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Critical behavior of the two-dimensional spin-diluted Ising model
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The equilibrium ensemble approach to disordered systems is used to investigate the critical behavior of the
two-dimensional Ising model in the presence of quenched random site dilution. The numerical transfer matrix
technique in semi-infinite strips of finite width, together with phenomenological renormalization and conformal
invariance, is particularly suited to putting the equilibrium ensemble approach to work. A method by which to
extract with great precision the critical temperature of the model is proposed and applied. A more systematic
finite-size scaling analysis than in previous numerical studies has been performed. A parallel investigation,
along the lines of the two main scenarios currently under discussion, namely, the logarithmic corrections
scenario(with critical exponents fixed in the Ising universality clasgrsus the weak universality scenario
(critical exponents varying with the degree of disojdées carried out. In interpreting our data, maximum care
is constantly taken to be open to both possibilities. A critical discussion shows that an unambiguous discrimi-
nation between the two scenarios is still not possible on the basis of the available finite-size data.
[S1063-651%9916110-5
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[. INTRODUCTION exactly would be tantamount to providing an exact solution
to the original problem, which is clearly unfeasible. So a
Recent years have witnessed renewed efforts within thecheme of approximations based on a moment matching idea
statistical physics community to understand phase transitions invoked. Second, we resort to conventional transfer-matrix
in simple disordered classical spin systems. As a matter dffM) techniques to implement the method in practice on
fact, these efforts have produced conflicting statements corfinite-width strips, analyzing finite-size results along the
cerning the effects of disorder on critical phenomena, coverines of Nightingale’s phenomenological renormalization

ing almost the complete spectrum of conceivable alternadfoup schem¢29,30. _ _ _
tives. The purpose of the present paper is to provide Qetalls of
This holds in particular, but not exclusively, for two- our T™M S.tUdY[.lS’.Zﬂ as well as to mplude new materlal_and
dimensional (2D) disordered ferromagnetic¢i.e., unfrus- t.o_des.crlbe S|.gn|f|cant .advances_m the understanding of
finite-size scalingFSS signatures in the presence of loga-

trated Ising models. These models have been widely StUd'rEhmic corrections, which together have allowed us to boost

led, both because the correspondln_g pure syst_em IS Wetl e accuracy of our results considerably and to obtain a
understood and because they constitute a marginal case a

the Harris criterior 1], which assesses whether disorder Con'interpretation of the data.

stitute; a relevant or irrelevant perturbation for.the critical The main and unexpected finding in REZ1] has been a
behavior of the pure system. For models of this type, theontinuous variation of the critical exponents, y, and v
discussion currently appears to narrow down to two conflictyyith the spin density in a manner which was observed to
ing scenarios, namely, thiegarithmic corrections[2-17]  comply with the idea of weak universalif1]. That is, the
versus theweak universalityf18—21 scenario, although a exponenty describing the decay of critical correlations, and
broader spectrum of alternatives had been discussed earligfe magnetic exponent, as well as the ratiog/v and y/v
[22—-24 (the interested reader will find a comprehensive re-were found to be independent @fThe results were obtained
port on the literature up to approximately 1982 in an earlyby extrapolations of FSS data based on rather moderate strip
review by Stinchcombg¢25]). We will describe these sce- widths, and they were in complete quantitative and qualita-
narios and discuss the&and relatedresults in greater detail tive agreement with those of a Monte Carlo study by Kim
later on. and Patrascioifi20]. These results are in conflict with those
The object of our study is the randomly spin diluted 2D supporting the logarithmic corrections scenario, where modi-
Ising model. Our investigation is based on two main ingre-fications of the relevant thermodynamic quantities at critical-
dients. First, we use the equilibrium ensemble approach tity appear through logarithmic terms in the reduced tempera-
disordered systempg26,27,18,21,2Bto map the quenched ture, while the system is left in the same universality class
system onto an equivalent thermodynamic equilibrium sys{i.e., with the same critical exponehtss that of the pure 2D
tem in an enlarged phase space. Performing this mappinging model. These findings almost all concern the
ferromagnetic-bond-disordered situation, either theoretically
[3-5,17 or via numerical[6,7,9-14,1% and series expan-
*Electronic address: mazzeo@pooh.tphys.uni-heidelberg.de  sion [15] approaches, but the comparison with the spin-
"Electronic address: kuehn@tphys.uni-heidelberg.de diluted model is possible assuming—as is generally believed

under appreciation of the subtleties that may emerge in the
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to be the case—that the two systems are in the same univesay, a square lattick, and the second over all sitesThe o
sality clasg25,17. denote Ising spins and thee {0,1} are occupation numbers

In discussing our results, we have to address two maisignifying whether in a disorder configurationa sitei is
issues. The first is concerned with the reliability of ouroccupied by a spink;=1) or is not k;=0). Thek; are
method, which is based on an approximate description ofaken to be quenched random variables, i.e., they are fixed,
quenched disorder. The evidence we have been able to corand randomly chosen according to the probability
pile does give us strong confidence in the validity of our
approach. This granted, we turn to the second issue: can—or,
more precisely, to what extent can—our results provide evi-
dence in favor of or against any of the conflicting scenarios
so far advanced to describe the critical behavior of 2D dis-
ordered ferromagnetic Ising models? This is indeed a subtle
question, and we devote almost two Secti¢8scs. IV and  which simply requires each site to be occupied with prob-
V) to discussing it. It turns out that a considerable portion ofability p, and to be empty with probability1p. Thusp is
the available finite-size data from simulations or TM the average density of spins in the system.
studies—including those presented in our earlier study Our aim is to study the thermodynamics of the system,
[18,21] as well as some new ones—may perhapsallow  described by thédimensionlessquenched free energy
one to decide with sufficient confidence between the two
most serious candidates. And we shall explain why. Larger 1
system sizes would in any case be necessary in studies along fq=—N"XInZy(x))q. 3
those lines to permit taking sides.

Finally, since one of the aims of our study is to discrimi- i.'e., the average of the system’s free energy over the distri-

nate between these two contradicting scenarios, one of o ton describing the statisti f the disorder confi
main concerns is an open-minded attitude, perhaps not eas@". onq(x) desc g the statistics ot the disorder conhigu-
tions k. HereN denotes the system size aAg(«) is the

found in the literature, in the analysis of the numerical re- ="~ - . . :
sults: we take the greatest care not to select one of them partltlon'functl'on of a sygtem of siZe\|=N 'at fixed disor-
der configurationk. In particular, we would like to locate the

riori and to fit our data to it, but, rather, we attempt to be o ) . .
P P phase-transition lin& .(p) below which the system is known

open to both possibilities. . .
to develop spontaneous ferromagnetic order in the thermo-

The remainder of our paper is organized as follows. Ind i fimi g dv th itical behavi f
Secs. IIA and 1B, in order to set the scene and to fix ourdynamic limitN—cc, and to study the critical behavior o
épe system at and around this line. Whereas the thermody-

and we briefly recall our methodological background viz. theamics of the 1D system is known exactly, an exact solution

equilibrium ensemble approactEEA) to disordered sys- of th'e ZD model is curren'tly way beyond our abilities. Ap-
tems. While Sec. IIC presents some details related to throximation mEthOde V‘.’h'.c.h may, however, well produce
computational side of the problem, we reserve Sec. Il for £xact results in certain limiting cases, are thus called for.
brief review of the two above-mentioned scenarios, and Sec.

v for_a pres_er_ltatlc_)n and discussion of our main r(-_ls_ults. We B. Methodological background: The equilibrium ensemble
describe a finite-size procedure to extract the critical tem-
perature of the model as a function of the degree of dilution,
which enables us to draw an accurate approximation of the The EEA to disordered systems, as well as its application
phase diagram. We then determine values for the criticalo the 2D spin-diluted Ising model, have been accurately
exponents, for the central charge, and for the specific heat éfescribed elsewherg28,21]. Therefore, we will not enter

our approximating systems. We end our paper with a criticaRgain into the details of the method, but just concisely recall
report of the available finite-size data obtained also by othethe main ideas.

