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We present a numerical study of two-dimensional random-bond Potts ferromagnets. The model is studied
both below and above the critical val@g =4, which discriminates between second- and first-order transitions
in the pure system. Two geometries are considered, namely cylinders and square-shaped systems, and the
critical behavior is investigated through conformal invariance techniques that were recently shown to be valid,
even in the randomness-induced second-order phase transition r@gideIn the cylinder geometry, con-
nectivity transfer matrix calculations provide a simple test to find the range of disorder amplitudes that is
characteristic of the disordered fixed point. The scaling dimensions then follow from the exponential decay of
correlations along the strip. Monte Carlo simulations of spin systems on the other hand are generally performed
on systems of rectangular shape on the square lattice, but the data are then perturbed by strong surface effects.
The conformal mapping of a semi-infinite system inside a square enables us to take into account boundary
effects explicitly and leads to an accurate determination of the scaling dimensions. The techniques are applied
to different values of) in the range 3—64.51063-651X99)19010-X

PACS numbd(s): 05.20-y, 05.50+q, 64.60.Fr

[. INTRODUCTION model (IM) « vanishes due to the logarithmic Onsager sin-
gularity, this model was carefully studied in the 19864
The presence of impurities can have significative effectsThe analogous situation when the pure system exhibits a
on the nature of phase transitions. Both from experimentafirst-order transition was less well studied, in spite of the
and theoretical perspectives, the study of the influence ofarly work of Imry and Wortis, who argued that quenched
randomness is of great importance. Experimental evidencedisorder could induce a second-order phase transftrgn
of the effect of random quenched impurities in two- This argument was then rigorously proved by Aizenman and
dimensional systems were found in order-disorder phas®/ehr, and Hui and BerkdB,9]. In two dimensions, even an
transitions of adsorbed atomic layers belonging, in the purénfinitesimal amount of quenched impurities changes the
case, to the@=4)-state Potts model universality cldds2].  transition into a continuous one.
In the presence of disorder, the critical exponents are modi- The first intensive Monte Carl@MC) study of the effect
fied. On the other hand, no modification is found when theof disorder at a first-order phase transition is due to Chen,
pure system belongs to the Ising universality cli&s Ferrenberg, and Landau. These authors studied the
The study of disordered systems is quite an active field o{Q=8)-state two-dimensional random-bond Potts model
research in statistical physics, and a resort to large-scal@RBPM), which, in the pure case, is known to exhibit a first-
Monte Carlo simulations is often helpf{#]. Numerical in-  order phase transition wheé@>4; the larger the value d@,
vestigations of the critical properties of random systems rethe sharper the transitigrii0]. Taking advantage of duality,
quire averages over disorder realizations. Standard teclthey performed a finite-size scaling study at the critical point
niques, such as finite-size scaliffigereafter referred to as of a self-dual disordered systefll,12] and definitively
FSS or temperature dependence of the physical quantitieshowed that the transition becomes of second order in the
were extensively used, and, more recently, conformal invaripresence of bond randomness. Their results, together with
ance techniques were shown to provide accurate results. other related works[13—-16, suggested that any two-
The effect of quenched bond randomness in a system thaimensional random system should belong to the two-
undergoes a second-order phase transition in the homogdimensional(2D) pure IM universality class. These results
neous case has been considered first. It has been well undevere also coherent with real experimefts.
stood since Harris proposed a relevance criterion for the case In recent papers, Cardy and Jacobsen used a different ap-
of fluctuating interaction$5]. Disorder appears to be a rel- proach[17,18, based on the connectivity transfer matrix
evant perturbation when the specific heat exporenf the  (TM) formalism of Blde and Nightingal¢19]. They studied
pure system is positive. Since in the two-dimensional Isingandom-bond Potts models for different valueénd with
a bimodal probability distribution of coupling strengths.
Their estimations of the critical exponents led to a continu-
* Author to whom correspondence should be addressed. Electronigus variation of3/v with Q. This result is in accordance with

address: berche@Ips.u-nancy.fr previous theoretical calculations and MC simulations when
"The Laboratoire de Physique des Miex is Unite Mixte de Q<4 [20,21. In the randomness-induced second-order
Recherche CNRS No. 7556. phase transition regim@>4, /v is quite different from the

1063-651X/99/6(%)/385313)/$15.00 PRE 60 3853 © 1999 The American Physical Society



3854 CHRISTOPHE CHATELAIN AND BERTRAND BERCHE PRE 60

TABLE I. Bulk magnetic scaling index obtained by different with p=1/2, which guarantees the self-duality relation
groups in the eight-state Potts model.

(e™e—1)(e"e—1)=Q. ()
Authors r Blv Technique
Chenet al. [12] 2 0.1182) MC The valuer =1 corresponds to the pure model, and« to
Cardy and Jacobsdi7] 2 0.1424) ™ the percolation limit. , , ,
Chatelain and Berchg22] 10 01539 MC In the present work, following previous studies, we use
Picco[24] 10 0.1531) MC the powerful methods of conformal invariance. Talapov and

co-workers studied numerically the critical-point correlation

functions in the 2D RBIM on the torug31] and took into

Ising value of 1/8 and particularly in sharp disa reememf'JlCCount th_e finite-size effects t.hrough a convenient confor-
9 P Y b 9 mal rescaling[32,33. In the cylinder geometry, conformal

with the Monte Carlo results of Ref12] for Q=8. Since . . .
then, Monte Carlo simulations have been performed by gifinvariance methods have also been successfully applied. In

ferent groups a0 =8 [22—24. The choice of the valu® the two-dimensional RBIM, randomness being a marginally
—8 was motivated by the vaiue of the correlation length inirrelevant perturbation, many results have been obtained via

the pure cased=23.87 in lattice spacing unit§25]. MC these techniques: conformal anomaly; correlation decay;

simulations that enable one to discriminate between a firs@or exponent relation for long stripg34 36 At
) " ) randomness-induced second-order phase transitions, confor-
order regime and a second-order transition can indeed bg .
; . ) mal techniques have also been already y46418,37 and
performed easily with systems of larger sizes. These studies . . - .
: I ) , numerical evidence for the validity of the conformal covari-
led to partially conflicting results given in Table I, but they ) . . :
o ance assumption for correlation functions and density pro-
eventually found an explanation in terms of a crossover bez X 4
e i : X files was recently reportef38]. It is well known that in
havior in a recent work of Piccf®24]. While theoretical cal- . , . .
disordered spin systems, the strong fluctuations of couplings

culations are generally managed in the weak disorder regim . :
9 y 9 9MEom sample to sample require careful averaging procedures

