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Noise-amplitude dependence of the invariant density
for noisy, fully chaotic one-dimensional maps

S. Seshadri, V. Balakrishnan, and S. Lakshmibala
Department of Physics, Indian Institute of Technology–Madras, Chennai 600 036, India
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We present some analytic, nonperturbative results for the invariant densityr(x) for noisy one-dimensional
maps at fully developed chaos. Under periodic boundary conditions, the Fourier expansion method is used to
show precisely how noise makesr(x) absolutely continuous and smooths it out. Simple solvable models are
used to illustrate the explicit dependence ofr(x) on the amplitudeh of the noise distribution, all the way from
the case of zero noise (h→0) to the completely noise-dominated limit (h51). @S1063-651X~99!00307-4#

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

One-dimensional~1D! maps exhibiting chaotic behavio
have been used as effective models to describe a wide va
of physical processes ranging from irregular behavior
electronic circuits and chemical reactions to turbulence@1,2#.
In particular, probabilistic or statistical approaches~involv-
ing, for instance, invariant measures on attractors! enable us
to by-pass the limitations imposed by extreme sensitivity
initial conditions, and compute various quantities of inter
in terms of statistical averages@3–5#. A considerable body of
mathematically rigorous results on 1D discrete-time dyna
ics is also available@6,7#. As random noise is inevitably
present in physical systems, much effort has been put
understanding the effects of noise upon different aspect
chaotic dynamics, including invariant densities and rela
quantities@5,8–17#. As much ~but not all! of this work is
based on numerical analysis or simulation, analytical res
are of importance—especially so if they are nonperturba
in nature, i.e., if they are valid for arbitrarily large nois
amplitudes.

In this paper, we revisit 1D maps in the regime of ful
developed chaos, in the presence of uncorrelated n
@18,19#. With the addition of noise, the evolution equatio
becomes a stochastic difference equation, thereby ma
the system effectively infinite-dimensional. Imposing pe
odic boundary conditions, the Fourier transform meth
@10,11# is used to establish some nonperturbative results
the invariant densityr(x). In Sec. II, we show how the ad
dition of noise of arbitrarily small amplitude can maker(x)
absolutely continuous in the interval. In Sec. III, we consid
a noise density that has a single nontrivial Fourier mode,
show thatr(x) is also locked in at the same mode, but w
a phase shift. In Sec. IV we examine the dependence ofr(x)
on the amplitude of the noise density, varying the latter o
the full range from zero~the noise-free limit! to unity ~the
completely noise-dominated limit!. We conclude with a few
remarks on the effect of noise on the Lyapunov exponen

II. CONTINUITY OF THE INVARIANT DENSITY

We consider 1D endomorphismsxn115 f (xn),n
50,1, . . . ,xnP@21,1# [I, exhibiting fully developed chaos
PRE 601063-651X/99/60~1!/386~5!/$15.00
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with invariant densityr (0)(x). In the presence of additive
noise,

xn115 f ~xn! 1 jn11 , ~1!

where ^jn&50,̂ jnjn8&5^j2&dnn8 . We use periodic bound
ary conditions, so that the normalized noise distributiong(j)
is also a periodic function with fundamental interval I. Th
invariant densityr(x) for the noisy map~1! satisfies the
perturbedFrobenius-Perron equation@5#

r~x!5E
I
dy g„x2 f ~y!…r~y!. ~2!

The Fourier expansions ofr andg are

r~x!5
1

2 (
n52`

`

r̃nexp~ ipnx!,g~j!5
1

2 (
n52`

`

g̃nexp~ ipnj!,

~3!

where

r̃n5E
I
dxr~x!exp~2 ipnx!,g̃n5E

I
djg~j!exp~2 ipnj!.

~4!

On substituting Eqs.~3! and Eqs.~4! and using the normal-
ization ofr andg(⇒ r̃051,g̃051), Eq.~2! becomes equiva-
lent to the following ~infinite-dimensional! inhomogeneous

matrix equation@10,11# for r̃n ,nÞ0:

r̃n5g̃nSn01(
m

8 g̃nSnmr̃m , ~5!

where(8 stands for a summation over all nonzero intege
The elements of the matrixS are given by

Snm5
1

2EI
dyexp$ ip@my2n f~y!#%. ~6!

Iteration of Eq.~5! provides a fast-converging means of n
merical solution, once theg̃n are specified from the nois
386 ©1999 The American Physical Society
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distribution concerned. The unperturbed~or noise-free! case
is recovered on replacingg(j) by d(j), i.e., by settingg̃n
51 for all n.

It turns out that exact solutions for the invariant dens
r(x) can be obtained from Eq.~5! in several important case
by exploiting the symmetries, if any, that the matrixS may
happen to possess@17#. For instance, ifSn050 for all nÞ0,
both r (0)(x) and r(x) reduce to the constant density 1/
Again, suppose the noise densityg(j) is symmetric about its
mean value zero~a reasonable assumption!, so that g̃n

5g̃2n . Then, if Snm is even~respectively, odd! in the index
m, while Sn0 is odd~respectively, even! in the indexn, only
the leading term in the iterative solution of Eq.~5! survives.
This leads to the exact solution

r~x!5
1

2 (
n52`

`

g̃nSn0 exp~2 ipnx!. ~7!

