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Noise-amplitude dependence of the invariant density
for noisy, fully chaotic one-dimensional maps
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We present some analytic, nonperturbative results for the invariant dexfgityfor noisy one-dimensional
maps at fully developed chaos. Under periodic boundary conditions, the Fourier expansion method is used to
show precisely how noise makg$x) absolutely continuous and smooths it out. Simple solvable models are
used to illustrate the explicit dependencep¢k) on the amplitude; of the noise distribution, all the way from
the case of zero noisep(~0) to the completely noise-dominated limig€ 1). [S1063-651X99)00307-4

PACS numbdps): 05.45—-a, 05.40-a

l. INTRODUCTION with invariant densityp(®(x). In the presence of additive
noise,
One-dimensiona(1D) maps exhibiting chaotic behavior
have been used as effective models to describe a wide variety Xn+1=F(Xn) + &nr1, (1)

of physical processes ranging from irregular behavior in o
electronic circuits and chemical reactions to turbulefiigg]. ~ Where (&) =0(éé) = (&%) 8y . We use periodic bound-
In particular, probabilistic or statistical approach@svolv-  ary conditions, so that the normalized noise distributj¢g)
ing, for instance, invariant measures on attra()termtﬂe us is also a periOdiC function with fundamental interval I. The
to by-pass the limitations imposed by extreme sensitivity tdnvariant densityp(x) for the noisy map(1) satisfies the
initial conditions, and compute various quantities of interestP€erturbedFrobenius-Perron equatids]

in terms of statistical averagg3-5]. A considerable body of

mathematically rigorous results on 1D discrete-time dynam- _ _

ics is also availablg6,7]. As random noise is inevitably p(x) Ldy gx—f(y))p(y). ()
present in physical systems, much effort has been put into

understanding the effects of noise upon different aspects dfhe Fourier expansions @f andg are

chaotic dynamics, including invariant densities and related

quantities[5,8—17. As much (but not al) of this work is 1= 1=

based on numerical analysis or simulation, analytical resulte(X) = n_Ew Pr€XRiTNX),g(&)= 5 n_Zm gnexplimné),

are of importance—especially so if they are nonperturbative 3)
in nature, i.e., if they are valid for arbitrarily large noise
amplitudes. where

In this paper, we revisit 1D maps in the regime of fully
developed chaos, in the presence of uncorrelated noise_ _
[18,19. With the addition of noise, the evolution equation p,= Jpr(x)exp(—irrnx),gn= fdgg(g)exp(—iwng).
becomes a stochastic difference equation, thereby making ! !
the system effectively infinite-dimensional. Imposing peri- @

odic boundary conditions, the Fourier transform method

[10,17 is used to establish some nonperturbative results fo_Pn _substltutlng Eqsh(.‘S) ang Eqs/(4) and using the normal-
the invariant density(x). In Sec. II, we show how the ad- iZation ofp andg(=po=1g0=1), Eq.(2) becomes equiva-

dition of noise of arbitrarily small amplitude can majéx) lent to the foIIowing(infiniﬁe-dimensional inhomogeneous
absolutely continuous in the interval. In Sec. I, we considermatrix equatior{10,11] for p,,n#0:

a noise density that has a single nontrivial Fourier mode, and

show thatp(x) is also locked in at the same mode, but with ~ ~ r ~ ~

a phase shift. In Sec. IV we examine the dependenggf Pn=GnSno ™t ; GnSomPm, ®)
on the amplitude of the noise density, varying the latter over

the full range from zerdthe noise-free limitto unity (the  \hereS’ stands for a summation over all nonzero integers.
completely noise-dominated linitWe conclude with a few The elements of the matri® are given by

remarks on the effect of noise on the Lyapunov exponent.
1 .
Snm=§fldyexp{l mlmy—nf(y)]}. ©)
Il. CONTINUITY OF THE INVARIANT DENSITY

We consider 1D endomorphismsx,.i=f(X,),n Iteration of Eq.(5) provides a fast-converging means of nu-
=0,1, ... X,e[—1,1] =I, exhibiting fully developed chaos merical solution, once the, are specified from the noise
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distribution concerned. The unperturb@d noise-fre¢ case 5

is recovered on replacing(&) by 8(¢), i.e., by settingg,, L
=1 for all n.