(_perturbgtlon expansion {;\round the _homogeneous syste 9-41. For that reason, the study of the probability distri-
fixed poiny, the range of disorder amplitude must be choser .. .
utions must be performed in order to guarantee that the

carefully in numerical studies, since the random fixed pomtaverage quantities, which should obey the conformal covari-

(FP) can be perturbed by crossover effects due to the pure . . :
X ! : . nce assumption, are correctly obtained numerically. A com-
and/or the percolation unstable fixed points. The disordered_ - . .

arison between grand canonical disord&CD) and ca-

FP properties are thus more easily observed with strong ra Fonical disordefCD) will also be given
domness. A disordgr amP'“%‘de given by t_he ratio Of. the The plan of the paper is the foIIoWing. In Sec Il, we
glivs(iritt))/l?t?os n)oifn Ct?]lép:glr?iedlgt_ﬂgg tgd z;(r:grg)mgetg daa k:;nda?c/) ;%)resent the results of connectivity transfer matrix calcula-

X i ge « PP : b .—_tlons on strips with periodic boundary conditions for differ-
numerical analysis and gives a good estimate of the disor-

deres e pot oxponeni£4 20, 5 areacy ovseved n S Gace 0% 10 O BEmELT conolaon ncton,
the 2D random-bond Ising modéRBIM) [27,28. ge, 9

The surface properties of dilute or random-bond magneticscalmg index for different strip sizes. From our knowledge,

systems were paid less attention. The whole set of bulk an?uit:aeblz afs;?;s ([fe%r&ﬁ]pgﬁ;rsogh:tggﬁjgn?gm%l?;%tr'ggrs :rr:_
surface critical exponents of a given system is determined b

the anomalous dimensions of the relevant scaling fields tha\Ei“tUde in order to reach the disordered FP. At large disorder

enter the homogeneity assumption of the singular free ene%?aegtg(ii; frijtlagzj Jir;iritrﬁzgrelogect)\]:vg; ?a]:];\edcct)lr\:]eaﬁﬁng:rlco-
gies[29]. The(1, 1) surface of the disordered Ising model on lation fixed points. In Sec. lll, we report Monte Carlo simu-

a square lattice has only recently been investigated througl@tions in az uaré eométr ' with trﬁ)e above-mentioned dis-
MC simulations by Selkeet al. [30]. The critical exponent q 9 y

o rder amplitude. The magnetization correlation function and
B, of the boundary magnetization was found to be equa . o .
o : : density profile give access to refined values for the corre-
within error bars to its value in the pure 2D IM. The surface

i . -sponding exponents. A discussion of the results is given in
grgfp([azrtzljas of the eight-state RBPM were also computed "Sec. IV. Attention is paid to taking into account the different

In this paper, we are interested in the bulk critical behav->0U'C€S of error for the results reported in this work.

ior of disordered Potts ferromagnets, and in the evolution of
their properties as the number of stat@sincreases. The [l. CYLINDER GEOMETRY AND DISORDERED
Hamiltonian of the model is FIXED POINT

A. Free energy and central charge

—BH=2, Kij8y o (1) In the strip geometry, we used the Btoand Nightingale
(i.J) v connectivity transfer matrix methdd.9]. In disordered sys-
tems, transfer operators in the time direction do not commute
where the spins can takg different values and the coupling and, as a consequence, the free energy density is no longer
strengths between nearest neighbor spins are taken fromdgafined by the largest eigenvalue of a single TM, but in
binary probability distribution terms of the leading Lyapunov exponent. For a strip of kize
with periodic boundary conditions, the leading Lyapunov ex-
P(Kij)=pd(Kj;—rK)+(1—p) 8(K;; —K), (2)  ponent follows from the Furstenberg methek®]:
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FIG. 1. Free energy densityp to an additive constant @) vs The parametet is defined in Eq(8).
m, the number of iterations of th€&M for a strip of sizeL=6 (Q
=8, r=10) with five realizations in@ grand canonical angb)

. . The numerical investigation of critical properties in ran-
canonical disorder.

dom systems requires knowledge of the range of disorder

amplitude(measured here by the raticbetween strong and
= lim Ao(L:m), (4) weak couplings for which the fixed point properties are

m—ce reached. Outside this regime, strong crossover effects perturb

the data38]. A convenient disorder amplitudecan be ob-
tained from the behavior of the effective central charge,
which increases when the system approaches the disordered
fixed point in nonunitary theories, as seems to be the case in
the RBPM[18,43. The central charge is defined by the
leading size dependence of the free energy density, and,
since the strip sizes are quite small, corrections to scaling
must be included:

Vo)

m
Ao(L)= lim & |n(k]'[l Ty

whereT, is the transfer matrix between columks 1 andk
and |vp) is a suitable unit initial vector. The free energy
density is thus given by

[fo(L)Jay=—L"tAq(L), 5

where[ ],, denotes the average over disorder realizations.
In the following, we will consider canonical disorder, a
situation in which exactly the same numbers of coupliKgs
andrK are distributed over the bonds of the whole system of [fo(L)av=freg— W_CL72+A|_74_ 7
length ~10°. This choice contributes to reducing sample 6
fluctuations. This is shown in Fig. 1, where the stability of
the free energy density is compared to the standard granthe comparison between successive sizesdL +1 allows
canonical disorder for different runs up o= 10° iterations  Us to define a reduced difference, which leads to
of the TM.
In Eq. (4), the disorder average is implicitly performed [fo(L)Jav—[fo(L+1)]ay 6
through an infinite number of iterations of the transfer maLATi(L) Jay (L+1)"2—-L"2 —c- ;A)" G
trix. In our computations, only a finite numben is used,
leading to approximate values denoted/b’(L;m) for dif-  where the reduced parameteis given by
ferent runs labeled by an integéri,...,M. The leading
Lyapunov exponent and the corresponding eigenvedtgy, (L+1)~4-L"*
obtained aftem= 1P iterations of the TM, are then aver- A= L+ =2 9
aged oveM =48 independent runs. The average free energy
density of Eq.(5) is thus replaced, in the calculations, by