authors, and with a comprehensive discussion both on the The central idea is to treat the configurational degrees of
method and on the outcome of our investigatﬂﬁac_ \J An freedomki ina system with quenChEd disorder on the same
Appendix, mainly based on renormalization-group results byooting as the dynamical variables proper—the spins, in the
Cardy and Ludwid 32,33 presents a systematic FSS analy-case at hand. That is, the phase space is enlarged to include

sis of thermodynamic quantities in the presence of logariththe occupation-number configuratios and an additional
mic corrections. term depending only or, the so-calleddisorder potential

&(k), is added to the Hamiltonian

q<x>=H phi(1—p)tH, )

approach

Il. SETTING THE SCENE H(o|k)—H (k) =H(o|K)+ $(x), (4)
A. The system under investigation

The object of our investigation is the 2D randomly spin-which is then determined in such a way that configuration

diluted Ising model, described by the Hamiltonian averaging, as implied by E@3), becomes part of the Gibbs
average in the enlarged phase space.
H(o|k)=—32, kiUiijj—HE ki . (1) To utilize the method in practice, one still needs an ex-
(ij) i plicit representation fot(«). For spin or site diluted systems

the following representation in terms of products of occupa-
Here, the first sum is over all nearest-neighbor pgjjsof,  tion numbers



PRE 60 CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL SPIN-DILUTED . .. 3825

racy. However, ird=2 not even the simplest approximating
—Bd(k)=N12> (ki—p)+N2 2 (Kikj—p?)+--- system is exactly solvable. To analyze the thermodynamics
' <"> or the critical behavior of our systems, we use the strip FSS
techniques pioneered by Nightingd29]. A distinct advan-
+)\P; (HP ki—plPl| +--- (5)  tage of the EEA in this context is that we are dealing with
' translationally invariant equilibrium systemwith short-
is always suitable. The first sum explicitly displayed in Eq.range couplings at all levels of approximation within the
(5) is over all lattice sites, the second over all nearest/moment-matching scheme described above. FSS can there-
neighbor pairs, the third over all elementary plaquettfs fore be implemented using conventional TM techniques for
size|P|) of the system, and so on. nonrandom systems. _ _
It has been realize[®8] that the self-consistent constraint ~ Our strip is aL XL’ square lattice, with the thermody-
equations that determine the couplings as a function of ~hamic limit taken in the." direction, and periodic boundary
temperaturd, magnetic fieldH, and spin densityp (Egs.(4) ~ conditions(unless otherwise stateémposed in the perpen-

of Ref.[21]), can be written as necessary conditions descripdicular direction. The row-to-row transfer matri, con-
ing the maximumof the equilibrium ensemble’s dimension- Structed from the local Boltzmann factors, can be chosen to

less free energyper sitd be symmetric for all systemsaj—(d) of Ref.[21], and is
diagonalized for strips of fixed width, with the appropriate
set of constraint§Egs. (6)].

The dimensionless free enerdy (per sitg is related to
the largest eigenvalug; of I" via

f¢=—-N"1Inz¢=-N"1InY, exd—BH%o,x)]

with respect to the\,’s. They can therefore be written, and

are in practice evaluated too, as —fi=L""Iny, (7)
af® (to simplify notation, we omit stating thie dependence df
- m:<ki>¢_P:0' and its eigenvalues in what folloyws
The constraint equation§s) have been formulated in
of ¢ terms of first derivatives of the free energy, and thereby in
— ——=(kikj) 4= p*=0,... (6)  terms of first derivatives of . As mentioned above, those

M2 derivatives are nothing but gradient information in the prob-

o lem of maximizingf, (or minimizing —f,) over the appro-

— _:< H ki> _pIP\:o,‘._ . priate set of couplings. Note that the transcendental nature of

INp \icP ) these equations necessitates an iterative numerical solution.

Having in this way determined th@pproximat¢ disorder

Solving Eqgs.(6) for every cluster of connected sites—i.e., potential, one may compute thermodynamic functions and, in
exactly obtaining the quenched free energy via the EEA—igarticular, the correlation length of the order-parameter fluc-
clearly unfeasible. However, a systematic scheme of apwations, which is needed in the phenomenological
proximations may be put up by matching onlgebsedf the  renormalization-group scheme. The correlation length is
full set of moments of the equilibrium ensemble’s Gibbsgijven in terms of the largest and the second largest eigenval-
distribution to the corresponding subset of moments of thges of the TM as
problem with quenched disorder. This amounts to fording
correlations on larger and larger groups of lattice sites to Yo
coincide with those of the quenched system. The larger the & l=—In=. (8)
number of constraints taken into account, the better a de- N
scription of the fully quenched system is obtained.

In Ref.[21] four different approximating systems name
(a)—(d) were studied, differing by the number of terms kept
in Eq. (5), and thus by the set of constraints which is actually
retained in Eq.(6). The present study is focused only on
approximation(d): the first three contributions to the disor-
der potential are kept, i.e., single site, pair, and squarF?tr
plaquette terms. In addition, due to the anisotropy of the stri . o . . .
geometry employed in the calculati¢see Sec. Il C beloyy Introducing modified spinsS;=kjo; with values in{0,
pair occupancy parallel and perpendicular to the strip are‘l}’ we encode both th? presence or absence of a(ﬁm”
treated as separate constraints, i.e., they are controlled z;légail::Oansinnugrlneb\iﬁiabbellengsi?]IZZThgy;rL]Sieusﬁ)I?gtfg?Nssgg
separate couplingd,, and \,, in the disorder potential 3tx3l, we have used two different strategies—with

which, in turn, have to be determined by two distinct equa oo
tions of the type(6). complem_entary strengths gnd vv_eaknesses—to S|mpI|f_y the
computational task of dealing with huge transfer matrices.
The first is a group-theoretical analysis that exploits the vari-
ous symmetries of the matrix and effectively reduces its di-
The approach outlined above might—at least inmensionality. The second is the use of sparse matrix tech-
principle—solve our problem to any desired degree of accuniques.

d Thermodynamic functions of interest are obtained by differ-
entiating the free energy with respect to temperature or mag-
netic field. Here, care must be taken because of implicit field
and temperature dependences in the couplings of the disorder
potential. In other words, derivatives have to be performed
glong the solution-manifold of the appropriate set of con-
aint equations

C. Transfer-matrix approach
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Ill. THE TWO SCENARIOS

tem, they are not newfor the sparse matrix technique, see, wheret is the reduced temperatutes (T—To)/T.<1 (T
valuesy; andy,, respectivelyI'™ is the block spanned by power-law behavior recovergdnd increases with increasing
sal. In a similar spirit, one may investigate the long distance
is found to be the second largest eigenvalue in the blocRf the pure caser=0 is not modified by the introduction of
spinso; change sign under global spin reversal, entailing that C..~In
block of T, the disorder variablek;=|S;| do not change The behavior of the critical spin-spin correlation function is
’ I

quantities, is feasible only in the group-theoretical reduction X€cent numerical worksl9—21 have provided evidence
within the sparse matrix approach. In this case one has tb
is that it can be pushed to considerably larger strip Widthéjhiversality[?al] scenario, the ratio of exponents should not
reversal symmetry in zero magnetic field. It is therefore als@Essential to translate the predictions of these scenarios into
considerably boost the precision of our FSS analysis. corrections scenario. These questions are dealt with in detail

look at our results with an open mind: none of the two sce-
the 2D site diluted Ising model, but which are obviously

