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Critical behavior of the two-dimensional spin-diluted Ising model
via the equilibrium ensemble approach

Giorgio Mazzeo* and Reimer Ku¨hn†

Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
~Received 22 December 1998; revised manuscript received 4 June 1999!

The equilibrium ensemble approach to disordered systems is used to investigate the critical behavior of the
two-dimensional Ising model in the presence of quenched random site dilution. The numerical transfer matrix
technique in semi-infinite strips of finite width, together with phenomenological renormalization and conformal
invariance, is particularly suited to putting the equilibrium ensemble approach to work. A method by which to
extract with great precision the critical temperature of the model is proposed and applied. A more systematic
finite-size scaling analysis than in previous numerical studies has been performed. A parallel investigation,
along the lines of the two main scenarios currently under discussion, namely, the logarithmic corrections
scenario~with critical exponents fixed in the Ising universality class! versus the weak universality scenario
~critical exponents varying with the degree of disorder!, is carried out. In interpreting our data, maximum care
is constantly taken to be open to both possibilities. A critical discussion shows that an unambiguous discrimi-
nation between the two scenarios is still not possible on the basis of the available finite-size data.
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I. INTRODUCTION

Recent years have witnessed renewed efforts within
statistical physics community to understand phase transit
in simple disordered classical spin systems. As a matte
fact, these efforts have produced conflicting statements c
cerning the effects of disorder on critical phenomena, cov
ing almost the complete spectrum of conceivable alter
tives.

This holds in particular, but not exclusively, for two
dimensional ~2D! disordered ferromagnetic~i.e., unfrus-
trated! Ising models. These models have been widely st
ied, both because the corresponding pure system is
understood and because they constitute a marginal cas
the Harris criterion@1#, which assesses whether disorder co
stitutes a relevant or irrelevant perturbation for the criti
behavior of the pure system. For models of this type,
discussion currently appears to narrow down to two confl
ing scenarios, namely, thelogarithmic corrections@2–17#
versus theweak universality@18–21# scenario, although a
broader spectrum of alternatives had been discussed e
@22–24# ~the interested reader will find a comprehensive
port on the literature up to approximately 1982 in an ea
review by Stinchcombe@25#!. We will describe these sce
narios and discuss these~and related! results in greater detai
later on.

The object of our study is the randomly spin diluted 2
Ising model. Our investigation is based on two main ing
dients. First, we use the equilibrium ensemble approach
disordered systems@26,27,18,21,28# to map the quenched
system onto an equivalent thermodynamic equilibrium s
tem in an enlarged phase space. Performing this map

*Electronic address: mazzeo@pooh.tphys.uni-heidelberg.de
†Electronic address: kuehn@tphys.uni-heidelberg.de
PRE 601063-651X/99/60~4!/3823~14!/$15.00
e
ns
of
n-
r-
-

-
ell

in
-
l
e
t-

lier
-
y

-
to

-
ng

exactly would be tantamount to providing an exact solut
to the original problem, which is clearly unfeasible. So
scheme of approximations based on a moment matching
is invoked. Second, we resort to conventional transfer-ma
~TM! techniques to implement the method in practice
finite-width strips, analyzing finite-size results along t
lines of Nightingale’s phenomenological renormalizati
group scheme@29,30#.

The purpose of the present paper is to provide details
our TM study@18,21# as well as to include new material an
to describe significant advances in the understanding
finite-size scaling~FSS! signatures in the presence of log
rithmic corrections, which together have allowed us to bo
the accuracy of our results considerably and to obtain
sounder appreciation of the subtleties that may emerge in
interpretation of the data.