6
T

In the thermodynamic limit, the central chargéhen follows
M from a linear fit, as shown in Fig. 2 for strips of sizks
- — -1 — (i) - =2 to 8 in the cas&® = 3. We restricted our study to integer
[fo(L)Jav=LTo(L) Im - (M izl Ao (L’loﬁ))' © values ofr, and the data for the effective central charge at
different disorder amplitudes are given in Table Il. We ob-
The valueM =48 was chosen in order to guarantee a stabilserve that the value a@fis strongly dependent on the disorder
ity of the averaged quantities with a relative error better tharamplitude: It increases from the weak disorder limit up to a
10" ° for the free energy density and better thax 0 ° for ~ maximum value and then decreases slowly ascreases.
the components of the corresponding eigenvector. The com- The central charge at the random fixed pdine., the
putations are then performed on strips of sikzes2 to 8. maximal value obtained for an optimal disorder amplitude
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TABLE II. Extrapolation of the effective central chargein the thermodynamic limit for the different
values ofQ andr. At eachQ, the larger values of (written in bold facé correspond to the random fixed
point regime with an optimal disorder amplitudé. This maximum is not always located at the samas
shown in the cas®=3 and 64 for two different runs.

Effective central charge @=3

ro2 4 5 6 7 10 20

c 0.7970 0.7998 0.79984  0.79969 0.7992 0.7970  0.7879
Ac 4X107% 4x107% 3.8x107* 3.8x107™* 4x10* 4x10% 4x10*
c 0.8005  0.80070  0.80099

Ac 4x107% 3.8x107* 3.7x107*

Effective central charge @=4
r 2 5 6 7 8 10 20
c 1.0043 1.0144 1.01495 1.01483 1.0142 1.0123 0.9996
Ac 4X10% 4Xx107% 4.3x107% 4.3x107™* 4x10°% 4x104 4x1074

Effective central charge @=5
ro 2 5 6 7 8 10 20
¢ 11579 1.1794 1.1810 1.181593 1.181326 1.1794  1.1642
Ac 5x107% 5x10% 5x10°% 4.6x10* 4.6x10* 5x10* 5x10°*

Effective central charge @=6
r 2 5 7 8 9 10 20
c 1.2764 1.3128 1.3172 1.3174 1.3168 1.3157 1.2986
Ac 5x10* 5x104 5x10% 5x10* 5x10% 5x10* 5x10°*

Effective central charge @®=38
ro 2 5 9 10 11 12 20
¢ 14468 15203 1.5329 1.5300 15287 1.5270 1.5104
Ac 5x10% 5x10% 5x10™* 5x10* 5x10* 5x10* 5x10°*

Effective central charge &= 15
ro 2 5 9 10 11 12 13 15 20
¢ 1.7313 1.9606 1.9963 1.9937 1.9930 1.9915 1.9895 1.9846  1.9708
Ac 6X10% 6Xx10% 6X104 6%Xx10* 6X10% 6%X10* 6%x10% 6x10%4 6x10*

Effective central charge @ =64
ro2 5 10 11 12 13 15 20
c 2.0302 29351 3.0414 3.0432 3.0430 3.0415 3.0362 3.0182
Ac 7x107% 7x107% 7x107% 7x10* 7x107% 7x107* 7x10% 7x1074

C 3.0526 3.0528  3.0516
Ac 7x107%  7x10™*  7x10°*
r*(Q)] is shown in Fig. 3. Assuming a linear behavior in Qbso, )1
InQ [37] that preserves the Ising valw¢Q=2)=1/2[18], (Gy(u))y= # (11
one gets
c(Q)= InQ (10) where() denotes the thermal average, is given by the prob-
2In2’ ability that the spins along some row, at columjnand j

. . . B +u, are in the same statpandj +u measure the position in
while the percolatlo_n limit leads tqn(Q_)—(S\/§l4qr)InQ __the longitudinal direction of the strip
[18]. The two behaviors are shown in Fig. 3. The numerical

data are in good agreement with E40) and are accurate

enough to consider that the randdf® has been reached at A Hﬁ ' TAr

r* [whose values are coherent with those found by Jacobsen 09 kK Tiruto

and Cardy[{18]: r*(3)=7, r*(8)=09, andr*(64)=10]. In (Ooj0,, )= TFU=T , (12
the following, the scaling properties will be studied at the <Ao H T, A0>

optimal disorder amplitudes in contradistinction to previous k=]

paperd17,18.

where |Ag) is the ground state eigenvector aiig is the

transfer matrix in the extended Hilbert space, which includes
For a specific disorder realization, the spin-spin correlathe connectivity with the origin sitg The operatog;, iden-

tion function along the strip tifies the cluster containing;, while d;,, gives the appro-

B. Probability distribution of the correlation function
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FIG. 3. Central charge at the random fixed point as a function of ~ FIG. 5. Average correlation function, most probatie typical
the number of states. The full line corresponds ¢¢Q) value, and sum up to fourth order of the cumulant expansion ob-

=InQ/(2In 2), while the dashed line is the percolation lim{Q)  tained from 63436 realizations of disorder for a strip of size
=5v3In Q/4m. Error bars are smaller than the sizes of the symbols=6 (Q=8, r=10).

priate weight, depending on whether or ngt, , is in the
same state as; . The computation is performed with a grand
canonical disorder.

An analysis of the correlation function probability distri-
bution is needed in order to ensure that self-averaging pro
lems do not alter the mean valup$4]. The methodology .
that we propose is to deduce the critical behavior from thd© g€t the_ same relative errors. .
decay of the correlation functions using conformal symme- Fqllowmg Cardy and J_acobsen,. since the momentg of the
try. Since conformal covariance assumption is supposed tls)ganrhm of the 'correlatlorr: function a;re self-averaging, a
be satisfied by average quantities, i1€G,(U)) ], , our first cumulant expansion can then be performed to reconstruct
aim is to show that, in spite of the lack of self-averaging, ou {Gg(u))]ay @nd to compare to the values obtained by aver-

numerical experiments lead to well-defined averages. aging directly over the samples.