A. Determination of the critical temperature

and by Shalaey3], Shankaf4], and Ludwig[5] (the latter The 2D spin-diluted Ising model exhibits a phase transi-
of the model only through a set of logarithmic corrections tofortunately lacks the ability, known for its random-bond
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We will not bother the reader by giving a detailed account 1\ 17
of these techniques since, apart from the fact that they have Eo~t7? f” ' 9
been nontrivially specialized to deal with our particular sys-
e.g., Ref[30]). We just note that within either of them it is being the critical temperature, which will depend pr the
possible to identify block§'®) andT'(?), in the block diag- exponentsy and ¥ are, respectively, 1 and, andg is a
onal representation df, that contain its two largest eigen- nonnegative constant such tigat 0 in the pure caséusual
the space of eigenvectors transforming symmetrically undedisorder. A similar behavior holds for the magnetic suscep-
spin reversal, whiley, is found in the block spanned by the tibility:
eigenvectors of” which are antisymmetric under spin rever- 1
behavior of thek; correlation functionsGy(r;;)=(kik;) T)
—(ki)(k;j). This requires locating a corresponding eigen- , - -
value¥,, which controls the asymptotic decay Gf(r). It ~ With y=3 andy=g. For the specific heat, too, the exponent
corresponding to a representation of the symmetry grougisorder, but the simple logarithmic behavior~In(1) is
which issymmetriavith respect to both externépatia) and ~ replaced by the double logarithmic singularity
internal(spin symmetries of the system. Indeed, whereas the 1
the eigenvalue to be inserted in E§) when computing the ?> '
spin spin correlation length must belong to the antisymmetric
sign. instead predicted not to change in the presence of impurities,
The computation of second-order derivatives of thus its anomalous dimensiopretains its pure Ising value
' -1
needed to evaluate some of the relevant thermodynamicdl™ 4
approach. The second derivatives in fact require knowledggontradictory to what has just been presented above. These
of the complete eigensystem, which is still far too large mdmgs_ show quantities such as the susceptlb_lllty an_d_ the
tgorrelation length to display simple power-law singularities,
resort to finite differences of first-order derivatives to com-at critically, with exponentsy and » varying continuously
pute, e.g., the specific heat or the spin susceptibility. Th&Vith disorder in a way, however, that their ratiév is kept
advantage of the sparse-matrix approach, on the other hangPnstant at the pure system value. According to tinezk-
than the group-theory approach. We reach the valed depend on disorder, and the specific heat was observed to
with the latter andL=13 with the former. Moreover, this Saturate at a nondivergent valuetas0. »
approach does not exploit any symmetries beyond the spin In a finite-size numerical investigation like ours, it is also
applicable if one introduces an antiferromagnetic seam alon eir fin_ite-size counterparts. This_is strai_ghtforward and well
the strip, a device which can be used to compute the domairknoWn in the case of power-law singulariti@nd power-law
wall free energy. We shall exploit this quantity below to corrections to scalingbut less trivial within the logarithmic-
in the Appendix and, where they arise, in the following sec-
tion.
As already stressed in the Introduction, we have tried to
Before showing our results, it is time to briefly present thenarios is chosen as a reference; rather, we attempt to let our
two main scenarios that have survived out of a wider rang@nalysis determine which of the two consistently fits the
of possibilities for the description of the critical behavior of whole series of our data.
mutually exclusive. IV. MAIN RESULTS
The logarithmic-correctionsscenario is based on the
qguantum-field-theory results by Dotsenko and Dotseli{o
contributions correcting certain errors in the formn@hough  tion from a paramagnetic to a ferromagnetic low-temperature
strictly valid only in the limit of weak disorder, they indicate phase, provided the spin denspyis larger than the critical
that the presence of impurities affects the critical propertiesite percolation density.=0.592745[34]. The model un-
the pure system behavior. In particular, according to this piceounterpart, to exactly determine the critical temperature as a
ture, the correlation length of the infinite system close to thdunction of the degree of disorder from duality. This is one
phase transition is expected to show the form of the factors that render the bond-disordered version more
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(positive slopgas a function of3J for different values ot., for the . o -
pure Ising model. Their mutual intersections, at the abscissas /G- 2. Sequences of finite-size approximations to the _C['t'cal
(BJ)", are indicated by open circles; the crossings of twar¢, ~ 'NVerse temperatureg(])f (circles, (8J)! (squares and (3‘])_[]
curves for pairs of valuek, |—+1[(/33)E] are drawn as open dia- (diamond$ as a.funct|0.n of strip wujtrL for p=1 (the. pure Ising
monds; black dots denote the points used in the temperature scan (@S¢ and for spin density=0.75. It is apparent that in both cases

is evident how the former sequence is much more rapidly convergth€ last sequence converges faster than the other two to the critical
ing than the latter to the exact valug.Jd=In(v2+1)/2 inverse temperature of the infinite system represented by the dashed

=0.440687.... The value of the limit of both sequences of pointéi“e- Here, as well as in the following pictures, no error bars are
on the vertical axis is the exponent= %. shown if they are smaller than the symbol’s size.
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. . . - plished by a combination of different extrapolation tech-
attractive _for a num(_encal st_uo_ly, i.e., the possibility of StUdy'niques. They are basically: the Bulirsch and Stoer algorithm
Ing its critical behavior by sitting exactly ;. A very pre- discussed by Henkel and Sth(i36], the three-point iterated

cise numerical determination df. is thus called for in our . : .

. . o X fit method presented by Bie and Nienhui$37], and a third
case, a_lnd it has |_ndeed been reach_ed by a joint an_aly5|s_ of trﬁ%lethod, close in spirit to the latter, that uses fitting proce-
finite-size behavior of the correlation lengtas defined in

Eq. (8)] and of thedomain-wall free energyor interfacial dures at all stages of extrapolatif88]. These three different

tension, the latter obtained by comparing free energies 0falgonthms give accurate and consistent results, since they

) o SR - ~lead to extrapolated values that do not significantly differ
systems with periodic and antiperiodic boundary condltlon§r0m each other. They are also used in the following wher-
in the direction perpendicular to the strip. Antiperiodic :

" . ) .~ ever theL—oo limit of a sequence needs to be extracted.
boundary conditions in a ferromagnetic system force an in=/, ~. . :
Their comparison sets the error bars of our analysis.

terface along the cylinder’s length. In practice, the interface The same scaling arqument resentedg’q_b} can be ap-
is created by introducing an antiferromagnetic seam alon%Iieol al50 1o the waslgl fre?e ener P L1 and the corrlz-
the cylinder, i.e., by reversing in each row the bahd: . o i 9oL '
— J between two fixed spine.g., spind and 1. The inter-  SPonding sequences()(” similarly analyzed.

The apparent “mirror symmetry” of the two sets of

face(domain-wal) free energy per unit lengtty, is given by ) -
the difference in free energy between the system with pericUrves displayed in Fig. 1 suggests also a new method by

odic and antiperiodic boundary conditions, and reads which to extractB.J: the analysis of the sequenca)(" of
mutual intersection points of the curvesé, andL Bo ver-
Y1abc susBJ for fixed values ol. This sequence also converges to
BoL=—In (12) BcJ in the limit of largeL, but muchfaster than the previous

Y . .
' sequences,L{J)ﬁr and (8J)/], and its extrapolation through

with 1 apc the largest eigenvalue of the TM with antiperi- the methods described above furnishes a much more precise
odic boundary conditionfcompare Eq(12) to Eq. (8)]. determination of the critical temperatufepper half of Fig.
Phenomenological renormalizatid29,30 predicts that 2). Already for the rather small value=6, the pure 2D

the correlation lengtlf, scales a4 at criticality. The correct Ising model value of ,(ZJ)L’“ differs from the exact critical

formula reads value only after the 11th decimal digit. Neither this striking
result nor the analysis of thes()|™ sequence are, to our
EL1=L HA+BLYr -, (13)  knowledge, present in the literature, and we regard them as
remarkable findings on their own.
where the correction-to-scaling ternfhe exponenty;, is The whole machinery can be carried over to the diluted

related to the presence of irrelevant scaling fields and it igase. It is worth remembering that in our investigation the
known to bey;,=—2 for the Ising model[35]) split the  spin densityp is treated as a parameter fixed to definite val-
exact crossing of the curvds/ & versuspBJ at the critical  ues in the rangg.<p<1 to scan the phase diagram. The
point for different values oL into a sequence of distinct values ofp analyzed arep=0.95,2, 0.8, 0.75 3.