It turns out that exact solutions for the invariant density
p(x) can be obtained from E@5) in several important cases 5
by exploiting the symmetries, if any, that the mat8xmay
happen to posse$&7]. For instance, if5,,=0 for all n#0,
both p(®(x) and p(x) reduce to the constant density 1/2.
Again, suppose the noise densif) is symmetric about its
mean value zeroa reasonable assumptipnso that g,
=g_,. Then, ifS,,, is even(respectively, oddin the index
m, while S, is odd (respectively, evenin the indexn, only 1
the leading term in the iterative solution of E&) survives.
This leads to the exact solution

N
)
A

o))

0 T T B N I I |
1 & - _ -1 -0.5 0 0.5 1
P(X)=5 2 GnSeo€XH —imnX). Y] g
n=—ow
Putting in the definitions of,, and S, Eq. (7) can be re- FIG. 1. Plot ofg(¢) vs & for =0.2.

written in the form ) ) )
given by the one-parameter family of functions

1
p(x)= Efdyg(x—f(y))- )] 1 -
! 9(¢)=5[1+(=1)" *cosmr ], (10)

We shall use these results in Sec. IV to study analytically the . . _
dependence of the invariant density on the amplitude of th&vherer is an integer. Correspondingly,
noise distribution.

Here, we wish to point out a simple way of understanding ~ E -1
precisely how the addition of noise leads, in general, to a Gn=not 2( D7 (Gt ) (19)
smootherinvariant density{20,21]. Consider the noise-free
case: The Fourier coefficients pf®(x) are given by Hence the only nonvanishing Fourier coefficieptg§n+0)
arep, andp_,=p . Using the relatiorS_, _,=Sk ,, we
:’ﬁo)=3no+%' S find from Eq.(5) the solution
~ 2(— 1)r_1SrO_SrOS:r+S:{OSirr
=S .+ >/ + DY - pr= = . (12
Srot 2" SunSnot 24" 22" SumSmiSio " 4-4(-1) 'ReS, +[S,*-[S_ul?
©) Writing p, = [p,|exp(¢), this leads to the result
The asymptotidlargen) behavior ofp(®) is thus controlled 1
by Sym. If p¥~n"1, thenp®(x) has finite discontinuities pX)=5+ [p|cog mrx+ ¢). (13)

in I—including, possibly, the end points1, as we have
used periodic boundary conditions. Now consider what hap"l’he invariant density is therefore “locked in” at the same

pens when noise is added. ¢{(¢) is continuous, therg,  wavelength as the noise density, with a phase shift. The am-
~n~2. Even ifg(£) has finite jumps in including, possi- plitude and phase ship depend on the mapthrough the

bly, at the end points- 1), its aymptotic behavior is at least matrix elements oSthat appear in Eq12). It is evident that
Oo(n™h [22]. 1t follows at once from Eq.(5) that the  the situation corresponds to completely noise-dominated dy-
asymptotic behavior op, is improved top,=0O(n" 1" %), namics. This is brought out explicitly in the example consid-

where a>0. ConsequentlyXp,exp(mnX) converges abso- €red in the next section.
lutely in I, and p(x) becomes continuous everywhere, in-
cluding the end pointd.That is, p(—1)=p(1).] Explicit il- IV. DEPENDENCE OF p(x) ON THE NOISE AMPLITUDE

lustrations will be given subsequently. . . .
We want to study the explicit dependence of the invariant

density on the amplitude of the noise density inanpertur-
bative manner. For this purpose, we consider illustrative
cases in which an exact solution fpx) is possible owing
We show now that an interesting form of “mode- to symmetries present i, as indicated in Sec. Il. The
locking” occurs if the noise density has a single wavelengthnoise density is taken to have a compact supperty, ]
i.e., Fourier component. The corresponding noise density if.e., an amplitudey). A convenient form for the normalized

IIl. EXACT SOLUTION FOR “SINGLE-MODE” NOISE
DENSITY
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FIG. 2. The square-root cusp map.

densityg(&) that enables us to scan the entire rangeypof )
from O to 1 is FIG. 3. Plot ofp(x) vs x for the noisy square-root cusp map

corresponding ta;=0.1,0.2, and 0.7, respectively.

-: the fixed point at the left boundary= — 1. However, unlike
2y~ Y 1+ cos—), €< n many other models of intermittency that share the latter fea-
7 (14 ture, the mag16) has the nonsingular invariant densjg]

0, #n<|é=1,

9(é)=

1-x
p O (x)= — (17)
where 0<#7<1. Figure 1 depictgy(¢) for »=0.2. In the
limit »—0, we haveg(£)— 6(&), or noise-free dynamics.
Whenz— 1, we have the fully noise dominated case consid-As f(x) is symmetric, we havs,,,=S, _,. Further,
ered in the preceding section. The Fourier coefficients of
g(&) are given by

1 —1)"
snozzfldyexp(zwinﬁ):(i )=—s,n,0. (18

(imn)
n27?
nznz— 1

~ Sin(nn)
" nmy

. (15

Hence, as pointed out in Sec. I, the exact solutiongix)
is given by Eq.(7). We get