The probability distribution of the correlation function, as fJ]hedreSlf[ItS in Fig. Sfocri Q|:8)I strleng;[]hentthhet ;:lrledibilityl ;
shown in Fig. 4, enables us to determine the most probabl@' € diréct average, and aiso clearly show that the cumuian

. . expansion up to fourth order still strongly fluctuates at large
(or typica) value G'’(u) and the average correlation func- 7. .
tion [(G,(U))]lay, as well as the averaged logarithm distances compared 3 G,(u))]., . In the following we

; : will thus favor the direct averaging process, using a large
[In(G,(u))]4, at any value of the distanae Compatible be- number of disorder realizations.

haviors are found fo6™P(u) andel™CWv, This is a con-
firmation of the essentially log-normal character of the prob-
ability distribution[44], as argued by Cardy and Jacobsen
lLlﬂ' It is thus necessary to perform averages over larger
numbers of samples fqKG,(u))],, than for[In(G (u))]a,

u=30 C. Bulk magnetic scaling dimension

0.03
We will now use the results that follow from the assump-

tion of conformal covariance of the average correlation func-

N tions. In the infinite complex plare=x+iy (denoted by the
S 0.02 index«) the correlation function exhibits the usual algebraic
6’ decay at the critical point

v b

& [(Go(R)]ay=[(0(21) 0(2,))..]ay=CONSK R >,

0.01 (13)
whereR=|z,— z,| andx"= B/ v is the bulk magnetic scaling
dimension. Under a conformal mappingz), the correla-
tion functions of a conformally invariant 2D system trans-
form into the new geometry according to

b b
FIG. 4. Probability distribution of the correlation function after Go(W1,Wp)=|W'(zy)| o|W'(25)| *Gy(21,25). (14)
63 436 realizations of disorder for a strip of sike=6 (Q=8, r
=10). The vertical dashed line shows the average valuelhe logarithmic tranformatiorw=(L/27)Inz is known to
[{G,(30))]4, » While the long-dashed line shows the typical value map thez plane onto an infinite strigdenoted by the index
el{In GoB0ay, st) w=u+iv of width L with periodic boundary conditions



3858 CHRISTOPHE CHATELAIN AND BERTRAND BERCHE PRE 60

T T T T ; 0.2 T T T T
®r=10

0.18 | ‘r=§0 1 0.18 | EW@/E‘/@//E l
O =
0.16 ,_M/ l

________ =
. 0.14 M ]

0.14 ) 4 ¢ 0=6
Ve -—
x 042 | 40=15 |
K [m] Q=64
0.12 1 1 L 1 1
.1 L 1 L 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0 0 o 02 03 0a 05
1/L 1/L

FIG. 6. Magnetic scaling index deduced from the algebraic de-
cay of the average correlation function along the strip of kizs a
function of L~ and extrapolation in the thermodynamic linii®
=8,L=2-9 forr=2 and 20, from Ref[38] andL=2-8 forr
=10, this work, where the data analysis is more refifezke Ap-
pendix A), leading to error bars 10 times smaller

FIG. 7. Magnetic scaling index deduced from the algebraic de-
cay of the average correlation function along the strip of kizs a
function of L™ and extrapolation in the thermodynamic limit for
differentQ values £ =2-8).

limit is given in Table Ill. The details of the fitting procedure

in the transverse direction. Applying EL4) in the random and of the evaluation of errors are presented in Appendix A.

system Wher¢<Go(W1:W2)>]avE[<U(W1)U(W2)>st]av cor-
responds to the strip geometry, one gets the usual exponen-lll. SQUARE GEOMETRY AND CRITICAL BEHAVIOR

tial decay along the strip A. Conformal rescaling of boundary effects

L (15 are generally performed on systems of square shape. In the
following, we consider such a system of sid& N, and call
whereu=Rew,—w;). The scaling index" can thus be de- u andv the corresponding directior(§ig. 8).
duced from a linear fit in a semilog plot. The order parameter correlation function between a point
For each strip sizel(=2—8), we realized 88 10° dis-  close to the surface and a point in the bulk of the system
order configurations. It allowed us to define mean values anghould, in principle, lead to both surface and bulk critical
error bars for the correlation functions at any point in theexponents, possibly to structure constas]. Practically,
rangeu=1—100, taking into account the standard deviationFSS techniques are not of great help in the accurate determi-
over the samples. The non-self-averaging behavior of th@ation of critical exponents, sindg) strong surface effects
correlation functions induces large varianc€Bhe reduced (shape effecisoccur that modify the large distance power-
varianceRX(L)E([Xz]a\,—[X]gv)/[x]ﬁv does not behave as law behavior, i.e., the scaling regim@;) the universal scal-
a power law, but evolves towards a constant value when th#g function entering the correlation function is likely to dis-
strip size increases, e-QRG(,(zO)(L)—>1-50, as already ob- play a crossover before its asymptotic regime is reached

served for several quantities by Wiseman and Domany irgsy(s)tem-dependent deffer;t I - Svst fi . .
Refs.[40,41].) The exponents follow from an exponential fit ne can proceed as oliows: Systems of Increasing sizes
in the rangeu>5 and[(G,(U))].,> €, Where the cutoft is are successively considered, and the correlations are com-

introduced in order to avoid tiny numbers whose values aré’uuEd along theu axis (parallel to a square edge considered

lower than the fluctuations. The error bars given for the ex3s the free surfageandv axis (perpendicular to this edge

ponents take into account the uncertainties of data for the
correlation function$45]. The resulting values for each strip th
size are plotted again&t™ !, which allows an extrapolation

in the thermodynamic limit. This is shown in Fig. 6 in the
caseQ=28. This figure provides a confirmation of the effect r X AxP
of a too weak disorder: Strong crossover effects take place

2w Monte Carlo simulations of two-dimensional spin systems
[(G,(u))]ay=consxexp ——Xxou/|,

TABLE lll. Bulk magnetic scaling indexafter extrapolation in
e thermodynamic limjtobtained from the decay of the correlation
function along the strificutoff parametee=10"*—10"%).

