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Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets
in confined geometries

Christophe Chatelain and Bertrand Berche*
Laboratoire de Physique des Mate´riaux,† UniversitéHenri Poincaré, Nancy 1, Boıˆte Postale 239,

F-54506 Vandæuvre les Nancy Cedex, France
~Received 16 February 1999; revised manuscript received 25 March 1999!

We present a numerical study of two-dimensional random-bond Potts ferromagnets. The model is studied
both below and above the critical valueQc54, which discriminates between second- and first-order transitions
in the pure system. Two geometries are considered, namely cylinders and square-shaped systems, and the
critical behavior is investigated through conformal invariance techniques that were recently shown to be valid,
even in the randomness-induced second-order phase transition regimeQ.4. In the cylinder geometry, con-
nectivity transfer matrix calculations provide a simple test to find the range of disorder amplitudes that is
characteristic of the disordered fixed point. The scaling dimensions then follow from the exponential decay of
correlations along the strip. Monte Carlo simulations of spin systems on the other hand are generally performed
on systems of rectangular shape on the square lattice, but the data are then perturbed by strong surface effects.
The conformal mapping of a semi-infinite system inside a square enables us to take into account boundary
effects explicitly and leads to an accurate determination of the scaling dimensions. The techniques are applied
to different values ofQ in the range 3–64.@S1063-651X~99!19010-X#

PACS number~s!: 05.20.2y, 05.50.1q, 64.60.Fr
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I. INTRODUCTION

The presence of impurities can have significative effe
on the nature of phase transitions. Both from experime
and theoretical perspectives, the study of the influence
randomness is of great importance. Experimental eviden
of the effect of random quenched impurities in tw
dimensional systems were found in order-disorder ph
transitions of adsorbed atomic layers belonging, in the p
case, to the (Q54)-state Potts model universality class@1,2#.
In the presence of disorder, the critical exponents are m
fied. On the other hand, no modification is found when
pure system belongs to the Ising universality class@3#.

The study of disordered systems is quite an active field
research in statistical physics, and a resort to large-s
Monte Carlo simulations is often helpful@4#. Numerical in-
vestigations of the critical properties of random systems
quire averages over disorder realizations. Standard t
niques, such as finite-size scaling~hereafter referred to a
FSS! or temperature dependence of the physical quantit
were extensively used, and, more recently, conformal inv
ance techniques were shown to provide accurate results

The effect of quenched bond randomness in a system
undergoes a second-order phase transition in the hom
neous case has been considered first. It has been well u
stood since Harris proposed a relevance criterion for the c
of fluctuating interactions@5#. Disorder appears to be a re
evant perturbation when the specific heat exponenta of the
pure system is positive. Since in the two-dimensional Is
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model ~IM ! a vanishes due to the logarithmic Onsager s
gularity, this model was carefully studied in the 1980s@6#.
The analogous situation when the pure system exhibit
first-order transition was less well studied, in spite of t
early work of Imry and Wortis, who argued that quench
disorder could induce a second-order phase transition@7#.
This argument was then rigorously proved by Aizenman a
Wehr, and Hui and Berker@8,9#. In two dimensions, even an
infinitesimal amount of quenched impurities changes
transition into a continuous one.

The first intensive Monte Carlo~MC! study of the effect
of disorder at a first-order phase transition is due to Ch
Ferrenberg, and Landau. These authors studied
(Q58)-state two-dimensional random-bond Potts mo
~RBPM!, which, in the pure case, is known to exhibit a firs
order phase transition whenQ.4; the larger the value ofQ,
the sharper the transition@10#. Taking advantage of duality
they performed a finite-size scaling study at the critical po
of a self-dual disordered system@11,12# and definitively
showed that the transition becomes of second order in
presence of bond randomness. Their results, together
other related works@13–16#, suggested that any two
dimensional random system should belong to the tw
dimensional~2D! pure IM universality class. These resul
were also coherent with real experiments@1#.

In recent papers, Cardy and Jacobsen used a differen
proach @17,18#, based on the connectivity transfer matr
~TM! formalism of Blöte and Nightingale@19#. They studied
random-bond Potts models for different values ofQ and with
a bimodal probability distribution of coupling strength
Their estimations of the critical exponents led to a contin
ous variation ofb/n with Q. This result is in accordance with
previous theoretical calculations and MC simulations wh
Q<4 @20,21#. In the randomness-induced second-ord
phase transition regimeQ.4, b/n is quite different from the

ic
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3854 PRE 60CHRISTOPHE CHATELAIN AND BERTRAND BERCHE
Ising value of 1/8 and particularly in sharp disagreem
with the Monte Carlo results of Ref.@12# for Q58. Since
then, Monte Carlo simulations have been performed by
ferent groups atQ58 @22–24#. The choice of the valueQ
58 was motivated by the value of the correlation length
the pure case (j523.87 in lattice spacing units! @25#. MC
simulations that enable one to discriminate between a fi
order regime and a second-order transition can indeed
performed easily with systems of larger sizes. These stu
led to partially conflicting results given in Table I, but the
eventually found an explanation in terms of a crossover
havior in a recent work of Picco@24#. While theoretical cal-
culations are generally managed in the weak disorder reg
~perturbation expansion around the homogeneous sys
fixed point!, the range of disorder amplitude must be chos
carefully in numerical studies, since the random fixed po
~FP! can be perturbed by crossover effects due to the p
and/or the percolation unstable fixed points. The disorde
FP properties are thus more easily observed with strong
domness. A disorder amplituder, given by the ratio of the
two types of couplings~distributed according to a binar
distribution! in the range 8–20 appears to be adapted t
numerical analysis and gives a good estimate of the di
dered fixed point exponents@24,26#, as already observed i
the 2D random-bond Ising model~RBIM! @27,28#.

The surface properties of dilute or random-bond magn
systems were paid less attention. The whole set of bulk
surface critical exponents of a given system is determined
the anomalous dimensions of the relevant scaling fields
enter the homogeneity assumption of the singular free e
gies@29#. The~1, 1! surface of the disordered Ising model o
a square lattice has only recently been investigated thro
MC simulations by Selkeet al. @30#. The critical exponent
b1 of the boundary magnetization was found to be eq
within error bars to its value in the pure 2D IM. The surfa
properties of the eight-state RBPM were also computed
Ref. @22#.