intersections of abscissa@{)¢ (see Fig. 1 Extrapolating For p#1 the mirror symmetry of Fig. 1 is lost when the

this sequence to its asymptotic value provides an accuratéalue of p substantially departs from the pure system value.

determination of the critical temperature. The task is accomtogarithmic terms would also appear in E¢53) in the case
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FIG. 3. Phase diagram of the 2D site-diluted Ising model, with ~ FIG. 4. Scaled inverse correlation lengtiiw¢, plotted as a
its ferromagnetic and paramagnetic phases. The diamond and tfignction of 1L for tge pure Ising cascircles, for p=0.80(dia-
circle denote, respectively, the exact percolation threshold and th@onds, and for p=3 (squares The lines just connect the dis-
transition temperature of the pure Ising model; the squares corrdll@yed points. Note the vertical scale.
spond to the values of spin densjyanalyzed in this investigation.

The line is merely a guide to the eye. extract 7 just by extrapolating the sequentéé, to L— .

The same procedure can be applied as well gor , since
the amplitudes for the correlation length and for the wall free

of the logarithmic-corrections scenalf(i82] (see the Appen- energy are equal

dix and the dlscusilton in Sec. IV B belpwn spite of that, In the pure Ising casey is known to bel. Our extrapo-

the sequgances,[%(.])L s'tiII converge quite rapidly to their |5tions unambiguously give the same value

asymptotic value, again allowing extremely accurate deter-

mination of (8.J)(p) (see lower half of Fig. Ralso for the 1

lower values ofp, where closeness to the percolation thresh- =3 (14)

old induces stronger finite-size deviations from the

asymptotic behavior of the quantities under investigation. for all the values op considered, with a maximum estimated
Figure 3 presents the phase diagram of the 2D site dilutedrror of 0.0004(the error arising from the uncertainty in the

Ising model, showing the values @f(p)/J obtained in this location of the critical temperature being much smaller than

way for strip widths up td-=13. the difference between final values from different extrapola-
The critical slope of the curv&.(p) versusp atp=1 is  tion procedures From this we can conclude that the expo-

exactly known [39] to be S.=T, lch/dP|p:1=2/[|ﬂ(1 nent » does not depend on disorder, a result that is already

+v2)(1+v2/m)]=1.564 785...; from an additional calculation known [20,21,9,41,1} but without the precision shown

limited to sizeL =11 at a value of very close to 1 and from above.

a numerical evaluation of the derivative, we obtain an esti- Note that the correlation lengthextracted from the ratio

mate that differs from the exact result by approximatelyof TM eigenvalueqEq. (8)] within the EEA refers to the

0.01%. decay of theaveragespin-spin correlation function in the
Finally, let us point out that the method just describeddisordered system. This is to be contrasted with the correla-

provides a very precise determination of the critical temperation length that describes ttgpical decay of the correlation

turesfor each of our approximating systemi#/e make no function in a given disorder configuration, a quantity readily

claim, however, that these values coincide with those of th@btainable from a corresponding ratio of Lyapunov expo-

fully quenched system: for fixed they in fact turn out to be nents within a random TM approa¢#1,11. Our identifica-

slightly different from systenga) to systen(d) [21] and need ~ tion may be confirmed by plotting/£, versus 1> (Fig. 4)

not be the same as Monte Carlo dftd]. The reason is that and noting that no corrections to a linear dependence

nonuniversal quantities, such as indeed the critical temper@moothly extrapolating tg appear, as it could instead be

ture or the value of the percolation threshpld, do depend €Xxpected for the behavior of the typical correlation length

on the approximating system chosen, while universal quans€e in particular the discussion focusing on Fig. 1 of Ref.

tities, such as critical exponents, central charge, etc...., dgtll, and Ref[11]).

not. Our confidence in this statement, and consequently in We would like to point out that the smallness of the esti-

the validity of our method, will be addressed in Sec. V. ~ mated error of the exponent is of particular relevance. It
can in fact also be read as strong confirmation that our ap-

proximations are sufficient to place the model under study in
the right universality class, and that universal quantities
Having determined with great precision the critical tem-therefore turn out to be correctly reproduced.
perature of our model, we now turn to the evaluation of This is confirmed by the behavior of the magnetic suscep-
critical exponents. tibility data obtained via the group-theoretical-reduction
The theory of conformal invariandelO] relates the am- technique. The finite-size scaling analysis of the susceptibil-
plitude A of the leading term in the FSS behavior fEq. ity y predicts a leadingL dependence of the formy,
(13)] to the anomalous dimension of the spin-spin correlation~L ", and the ratioy/v is extracted by analyzing the se-
function viaA= 7, providing a simple method by which to quence

B. The exponentyn and the ratio y/v
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(18

(Z) CInCxiva/x0) 6 LA(L+1)?
v

(L) (15 =g (=T 5

and analyze them both by extrapolating the above sequence
'to ¢, and possibly looking for finite-size correctiofrsext-
to-leading termps

The outcome of our analysis does not differ substantially
from that which we obtained in the study of the expongnt
;’hat is, whilec’ appears to be clearly given by

Corrections to scaling generally modify the pure power law
and an extrapolation th —< is needed. Corrections may
again be of pure power-law form ib (in the conventional
situation arising from irrelevant scaling fiejd®r indeed by
terms containing logarithms af (in the log-corrections sce-
nario). In the latter case, if the largest available system size i
too small, the data might still reflect a preasymptotic regime,
and the very idea of extrapolating a sequence like (EG)

may lose its validity in that case. We refer the reader to thequal to the pure Ising value, for all the points studieith
Appendix for a discussion of this point. We are, however,3 maximum error of 0.0003we are not able to individuate
not able to detect the nonuniversal corrections predicted tgny correction of the kind expressed by E418). The plots

be present in the pregsymptotic regime of the log-correctiongs ¢/ versus 1L2 are lines showing no appreciable bending.
scenario. They are either absent, or too small to be detected The estimatesc/ always converge to their asymptotic
L

(Eq. Al60. T.he same is true fop. . value from above, both in the pure as well as in the diluted
Extrapolating the sequene5) provides the result case. This is at least a necessary condition for the reflection
positivity property, which holds for unitary models but might
(16) not hold for random models. The discussion on this point in
Ref.[43] is indeed based on Eq#18), which would predict
a convergence from below, the first correction terms to the
for all the points studied in the present paper. The estimatedaluec’ =3 being negative. But again, they are either absent
error is around 0.001, bigger than far because a shorter or too small to be discernible within our errors, or conver-
sequencel(,,,=9) has been utilized. These data show thatgence from below sets in for system sizes beyond those ac-
the ratioy/v is independent of the degree of dilution, a find- cessible through our TM calculations.
ing in complete accord with the constancy»p¥ia the Fisher
relation y/v=2— 5, which is thereby demonstrated to be D. The analysis of the correlation length

satisfied with a precision of the order of a tenth of a percent. The correlation length provides us with another tool with

The observed constancy giand /v is unfortunately not %o push our investigation further: the study of the ex-
sufficient to discriminate between the two admissible sce-

. . : : . -~ “ponenty, extracted, in addition tay, from a FSS analysis of
nar|os7, §|ncé)oth_pred|ct _that the ratio retains the pure Ising ¢, can be of particular relevance since it is a single isolated
valuez, wrt_a;pectwe of d|§order. It only shqws that fqr thgse 'xponent and is therefore predicted to show a different be-
two quantities extrapolations are not noticeably mlsgwdecﬁ

by logarithmic corrections, in case they are present avior in the two scenarios.
y 109 ' y P ' Our analysis follows general reasoniff]. A recent ap-

plication to disordered Ising models has been provided by
C. The central charge Aarao Reiset al.[12]. Two quantities at our disposal can be