[od o

that lead to a wrong determination of the critical behavior 3 5 0.1321 x104
with the strip sizes used here. On the other hand, at the 4 7 0.1385 X104
optimal valuer*(Q), the exponent converges in the— oo 5 7 0.1423 X104
limit towards a well defined final estimate. 6 8 0.1456 X104

The convergence of effective scaling dimensions at differ- g 10 0.1505 X104
ent strip sizes, obtained with a cutoff value in the rarge 15 10 0.1572 x10°4
=10 *—10 % andr=r*(Q), is shown in Fig. 7 for differ- 64 12 0.1669 %104

ent values ofQ. The extrapolation in the thermodynamic
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for the determination of the exponents. In pure systems, den-
sity profiles, correlations, and local properties have been in-
vestigated in various geometriésurfaceg47-49, corners
[50-52, strips[53-55, or parabolic shapeb6—61]; for a
review, see Ref[62]), as well as the moments of the mag-
netization[63] and structure factori64] having been calcu-
lated in square systems.

In the following, we shall consider a square system with
free or fixed boundary conditions on all the edges. Using
conformal invariance techniqueg65], the Schwarz-
Christoffel mapping enables us to calculate the surface-bulk
correlation function inside the square. The mapping of the
complex half-planez=x+iy, Imz>0, inside a squarg
=u+iv,—N/2<Re{=N/2,0<Im ¢=<N, is realized by the
conformal transformatioh66]

. ' d C
v g _ : (19
dz J1-2)(1-K2)
12+1N Since {=N/2 and {=N/2+iN are mapped onta=1 and
z=1/k (0<k<1), respectively, the constafitis related to
& C. the size of the square,
N/2C=K(k)=K,
(19
N/C=K(k")=K",
C wherek’ = \1—k? andK (k) is the complete elliptic integral
® 2 of the first kind. The moduluk also follows from these
b) 0 N2 u equations. It is given bj66]
% 2
FIG. 8. (a) Monte Carlo simulations of the 2D RBPM inside a 2 q(p4r1/2>2
square of 10X 101 lattice sites (1OMCS/spin, Swendsen-Wang p=0 Com
cluster algorithmn The figure shows the correlation function be- k=4 ——=—| , q=e " (20)
tween a point close to the surfacg, €i) and all other pointg in 1+ 22 qu
the square. The notations are specifiedtn p=1
The order parameter correlation function, for example, isThe complete transformation is finally written as
supposed to obey a scaling form that reproduces the expected
. ior i ic limit: N N
power-law behavior in the thermodynamic limit: (=~ F(zK) = — F(zK), 21)
1 2K K
Y%
SO\ )— — —_¢sql _
GJ_ (V) VXg+XifL(N ’ (16) B K/g«_ K/g k 22
z—an=sn - K (22
GSQ(U):iqu E (17)
I e AN where F(z,k) is the elliptic integral of the first kind and

sn(Z,k) is the Jacobian elliptic singg7].
wherex® andx are the bulk and surface order parameter
scaling dimensions, respectively. The scaling functions have B. Correlation functions
to satisfy asymptotic expansions, including corrections to
scaling due to the limitations mentioned above; .0y,
fS9Yv/N)~1+const<(v/N)*+--- in the boundary regiow

The two-point correlation function of a conformally in-
riant system can now be obtained in thgeometry in
terms of its counterpart in the semi-infinite systéngeom-

—N. etry):
Equations(16) and(17) are not very useful for the deter-
mination of critical exponents, since the scaling regime G(£1,.0)=(0(L1)0({))sq
—N is perturbed by the correction terms that have a large ) )
amplitude, resulting from the significance of finite-size cor- =[¢"(z1)| %" (2)| ¥ 0(21) 0(2) Yp, (23)

rections. Nevertheless, conformal invariance provides an
easy way to explicitly take into account shape effects in two-where the correlation function in the half-plaftg) geom-
dimensional systems, and thus provides a refined proceduetry is known to take the forri7]
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G(21,2)=(0(21) 0(2))np=CONSK (y1y) *oih(w),  (24) 100

where the dependence an=y,y/|z,—z|? of the universal
scaling functiony is constrained by the special conformal

transformation, and its asymptotic behavi¢1(,w)~wxflr, in

the limit y;=0(1),y>1, is implied by scaling. =
Equations(24) and (23), applied in the random situation,

lead to the correlations betweépn=i, close to a side of the

square, and any point inside it, as follows:

[(G (D) ay=cOnst{| £’ () IM[Z() ]} o ).
(25 0

Taking the logarithm of both sides, the bulk critical exponent
x can thus be deduced from a linear fit alomg=const 10" ' '
curves in the square:

IN[(G,(£))]ay=cONst = X2 In k(¢) +In (@),  (26) \_\ ,

X
with \ 0.155(7)
0.153(8)

A
<
K(O=IMZ(ON-ZZ(ONLI-KZDI Y2 @) §
VA 0.152(9)
We will now discuss the results of MC simulations per- — 10 [ 01518 |
formed with the Swendsen-Wang cluster algoritf68] for
0.150(10)

systems of size 104101 with canonical disorder. The de-
tails concerning the choice of the parameters for the simula- , 0.150(8)
tions (number of MC iterations, etcare given in Appendix . s .

B. The average over disorder is performed oWk dom 107 10° 10°

=3000 samples. All the MC simulations are done at the K(C)

optimal disorder amplitude* (Q) determined in the strip

geometry. FIG. 9. Rescaled correlation function along six const curves

Equation(26) is used in Fig. 9 to extract the bulk magne- in the squaregshown in the upper partThese curves are approxi-
tization scaling dimension aD=8. Consistent values are mated by linear expansions in the neighborhood of the discrete

obtained for different fixed values of the paramaterAver- lattice sites, which explains the variations on the sizes of error bars
aging the results at differens’s, one obtains (Q=8,r=10).
x2(8)=0.152+0.003, (28)  The local order parameter is defined, according to F&,
as the probability for the spin at sitein the square to belong
corresponding to an error of 2%. to the majority orientatiorfFig. 10.