In this paper, we are interested in the bulk critical beh
ior of disordered Potts ferromagnets, and in the evolution
their properties as the number of statesQ increases. The
Hamiltonian of the model is

2bH5(
~ i , j !

Ki j ds i ,s j
, ~1!

where the spins can takeQ different values and the couplin
strengths between nearest neighbor spins are taken fro
binary probability distribution

P~Ki j !5pd~Ki j 2rK !1~12p!d~Ki j 2K !, ~2!

TABLE I. Bulk magnetic scaling index obtained by differen
groups in the eight-state Potts model.

Authors r b/n Technique

Chenet al. @12# 2 0.118~2! MC
Cardy and Jacobsen@17# 2 0.142~4! TM
Chatelain and Berche@22# 10 0.153~3! MC
Picco @24# 10 0.153~1! MC
t
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with p51/2, which guarantees the self-duality relation

~erK c21!~eKc21!5Q. ~3!

The valuer 51 corresponds to the pure model, andr→` to
the percolation limit.

In the present work, following previous studies, we u
the powerful methods of conformal invariance. Talapov a
co-workers studied numerically the critical-point correlati
functions in the 2D RBIM on the torus@31# and took into
account the finite-size effects through a convenient con
mal rescaling@32,33#. In the cylinder geometry, conforma
invariance methods have also been successfully applied
the two-dimensional RBIM, randomness being a margina
irrelevant perturbation, many results have been obtained
these techniques: conformal anomaly; correlation dec
gap-exponent relation for long strips@34–36#. At
randomness-induced second-order phase transitions, co
mal techniques have also been already used@17,18,37# and
numerical evidence for the validity of the conformal cova
ance assumption for correlation functions and density p
files was recently reported@38#. It is well known that in
disordered spin systems, the strong fluctuations of coupli
from sample to sample require careful averaging procedu
@39–41#. For that reason, the study of the probability dist
butions must be performed in order to guarantee that
average quantities, which should obey the conformal cov
ance assumption, are correctly obtained numerically. A co
parison between grand canonical disorder~GCD! and ca-
nonical disorder~CD! will also be given.

The plan of the paper is the following. In Sec II, w
present the results of connectivity transfer matrix calcu
tions on strips with periodic boundary conditions for diffe
ent values ofQ. The order parameter correlation functio
after disorder average, leads to estimates of the magn
scaling index for different strip sizes. From our knowledg
in the caseQ58 @38#, it appears that these computations a
suitable for the determination of a convenient disorder a
plitude in order to reach the disordered FP. At large disor
amplitudes (r .10), the behavior of the effective centra
charge can indeed discriminate between random and pe
lation fixed points. In Sec. III, we report Monte Carlo sim
lations in a square geometry with the above-mentioned
order amplitude. The magnetization correlation function a
density profile give access to refined values for the co
sponding exponents. A discussion of the results is given
Sec. IV. Attention is paid to taking into account the differe
sources of error for the results reported in this work.

II. CYLINDER GEOMETRY AND DISORDERED
FIXED POINT

A. Free energy and central charge

In the strip geometry, we used the Blo¨te and Nightingale
connectivity transfer matrix method@19#. In disordered sys-
tems, transfer operators in the time direction do not comm
and, as a consequence, the free energy density is no lo
defined by the largest eigenvalue of a single TM, but
terms of the leading Lyapunov exponent. For a strip of sizL
with periodic boundary conditions, the leading Lyapunov e
ponent follows from the Furstenberg method@42#:
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L0~L !5 lim
m→`

1
m lnI S )

k51

m

TkD uv0& I5 lim
m→`

L0~L;m!, ~4!

whereTk is the transfer matrix between columnsk21 andk
and uv0& is a suitable unit initial vector. The free energ
density is thus given by

@ f 0~L !#av52L21L0~L !, ~5!

where@ #av denotes the average over disorder realization
In the following, we will consider canonical disorder,

situation in which exactly the same numbers of couplingsK
andrK are distributed over the bonds of the whole system
length ;106. This choice contributes to reducing samp
fluctuations. This is shown in Fig. 1, where the stability
the free energy density is compared to the standard g
canonical disorder for different runs up tom5106 iterations
of the TM.

In Eq. ~4!, the disorder average is implicitly performe
through an infinite number of iterations of the transfer m
trix. In our computations, only a finite numberm is used,
leading to approximate values denoted byL0

( i )(L;m) for dif-
ferent runs labeled by an integeri 5 i ,...,M . The leading
Lyapunov exponent and the corresponding eigenvectoruL0&,
obtained afterm5106 iterations of the TM, are then aver
aged overM548 independent runs. The average free ene
density of Eq.~5! is thus replaced, in the calculations, by

@ f 0~L !#av.@ f 0~L !#M52L21S 1

M (
i 51

M

L0
~ i !~L;106!D . ~6!

The valueM548 was chosen in order to guarantee a sta
ity of the averaged quantities with a relative error better th
1025 for the free energy density and better than 431025 for
the components of the corresponding eigenvector. The c
putations are then performed on strips of sizesL52 to 8.

FIG. 1. Free energy density~up to an additive constant lnQ) vs
m, the number of iterations of theTM for a strip of sizeL56 (Q
58, r 510) with five realizations in~a! grand canonical and~b!
canonical disorder.
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The numerical investigation of critical properties in ra
dom systems requires knowledge of the range of disor
amplitude~measured here by the ratior between strong and
weak couplings! for which the fixed point properties ar
reached. Outside this regime, strong crossover effects pe
the data@38#. A convenient disorder amplituder can be ob-
tained from the behavior of the effective central charg
which increases when the system approaches the disord
fixed point in nonunitary theories, as seems to be the cas
the RBPM @18,43#. The central chargec is defined by the
leading size dependence of the free energy density,
since the strip sizes are quite small, corrections to sca
must be included:

@ f 0~L !#av5 f reg2
pc

6
L221AL24. ~7!

The comparison between successive sizesL andL1 l allows
us to define a reduced difference, which leads to

@D f l~L !#av[
6

p

@ f 0~L !#av2@ f 0~L1 l !#av

~L1 l !222L22 5c2
6

p
Al, ~8!

where the reduced parameterl is given by

l5
~L1 l !242L24

~L1 l !222L22 . ~9!