Putting in the definitions ofg̃n and Sn0, Eq. ~7! can be re-
written in the form

r~x!5
1

2EI
dyg„x2 f ~y!…. ~8!

We shall use these results in Sec. IV to study analytically
dependence of the invariant density on the amplitude of
noise distribution.

Here, we wish to point out a simple way of understand
precisely how the addition of noise leads, in general, t
smootherinvariant density@20,21#. Consider the noise-free
case: The Fourier coefficients ofr (0)(x) are given by

r̃n
(0)5Sn01(

m
8 Snmr̃m

(0)

5Sn01(
m

8 SnmSm01(
m

8 (
l

8 SnmSmlSl01•••.

~9!

The asymptotic~largen) behavior ofr̃n
(0) is thus controlled

by Snm . If r̃n
(0);n21, thenr (0)(x) has finite discontinuities

in I—including, possibly, the end points61, as we have
used periodic boundary conditions. Now consider what h
pens when noise is added. Ifg(j) is continuous, theng̃n
;n22. Even if g(j) has finite jumps in I~including, possi-
bly, at the end points61), its aymptotic behavior is at leas
O(n21) @22#. It follows at once from Eq.~5! that the
asymptotic behavior ofr̃n is improved tor̃n5O(n212a),
wherea.0. Consequently,(r̃nexp(ipnx) converges abso
lutely in I, and r(x) becomes continuous everywhere, i
cluding the end points.@That is,r(21)5r(1).# Explicit il-
lustrations will be given subsequently.

III. EXACT SOLUTION FOR ‘‘SINGLE-MODE’’ NOISE
DENSITY

We show now that an interesting form of ‘‘mode
locking’’ occurs if the noise density has a single waveleng
i.e., Fourier component. The corresponding noise densit
e
e

g
a

-

,
is

given by the one-parameter family of functions

g~j!5
1

2
@11~21!r 21 cospr j#, ~10!

wherer is an integer. Correspondingly,

g̃n5dn,01
1

2
~21!r 21~dn,r1dn,2r !. ~11!

Hence the only nonvanishing Fourier coefficientsr̃n(nÞ0)
are r̃ r and r̃2r5 r̃ r* . Using the relationS2n,2m5Sn,m* , we
find from Eq.~5! the solution

r̃ r5
2~21!r 21Sr02Sr0Srr* 1Sr0* S2rr*

424~21!r 21 ReSrr 1uSrr u22uS2rr u2
. ~12!

Writing r̃ r5ur̃ r uexp(if), this leads to the result

r~x!5
1

2
1ur̃ r ucos~prx1f!. ~13!

The invariant density is therefore ‘‘locked in’’ at the sam
wavelength as the noise density, with a phase shift. The
plitude and phase shiftf depend on the mapf through the
matrix elements ofS that appear in Eq.~12!. It is evident that
the situation corresponds to completely noise-dominated
namics. This is brought out explicitly in the example cons
ered in the next section.

IV. DEPENDENCE OF r„x… ON THE NOISE AMPLITUDE

We want to study the explicit dependence of the invari
density on the amplitude of the noise density in anonpertur-
bative manner. For this purpose, we consider illustrati
cases in which an exact solution forr(x) is possible owing
to symmetries present inSnm , as indicated in Sec. II. The
noise density is taken to have a compact support@2h,h#
~i.e., an amplitudeh). A convenient form for the normalized

FIG. 1. Plot ofg(j) vs j for h50.2.
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densityg(j) that enables us to scan the entire range oh
from 0 to 1 is

g~j!5H ~2h!21S 11cos
pj

h D , uju,h

0, h,uju<1,

~14!

where 0,h,1. Figure 1 depictsg(j) for h50.2. In the
limit h→0, we haveg(j)→d(j), or noise-free dynamics
Whenh→1, we have the fully noise dominated case cons
ered in the preceding section. The Fourier coefficients
g(j) are given by

g̃n5
sin~nph!

nph F12
n2h2

n2h221
G . ~15!

To bring out all the effects of noise onr(x) which we
want to demonstrate, let us first consider the square-root c
map ~see Fig. 2!

xn115 f ~xn!5122uxnu1/2, xnPI. ~16!

It is well known that this map provides a prototypical mod
of intermittent chaos, arising from the marginal stability

FIG. 2. The square-root cusp map.
-
f

sp

l

the fixed point at the left boundary,x521. However, unlike
many other models of intermittency that share the latter f
ture, the map~16! has the nonsingular invariant density@23#

r (0)~x!5
12x

2
. ~17!

As f (x) is symmetric, we haveSnm5Sn,2m . Further,

Sn05
1

2EI
dy exp~2p inAy!5

~21!n

~ ipn!
52S2n,0 . ~18!