Conformal invariancg42] provides a link between the subjected to the same investigation, the correlation leggth

values of the dimensionless free energy per site at criticall®S Well as the domain free energy: both show the same
f, in a finite strip with periodic boundary conditions, and the @8ymptotic behavior, though with different corrections to

central charge which characterizes the universality class of SC&ling. _ o o ,
a conformally invariant model. The relation reads First we define the derivatives of these quantities with

respect to temperature:

c'=4, (19

I

Y
v

mC
TR AN (17 dé(t)
) 6L p(t)= " (20
with f., the nonuniversal bulKinfinite system free energy d[Bo(t)] L
per site. Equatiori17) is supposed to retain its validity also (1) = BU—
. P . w' (1) : (21)
in a random system, providetlis replaced by areffective dt

central charge’ (Ref.[33]). The next-to-leading term, omit- ) . o
ted in Eq.(17), differs depending on whether or not logarith- A Pure power—l_avllldlver'gence da(t) at critically like t™"
mic corrections are present. In the latter case, it is believed tnPlies u(t)~t~""7, l"m/'Ch in turn translates into the finite-
depend orl asBL2Yir=BL~* if we adopt the valug,,  SiZ& predictionu, ~L*"*". The same relations hold respec-
= —2 of Ref.[37] or, equivalently, that borne out from the tively for Ba(t), u'(t) andu( . From theu, sequenceand
analysis of Sec. IVB above. In the former case, insteadsimilarly form thew; sequenck one obtains finite-size ap-
Ludwig and Cardy{33] derived the results presented in Eqgs. proximationsy, of the correlation length exponent via
(A18) of the Appendix. To avoid dealing with thie, term,
we prefer to extract finite-size estimates df through the
formula

,1_|n(ML+1/ML)_

TSV 22
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TABLE I. Various exponents for different values of spin density
p. In the second column is the exponerds extrapolated from Eq.
(22). The third column shows the value of the ratifw extracted
from Eq.(25). The last column provides a test for the validity of the

GIORGIO MAZZEO AND REIMER KUHN

hyperscaling relation 2~ a/v=d=2.
@ 2
p v — N

14 v v
0.95 1.054:0.002 —0.102+0.0088 1.999:0.012
8/9 1.113-0.001 —0.214£0.007 2.01*0.009
0.80 1.15+0.03 —0.30 £0.02 2.04+0.06
0.75 1.18+0.02 —0.35 £0.02 2.05*0.05
2/3 1.23 £0.05 —0.445£0.005 2.07+0.07

Extrapolated values clearly appear to vary withand to
change continuously from the Ising value=1 to the perco-
lation valuer=4/3[44] in a way shown in Table I. The large

error bars on the values corresponding to stronger dilutiogv
Q

are due to degradation in the quality of the fits, and even t
the appearance of nonmonotonicities in the sequenceer-

susL extracted from the domain-wall free energy data, which

prevent an extrapolation as precise as those for laFge-
ues. The cause is probably the closeness of the percolati

threshold, which requires a corresponding enlargement i
system size in order to disentangle the system'’s correct criti-

cal behavior from crossover effects.

A similar data trend was extracted also from Monte CarLoV extrapolated from Eq22) only slightly exceed 1. The data

simulations,[20] and analogous variation with the strengt
of bond disorder was observed in REE2]. The variation of
v as a function ofp at constanty and constanty/v would
qualify the observed nonuniversality—if it must
upheld—to be of thaveakform.

be

On the other hand, one should be wary of the fact tha
preasymptotic logarithmic corrections might invalidate the

very idea of extrapolating & sequence of limited length;
see Eq.(A16¢). This was the attitude advocated by Aara
Reiset al, who did not give much weight to an analogous
variation of their extrapolated exponent as a function of
disorder. Rather, they proposed to fit thedependentu,
data to a form expected to hold in an intermedigieeas-
ymptotic range ofL values within the logarithmic correc-
tions scenario, viz.
w~L%(1—=AlInL)Y2 (23
which predicts f, /L?)? to be linear in Ir_. Note that this
expression used by AaveReiset al. was derived from heu-
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FIG. 5. Quantities & /L?)? (u[/L?)? at criticality plotted as a
function of InL, for various values op.

ould be expected from EqA16b). Note once more the
Same asymptotic behavior gf, andu| , with different cor-
rections to scaling.

The data can, however, be consistently interpreted within

(fhscenario of nonuniversal critical exponents as well. Indeed,

or a power-law divergence of the correlation length with
>1, FSS would predictg, /L?)?>~L~ with o=2—2/v at
sufficiently largeL for the data plotted in Fig. 5. In the dis-
order range considerea,is a rather small quantity since the

might therefore easily look to be exhibiting a A InL)
behavior for the accessible range of system sizes, which was
the form assumed in Reff12]. This might, however, just be
the result of an expansion to first order in the small quantity
@ InL (L”“~1-wlInL). Upon closer inspection, a curva-
ture compatible with a.~“ behavior is indeed discernible
in the figure for larger disorder. Using a fit agaithst® we
have another way of analyzing our data to determinand

the values obtained this way are compatible with those ob-
tained from extrapolation of the, data. Nonetheless, a cur-
vature of the f /L?)? data may occur also in the log-
corrections scenaripdepending on the value d, in Eq.
(A13)].

We can, however, affirm with certainty that neither Zara
Reiset al. nor we are seeing preasymptotic effects of loga-
rithmic corrections in the data far, , because they ari@-
creasingwith L (in our case at least fop>0.8), whereas
according to FSS they shouldecrease see Eq.(A160).
Thus, if logarithmic corrections are present, they are for the

ristic considerations. It formally agrees with the true expres-available system sizes still masked by other corrections to

sion (A16b) only to first order in IrL, but it predicts the
wrong sign for the coefficient of the leading Inbehavior of

the effective size-dependent correlation length expoment
[Eq. (Al160)].

In Fig. 5 we plot our results in the same form as Aara
Reiset al. do, both foru, and for | . The data show ex-
actly the same trend observed in Ref2], both with respect
to system sizé&- and with respect to the strength of the dis-

order. From this observation we derive additional strong con
fidence in the validity of our method. The pure system be-

havior is soon replaced by an apparently linear term i In

scaling. Again, it seems that further investigation is required
in order to be able to take sides on the critical behavior of
this system.

E. The specific heat

The logarithmic-correction scenario predicts for the spe-
cific heat the double-logarithmic divergence of Etjl). This
translates, at criticality, into the FSS predictic®]

C ~C{+CiIn(1+CjInL), (24

for (u./L%)? in the increasingly disordered system, aswhere the pure-system critical behavior is recovered by the
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1.6 T y y T in Table I. Its main outcome is the fact that, within a weak-
14} i nnd:#“ 1127 DE#F l universality interpretation of the data, a small, seemingly
12 b 10t d ] systematic offset from hyperscaling though still within esti-
ol o a" 1 S a” mated error bars, appears.
' o° o os | 0° o 0 | We have tried to discriminate between E4) and(25)
o8k o P=lGsing] ¢ . p=095 on the basis of g2 test. Although such a test appears to
29605 o >0 50 %00 o >3 5o favor the Ic_)g—(;orrectigns scenario by roughly an order of
© . . 05 i ' magnitude iny~, the y“ values for both alternatives are so
wl 1 small [typically ©(10™8) and O(10™ "), respectively, for a
j nndjp oal i Du:‘:'jP l choice of the data sptas to make it doubtful whether a
o8 § o ] S a” meaningful model selection should be based on them. In par-
07F o o 1osf © o j ticular, our data are not normally distributed random data
06k © 9 5-0.8889 1 o " p=075 (indeedt they are detgrminis):jaas instead strictly required
os o . 03 2 ! . by a reliabley? analysis.
“00 1.0 20 30 00 1.0 2.0 3.0
InlnL,InL