In the thermodynamic limit, the central chargec then follows
from a linear fit, as shown in Fig. 2 for strips of sizesL
52 to 8 in the caseQ53. We restricted our study to intege
values ofr, and the data for the effective central charge
different disorder amplitudes are given in Table II. We o
serve that the value ofc is strongly dependent on the disord
amplitude: It increases from the weak disorder limit up to
maximum value and then decreases slowly asr increases.

The central charge at the random fixed point@i.e., the
maximal value obtained for an optimal disorder amplitu

FIG. 2. Reduced difference between the free energies at di
ent sizes@D f l(L)#av for different values of the disorder amplituder
(Q53). The central charge is given by the intercept via a linear
The parameterl is defined in Eq.~8!.
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TABLE II. Extrapolation of the effective central chargec in the thermodynamic limit for the differen
values ofQ and r. At eachQ, the larger values ofc ~written in bold face! correspond to the random fixe
point regime with an optimal disorder amplituder * . This maximum is not always located at the samer, as
shown in the caseQ53 and 64 for two different runs.

Effective central charge atQ53

r 2 4 5 6 7 10 20
c 0.7970 0.7998 0.79984 0.79969 0.7992 0.7970 0.7879
Dc 431024 431024 3.831024 3.831024 431024 431024 431024

c 0.8005 0.80070 0.80099
Dc 431024 3.831024 3.731024

Effective central charge atQ54
r 2 5 6 7 8 10 20
c 1.0043 1.0144 1.01495 1.01483 1.0142 1.0123 0.9996
Dc 431024 431024 4.331024 4.331024 431024 431024 431024

Effective central charge atQ55
r 2 5 6 7 8 10 20
c 1.1579 1.1794 1.1810 1.181593 1.181326 1.1794 1.1642
Dc 531024 531024 531024 4.631024 4.631024 531024 531024

Effective central charge atQ56
r 2 5 7 8 9 10 20
c 1.2764 1.3128 1.3172 1.3174 1.3168 1.3157 1.2986
Dc 531024 531024 531024 531024 531024 531024 531024

Effective central charge atQ58
r 2 5 9 10 11 12 20
c 1.4468 1.5203 1.5329 1.5300 1.5287 1.5270 1.5104
Dc 531024 531024 531024 531024 531024 531024 531024

Effective central charge atQ515
r 2 5 9 10 11 12 13 15 20
c 1.7313 1.9606 1.9963 1.9937 1.9930 1.9915 1.9895 1.9846 1.9708
Dc 631024 631024 631024 631024 631024 631024 631024 631024 631024

Effective central charge atQ564
r 2 5 10 11 12 13 15 20
c 2.0302 2.9351 3.0414 3.0432 3.0430 3.0415 3.0362 3.0182
Dc 731024 731024 731024 731024 731024 731024 731024 731024

c 3.0526 3.0528 3.0516
Dc 731024 731024 731024
in
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r * (Q)] is shown in Fig. 3. Assuming a linear behavior
ln Q @37# that preserves the Ising valuec(Q52)51/2 @18#,
one gets

c~Q!5
ln Q

2 ln 2
, ~10!

while the percolation limit leads toc(Q)5(5)/4p)ln Q
@18#. The two behaviors are shown in Fig. 3. The numeri
data are in good agreement with Eq.~10! and are accurate
enough to consider that the randomFP has been reached a
r * @whose values are coherent with those found by Jacob
and Cardy@18#: r * (3)57, r * (8)59, andr * (64)510]. In
the following, the scaling properties will be studied at t
optimal disorder amplitudes in contradistinction to previo
papers@17,18#.

B. Probability distribution of the correlation function

For a specific disorder realization, the spin-spin corre
tion function along the strip
l

en

s

-

^Gs~u!&5
Q^ds js j 1u

&21

Q21
, ~11!

where^ & denotes the thermal average, is given by the pr
ability that the spins along some row, at columnsj and j
1u, are in the same state~j and j 1u measure the position in
the longitudinal direction of the strip!:

^ds js j 1u
&5

K L0Ugj S )
k5 j

j 1u21

T k8D dj 1uUL0L
K L0U )

k5 j

j 1u21

TkUL0L , ~12!

where uL0& is the ground state eigenvector andTk8 is the
transfer matrix in the extended Hilbert space, which includ
the connectivity with the origin sitej. The operatorgj , iden-
tifies the cluster containings j , while dj 1u gives the appro-
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priate weight, depending on whether or nots j 1u is in the
same state ass j . The computation is performed with a gran
canonical disorder.

An analysis of the correlation function probability distr
bution is needed in order to ensure that self-averaging p
lems do not alter the mean values@44#. The methodology
that we propose is to deduce the critical behavior from
decay of the correlation functions using conformal symm
try. Since conformal covariance assumption is suppose
be satisfied by average quantities, i.e.,@^Gs(u)&#av , our first
aim is to show that, in spite of the lack of self-averaging, o
numerical experiments lead to well-defined averages.

The probability distribution of the correlation function, a
shown in Fig. 4, enables us to determine the most prob
~or typical! valueGs

mp(u) and the average correlation fun
tion @^Gs(u)&#av , as well as the averaged logarith
@ ln^Gs(u)&#av at any value of the distanceu. Compatible be-

FIG. 3. Central charge at the random fixed point as a function
the number of states. The full line corresponds toc(Q)
5 ln Q/(2 ln 2), while the dashed line is the percolation limitc(Q)
55) ln Q/4p. Error bars are smaller than the sizes of the symb

FIG. 4. Probability distribution of the correlation function aft
63 436 realizations of disorder for a strip of sizeL56 (Q58, r
510). The vertical dashed line shows the average va
@^Gs(30)&#av , while the long-dashed line shows the typical val
e@^ ln Gs(30)&#av.
b-

e
-
to

r

le

haviors are found forGs
mp(u) ande@ ln^Gs(u)&#av. This is a con-

firmation of the essentially log-normal character of the pro
ability distribution @44#, as argued by Cardy and Jacobs
@17#. It is thus necessary to perform averages over lar
numbers of samples for@^Gs(u)&#av than for @ ln^Gs(u)&#av
to get the same relative errors.