One should nevertheless mention that the uncertainty in The Schwarz-Christoffel mapping leads to the following
this result is underestimated, since neither the fluctuationaxpression for the average profile in the square geometry:
due to randomness, nor the influence of a variatiorr of
around the optimal value have been taken into account ex-
plicitly. This is intentional, since such studies would require V1= 1-K2ZZ(Q)|
intensive computational efforts and would be less accurat[e(cr(g»]a\,:constx(
than the next method to be presented. Im[z(£)]

i
li“f _

.Jl!

i
|

) )

C. Density profiles ;|

‘l
|

"_',\sﬁ'ﬁa

Owing to the unknown scaling functiof{w), the deter-
mination of the bulk critical exponent from the behavior of
the correlation function is not extremely accurate. Further-
more, since few points are used for the fits alaswg const
curves, this introduces a poor statistic. It can nevertheless be
improved if one considers the magnetization profile inside a
square with fixed boundary conditions. Since it is a one-point
function, its decay from the distance to the surface in the
semi-infinite geometry is fixed, up to a constant prefactor

b FIG. 10. Density profiles inside the square averaged for 3000
[(o(2))hplay~Y o (29)  disorder realizations@=8, r =10).
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100 . 1 . T T
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& ——aA TM (L=8)
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' - 107 102
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FIG. 11. Rescaled magnetization profile inside the square for FIG. 12. Large distance behavior of the universal scaling func-

5000 disorder realizations)=3, 8, and 64 from top to bottom  tjon (Q=8, r=10), leading to the surface scaling index. The fit has
The power-law fits are over 18@ata points. been shifted for clarity.

. . b

This expression, of the forfYo(0))Ja,=[(2)/yT* holdS ~y(4)=[(G,(0))]al| ' (D |IM[Z(O) o~ 0", w0,
for any point inside the square. It allows an accurate deter- (32
mination of the critical exponent, since th lattice points
enter the power-law fitFig. 1}). Although this technique is _ Alog-log plot of Eq.(32) is shown on Fig. 12, where the
more precise than the previous one, one has to tend to difr\ results are also presented for comparison. The result for
ferent sources of error. It is indeed again necessary o CORpe syrface scaling index is less accurate than in the case of
sider the influence of the number of disorder configurationspe pyik but the estimatior’(8)=0.47(3) is in agreement

that are used to get the average magnetization, as well as i, e yajue that we obtained previously by FSS tech-
effect of a variation of the disorder amplitude around theniques in Ref[22]. It also agrees with the TM results that

optimal value. We performel,4nqoni= 5000 realizations of . lrgy— _ gy
disorder in five independent runsee Appendix B and ?"e X,(8)=0.48(2) forL=7 andx,(8)=0.50(2) forL

computed the magnetic exponent for each run. Averaging the . . L
results, yields the values given in Table IV. If the leading singularity X;) is found to be the same

using the two techniques, we note that the corrections to
scaling are very different, as it appears in the deviation be-
D. Boundary critical behavior tween the curves as increases. This can be the result of the

The surface scaling dimension can be obtained once th@nsemble average procedure, which is not identical in the
bulk exponent is known. From standard scaling, thefWo approachesgrand canonical for the TM technique and
asymptotic behavior of the two-point correlation function, canonical disorder for the MC simulationsThe same type
wheny,=0(1),y>1, is expected to involve both bulk and Of sensitivity to the ensemble average was reported recently
surface dimensions: by Wiseman and Domarj1].

b 1
[(Go(y—=y))ay~y o). (31 IV. CONCLUSION

In this paper, we have investigated the magnetic critical
properties of disordere@-state Potts ferromagnets for a
wide range ofQ values. These models lead to second-order
phase transitions that are particularly interesting, since they
belong to new universality classes. The accurate determina-

A power-law behavior thus follows for the universal scal-
ing function defined in Eq(24):

TABLE 1V. Bulk magnetic scaling index obtained from the
magnetization profile inside the squa&900 realizations of disor-

ded. tion of critical indices is a preliminary step towards a deeper
understanding of these universality classes. Although univer-
Q r X0 AxP sality is expected Wi_th_ respect to the disorder amplitude
previous works on finite systems have shown that the nu-
3 5 0.13357 x107° merical results are very sensitive to the choice of this disor-
4 7 0.13815 &10°° der amplitude. This sensitivity is attributed to crossover ef-
5 7 0.14302 &10°° fects due to the pure modek-1) and percolation r(
6 8 0.146 21 510 % —o0) unstable fixed points. The behavior of the effective
8 10 0.15031 %10°° central charge as a function otan fortunately be exploited
15 10 0.159 84 &10 5 to locate the optimal regime of disorder. One should mention
64 12 0.172 99 &10°° that, in our previous studies, this extreme sensitivity of the

numerical estimates of critical exponents was not well under-
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TABLE V. Extrapolation of the bulk magnetic scaling dimensidhin the thermodynamic limit for the different values @f The first
two columns recall previous FSS results obtained by MC simulafionshich the accuracy had been overestimated, since the influence of
the disorder amplitude was not well understood, at least in that which concerns our own)sflitkkedata in the four remaining columns
were deduced from conformal invariance. The quantity that was studied is indicated in the table as well as the geometry and the numerical
technique. The results presented in this work are written in boldface. The table notes recall the parameters used for each result, especially the
values of disorder amplitude that are known to have a strong influence on the exponent.

FSSMC) Conformal invariance
Square Strip Square
SW W ™ ™ SW SW

Q [((Mp)] [((Mp)] [(G(u))] [(G(u))] [{(G())] [(a(D)]

3 0.13377)2 0.13471)° 0.13213)° 0.133573)¢

4 0.1453)° 0.139 0.13965)° 0.138%3)° 0.1381%4)¢

5 0.141310° 0.14233)° 0.143024)4

6 0.14239)° 0.1453)° 0.146215)4

8 0.1182)9 0.1531)" 0.141536)°

8 0.1533) 0.1514)" 0.14969) 0.150%3)° 0.1523)% 0.150315)¢
15 0.15723)° 0.159846)¢
64 0.185%5)" 0.16693)° 0.172996)¢

3MC simulations(Wolff algorithm; ~10° samplesy =10; GCD from Ref.[21].