The main and unexpected finding in Ref.@21# has been a
continuous variation of the critical exponentsa, b, g, andn
with the spin densityr in a manner which was observed
comply with the idea of weak universality@31#. That is, the
exponenth describing the decay of critical correlations, an
the magnetic exponentd, as well as the ratiosb/n and g/n
were found to be independent ofr. The results were obtaine
by extrapolations of FSS data based on rather moderate
widths, and they were in complete quantitative and qual
tive agreement with those of a Monte Carlo study by K
and Patrascioiu@20#. These results are in conflict with thos
supporting the logarithmic corrections scenario, where mo
fications of the relevant thermodynamic quantities at critic
ity appear through logarithmic terms in the reduced tempe
ture, while the system is left in the same universality cla
~i.e., with the same critical exponents! as that of the pure 2D
Ising model. These findings almost all concern t
ferromagnetic-bond-disordered situation, either theoretic
@3–5,17# or via numerical@6,7,9–14,16# and series expan
sion @15# approaches, but the comparison with the sp
diluted model is possible assuming—as is generally belie
3823 © 1999 The American Physical Society
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3824 PRE 60GIORGIO MAZZEO AND REIMER KÜHN
to be the case—that the two systems are in the same un
sality class@25,17#.

In discussing our results, we have to address two m
issues. The first is concerned with the reliability of o
method, which is based on an approximate description
quenched disorder. The evidence we have been able to c
pile does give us strong confidence in the validity of o
approach. This granted, we turn to the second issue: can—
more precisely, to what extent can—our results provide e
dence in favor of or against any of the conflicting scenar
so far advanced to describe the critical behavior of 2D d
ordered ferromagnetic Ising models? This is indeed a su
question, and we devote almost two Sections~Secs. IV and
V! to discussing it. It turns out that a considerable portion
the available finite-size data from simulations or T
studies—including those presented in our earlier stu
@18,21# as well as some new ones—may perhapsnot allow
one to decide with sufficient confidence between the t
most serious candidates. And we shall explain why. Lar
system sizes would in any case be necessary in studies a
those lines to permit taking sides.

Finally, since one of the aims of our study is to discrim
nate between these two contradicting scenarios, one of
main concerns is an open-minded attitude, perhaps not e
found in the literature, in the analysis of the numerical
sults: we take the greatest care not to select one of thea
priori and to fit our data to it, but, rather, we attempt to
open to both possibilities.

The remainder of our paper is organized as follows.
Secs. II A and II B, in order to set the scene and to fix o
notation, we describe the model that is studied in the seq
and we briefly recall our methodological background viz. t
equilibrium ensemble approach~EEA! to disordered sys-
tems. While Sec. II C presents some details related to
computational side of the problem, we reserve Sec. III fo
brief review of the two above-mentioned scenarios, and S
IV for a presentation and discussion of our main results.
describe a finite-size procedure to extract the critical te
perature of the model as a function of the degree of diluti
which enables us to draw an accurate approximation of
phase diagram. We then determine values for the crit
exponents, for the central charge, and for the specific hea
our approximating systems. We end our paper with a crit
report of the available finite-size data obtained also by ot
authors, and with a comprehensive discussion both on
method and on the outcome of our investigation~Sec. V!. An
Appendix, mainly based on renormalization-group results
Cardy and Ludwig@32,33# presents a systematic FSS ana
sis of thermodynamic quantities in the presence of logar
mic corrections.

II. SETTING THE SCENE

A. The system under investigation

The object of our investigation is the 2D randomly sp
diluted Ising model, described by the Hamiltonian

H~suk!52J(̂
i j &

kis ikjs j2H(
i

kis i . ~1!

Here, the first sum is over all nearest-neighbor pairs^ij & of,
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say, a square latticeL, and the second over all sitesi. Thes i
denote Ising spins and thekiP$0,1% are occupation number
signifying whether in a disorder configurationk a site i is
occupied by a spin (ki51) or is not (ki50). The ki are
taken to be quenched random variables, i.e., they are fi
and randomly chosen according to the probability

q~k!5)
i

rki~12r!12ki, ~2!

which simply requires each site to be occupied with pro
ability r, and to be empty with probability 12r. Thusr is
the average density of spins in the system.