Following Cardy and Jacobsen, since the moments of
logarithm of the correlation function are self-averaging,
cumulant expansion can then be performed to reconst
@^Gs(u)&#av and to compare to the values obtained by av
aging directly over the samples.

The results in Fig. 5~for Q58) strengthen the credibility
of the direct average, and also clearly show that the cumu
expansion up to fourth order still strongly fluctuates at lar
distances compared to@^Gs(u)&#av . In the following we
will thus favor the direct averaging process, using a la
number of disorder realizations.

C. Bulk magnetic scaling dimension

We will now use the results that follow from the assum
tion of conformal covariance of the average correlation fu
tions. In the infinite complex planez5x1 iy ~denoted by the
index`! the correlation function exhibits the usual algebra
decay at the critical point

@^Gs~R!&#av[@^s~z1!s~z2!&`#av5const3R22xs
b
,

~13!

whereR5uz12z2u andxs
b5b/n is the bulk magnetic scaling

dimension. Under a conformal mappingw(z), the correla-
tion functions of a conformally invariant 2D system tran
form into the new geometry according to

Gs~w1 ,w2!5uw8~z1!u2xs
b
uw8~z2!u2xs

b
Gs~z1 ,z2!. ~14!

The logarithmic tranformationw5(L/2p)ln z is known to
map thez plane onto an infinite strip~denoted by the index
st! w5u1 iv of width L with periodic boundary conditions

f

.

e

FIG. 5. Average correlation function, most probable~or typical!
value, and sum up to fourth order of the cumulant expansion
tained from 63 436 realizations of disorder for a strip of sizeL
56 (Q58, r 510).
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in the transverse direction. Applying Eq.~14! in the random
system where@^Gs(w1 ,w2)&#av[@^s(w1)s(w2)&st#av cor-
responds to the strip geometry, one gets the usual expo
tial decay along the strip

@^Gs~u!&#av5const3expS 2
2p

L
xs

buD , ~15!

whereu5Re(w22w1). The scaling indexxs
b can thus be de-

duced from a linear fit in a semilog plot.
For each strip size (L5228), we realized 803103 dis-

order configurations. It allowed us to define mean values
error bars for the correlation functions at any point in t
rangeu512100, taking into account the standard deviati
over the samples. The non-self-averaging behavior of
correlation functions induces large variances.„The reduced
varianceRX(L)[(@X2#av2@X#av

2 )/@X#av
2 does not behave a

a power law, but evolves towards a constant value when
strip size increases, e.g.,RGs(20)(L)→1.50, as already ob
served for several quantities by Wiseman and Domany
Refs.@40,41#.… The exponents follow from an exponential
in the rangeu.5 and@^Gs(u)&#av.e, where the cutoffe is
introduced in order to avoid tiny numbers whose values
lower than the fluctuations. The error bars given for the
ponents take into account the uncertainties of data for
correlation functions@45#. The resulting values for each stri
size are plotted againstL21, which allows an extrapolation
in the thermodynamic limit. This is shown in Fig. 6 in th
caseQ58. This figure provides a confirmation of the effe
of a too weak disorder: Strong crossover effects take p
that lead to a wrong determination of the critical behav
with the strip sizes used here. On the other hand, at
optimal valuer * (Q), the exponent converges in theL→`
limit towards a well defined final estimate.

The convergence of effective scaling dimensions at diff
ent strip sizes, obtained with a cutoff value in the rangee
5102421026 and r 5r * (Q), is shown in Fig. 7 for differ-
ent values ofQ. The extrapolation in the thermodynam

FIG. 6. Magnetic scaling index deduced from the algebraic
cay of the average correlation function along the strip of sizeL as a
function of L21 and extrapolation in the thermodynamic limit@Q
58, L52 – 9 for r 52 and 20, from Ref.@38# and L52 – 8 for r
510, this work, where the data analysis is more refined~see Ap-
pendix A!, leading to error bars 10 times smaller#.
n-

d

e

e

in

e
-
e

e
r
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limit is given in Table III. The details of the fitting procedur
and of the evaluation of errors are presented in Appendix

III. SQUARE GEOMETRY AND CRITICAL BEHAVIOR

A. Conformal rescaling of boundary effects

Monte Carlo simulations of two-dimensional spin syste
are generally performed on systems of square shape. In
following, we consider such a system of sizeN3N, and call
u andv the corresponding directions~Fig. 8!.

The order parameter correlation function between a po
close to the surface and a point in the bulk of the syst
should, in principle, lead to both surface and bulk critic
exponents, possibly to structure constants@46#. Practically,
FSS techniques are not of great help in the accurate dete
nation of critical exponents, since~i! strong surface effects
~shape effects! occur that modify the large distance powe
law behavior, i.e., the scaling regime;~ii ! the universal scal-
ing function entering the correlation function is likely to di
play a crossover before its asymptotic regime is reac
~system-dependent effect!.

One can proceed as follows: Systems of increasing s
are successively considered, and the correlations are c
puted along theu axis ~parallel to a square edge consider
as the free surface! andv axis ~perpendicular to this edge!.

- FIG. 7. Magnetic scaling index deduced from the algebraic
cay of the average correlation function along the strip of sizeL as a
function of L21 and extrapolation in the thermodynamic limit fo
different Q values (L52 – 8).

TABLE III. Bulk magnetic scaling index~after extrapolation in
the thermodynamic limit! obtained from the decay of the correlatio
function along the strip~cutoff parametere5102421026).

Q r xs
b Dxs

b

3 5 0.1321 331024

4 7 0.1385 331024

5 7 0.1423 331024

6 8 0.1456 331024

8 10 0.1505 331024

15 10 0.1572 331024

64 12 0.1669 331024
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The order parameter correlation function, for example,
supposed to obey a scaling form that reproduces the expe
power-law behavior in the thermodynamic limit:

G'
sq~v !5

1

vxs
b

1xs
1 f'

sqS v
ND , ~16!

