3:1 resonance
erating functionS, (1,0)=1(®+1+ B), we first transform  point has the angular frequengy- (—1)=3 in the rotating
the Hamiltonian of Eq(15) to frame, we use the second-order secular Lie perturbation

theory[16,25 to obtain the Hamiltonian in the form

(31)

R a
H'(1,W,,1)=v2QI +1+1+ \/—5\/1+sin¢\/l_cos\lf+ H'(2.0,0) = Ay + FLD + H4D)
a +F,({)cog39—4t—20), (32)
+ 2 T sing T cos W, 2+ a—p)
JO
where
=Hy(1, ¥ )+H(1, %, 1), (25)

Ho()=w.¢, (33

where the fast oscillating term (1, ¥, ) is kept. In the
vicinity of the 1:1 resonance fixed point (; ,W , ;= ), this —
Hamiltonian can be approximated as 1(9)=0, (34)
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o 2 0.010
Hé(§)=—§(l— sing)l 4w — ¥=0 (a)
"""" Y =n/3
0.005| s
>< 1 J ( JZ\Z)J,( JZ\Z) /,I'
2 1 D /Y1 B 7
wi—4 R R ad 5000 h/’{:\h N
a7 / o
1 12¢ 27 F SN~
wi—l 2( R/™? R -0.005 |,
ool VeV
+ J = =1, 35 -0.010
9(»3—4 * R/™ R S 0.0010
(b)
E (7 a? i 1 0.0005
Fz(g):_@(l_ S|n¢)|+fﬁ)+ (w+_1)(w+_2) ' -
2L\ \/2\5 Q 0.0000 |1 “eh
SUNEENE :

5 2 0.0005(

R R j

-0.0010 -

(36)

st NV

In the above equations, the Bessel functions up to order 3 are

kept andJ;, represents the derivative of the Bessel function
with respect to the new action variabje H' (¢, 9,t) can be
reexpressed in the moving framg, §= 9 — 4/3t —25/3) by
means of the generating functioS(Z,d)=(9—4/3t
—2613) as

S S )
H"(£,9)=Hq({) +Ha(8) — 54+ Fa({)cog39). (37)

The 3:1 resonance fixed pointZ(,d;) satisfiesdd/dt
=dZ/dt=0, where

dd 4 OHYND) oF,(2 A
—=w,— <+ 2A(g)+wcos3f}, (38
dt 3 al

.  — . . .

E =3F,({) sin 39. (39

Equation(39) immediately yields #=0 or «. The stability
of the fixed point is determined by the eigenvalef the
linearized equations of Eq§38) and (39), where

0S 304 | .
(40)

. L[ PHYL) PRy
\2=OF 3D 2 2
2({1)cos 395 07 + 07 c

When the polarization anglé= /3 and dimensionless elec-
tric field amplitudea=4.93, which is slightly greater than

the value at which the secondary 3:1 resonance begins to

exist, two roots ofZ; exist for 39;=0, both of which have
positive values of\? and therefore yield hyperbolic fixed

40 60

¢

20

FIG. 12. The curve ofld(Z)/dt vs ¢ calculated from Eq(38).
Each fixed point is marked bye"” or “ h” according to whether it
is elliptic or hyperbolic. The polarization anglg and the dimen-
sionless electric field amplitude are, respectively(@ ¢==/3, a

=4.93 and(b) $=0.44m, a=4.774.

points. For 3= 7, two roots of{; corresponding to nega-

tive values of\? exist, which means that the two fixed points
are elliptic. Similarly, one can find that at=0.44, two

roots of ¢; corresponding to 8;=0 yield one elliptic and
one hyperbolic fixed point, and two roots &f correspond-

ing to 3;9f:7r also yield one elliptic and one hyperbolic
fixed point. The types of the fixed points that exist ¢t
=7/3 and¢=0.44 are indicated in Figs. 13) and 12b),
respectively. It is clear that a change in reconnection type
occurs asp is moved froms/3 toward /2.

Another interesting observation that can be made from
Figs. 7 and 9 is that, at large anglesdf(e.g.,¢==/3 and
¢=0.49r), stochastic layers are extremely thin. In fact, they
are not visible in Figs. 7 and 9. This is in clear distinction to
the behavior at small polarization angles, ey 0 and ¢
= 7/6, where stochastic layers can easily be observed.

Finally we plot in Fig. 13 the critical field amplitudza, ,
at which reconnection of the primary and secondary 3:1 reso-
nances occurs, as a function of the polarization angyje
obtained numerically from Poincaraaps. One sees that in
general, increases ag is increased. The local maximum at
¢~0.32r occurs probably due to the fact that at about this
angle the change of the reconnection type discussed above
occurs.

VI. CONCLUSION

The characteristics of the relativistic cyclotron motion in
an elliptically polarized electric field depends critically upon
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FIG. 13. The dimensionless critical electric field amplituale
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circularly polarized. This can be clearly seen by comparing
Figs. 6, 7, and 9.

We can thus conclude that cyclotron chaos can be at least
partly avoided either by employing a sufficiently strong elec-
tric field to induce a topological rearrangement of islands via
reconnection or by using a circularly polarized electric field
or an elliptically polarized electric field sufficiently close to a
circularly polarized electric field. The degrading of the cy-
clotron performance due to chaos can thus be largely pre-
vented simply by choosing appropriately the amplitude
and/or polarization of the driving electric field.

Finally we mention that the question concerning the po-
larization effect of an electric field is also an issue of great

for reconnection of the primary and secondary 3:1 resonance iss,ren interest in intense-field atomic physics in connection

lands vs the polarization angtg for the case)=2.0.

with multiphoton ionization[26—29, above-threshold ion-

the details of the reconnection process described in the prézation [30], stabilization, and high-harmonic generation
vious sections. Two important observations can be madE31:32: From the fundamental viewpoint, it is natural to ex-

from the data we presented. First, an increase of the electr
field amplitude is not necessarily accompanied by an in

crease of stochastic behavior. Stochastic layers that exist

the region of overlap between nearby resonance islands, su?ﬂ . .
9 b y aser field, in the sense that both the cyclotron and the atom

as those of Fig. (B), largely disappear, when an electric field
amplitude is increased and a topological rearrangement
the resonance islands is accomplishege Figs. 6)—6(d)].
This is because, after the resonance islands merge and rec

nect, they are reseparated by new invariant curves that pr
vent crossing of chaotic orbits. Thus, at electric field ampli-
tudes higher than the reconnection threshold, the phase space

Eect the ellipticity of the electric field to be an important
actor determining the characteristics of the motion of the
marticle that the field drives. Our study of the cyclotron mo-
ion has direct relevance to the study of atoms in an intense
'Sa a strong laser field are examples of a strongly driven non-
inear system. It is thus hoped that our study provides useful

1ysical insights into the question of the polarization depen-
lence of the motion of a driven nonlinear system at a funda-
mental level.
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