Our aim is to study the thermodynamics of the syste
described by the~dimensionless! quenched free energy

f q52N21^ ln ZN~k!&q , ~3!

i.e., the average of the system’s free energy over the di
bution q(k) describing the statistics of the disorder config
rationsk. HereN denotes the system size andZN(k) is the
partition function of a system of sizeuLu5N at fixed disor-
der configurationk. In particular, we would like to locate the
phase-transition lineTc(r) below which the system is known
to develop spontaneous ferromagnetic order in the ther
dynamic limit N→`, and to study the critical behavior o
the system at and around this line. Whereas the thermo
namics of the 1D system is known exactly, an exact solut
of the 2D model is currently way beyond our abilities. A
proximation methods, which may, however, well produ
exact results in certain limiting cases, are thus called for

B. Methodological background: The equilibrium ensemble
approach

The EEA to disordered systems, as well as its applicat
to the 2D spin-diluted Ising model, have been accurat
described elsewhere@28,21#. Therefore, we will not enter
again into the details of the method, but just concisely rec
the main ideas.

The central idea is to treat the configurational degrees
freedomki in a system with quenched disorder on the sa
footing as the dynamical variables proper—the spins, in
case at hand. That is, the phase space is enlarged to inc
the occupation-number configurationsk, and an additional
term depending only onk, the so-calleddisorder potential
f~k!, is added to the Hamiltonian

H~suk!→Hf~s,k!5H~suk!1f~k!, ~4!

which is then determined in such a way that configurat
averaging, as implied by Eq.~3!, becomes part of the Gibb
average in the enlarged phase space.

To utilize the method in practice, one still needs an e
plicit representation forf~k!. For spin or site diluted system
the following representation in terms of products of occup
tion numbers
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2bf~k!5l1(
i

~ki2r!1l2(̂
i j &

~kikj2r2!1¯

1lP(
P

S )
i PP

ki2r uPu D 1¯ ~5!

is always suitable. The first sum explicitly displayed in E
~5! is over all lattice sites, the second over all neare
neighbor pairs, the third over all elementary plaquettes~of
size uPu! of the system, and so on.

It has been realized@28# that the self-consistent constrai
equations that determine the couplingsln as a function of
temperatureT, magnetic fieldH, and spin densityr ~Eqs.~4!
of Ref. @21#!, can be written as necessary conditions desc
ing themaximumof the equilibrium ensemble’s dimension
less free energy~per site!

f f52N21 ln Zf52N21 ln (
s,k

exp@2bHf~s,k!#

with respect to theln’s. They can therefore be written, an
are in practice evaluated too, as

2
] f f

]l1
5^ki&f2r50,

2
] f f

]l2
5^kikj&f2r250,... ~6!

2
] f f

]lP
5K )

i PP
ki L

f

2r uPu50,... .

Solving Eqs.~6! for every cluster of connected sites—i.e
exactly obtaining the quenched free energy via the EEA—
clearly unfeasible. However, a systematic scheme of
proximations may be put up by matching only asubsetof the
full set of moments of the equilibrium ensemble’s Gib
distribution to the corresponding subset of moments of
problem with quenched disorder. This amounts to forcingki
correlations on larger and larger groups of lattice sites
coincide with those of the quenched system. The larger
number of constraints taken into account, the better a
scription of the fully quenched system is obtained.

In Ref. @21# four different approximating systems name
(a) – (d) were studied, differing by the number of terms ke
in Eq. ~5!, and thus by the set of constraints which is actua
retained in Eq.~6!. The present study is focused only o
approximation~d!: the first three contributions to the diso
der potential are kept, i.e., single site, pair, and squ
plaquette terms. In addition, due to the anisotropy of the s
geometry employed in the calculation~see Sec. II C below!,
pair occupancy parallel and perpendicular to the strip
treated as separate constraints, i.e., they are controlle
separate couplingsl2i and l2' in the disorder potentia
which, in turn, have to be determined by two distinct equ
tions of the type~6!.

C. Transfer-matrix approach

The approach outlined above might—at least
principle—solve our problem to any desired degree of ac
.
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racy. However, ind>2 not even the simplest approximatin
system is exactly solvable. To analyze the thermodynam
or the critical behavior of our systems, we use the strip F
techniques pioneered by Nightingale@29#. A distinct advan-
tage of the EEA in this context is that we are dealing w
translationally invariant equilibrium systemswith short-
range couplings at all levels of approximation within th
moment-matching scheme described above. FSS can th
fore be implemented using conventional TM techniques
nonrandom systems.