Gi
sq~u!5

1

u2xs
1 f i

sqS u

ND , ~17!

wherexs
b and xs

1 are the bulk and surface order parame
scaling dimensions, respectively. The scaling functions h
to satisfy asymptotic expansions, including corrections
scaling due to the limitations mentioned above; e
f'

sq(v/N);11const3(v/N)m1¯ in the boundary regionv
→N.

Equations~16! and~17! are not very useful for the deter
mination of critical exponents, since the scaling regimev
→N is perturbed by the correction terms that have a la
amplitude, resulting from the significance of finite-size co
rections. Nevertheless, conformal invariance provides
easy way to explicitly take into account shape effects in tw
dimensional systems, and thus provides a refined proce

FIG. 8. ~a! Monte Carlo simulations of the 2D RBPM inside
square of 1013101 lattice sites (106 MCS/spin, Swendsen-Wan
cluster algorithm!. The figure shows the correlation function b
tween a point close to the surface (z15 i ) and all other pointsz in
the square. The notations are specified in~b!.
s
ted

r
e

o
.,

e
-
n
-
re

for the determination of the exponents. In pure systems, d
sity profiles, correlations, and local properties have been
vestigated in various geometries~surfaces@47–49#, corners
@50–52#, strips @53–55#, or parabolic shapes@56–61#; for a
review, see Ref.@62#!, as well as the moments of the ma
netization@63# and structure factors@64# having been calcu-
lated in square systems.

In the following, we shall consider a square system w
free or fixed boundary conditions on all the edges. Us
conformal invariance techniques@65#, the Schwarz-
Christoffel mapping enables us to calculate the surface-b
correlation function inside the square. The mapping of
complex half-planez5x1 iy , Im z.0, inside a squarez
5u1 iv,2N/2<Rez<N/2,0<Im z<N, is realized by the
conformal transformation@66#

dz

dz
5

C

A~12z2!~12k2z2!
. ~18!

Since z5N/2 and z5N/21 iN are mapped ontoz51 and
z51/k (0,k,1), respectively, the constantC is related to
the size of the square,

N/2C5K~k![K,
~19!

N/C5K~k8![K8,

wherek85A12k2 andK(k) is the complete elliptic integra
of the first kind. The modulusk also follows from these
equations. It is given by@66#

k54S (
p50

`

q~p11/2!2

112(
p51

`

qp2D 2

, q5e22p. ~20!

The complete transformation is finally written as

z5
N

2K
F~z,k!5

N

K8
F~z,k!, ~21!

z5sn
K8z

N
[snS K8z

N
,kD , ~22!

where F(z,k) is the elliptic integral of the first kind and
sn(z,k) is the Jacobian elliptic sine@67#.

B. Correlation functions

The two-point correlation function of a conformally in
variant system can now be obtained in thez geometry in
terms of its counterpart in the semi-infinite system~z geom-
etry!:

G~z1 ,z![^s~z1!s~z!&sq

5uz8~z1!u2xs
b
uz8~z!u2xs

b
^s~z1!s~z!&hp , ~23!

where the correlation function in the half-plane~hp! geom-
etry is known to take the form@47#
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G~z1 ,z![^s~z1!s~z!&hp5const3~y1y!2xs
b
c~v!, ~24!

where the dependence onv5y1y/uz12zu2 of the universal
scaling functionc is constrained by the special conform

transformation, and its asymptotic behavior,c(v);vxs
1
, in

the limit y15O(1),y@1, is implied by scaling.
Equations~24! and ~23!, applied in the random situation

lead to the correlations betweenz15 i , close to a side of the
square, and any point inside it, as follows:

@^Gs~z!&#av5const3$uz8~z!uIm@z~z!#%2xs
b
c~v!.

~25!

Taking the logarithm of both sides, the bulk critical expone
xs

b can thus be deduced from a linear fit alongv5const
curves in the square:

ln@^Gs~z!&#av5const82xs
b ln k~z!1 ln c~v!, ~26!

with

k~z![Im@z~z!#u@12z2~z!#@12k2z2~z!#u21/2. ~27!

We will now discuss the results of MC simulations pe
formed with the Swendsen-Wang cluster algorithm@68# for
systems of size 1013101 with canonical disorder. The de
tails concerning the choice of the parameters for the sim
tions ~number of MC iterations, etc.! are given in Appendix
B. The average over disorder is performed overNrandom
53000 samples. All the MC simulations are done at
optimal disorder amplituder * (Q) determined in the strip
geometry.

Equation~26! is used in Fig. 9 to extract the bulk magn
tization scaling dimension atQ58. Consistent values ar
obtained for different fixed values of the parameterv. Aver-
aging the results at differentv’s, one obtains

xs
b~8!50.15260.003, ~28!

corresponding to an error of 2%.
One should nevertheless mention that the uncertaint

this result is underestimated, since neither the fluctuati
due to randomness, nor the influence of a variation or
around the optimal value have been taken into account
plicitly. This is intentional, since such studies would requ
intensive computational efforts and would be less accu
than the next method to be presented.

C. Density profiles

Owing to the unknown scaling functionc~v!, the deter-
mination of the bulk critical exponent from the behavior
the correlation function is not extremely accurate. Furth
more, since few points are used for the fits alongv5const
curves, this introduces a poor statistic. It can nevertheles
improved if one considers the magnetization profile insid
square with fixed boundary conditions. Since it is a one-po
function, its decay from the distance to the surface in
semi-infinite geometry is fixed, up to a constant prefacto

@^s~z!&hp#av;y2xs
b
. ~29!
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The local order parameter is defined, according to Ref.@69#,
as the probability for the spin at sitez in the square to belong
to the majority orientation~Fig. 10!.

The Schwarz-Christoffel mapping leads to the followin
expression for the average profile in the square geometr

@^s~z!&#av5const3SAu12z2~z!uu12k2z2~z!u
Im@z~z!#

D xs
b

. ~30!