- . . o e V. DISCUSSION AND CONCLUSIONS
FIG. 6. Finite-size approximants of the specific heat at criticality

C, versus InlrL (circles and InL (squares In this paper we studied the critical behavior of the 2D
Ising model with quenched random site dilution via the EEA.
vanishing ofC, (but with C;C,=cons} for p=1. On the Our purpose was twofold: first we wanted to address again
other hand, a scenario of nonuniversal critical exponentd€ guestion about the reliability of the method; second, we
would lead to extended the study begun in RE21] to systems of larger
sizes, also in view of the new results which have appeared in
C ~C.+CjLe. (25)  the literature since theffi2—16, in order to enable perhaps a
clearer discrimination between the two contradictory pictures
Though of/v is a ratio of exponents, it is expected to vary of the system’s critical behavior that have survived so far,
with p, being directly related te via the hyperscaling rela- the logarithmic corrections and the weak-universality sce-
tion 2—a=dv, with d the system’s dimensionality. More- nario.
over, this relation imposes a severe constrainiosince v
is found to be greater than &, should be smaller than 0, in
other words the specific heat should then turn out to be non-
divergent, with its finite-size estimates saturating to a value Since the description of quenched disorder within our
C,atT.. EEA is only approximate, we have to worry about how good
We plot our data for the specific heat in the same form adt actually is. Before gathering the different pieces of evi-
in Ref.[13], i.e., against both lh and InInL (Fig. 6. The dence accumulated during our numerical study confirming
pure-system divergence is well reproduced by the straighthe validity of our approach, we would like to address the
line the data show when plotted againsi_lmnd, equiva- question from a more general viewpoint. In RE21] the
lently, by the upward curvature when plotted against In.In  correlation lengthé, describing the asymptotic decay of the
Exactly as it happens in R€fL3], as disorder is switched on correlation functionG,(r;;) of the disorderdegrees of free-
and increased, it is apparent that both curves tend to berdom was introduced and studied. Its finite-size estimates can
downward, the former markedly deviating from, the latterbe computed from the ratio of two TM eigenvalues in com-
instead approaching, a straight liffeom top left to bottom  plete analogy to Eq8) by replacingy, with 5, , wherey, is
right of Fig. 6. The law describing these finite-size datathe second eigenvalue of the symmetric block of the transfer
therefore has to be at least less divergent witthan InL. matrix I.
However, the same kind of behavior must at moderate sys- As regards the analysis of this new correlation length, we
tem sizes be expected both scenariogas we shall argue in  have both bad and good news. The bad news isghattu-
greater detail in the concluding sectjoit is therefore diffi-  ally diverges at criticality in our different approximating sys-
cult to conclude definitely in favor of Eq24): here more tems. This escaped our attention in R&1]: while & was
than elsewhere the need for significantly larger system sizesbserved never to exceed a few lattice spacings for the ac-
is particularly felt. cessible system size, its size dependencE.dtad not been
If we fit the data to a nondiverging size dependence, irmonitored. However, before concluding from this that our
accordance with Eq(25), there is a consistency check to systems provide only a rather poor description of quenched
carry out, i.e., one may ask oneself whether or not the hydisorder, we have also determined the behavior of the ratio
perscaling relation is verified, given thevalues from the R =& (T.)/&.(T.) of these two correlation lengths at
correlation length. The fitting of the specific heat to the formcriticality, and the results of this study may be taken for the
(25) is performed first by taking all the points into account, good news. We find tha_— 3 at largeL, independently of
then by reducing the data set by successively increasing the Since this limit represents nothing but the ratjbn, of
initial value ofLL considered. In this way one can both checkthe anomalous dimensions of the spin and occupation-
for the stability of such a fit and get a sequence of values ofariable correlation functions af., this implies that
olv that may be subjected to subsequent extrapolation pro=2, hence is unusually large. The correlator is thus “al-
cedures when needed. The results of this analysis are showmost summable” at criticality(its sum has a logarithmic

A. Reliability of the method
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infrared divergence Note that the rati&,(r)/G(r) behaves the literature—including the recent one$8,10,12—
as 14,16,20,2}—may perhaps not be as decisive on this matter
as their authors have tended to believe. We shall now discuss

Gi(r) - 1 (26) some issues on which, we believe, clarification or amend-
G(r) r™ ments are needed, presenting a critical review of available
material in the light of our own data analysis.
and thus decays to zero, stating thatorrelations are neg-  The results of Ref§20] and[21] have been interpreted as

ligibly small if compared too; correlations at large dis- providing evidence in favor of a weak-universality scenario.
tances. This is why the system may be regarded as effed-he former is a Monte Carlo investigation both at and off
tively quenched despite remaining correlations between theriticality of the site-diluted system. On the basis)df data
ki, and it may be regarded as the reason why our resultgsnalyses, Kim and Patrascioiu concluded that their off-
compare so favorably with those obtained via more conveneritical simulations of susceptibility and correlation length
tional approaches. were better described by modified power laws than in terms
Indeed, both checks against exact results, wherever olef the log-corrections scenario. No analogous discrimination
tainable, and direct comparison of our data with those obwas attempted for the specific heat, and hence no check of
tained by the random TM approadiwhich allows for an  hyperscaling was performed. The main weakness of their
in-principle exact treatment of the disorglarcrease our con- off-critical simulations is that reduced temperatures are still
fidence in the validity of our method beyond any reasonablesizeable, and the constancy of the rafi@ appears slightly
doubt. Among the exact results correctly reproduced by ouless well satisfied than the individual errors on the values of
method we mentiorti) data obtained for a one-dimensional ¥ and » would allow. Simulations at criticality yielded a
system[45], (ii) the value of the initial slope of the critical specific heat very slowly increasing with system size, and
line in the phase diagram, reproduced to within 0.0l  arguments in favor of a saturation were advanced. The con-
the correct value of the connectivity length exponepand  stancy of y/v was clearly shown and the validity of the
of the crossover exponeri=v,/v=1 at percolationf21]  Fisher relation confirmed, but—as noted above—this cannot
(iv) the precision with which the values of the expongnof  be taken to support either scenario over the other.
the ratioy/v, and of the central charge are determined for all Our own earlier TM strip-scaling resul{1], too, were
the points investigated in the phase diagram. In addition, agiterpreted in terms of weak universality. Possible effects of
mentioned above, the random TM détibtained in the case logarithmic corrections in the effective size-dependent expo-
of bond-disordered systemgl2,13 exhibit the same finite- nentsv, were looked for, but were either absent or simply
size signature, and qualitatively the same behavior as regardet discernible due to the rather moderate strip widths avail-
their dependence on the disorder strength as those obtainatile in that study. Indeed, the rather limited system sizes
in the present paper. may be taken as one of the weakest points of that investiga-
A definite advantage of our method over other numericakion. Moreover, specific heats had not been computed and so
methods dealing with disordered systems is that it does ndtyperscaling within a varying exponents picture was not
suffer from non-self-averaging difficulties, and provides di-checked. Again, the observed constancyffand » may be
rectly through the ratio of TM eigenvalues the average corfegarded as a piece of evidence for the reliability of the
relation length, not the typical one, such that the successivaethod, but not in favor of either scenario, except insofar as
analysis turns out to be more straightforward than, e.g., ithey imply that if critical behavior in the model were non-
Ref.[12]. universal, the observed nonuniversality would have to be of
The results discussed so far were all obtained within apthe weak form.
proximating system(d). Comparative studies including re- Let us now turn to the recent investigations that have been
sults also from the other systems)((c) were presented in  taken to support the log corrections scenario. They are either
Ref.[21]. They showed that systema)((d) appear to be in of the TM strip-scaling[10,12,13 or of the Monte Carlo
the same universality class as regards their critical behaviof8,14,14 type.
Nonuniversal quantities, however, such as the critical tem- The strip-scaling data of AageReiset al.[10,17 for the
perature itself, or the value of the percolation threshgld  correlation length in the bond-disordered system appeared to
do depend on the approximating system, differing betweegive values ofv slightly greater than that of the pure system,
those with and without the plaquette constraint and thos&hich the authors, however, discarded, attributing them to
estimated by other numerical works4,34. The conclusion preasymptotic effects originating from logarithmic correc-
is that the description of quenched disorder, though only aptions. Their interpretation of the data in these terms does,
proximate, appears to be precise enough to put all our apndeed, describe the data rather well on the level ofithe
proximating systems into the same universality class as theut not on the level of the size-dependent exponents
fully quenched system, and this is all that is required for theVloreover, we recall our discussion of this point in Sec. IV D,
purpose of the present study. according to which the power-law picture provides a consis-
tent interpretation of the data as well.
Turning to the critical specific-heat data presented in
Refs.[12] and[13], they were interpreted as ‘“clearly sug-
We now come to our second point, concerning the disgesting a divergence in the thermodynamic limit.” This
crimination between the two scenarios proposed for the critipoint was claimed to be strengthened by pushing system size
cal behavior of the model considered in this paper. Our viewup toL=18 (and in less precise simulations even to an im-
is that some of the FSS investigations that have appeared pressiveL=23), and by noting that specific-heat data ap-