®TM calculations { =1-7; 1¢ samplesy =2; GCD) from Refs.[17,18.

°TM calculations { =2-8; 80x 10° samples; the values of disorder amplitude@s# 3, 4, 5, 6, 8, 15, and 64 are=5, 7, 7, 8, 10, 10, and
12, respectively; GCD this work.

dMC simulations(Swendsen-Wang algorithrit=101; 5x 10° samples; the values of disorder amplitude@ 3, 4, 5, 6, 8, 15, and 64 are
r=5,7,7,8, 10, 10, and 12, respectively; CEhis work.

eMC simulations(cluster algorithmN=256; ~500 samples; =10; GCD from Ref.[15].

TMC simulations(Wolff algorithm) Picco[52] cited in Ref.[18].

9MC simulations(Swendsen-Wang algorithnN<100; ~30 samplesy =2; restricted CI) from Ref.[12].

AMC simulations(Wolff algorithm; N<100 and 500~ 10° samplesy = 10; GCD) from Ref.[24].

iMC simulations(Swendsen-Wang algorithn<100; ~500 samplest =10, CD) from Ref.[22].

ITM calculations (=2-9; 40<10° samplesy =10; GCD from Ref.[38].

kmc simulations(Swendsen-Wang algorithi=101; 3x 10° samplesy =10; CD) from Ref.[38].

stood, resulting in an underestimation of uncertainties. Weeometry, 5000 realizationseems to be the most accurate,
tried to present here a careful analysis leading to reliableve are more confident in the first of&trip geometry, 80 000
error bars. This uncertainty was mainly due to the non-selfrealizations. If the number of disorder realizations is too
averaging behavior of correlation functions. In the strip ge-small, the average behavior will indeed give an exponent
ometry, the number of samples being already important, betloser to the typical one, and thus too large. MC simulations
ter estimates would not be easy to obtain, while in the MCare furthermore known to be less efficient wi@increases,
simulations, improvements could be made by increasing thsince the autocorrelation time also increases, requiring larger
number of realizations of disorder. numbers of thermalization iterations. We also note that the

The conformal mapping inside the square seems very ef-
ficient compared to standard FSS studies, only one lattice  0.18 — .
size being needed. The accuracy is furthermore substantiall A
improved: (i) the finite-size corrections are essentially in- 77 s
cluded in the conformal mappingii) all the lattice points 0.16 L g/j,// 1
enter the fit of the density profiles. e

A summary of our results, compared to other independent i
determinations of the magnetic scaling index, is given in 4
Table V, and the dependence @Qnis shown in Fig. 13. The = 0141 P |
pure model value foQ<4 is shown for comparisofi70]. e---0T™M
Both FSS and conformal invariance results are presentec &--aMC
The two techniques used in this work are in agreement with 012 ¢ Pure system 1
each other, as well as with previous studies at the same dis
order amplitude, at least as long as the number of s@tss
not too large. When the ratio is very different, disagree- 0.10 L& :

. . . 1 10 100

ment with other studies that are likely due to crossover ef- [0)
fects occurs. On the other hand, when the number of states is
large,Q>15, there appears to be discrepancies between the FIG. 13. Q dependence of the bulk magnetic scaling dimension
two techniques used here. While the second metsgdare in the RBPM compared to the pure model value @«=4.
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TABLE VI. Bulk magnetic scaling indexafter extrapolation in the thermodynamic lignibtained from the decay of the correlation
function along the strip with different values of the cuteff

Effective exponent aQ=3,r=5

€ 0.125<10°! 0.312x10°2 0.781x10°% 0.195<10°° 0.488<10°*% 0.122x10°* 0.305<10°> 0.763x10°°
x> 0.13207 0.13209 0.132 09 0.13208 0.132 09 0.132 09 0.13209 0.132 09
Ax®  5.3x1074 3.8x10°4 3.3x10°4 3.1x10°4 3.1x10°4 3.0x1074 3.0x1074 3.0x1074

Effective exponent aQ=8,r=10
€ 0.125x10°* 0.312x10°2 0.781x10° % 0.195<10°° 0.488<10°* 0.122x10°% 0.305<10°° 0.763x10°°
P 0.150 14 0.150 32 0.150 47 0.15050 0.150 50 0.15053 0.15054 0.15054
AX?  4.7x1074 3.4x10°* 2.9x10°* 2.7x10°4 2.7x10°4 2.6x10°* 2.6x10°* 2.6x10°*

Effective exponent a@=8,r=11
€ 0.125<10° ' 0.312x10°2 0.781x10°°% 0.195<10° % 0.488<10 % 0.122x10°* 0.305<10°° 0.763x10° ¢
xP 0.150 40 0.150 56 0.15072 0.15071 0.15074 0.15077 0.15078 0.15078
AX?  4.7x1074 3.3x10°4 2.9x10°4 2.7x10°4 2.6x10°4 2.6x10°* 2.6x10°4 2.6x10°4

Effective exponent aQ=64,r=12
€ 0.125x10°* 0.312x10°2 0.781x10° % 0.195<10°° 0.488<10°* 0.122x10°* 0.305<10° %> 0.763x10°°
xP 0.1663 0.1663 0.1667 0.1668 0.1668 0.1669 0.1670 0.1671
Ax®  6x1074 4x1074 3x1074 3x107% 3x107% 3x107* 3x107* 3x107*

leading singularity of the magnetization does not depend, up APPENDIX A: EVALUATION OF ERRORS IN THE
to the precision of our results, on the type of disorder con- TRANSFER MATRIX CALCULATIONS
sidered(GCD or CD.