FIG. 9. Rescaled correlation function along sixv5const curves
in the square~shown in the upper part!. These curves are approx
mated by linear expansions in the neighborhood of the disc
lattice sites, which explains the variations on the sizes of error b
(Q58, r 510).

FIG. 10. Density profiles inside the square averaged for 3
disorder realizations (Q58, r 510).
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This expression, of the form@^s(z)&#av5@ f (z)/y#xs
b
, holds

for any point inside the square. It allows an accurate de
mination of the critical exponent, since theN2 lattice points
enter the power-law fit~Fig. 11!. Although this technique is
more precise than the previous one, one has to tend to
ferent sources of error. It is indeed again necessary to c
sider the influence of the number of disorder configuratio
that are used to get the average magnetization, as well a
effect of a variation of the disorder amplitude around t
optimal value. We performedNrandom55000 realizations of
disorder in five independent runs~see Appendix B!, and
computed the magnetic exponent for each run. Averaging
results, yields the values given in Table IV.

D. Boundary critical behavior

The surface scaling dimension can be obtained once
bulk exponent is known. From standard scaling,
asymptotic behavior of the two-point correlation functio
wheny15O(1),y@1, is expected to involve both bulk an
surface dimensions:

@^Gs~y2y1!&#av;y2~xs
b

1xs
1

!. ~31!

A power-law behavior thus follows for the universal sca
ing function defined in Eq.~24!:

FIG. 11. Rescaled magnetization profile inside the square
5000 disorder realizations (Q53, 8, and 64 from top to bottom!.
The power-law fits are over 1002 data points.

TABLE IV. Bulk magnetic scaling index obtained from th
magnetization profile inside the square~5000 realizations of disor-
der!.

Q r xs
b Dxs

b

3 5 0.133 57 331025

4 7 0.138 15 431025

5 7 0.143 02 431025

6 8 0.146 21 531025

8 10 0.150 31 531025

15 10 0.159 84 631025

64 12 0.172 99 631025
r-

if-
n-
s
the

e

he
e
,

c~v![@^Gs~z!&#av$uz8~z!uIm@z~z!#%xs
b
;vxs

1
, v→0.

~32!

A log-log plot of Eq.~32! is shown on Fig. 12, where th
TM results are also presented for comparison. The result
the surface scaling index is less accurate than in the cas
the bulk, but the estimationxs

1(8).0.47(3) is in agreemen
with the value that we obtained previously by FSS tec
niques in Ref.@22#. It also agrees with the TM results tha
give xs

1(8).0.48(2) for L57 and xs
1(8).0.50(2) for L

58.
If the leading singularity (xs

1) is found to be the same
using the two techniques, we note that the corrections
scaling are very different, as it appears in the deviation
tween the curves asv increases. This can be the result of t
ensemble average procedure, which is not identical in
two approaches~grand canonical for the TM technique an
canonical disorder for the MC simulations!. The same type
of sensitivity to the ensemble average was reported rece
by Wiseman and Domany@41#.

IV. CONCLUSION

In this paper, we have investigated the magnetic criti
properties of disorderedQ-state Potts ferromagnets for
wide range ofQ values. These models lead to second-or
phase transitions that are particularly interesting, since t
belong to new universality classes. The accurate determ
tion of critical indices is a preliminary step towards a deep
understanding of these universality classes. Although univ
sality is expected with respect to the disorder amplituder,
previous works on finite systems have shown that the
merical results are very sensitive to the choice of this dis
der amplitude. This sensitivity is attributed to crossover
fects due to the pure model (r→1) and percolation (r
→`) unstable fixed points. The behavior of the effecti
central charge as a function ofr can fortunately be exploited
to locate the optimal regime of disorder. One should ment
that, in our previous studies, this extreme sensitivity of
numerical estimates of critical exponents was not well und

r FIG. 12. Large distance behavior of the universal scaling fu
tion (Q58, r 510), leading to the surface scaling index. The fit h
been shifted for clarity.
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TABLE V. Extrapolation of the bulk magnetic scaling dimensionxs
b in the thermodynamic limit for the different values ofQ. The first

two columns recall previous FSS results obtained by MC simulations~in which the accuracy had been overestimated, since the influenc
the disorder amplitude was not well understood, at least in that which concerns our own studies!. The data in the four remaining column
were deduced from conformal invariance. The quantity that was studied is indicated in the table as well as the geometry and the
technique. The results presented in this work are written in boldface. The table notes recall the parameters used for each result, es
values of disorder amplitude that are known to have a strong influence on the exponent.