B. Discriminating between the scenarios
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peared to be halfway between single- [(Jnand double- Vvalues for the magnetization and susceptibility exponghts
(InIn L) logarithmic dependence on strip width, from which and y, while the behavior of the specific heat showed good
a divergence in the thermodynamic limit was inferred. Oneagreement with the double-logarithmic forhl). Together
should, however, note that at moderhtthis kind of behav-  with the Rushbrooke equalitg+28+ y=2, these findings
ior is to be expected irboth scenarios if the correlation- embody an inconsistency from which the authors concluded
length exponent is close to 1 and, henaeis only slightly  that their increased values f@rand y cannot be asymptotic.
negative. The difference is th&@ will continue to increase On the other hand, it turns out that the specific-heat data of
at least as fast as InInfor all L in the log-corrections sce- Ref.[8] can be fitted equally well to a power-law form with
nario, whereas there will be a crossover to a growth which i value ofa compatible via the Rushbrooke relation with the
slower than IniiL atL, =exp{—w/a} in the case of a modi- increased values ¢8 andy [46]. Note also that the rati/y
fied power law(25) with «<0. Tentatively accepting the in the disordered system is the safbe within a fraction of
value »=1.083 determined by AaceReiset al.[10] for the  a percentas in the pure system, as would be expected in a
r=J,/J,=0.25 case investigated in RdfL3], one would weak universality scenario, whereas individualyand y
have to locate the crossover lengthlgt=680. ThusL,.x  change in the 6% range.
=23 is still much too small to allow conclusion in favor of  The difficulties of FSS are avoided in the series expansion
either scenario. study of Roderet al. [15], their determination of the expo-
We have carried out? data analyses on the raw data of nent in Eq. (10), which appears to saturate &for suffi-
Ref. [13], comparing the two scenarios, as we did on ourciently strong disorder, may perhaps be taken as the stron-
own data. Power-law fits and fits according to E2d) show  gest piece of evidence currently available in favor of the
no significantly different quality. In particular, it seems that avalidity of the logarithmic-corrections scenario. Still, the
double-logarithmic law provides a better fit to the data se-analysis suffers from the relatively small length of the series,
lected from a window L, 23] with L, up to 8, while  at least in some regions of the phase diagram, and one would
power laws give a smalley? for the largerl i, up to 13; for  wish this to be made more conclusive by including higher-
still larger L the results of the fits become questionable fororder terms, so as to reduce error bars. It is also worth noting
both hypotheses. Other kinds of fits have been tried, e.g., bat this point that their claim thay, (T.) is unaffected by
selecting a movable windo\. i, Lmin+7] and lettingL i, logarithmic corrections cannot be upheld: see &d.5).
run over the data, but without any significant improvement. We now turn to the present investigation. First, by com-
Only by discarding the largdr values, which are still much bining finite-size signatures of correlation length and
too noisy(as is obvious from a quick look at the derivative domain-wall free energy, we have in particular been able to
information plotted in Fig. 3 of Ref13]), one gets values of locate critical temperatures with extreme precision. Second,
x? that slightly favor the double-logarithmic forf24). Inci-  we have significantly enlarged our system sizes. In interpret-
dentally, however, the power-law fits lead to an estimate foing our data, maximum care was constantly taken to be open
alv compatible via hyperscaling with thevalue reported in  to both possibilities. Based on results of Cardy and Ludwig,
Ref.[10]. This analysis cannot thus be seen as conclusive.a more systematic FSS analysis than in previous numerical
The Monte Carlo study of site-diluted systems by Balles-studies has been performed. As we will presently show, nei-
teroset al. [14] shows critical specific-heat data reasonablyther way of looking at the available finite-size data is com-
well fitted (in terms ofy?) by a double-logarithmic form, at pletely satisfactory.
least for intermediate dilution. The same is true for a recent The value of the effective central charge is found to be
study by Selkeet al. [16] However, no power-law fitting is ¢’ = 3 with extremely high precision. If conformal invariance
attempted for comparison. In earlier work on bond-and reflection positivity also held for disordered systems, this
disordered systemf7], such power-law fits had been at- finding would put the model into the Ising universality class
tempted, and were regarded as inferior to double-logarithmiand exclude continuously varying exponeftg]. However,
ones. Note, however, that the maximum system sizes studiatle results of Ludwig and Cardj83] imply that the latter
in Ref. [7] are forr=0.25 still below, and for =0.1 above condition doesnot hold, at least for the weakly disordered
but still very close, on a double-logarithmic scale, to theferromagnetic Ising model.
crossover lengthk, expected from the values reported in Considering the correlation-length exponent we ob-
Ref.[10]. serve that our FSS estimates converge to values continuously
The v, data presented in Rdfl4] have, in our view, error varying with p. One might suspect, of course, that our ex-
bars somewhat too large to allow concluding with confidencerapolations are misled because the algorithm would not pick
that v, —1 for largeL for all the values ofp also because up slowly varying logarithmic corrections. However, if we
Ballesteroset al. forcethe intercept through 1 rather than adopt this hypothesis, we find it not easy to reconcile with
fitting it. The reasonably large values bfreached in this the fact that not even the slightest such effect is detectable in
investigation would probably put the system in theour extrapolations of;, y/v, and the central charge even
asymptotic regiméat least for the stronger disordeand the  though similar, albeit smaller offsets must be expected to
FSS expression used by Ballestertsal. is indeedv, =1  occur in these quantities as well, as is borne out by our
+A'/InL. Nonetheless, the constaAt in this expression analysis of FSS in the Appendix.

should, strictly speaking, come out to beindependentlyf The fact that the critical specific-heat data may be well
the degree of disorddisee Eq.(A17¢)], a property which fitted both to a double-logarithmic behavi@4) and to a
their data and their fits doot respect. cusp singularity(25) shows that it is difficult to discriminate

In the off-critical Monte Carlo study of Talapov and with confidence between the two laws. However, we recall
Shchur[8], bond disorder was observed to lead to increasedhat a fit according to a modified power [a®5) entails a
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weak violation of hyperscaling, though it is still within error critical point, the RG flow equations read
bars.