Our strip is aL3L8 square lattice, with the thermody
namic limit taken in theL8 direction, and periodic boundar
conditions~unless otherwise stated! imposed in the perpen
dicular direction. The row-to-row transfer matrixG, con-
structed from the local Boltzmann factors, can be chosen
be symmetric for all systems (a) – (d) of Ref. @21#, and is
diagonalized for strips of fixed widthL, with the appropriate
set of constraints@Eqs.~6!#.

The dimensionless free energyf L ~per site! is related to
the largest eigenvalueg1 of G via

2 f L5L21 ln g1 ~7!

~to simplify notation, we omit stating theL dependence ofG
and its eigenvalues in what follows!.

The constraint equations~6! have been formulated in
terms of first derivatives of the free energy, and thereby
terms of first derivatives off L . As mentioned above, thos
derivatives are nothing but gradient information in the pro
lem of maximizingf L ~or minimizing 2 f L! over the appro-
priate set of couplings. Note that the transcendental natur
these equations necessitates an iterative numerical solu
Having in this way determined the~approximate! disorder
potential, one may compute thermodynamic functions and
particular, the correlation length of the order-parameter fl
tuations, which is needed in the phenomenologi
renormalization-group scheme. The correlation length
given in terms of the largest and the second largest eigen
ues of the TM as

jL
2152 ln

g2

g1
. ~8!

Thermodynamic functions of interest are obtained by diff
entiating the free energy with respect to temperature or m
netic field. Here, care must be taken because of implicit fi
and temperature dependences in the couplings of the diso
potential. In other words, derivatives have to be perform
along the solution-manifold of the appropriate set of co
straint equations.

Introducing modified spinsSi5kis i with values in $0,
61%, we encode both the presence or absence of a spin~the
occupation numbers being given byki5uSi u! and the spin
states in a single variable. Since the dimension ofG grows as
3L33L, we have used two different strategies—wi
complementary strengths and weaknesses—to simplify
computational task of dealing with huge transfer matric
The first is a group-theoretical analysis that exploits the v
ous symmetries of the matrix and effectively reduces its
mensionality. The second is the use of sparse matrix te
niques.
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We will not bother the reader by giving a detailed accou
of these techniques since, apart from the fact that they h
been nontrivially specialized to deal with our particular sy
tem, they are not new~for the sparse matrix technique, se
e.g., Ref.@30#!. We just note that within either of them it i
possible to identify blocksG (1) andG (2), in the block diag-
onal representation ofG, that contain its two largest eigen
valuesg1 andg2 , respectively.G (1) is the block spanned by
the space of eigenvectors transforming symmetrically un
spin reversal, whileg2 is found in the block spanned by th
eigenvectors ofG which are antisymmetric under spin reve
sal. In a similar spirit, one may investigate the long distan
behavior of theki correlation functionsGk(r i j )5^kikj&
2^ki&^kj&. This requires locating a corresponding eige
value g̃2 , which controls the asymptotic decay ofGk(r ). It
is found to be the second largest eigenvalue in the bl
corresponding to a representation of the symmetry gr
which issymmetricwith respect to both external~spatial! and
internal~spin! symmetries of the system. Indeed, whereas
spinss i change sign under global spin reversal, entailing t
the eigenvalue to be inserted in Eq.~8! when computing the
spin spin correlation length must belong to the antisymme
block of G, the disorder variableski5uSi u do not change
sign.

The computation of second-order derivatives ofg1 ,
needed to evaluate some of the relevant thermodynam
quantities, is feasible only in the group-theoretical reduct
approach. The second derivatives in fact require knowle
of the complete eigensystem, which is still far too lar
within the sparse matrix approach. In this case one ha
resort to finite differences of first-order derivatives to co
pute, e.g., the specific heat or the spin susceptibility. T
advantage of the sparse-matrix approach, on the other h
is that it can be pushed to considerably larger strip wid
than the group-theory approach. We reach the valueL59
with the latter andL513 with the former. Moreover, this
approach does not exploit any symmetries beyond the
reversal symmetry in zero magnetic field. It is therefore a
applicable if one introduces an antiferromagnetic seam al
the strip, a device which can be used to compute the dom
wall free energy. We shall exploit this quantity below
considerably boost the precision of our FSS analysis.