FSS~MC! Conformal invariance
Square Strip Square

SW W TM TM SW SW
Q @^Mb&# @^Mb&# @^G(u)&# @^G(u)&# @^G(z)&# @^s(z)&#

3 0.1337~7!a 0.1347~1!b 0.1321„3…c 0.13357„3…d

4 0.145~3!e 0.139f 0.1396~5!b 0.1385„3…c 0.13815„4…d

5 0.1413~10!b 0.1423„3…c 0.14302„4…d

6 0.1423~9!b 0.1456„3…c 0.14621„5…d

8 0.118~2!g 0.153~1!h 0.1415~36!b

8 0.153~3!i 0.151~4!h 0.1496~9!j 0.1505„3…c 0.152~3!k 0.15031„5…d

15 0.1572„3…c 0.15984„6…d

64 0.185~5!h 0.1669„3…c 0.17299„6…d

aMC simulations~Wolff algorithm; ;105 samples;r 510; GCD! from Ref. @21#.
bTM calculations (L51 – 7; 102 samples;r 52; GCD! from Refs.@17,18#.
cTM calculations (L52 – 8; 803103 samples; the values of disorder amplitude forQ53, 4, 5, 6, 8, 15, and 64 arer 55, 7, 7, 8, 10, 10, and
12, respectively; GCD!, this work.
dMC simulations~Swendsen-Wang algorithm;N5101; 53103 samples; the values of disorder amplitude forQ53, 4, 5, 6, 8, 15, and 64 are
r 55, 7, 7, 8, 10, 10, and 12, respectively; CD!, this work.
eMC simulations~cluster algorithm;N5256; ;500 samples;r 510; GCD! from Ref. @15#.
fMC simulations~Wolff algorithm! Picco @52# cited in Ref.@18#.
gMC simulations~Swendsen-Wang algorithm;N<100; ;30 samples;r 52; restricted CD! from Ref. @12#.
hMC simulations~Wolff algorithm; N<100 and 500;;105 samples;r 510; GCD! from Ref. @24#.
iMC simulations~Swendsen-Wang algorithm;N<100; ;500 samples;r 510, CD! from Ref. @22#.
jTM calculations (L52 – 9; 403103 samples;r 510; GCD! from Ref. @38#.
kMC simulations~Swendsen-Wang algorithm;N5101; 33103 samples;r 510; CD! from Ref. @38#.
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stood, resulting in an underestimation of uncertainties.
tried to present here a careful analysis leading to relia
error bars. This uncertainty was mainly due to the non-s
averaging behavior of correlation functions. In the strip g
ometry, the number of samples being already important,
ter estimates would not be easy to obtain, while in the M
simulations, improvements could be made by increasing
number of realizations of disorder.

The conformal mapping inside the square seems very
ficient compared to standard FSS studies, only one lat
size being needed. The accuracy is furthermore substant
improved: ~i! the finite-size corrections are essentially i
cluded in the conformal mapping;~ii ! all the lattice points
enter the fit of the density profiles.

A summary of our results, compared to other independ
determinations of the magnetic scaling index, is given
Table V, and the dependence onQ is shown in Fig. 13. The
pure model value forQ<4 is shown for comparison@70#.
Both FSS and conformal invariance results are presen
The two techniques used in this work are in agreement w
each other, as well as with previous studies at the same
order amplitude, at least as long as the number of statesQ is
not too large. When the ratior is very different, disagree
ment with other studies that are likely due to crossover
fects occurs. On the other hand, when the number of stat
large,Q.15, there appears to be discrepancies between
two techniques used here. While the second method~square
e
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geometry, 5000 realizations! seems to be the most accurat
we are more confident in the first one~strip geometry, 80 000
realizations!: If the number of disorder realizations is to
small, the average behavior will indeed give an expon
closer to the typical one, and thus too large. MC simulatio
are furthermore known to be less efficient whenQ increases,
since the autocorrelation time also increases, requiring la
numbers of thermalization iterations. We also note that

FIG. 13. Q dependence of the bulk magnetic scaling dimens
in the RBPM compared to the pure model value forQ<4.
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TABLE VI. Bulk magnetic scaling index~after extrapolation in the thermodynamic limit! obtained from the decay of the correlatio
function along the strip with different values of the cutoffe.

Effective exponent atQ53, r 55

e 0.12531021 0.31231022 0.78131023 0.19531023 0.48831024 0.12231024 0.30531025 0.76331026

xs
b 0.132 07 0.132 09 0.132 09 0.132 08 0.132 09 0.132 09 0.132 09 0.132 09

Dxs
b 5.331024 3.831024 3.331024 3.131024 3.131024 3.031024 3.031024 3.031024

Effective exponent atQ58, r 510
e 0.12531021 0.31231022 0.78131023 0.19531023 0.48831024 0.12231024 0.30531025 0.76331026

xs
b 0.150 14 0.150 32 0.150 47 0.150 50 0.150 50 0.150 53 0.150 54 0.150 54

Dxs
b 4.731024 3.431024 2.931024 2.731024 2.731024 2.631024 2.631024 2.631024

Effective exponent atQ58, r 511
e 0.12531021 0.31231022 0.78131023 0.19531023 0.48831024 0.12231024 0.30531025 0.76331026

xs
b 0.150 40 0.150 56 0.150 72 0.150 71 0.150 74 0.150 77 0.150 78 0.150 78

Dxs
b 4.731024 3.331024 2.931024 2.731024 2.631024 2.631024 2.631024 2.631024

Effective exponent atQ564, r 512
e 0.12531021 0.31231022 0.78131023 0.19531023 0.48831024 0.12231024 0.30531025 0.76331026

xs
b 0.1663 0.1663 0.1667 0.1668 0.1668 0.1669 0.1670 0.1671

Dxs
b 631024 431024 331024 331024 331024 331024 331024 331024
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leading singularity of the magnetization does not depend
to the precision of our results, on the type of disorder c
sidered~GCD or CD!.

In the caseQ53, which was already considered by di
ferent authors, there exists a perturbative result~renormaliza-
tion group approach for the perturbative series around
pure model conformal field theory!:

xs
b5 2

15 10.001 32.0.134 65. ~33!

This result was confirmed numerically by Picco@21# and
Cardy and Jacobsen@17#. In this work, we obtain a value tha
is slightly too small. We nevertheless note that the two v
ues, atr 55 andr 56, are in perfect agreement~see Appen-
dix B!.

We finally mention a recent work of Olson and Youn
@71#, who performed a MC study of the multiscaling prope
ties of the correlation functions for different values ofQ.
They used a different self-dual probability distribution of t
couplings, and obtained slightly different results~e.g., xs

b

50.161(3) atQ58).
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APPENDIX A: EVALUATION OF ERRORS IN THE
TRANSFER MATRIX CALCULATIONS

In spite of the large number of disorder realizations, t
correlation functions along the strip display an important d
persion, but the resulting values for the critical exponents
extremely accurate. In order to obtain a correct estimation
the errors on the magnetic scaling index, we studied the
fluence of the cutoff parametere. For e.1021, a few points
are taken into account only and the short distance beha
of the correlation function is observed. On the other ha
with e.1026, all the data points in the rangeu55 – 100 are
taken into account in the fit, giving a greater weight to t
long-distance behavior. Clearly, one has to find a comp
mise between the two approaches. Fortunately a variatio
the cutoff parameter does not affect the value of the extra
lated exponent, which remains very stable, as shown in Ta
VI.

Another contribution to the error should come from t
choice of disorder amplitude. To study this effect, we co
sidered a variation ofr close to the optimal value. It leads t
a result that is inside the error bars of the previous one
shown in the caseQ58 in Table VI. The uncertainty in the
rangee5102421026 is of the same order of magnitude a
the fluctuations between the data obtained with different v
ues ofe and r, so we eventually considered as a definiti
result the fit with this cutoff value.