Hence, as pointed out in Sec. II, the exact solution forr(x)
is given by Eq.~7!. We get

r~x!5
1

2
1 (

n51

`
~21!n

np
g̃n sin~npx!. ~19!

Putting in the expression forg̃n from Eq. ~15! and carrying
out the summations involved, we finally obtain the close
form expression

FIG. 3. Plot ofr(x) vs x for the noisy square-root cusp ma
corresponding toh50.1,0.2, and 0.7, respectively.
r~x!55
1

2
1

1

2h
~12h!~11x!1

1

2p
sin

p~11x!

h
, 21<x<211h

12x

2
, 211h<x<12h

1

2
2

1

2h
~12h!~12x!1

1

2p
sin

p~x21!

h
, 12h<x<1.

~20!
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Figure 3 showsr(x) in the casesh50.1,0.2, and 0.7, respec
tively. ~Throughout this paper, relatively large values ofh
have been chosen for clarity of illustration, and also to e
phasize the nonperturbative nature of the results.! The fol-
lowing points are noteworthy.

~i! Both r (0)(x) and r(x) are antisymmetric about th
mean value 1/2. However,r (0)(21)51 while r (0)(1)50.
But r(x) is continuous everywhere,including the end points
61@r(61)51/2#, in accordance with the general result e
tablished in Sec. II. This feature persists for arbitrarily sm
values ofh. It is known that it is rather difficult in numerica
simulations to obtain the exact resultr (0)(x)5(12x)/2: a
‘‘boundary layer’’ persists, especially nearx521, in which
the invariant densitybuilds up to a value close to unity
instead of straightaway starting at that value forx521 and
then decreasing linearly asx increases. Our result on th
continuity of r(x) accounts for this phenomenon: noise,
beit in the form of round-off errors, is inevitably present
simulations.

~ii ! In the opposite, noise-dominated limith→1, we find

r~x!5
1

2
2

sin~px!

2p
, ~21!

again in accord with the results of Sec. III, in the special c
r 51,ur̃ r u51/(2p),f5p/2.

FIG. 4. The piecewise linear map.
-

-
ll

-

e

Next, let us consider a simple case in whichr (0)(x) has a
finite jump in the interior of the interval, in order to see ho
the noise smooths it out~ultimately, to a uniform density in
the limit h51). A convenient illustration is provided by th
piecewise linear map~see Fig. 4!

xn115 f ~xn!5H 125uxu, uxu< 1
5

~1 25uxu!
4

, 1
5 <uxu<1.

~22!

The unperturbed invariant density is the piecewise cons
function

r (0)~x!5H 4
5 , 21<x,0

1
5 , 0,x<1

~23!

with a jump atx50. In this case, too,Snm5Sn,2m , and

Sn052S2n05
3i

5np
@12~21!n#. ~24!

When noise@distributed as in Eq.~14!# is added,r(x) is
found to be the following piecewise analytic function, fo
h,1/2:

FIG. 5. Plot ofr(x) vs x for the piecewise linear map corre
sponding toh50.2,0.5, and 0.7, respectively.
r~x!5

¦

1

2
1

3

10h
~11x!1

3

10p
sin

p~11x!

h
, 21<x<211h

4

5
, 211h<x<2h

1

2
2

3x

10h
2

3

10p
sin

px

h
, uxu<h

1

5
, h<x<12h

1

2
2

3

10h
~12x!2

3

10p
sin

p~12x!

h
, 12h<x<1.

~25!



s

-

th
ll
an
d
th
f
in
ng

v

of
De-
sis-

390 PRE 60S. SESHADRI, V. BALAKRISHNAN AND S. LAKSHMIBALA
r(x) remains piecewise analytic forh.1/2, as well. As be-
fore, we illustrate in Fig. 5 the trends in the variation ofr(x)
using large values ofh:0.2,0.5, and 0.7, respectively. A
expected, the discontinuities thatr (0)(x) has atx50 and61
disappear inr(x), for arbitrarily smallh. As h→1, r(x)
tends to 1/22(3/5p) sin (px), corroborating our result ob
tained for ‘‘single-mode’’ noise.

V. CONCLUDING REMARKS

We have shown that additive noise significantly alters
invariant density for fully chaotic 1D maps: arbitrarily sma
amounts of noise smooth out the density and remove
discontinuities it may have in the absence of noise, un
periodic boundary conditions. One may ask whether
Lyapunov exponentl (0) is also altered by the addition o
noise@24#. While this is so in general, there is no change
l (0) in the examples considered in Sec. IV, for the followi
reason: if the mapf (x) is an even function ofx, so is
,

e

l

l

e

y
er
e

lnuf8(x)u. If, further, bothr (0)(x)21/2 andr(x)21/2 are an-
tisymmetric inx, it follows that the corresponding Lyapuno
exponents are equal to each other, and are given by

l (0)5l5E
0

1

dx ln u f 8~x!u. ~26!

The general conclusion is as follows: iff (x) is an even
function in I and so is the noise density, thenl remains equal
to l (0) provided Sn0 is odd in the index n, i.e.,
* Idx cos„np f (x)… vanishes for every integer value ofn.
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