In the caseQ=3, which was already considered by dif-
ferent authors, there exists a perturbative regatiormaliza-
tion group approach for the perturbative series around th
pure model conformal field theory

In spite of the large number of disorder realizations, the
correlation functions along the strip display an important dis-
gersion, but the resulting values for the critical exponents are
éxtremely accurate. In order to obtain a correct estimation of
the errors on the magnetic scaling index, we studied the in-
fluence of the cutoff parameter For e=10"1, a few points
x2= Z4+0.00132-0.134 65. (33 are taken into account only and the short distance behavior
of the correlation function is observed. On the other hand,
with e=10"®, all the data points in the range=5-100 are
taken into account in the fit, giving a greater weight to the
long-distance behavior. Clearly, one has to find a compro-
. ‘mise between the two approaches. Fortunately a variation of
ues, ar =5 andr =6, are in perfect agreeme(®@ee APPEN-  he oy toff parameter does not affect the value of the extrapo-

dix B). | : : :
. . ated exponent, which remains very stable, as shown in Table
We finally mention a recent work of Olson and Young Vi P y

[.71]’ who performeq aMc spudy of thg multiscaling proper- Another contribution to the error should come from the
ties of the correlation functions for different values Qf

. e choice of disorder amplitude. To study this effect, we con-
They used a different self-dual probability distribution of the gjqereq 4 variation af close to the optimal value. It leads to
couplings, and obtained slightly different resules.g., x

o aresult that is inside the error bars of the previous one, as

=0.161(3) atQ=8). shown in the cas®=8 in Table VI. The uncertainty in the

rangee=10 %—10"© is of the same order of magnitude as

the fluctuations between the data obtained with different val-

ues ofe andr, so we eventually considered as a definitive
We thank L. Turban for critically reading the manuscript result the fit with this cutoff value.

and J. L. Jacobsen for suggesting that we control the stability

of the exponents around the optimal disorder amplitude. We  APPENDIX B: DETAILS OF THE MONTE CARLO

are also indebted to M. Picco who drew our attention to a SIMULATIONS

refined analysis of the data that reduces the error bars. Due to ] N

the disorder average, the numerical study of disordered sys- I" random systems, in addition to the usual MC error, the

tems is particularly suited to parallel computing. The Com_r.andom-bond quctuatlons'mtroduce_another source of §tat|s—

putations presented here were performed on the SP2 at tiii§al error. For any physical quantitf, the total error is

CNUSC in Montpellier, under Projects No. C981009 anddiven by

No. C990011, and the Power Challenge Array at the CCH in

Nancy. The Laboratoire de Physique des Matex is Unite (6X)2= ,

Mixte de Recherche CNRS No. 7556. Nrandom  NrandonNmc

This result was confirmed numerically by Picg®1] and
Cardy and Jacobsé7]. In this work, we obtain a value that
is slightly too small. We nevertheless note that the two val

ACKNOWLEDGMENTS

2 2
O random o (1+27y)

(B1)
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TABLE VII. Bulk magnetic scaling index obtained from the profile of the order parameter inside a square with fixed boundary conditions

CHRISTOPHE CHATELAIN AND BERTRAND BERCHE

PRE 60

for five independent run€l000 configurations of disorder for each yuihe final result obtained with 5000 configurations of disorder is
given in the column called average.

Run 1 Run 2 Run 3 Run 4 Run 5 Average
Exponent aQ=3,r=5
x> 0.13260 0.13384 0.13405 0.13418 0.13323 0.13357
AX® 7x10°° 7x10°° 7x10°° 7x10°° 7x10°° 3x10°°
Exponent aQ=3,r=6
X2 0.13450 0.13262 0.13307 0.13378 0.13333 0.13345
AX® 7x10°° 7x10°° 7x10°° 7x107° 7x10°° 3x10°°
Exponent aQ=4,r=7
X2 0.13886 0.13835 0.13798 0.13703 0.13858 0.13815
AX® 8x10°° 8x10°° 8x10°° 8x10°° 8x10°° 4x10°°
Exponent aQ=4,r=8
x2 0.13799 0.13794 0.13753 0.13849 0.13798 0.1379
AxP 9x10°° 9%x10°° 9%x10°° 9%x10°° 9%x10°° 4x10°°
Exponent aQ=8,r=10
x2 0.1508 0.1515 0.1501 0.1501 0.1492 0.15031
AxP 1x10°* 1x10°* 1x107* 1x107* 1x10°* 5x10°°
Exponent aQ=8,r=20
x2 0.14527 0.14506 0.14505 0.14513
AxP 6x10°° 6x10°° 6x10°° 3x10°°
Exponent alQ=64,r=12
X2 0.1722 0.1733 0.1724 0.1747 0.1725 0.17299
AxP 1x10°* 1x10°* 1x10°* 1x10°* 1x10°* 6Xx10°°

where the first term is due to the disorder fluctuations, while~35 MCS. The preliminary 5000 MCS have been discarded
the second one describes the fluctuations during the MC ifor thermalization (better than 19r,), and Nyc
erations. This latter term corresponds to the standard devia=10* MCS were done to compute the physical quantities.
tion of independent random variables, corrected by the autcAn average over disorder is performed oWL,qon= 5000
correlation time, to take into account the correlationssamples. From preliminary runs over 1000 samples, we de-
between the successive data. In these expressigpsis the  duced the standard deviations?2, ,,=0.93 and ogc
number of MC iterations, measured in MC ste8CS),  =0.13. The order of magnitude of the two contributions to
realized for the measurements of the physical quantities fothe error is thus

each disorder realizatioMN,,nq0m IS the number of disorder .

realizations, andy is the autocorrelation time for the quan- S e [or(1+ 270)~6 10-4
tity X (the definition of 7y sometimes absorbs the factor 1 IMC= N 'NmgorNue x ’

describing uncorrelated variab)esThe varianceso; and (B2)
Orandom f€Spectively measure the deviation due to thermal ofandom ,
fluctuations for a given sample and the deviation from the 60 randon™ \ =1.36x10"",

oy . . . d
exact value within the ensemble of disorder configurations. random

Both variances are of the same order of magnitude. Théor a point in the middle of the square. Due to the fixed
leading source of error thus comes from the disorder averagéoundary conditions, close to the edges of the square the
and a large number of samples is needed in order to gdluctuations are reduced. These values confirm the signifi-
accurate results. In our simulations we used the Swendserance of the disorder contributionS¢yc/[{o)].~0.08%
Wang cluster algorithni68] for systems of size 104101.  and 8 andonf[{ o) ]av=2%). Thevalues of the expone
The autocorrelation time for the total magnetizationrjs  for different values ofQ andr are given in Table VII.
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