III. THE TWO SCENARIOS

Before showing our results, it is time to briefly present t
two main scenarios that have survived out of a wider ra
of possibilities for the description of the critical behavior
the 2D site diluted Ising model, but which are obvious
mutually exclusive.

The logarithmic-correctionsscenario is based on th
quantum-field-theory results by Dotsenko and Dotsenko@2#
and by Shalaev@3#, Shankar@4#, and Ludwig@5# ~the latter
contributions correcting certain errors in the former!. Though
strictly valid only in the limit of weak disorder, they indicat
that the presence of impurities affects the critical proper
of the model only through a set of logarithmic corrections
the pure system behavior. In particular, according to this p
ture, the correlation length of the infinite system close to
phase transition is expected to show the form
t
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j`;t2nF11g̃ lnS 1

t D G
ñ

, ~9!

where t is the reduced temperaturet5(T2Tc)/Tc!1 ~Tc
being the critical temperature, which will depend onr!, the
exponentsn and ñ are, respectively, 1 and12, and g̃ is a
nonnegative constant such thatg̃50 in the pure case~usual
power-law behavior recovered! and increases with increasin
disorder. A similar behavior holds for the magnetic susc
tibility:

x`;t2gF11g̃ lnS 1

t D G
g̃

, ~10!

with g5 7
4 andg̃5 7

8 . For the specific heat, too, the expone
of the pure casea50 is not modified by the introduction o
disorder, but the simple logarithmic behaviorC`; ln(1/t) is
replaced by the double logarithmic singularity

C`; lnF11g̃ lnS 1

t D G . ~11!

The behavior of the critical spin-spin correlation function
instead predicted not to change in the presence of impuri
thus its anomalous dimensionh retains its pure Ising value
h5 1

4 .
Recent numerical works@19–21# have provided evidence

contradictory to what has just been presented above. Th
findings show quantities such as the susceptibility and
correlation length to display simple power-law singularitie
at critically, with exponentsg and n varying continuously
with disorder in a way, however, that their ratiog/n is kept
constant at the pure system value. According to thisweak-
universality@31# scenario, the ratio of exponents should n
depend on disorder, and the specific heat was observe
saturate at a nondivergent value ast→0.

In a finite-size numerical investigation like ours, it is als
essential to translate the predictions of these scenarios
their finite-size counterparts. This is straightforward and w
known in the case of power-law singularities~and power-law
corrections to scaling!, but less trivial within the logarithmic-
corrections scenario. These questions are dealt with in d
in the Appendix and, where they arise, in the following se
tion.

As already stressed in the Introduction, we have tried
look at our results with an open mind: none of the two s
narios is chosen as a reference; rather, we attempt to let
analysis determine which of the two consistently fits t
whole series of our data.

IV. MAIN RESULTS

A. Determination of the critical temperature

The 2D spin-diluted Ising model exhibits a phase tran
tion from a paramagnetic to a ferromagnetic low-temperat
phase, provided the spin densityr is larger than the critical
site percolation densityrc.0.592745@34#. The model un-
fortunately lacks the ability, known for its random-bon
counterpart, to exactly determine the critical temperature
function of the degree of disorder from duality. This is o
of the factors that render the bond-disordered version m



y

f

o
n
ic
in
c

on

er

i-

it

t

ra
m

h-
hm

ce-
t
they
fer
er-
d.

f
by

to

cise

g
r

as

ted
he
al-
e

e
ue.