To bring out all the effects of noise gm(x) which we

want to demonstrate, let us first consider the square-root cusp _ )n
map (see Fig. 2 p(x)— _ Z ——g, sin(nmx). (19)
Xn+1:f(xn):1_2|xn|l/2- Xpe€l. (16)

Putting in the expression fag, from Eq. (15) and carrying

It is well known that this map provides a prototypical model out the summations involved, we finally obtain the closed-

of intermittent chaos, arising from the marginal stability of form expression

r1 1 1 w(1+x)
3+, (1 M+ sin— =, —lsx=-1+
1-x
pX)=y 5 ~ltrsx<l-7¢ (20
1  @w(x-1)
\ E—Z(l—ﬂ)(l—X)'FESInT, 1—np=x=1.
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FIG. 5. Plot of p(x) vs x for the piecewise linear map corre-

FIG. 4. The piecewise linear map. > i
sponding ton=0.2,0.5, and 0.7, respectively.

Figure 3 show(x) in the case$;=0.1,0.2, and 0.7, respec- _ . . @

tively. (Throughout this paper, relatively large valuespf . NeXt let us consider a simple case in whigf(x) has a

have been chosen for clarity of illustration, and also to emfinite jump in the interior of the interval, in order to see how

phasize the nonperturbative nature of the resultee fol-  the noise smooths it otltimately, to a uniform density in

lowing points are noteworthy. the I|m|_t n= 1). A convenle_nt illustration is provided by the
(i) Both p©(x) and p(x) are antisymmetric about the Pi€cewise linear magsee Fig. 4

mean value 1/2. Howevep®(—1)=1 while p(®(1)=0. L

But p(x) is continuous everywhericludingthe end points 1-5x, [x|=s

+1[p(£1)=1/2], in accordance with the general result es- Xny1=F(Xn) =19 (1 —5|x|) (22

tablished in Sec. Il. This feature persists for arbitrarily small a4 <[x|<1.

values ofy. It is known that it is rather difficult in numerical

simulations to obtain the exact reswf”(x)=(1-x)/2: a  The unperturbed invariant density is the piecewise constant

“boundary layer” persists, especially nea=—1, in which  function

the invariant densitybuilds upto a value close to unity,

[GIE

instead of straightaway starting at that valueer—1 and 2 —1=x<0
then decreasing linearly as increases. Our result on the pO(x)= L (23
continuity of p(x) accounts for this phenomenon: noise, al- 5, 0<x=1
beit in the form of round-off errors, is inevitably present in ) ]
simulations. with a jump atx=0. In this case, too§,,=S, -, and
(i) In the opposite, noise-dominated limjt— 1, we find 3i
1 sin(mx) Swo=~S-no=g,~[1-(~1)"]. (24
pX)=5=—5——, (21

o _ . _ When noise[distributed as in Eq(14)] is added,p(x) is
again in accord with the results of Sec. Ill, in the special cas€ound to be the following piecewise analytic function, for
r=21|p/|=1/(2m),p=ml2. n<l/2:

PTGt S PO
— [ —_— p— = $_
1077( X) 1071'Sln 7 X K

—1+psx=—17p

R Ol bh N

p(X)= 2 10; 1070 X|<7 (25
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p(X) remains piecewise analytic foy>1/2, as well. As be- In|f’(x)|. If, further, bothp(®)(x) — 1/2 andp(x) — 1/2 are an-
fore, we illustrate in Fig. 5 the trends in the variationpgk) tisymmetric inx, it follows that the corresponding Lyapunov
using large values 0%;:0.2,0.5, and 0.7, respectively. As exponents are equal to each other, and are given by
expected, the discontinuities thaf)(x) has ax=0 and+1
disappear inp(x), for arbitrarily small . As n—1, p(x)
tends to 1/2-(3/5m) sin (wX), corroborating our result ob-

1
>\<°>=>\:J dxIn|f’(x)|.
tained for “single-mode” noise.

0

(26)

The general conclusion is as follows: fifx) is an even
function in | and so is the noise density, thememains equal

We have shown that additive noise significantly alters th¢o A(® provided S,, is odd in the indexn, ie.,
invariant density for fully chaotic 1D maps: arbitrarily small [,dxcogn=f(x)) vanishes for every integer value of
amounts of noise smooth out the density and remove any
discontinuities it may have in the absence of noise, under
periodic boundary conditions. One may ask whether the
Lyapunov exponenk(®) is also altered by the addition of S.S. acknowledges financial support from the Council of
noise[24]. While thisis so in general, there is no change in Scientific and Industrial Research, India. S.L. thanks the De-
A (©) in the examples considered in Sec. IV, for the following partment of Science and Technology, India, for partial assis-
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