In conclusion, as regards the two issues raised in this dg
paper, we believe to have provided if not a proof, at least a1 - —mbg*+0(g?), (A1)
satisfying arguments in favor of the trustworthiness and ac-
curacy of the EEA to disordered systems. As to the second du,
issue, we feel that further investigation would still be needed —= =YnUn— 27h,gu,+ O(g%uy), (A2)

. " . . . dl
to provide clearer and definite evidence in favor of either

picture. The problems seen in the FSS analyses of the systehore they  are the eigenvalues of the linearized RG equa-
are not exclusive to our results, but are—as we believe tQ < 04 they are operator product expansié@PE coef-

. - n
have demonstrated—common to virtually all previous I:szicients, which can be formulated in terms of corresponding

datLa obtal?ed”so far. hasize th h three-point function$33].
. ?t us Tinally emphasize that we have no reasons to Up to the order shown, these equations integrate to
priori distrust the correctness of the theoretical picture that

began to emerge through the work of Dotsenko and Dot- 90

senko [2] and the improved and corrected versions of g(l):1+—bl’ (A3)

ShalaeV[3], Shankaf4], and Ludwig[5]. Still, in an ideal 0%

world, one would like to see this picture supported by nu-_ . _

merical evidence much better than that which is currentIyW'th 90=9(0) and

available. Un(1) = Un(0) e (14 mbgol )~/ =u1y (0)Ty(1).
(A4)
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In this Appendix, we collect the main results of the The RG equations for the singular part of the free energy
renormalization-group analysis for the case where smalnd the correlation length read
amounts of disorder constitute a marginally irrelevant pertur-
bation at the pure system’s fixed point, thus giving rise to f(t,h,go, L =€ (u,(1),u,(1),g(1),e'L™") (A5)
logarithmic corrections, as in the field-theoretical approach
to the weakly disordere®D Ising model. We do this both and
for the sake of completeness, and to obtain a sound under- . | A
standing of the effects such corrections would have in a FSS &(t,h,go, L) =€ &(u,(1),uq(1),g(l),e'L™7). (A6)
analysis. This will turn out to be relevant not only in the
asymptotic regimé.>1, but especially in th@reasymptotic

APPENDIX: FSS WITH LOGARITHMIC CORRECTIONS

Irrelevant scaling fields providing additional corrections to
regime as specified below. s_callng have for S|m_pI|C|ty beep suppresseq in these expres-
We feel it particularly important to collect these results SIONS- As usual, critical behavior characteristics of the infi-

ite system are obtained by considerihgnd ¢ and their

here, because the literature in the field abounds in heuristic' =~ > ‘ X
derivations which have sometimes produced erroneous réi€rivatives with respect to temperatuend field at a scale
)==*1. For|t|<1 this gives

sults and still more frequently even misconceptions as t&hosen such that.(l
what the effect of logarithmic corrections might be in the 26 /b
FSS signature of various thermodynamic functions and criti- Vel — i(l ngoln i) ’ ) (A7)
cal exponents. It] Ye ot
The following basically involves exploring results Lud-
wig and Cardy[33] obtained in a replica approach to the Inserting the values for the OPE coefficients reported in Ref.
problem, which are in turn based on earlier results on logal33], andv=1/y, =1 for the pure 2D Ising model, this gives
rithmic corrections obtained by Cardy in a more general conthe divergence of the correlation lengthtat 0 to leading
text [32]. order,
If g denotes the marginally irrelevant coupling arising
from disorder averaging in th@eplicated Hamiltonian, and
by {u,} the set of other scaling fields at the pure systems

1/2
Et)~t| Y 1+87A In—) . (A8)

1t
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The fact thab, /b=0 entails that magnetization and suscep-and by extrapolating this sequence to the large system limit.
tibility will to leading orderscale as pure powers of the Equation(22) is just the finite-difference approximation to
correlation length, in agreement with the earlier results ofEq. (A14).

Shalae\3].

Similarly, the FSS analysis for the susceptibility gives

Phenomenological renormalization is based on analyzing

the finite-size signatures of E¢A6) and of its temperature

derivative

d ~1
(D)= gré(thgo LY

=eT, ()& (u (1),u(1),9(1),e'L™Y),  (A9)

XL= Ly/Vfo‘o’(Ovog(ln L),l): LV/V(I)X(g(|n L))
(A15)

with the same conventions for the notation. The rafio is
that of the pure system, i.ey/v=121. On account of the
vanishing ofb,, , no additional logarithmic terms above those
following from the expansion of, appear in Eq(A15), in
contrast to what happens for, . As before, one assumes

H — 2
where¢, designates the partial derivative of the correlation-that an expansion of the form, (x) = ¢,0+ ¢,1x+ ¢,2X

length scaling function(A6) with respect tou,.(l). Finite-

size signatures at criticality=0, h=0) are obtained by ana-

lyzing these quantities at a scade=L, giving

& '=L"1¢%0,0g(InL),)=L"*d(g(InL))
(A10)

and

w =L%(1+87AInL) Y%,(0,0g(InL),1)

=L?%(1+87AInL) Y2®_(g(InL)), (A11)
respectively. Equation@10) and(A11) define the universal
scaling functionsb(x) and® _(x) of the argumenk which,
in the zero-replica limit, isx=A/(1+8w7AInL). In the
weak-disorder limit or at largé this quantity is small, and

one assumes that an expansion of these scaling functions in

exists. For® one getsP (X) = ¢+ d1x+ dx2+ O(x%), the
coefficients being known to béq,= m» from conformal in-
variancg 40], and¢,=0 on account of the vanishing bf, .

Thus

=L Hant o,

A 2
(l+87TA InL) }

+0 (A12)

A similar expansion is expected to hold feb,, i.e.,
D, (X)= o0t bo1x+O(X?), sO(With D1= .1/ ¢.0)

D,A

_ 2 ~12

1+

+0O (A13)

though the coefficients,, and ¢., are to the best of our
knowledge not known. Interest in this quantity stems from
the fact that, within the phenomenological renormalization-

group scheme, the correlation-length exponerg obtained
by computing the sequence of finite-size approximants
defined by

V71:d|n,u|__
L dinL ™

(A14)

+ O(x3) exists, and defines the effective size-dependent ratio
(v/v), by (y/v) =3dInx ldnL. It will be useful to intro-
duce the abbreviatiok; = ¢,i/¢,0 below.

For the interpretation of numerical data it is relevant to
note results for these quantities both in the preasymptotic
regime 87A InL<1 and in the asymptotic regimen@\ In L
>1.

(i) In the preasymptotic regime, they read

& t=L Y mn+ $A%(1-167AINL)] (Al6a)

pL= ool [1+ DA~ (1+2DA)4mA InL]
(A16b)

v.=14+47A+(4wA)*(1+D,/27—2InL)
(A160)

L

(Al6d)

where we have kept the lowest order Anin L. Additional
terms down by further factors & or A InL are not shown.
These results exhibit nonuniversal corrections.

(i) In the asymptotic regime, on the other hand, one has

2 3
El=L N ap+t gl =——| +0 2
L 7T P2 grnL InL/ ||’
(A173)
D 12
L= beol2BTAINL) M2 14 g+ O (H) ”
(A17b)
v = +m+ H ) ( ©)

L4 AN e
v/ 4 T'8m(InL)?

1 3
H) } (A17d)

so the asymptotic corrections t}[l, v, and (y/v)_ turn
out to be universal.

Ludwig and Cardy have also reported corresponding FSS
expressions for the central charge, in both regirf&3).
These are

c=%-12873A%1-247AInL) (A18a)
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and Equations(A16)—(A18) are of great importance when
L s 4 analyzing FSS data, if logarithmic corrections are expected
c=z—a(InL)+O0\ g1 | - (A18b) {0 be present. Especially in a strip-scaling approach such as
respectively, where we have once more kept the lowest ordéturs, the preasymptotic results may turn out to be of particu-
in AnL in the preasymptotic regime. lar relevance, since the maximum size available is such that
Additional terms further down by powers ofY«(1 one may not reach the asymptotic regime, which is likely to
+8mA InL) %" with y,<—2, will appear due to irrel- be true at least for weak disorder. This has indeed been the

evant scaling fields.

point of view emphasized by AavaReiset al.[12].
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