APPENDIX B: DETAILS OF THE MONTE CARLO
SIMULATIONS

In random systems, in addition to the usual MC error,
random-bond fluctuations introduce another source of sta
tical error. For any physical quantityX, the total error is
given by

~dX!25
s random

2

Nrandom
1

sT
2~112tX!

NrandomNMC
, ~B1!
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TABLE VII. Bulk magnetic scaling index obtained from the profile of the order parameter inside a square with fixed boundary con
for five independent runs~1000 configurations of disorder for each run!. The final result obtained with 5000 configurations of disorder
given in the column called average.

Run 1 Run 2 Run 3 Run 4 Run 5 Average

Exponent atQ53, r 55
xs

b 0.13260 0.13384 0.13405 0.13418 0.13323 0.13357
Dxs

b 731025 731025 731025 731025 731025 331025

Exponent atQ53, r 56
xs

b 0.13450 0.13262 0.13307 0.13378 0.13333 0.13345
Dxs

b 731025 731025 731025 731025 731025 331025

Exponent atQ54, r 57
xs

b 0.13886 0.13835 0.13798 0.13703 0.13858 0.13815
Dxs

b 831025 831025 831025 831025 831025 431025

Exponent atQ54, r 58
xs

b 0.13799 0.13794 0.13753 0.13849 0.13798 0.1379
Dxs

b 931025 931025 931025 931025 931025 431025

Exponent atQ58, r 510
xs

b 0.1508 0.1515 0.1501 0.1501 0.1492 0.15031
Dxs

b 131024 131024 131024 131024 131024 531025

Exponent atQ58, r 520
xs

b 0.14527 0.14506 0.14505 0.14513
Dxs

b 631025 631025 631025 331025

Exponent atQ564, r 512
xs

b 0.1722 0.1733 0.1724 0.1747 0.1725 0.17299
Dxs

b 131024 131024 131024 131024 131024 631025
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where the first term is due to the disorder fluctuations, wh
the second one describes the fluctuations during the MC
erations. This latter term corresponds to the standard de
tion of independent random variables, corrected by the a
correlation time, to take into account the correlatio
between the successive data. In these expressions,NMC is the
number of MC iterations, measured in MC steps~MCS!,
realized for the measurements of the physical quantities
each disorder realization,Nrandom is the number of disorde
realizations, andtX is the autocorrelation time for the quan
tity X ~the definition oftX sometimes absorbs the factor
describing uncorrelated variables!. The variancessT and
s random respectively measure the deviation due to therm
fluctuations for a given sample and the deviation from
exact value within the ensemble of disorder configuration

Both variances are of the same order of magnitude.
leading source of error thus comes from the disorder aver
and a large number of samples is needed in order to
accurate results. In our simulations we used the Swend
Wang cluster algorithm@68# for systems of size 1013101.
The autocorrelation time for the total magnetization ists
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cond-mat/9707336.

@31# P. Di Francesco, H. Saleur, and J.-B. Zuber, Nucl. Phys
290, 527 ~1987!.

@32# A. L. Talapov and Vl. S. Dotsenko, e-print cond-mat/930602
@33# A. L. Talapov and L. N. Shchur, Europhys. Lett.27, 193

~1994!.
@34# S. L. A. de Queiroz and R. B. Stinchcombe, Phys. Rev. B50,

9976 ~1994!.
@35# S. L. A. de Queiroz, Phys. Rev. E51, 1030~1995!.
@36# F. D. A. Aarão Reis, S. L. A. de Queiroz, and R. R. do

Santos, e-print cond-mat/9608083.
@37# M. Picco, Phys. Rev. Lett.79, 2998~1997!.
@38# C. Chatelain and B. Berche, Phys. Rev. E58, R6899~1998!.
@39# B. Derrida, Phys. Rep.103, 29 ~1984!.
tt.

.

.

B

.

@40# S. Wiseman and E. Domany, Phys. Rev. Lett.81, 22 ~1998!.
@41# S. Wiseman and E. Domany, Phys. Rev. E58, 2938~1998!.
@42# H. Furstenberg, Trans. Am. Math. Soc.108, 377 ~1963!.
@43# Vl. Dotsenko, J. L. Jacobsen, M. A. Lewis, and M. Picc

e-print cond-mat/9812227.
@44# A. Crisanti, S. Nicolis, G. Paladin, and A. Vulpiani, J. Phys.

23, 3083~1990!.
@45# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

Flannery, Numerical Recipes~Cambridge University Press
Cambridge, 1986!, p. 655.

@46# G. T. Barkema and J. McCabe, J. Stat. Phys.84, 1067~1996!.
@47# J. L. Cardy, Nucl. Phys. B240, 514 ~1984!.
@48# G. Gomper and H. Wagner, Z. Phys. B59, 193 ~1985!.
@49# T. W. Burkhardt and I. Guim, Phys. Rev. B36, 2080~1987!.
@50# M. N. Barber, I. Peschel, and P. A. Pearce, J. Stat. Phys.37,

497 ~1984!.
@51# B. Davies and I. Peschel, J. Phys. A24, 1293~1991!.
@52# D. Karevski, P. Lajko´, and L. Turban, J. Stat. Phys.86, 1153

~1997!.
@53# T. W. Burkhardt and E. Eisenriegler, J. Phys. A19, L663

~1986!.
@54# T. W. Burkhardt and T. Xue, Phys. Rev. Lett.66, 895 ~1991!.
@55# L. Turban and F. Iglo´i, J. Phys. A30, L105 ~1997!.
@56# I. Peschel, L. Turban, and F. Iglo´i, J. Phys. A 24, L1229

~1991!.
@57# L. Turban and B. Berche, J. Phys. I3, 925 ~1993!.
@58# B. Davies and I. Peschel, Ann. Phys.~Leipzig! 2, 79 ~1993!.
@59# S. Blawid and I. Peschel, Z. Phys. B95, 73 ~1994!.
@60# B. Berche, J.-M. Debierre, and H. P. Eckle, Phys. Rev. E50,

4542 ~1994!.
@61# C. Kaiser and L. Turban, J. Phys. A27, L579 ~1994!.
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