s

-
an
er

int

cal

s
itical
shed
are

PRE 60 3827CRITICAL BEHAVIOR OF THE TWO-DIMENSIONAL SPIN-DILUTED . . .
attractive for a numerical study, i.e., the possibility of stud
ing its critical behavior by sitting exactly atTc . A very pre-
cise numerical determination ofTc is thus called for in our
case, and it has indeed been reached by a joint analysis o
finite-size behavior of the correlation length@as defined in
Eq. ~8!# and of thedomain-wall free energy~or interfacial
tension!, the latter obtained by comparing free energies
systems with periodic and antiperiodic boundary conditio
in the direction perpendicular to the strip. Antiperiod
boundary conditions in a ferromagnetic system force an
terface along the cylinder’s length. In practice, the interfa
is created by introducing an antiferromagnetic seam al
the cylinder, i.e., by reversing in each row the bondJ→
2J between two fixed spins~e.g., spinsL and 1!. The inter-
face~domain-wall! free energy per unit lengthsL is given by
the difference in free energy between the system with p
odic and antiperiodic boundary conditions, and reads

bsL52 ln
g1,abc

g1
~12!

with g1,abc the largest eigenvalue of the TM with antiper
odic boundary conditions@compare Eq.~12! to Eq. ~8!#.

Phenomenological renormalization@29,30# predicts that
the correlation lengthjL scales asL at criticality. The correct
formula reads

jL
215L21~A1BjL

yirr1¯ !, ~13!

where the correction-to-scaling terms~the exponentyirr is
related to the presence of irrelevant scaling fields and
known to beyirr522 for the Ising model@35#! split the
exact crossing of the curvesL/jL versusbJ at the critical
point for different values ofL into a sequence of distinc
intersections of abscissas (bJ)L

j ~see Fig. 1!. Extrapolating
this sequence to its asymptotic value provides an accu
determination of the critical temperature. The task is acco

FIG. 1. Set of curvesL/pjL ~negative slope! and LbsL /p
~positive slope! as a function ofbJ for different values ofL, for the
pure Ising model. Their mutual intersections, at the abscis
(bJ)L

int , are indicated by open circles; the crossings of twoL/pjL

curves for pairs of valuesL, L11@(bJ)L
j # are drawn as open dia

monds; black dots denote the points used in the temperature sc
is evident how the former sequence is much more rapidly conv
ing than the latter to the exact valuebcJ5 ln(&11)/2
50.440 687... . The value of the limit of both sequences of po
on the vertical axis is the exponenth5

1
4 .
-

the

f
s

-
e
g

i-

is

te
-

plished by a combination of different extrapolation tec
niques. They are basically: the Bulirsch and Stoer algorit
discussed by Henkel and Schu¨tz @36#, the three-point iterated
fit method presented by Blo¨te and Nienhuis@37#, and a third
method, close in spirit to the latter, that uses fitting pro
dures at all stages of extrapolation@38#. These three differen
algorithms give accurate and consistent results, since
lead to extrapolated values that do not significantly dif
from each other. They are also used in the following wh
ever theL→` limit of a sequence needs to be extracte
Their comparison sets the error bars of our analysis.

The same scaling argument presented forjL
21 can be ap-

plied also to the wall free energybsL;L21, and the corre-
sponding sequence (bJ)L

s similarly analyzed.
The apparent ‘‘mirror symmetry’’ of the two sets o

curves displayed in Fig. 1 suggests also a new method
which to extractbcJ: the analysis of the sequence (bJ)L

int of
mutual intersection points of the curvesL/jL andLbsL ver-
susbJ for fixed values ofL. This sequence also converges
bcJ in the limit of largeL, but muchfaster than the previous
sequences (bJ)L

j and (bJ)L
s , and its extrapolation through

the methods described above furnishes a much more pre
determination of the critical temperature~upper half of Fig.
2!. Already for the rather small valueL56, the pure 2D
Ising model value of (bJ)L

int differs from the exact critical
value only after the 11th decimal digit. Neither this strikin
result nor the analysis of the (bJ)L

int sequence are, to ou
knowledge, present in the literature, and we regard them
remarkable findings on their own.

The whole machinery can be carried over to the dilu
case. It is worth remembering that in our investigation t
spin densityr is treated as a parameter fixed to definite v
ues in the rangerc<r<1 to scan the phase diagram. Th
values ofr analyzed arer50.95, 8

9, 0.8, 0.75,2
3.

For rÞ1 the mirror symmetry of Fig. 1 is lost when th
value ofr substantially departs from the pure system val
Logarithmic terms would also appear in Eqs.~13! in the case

as

. It
g-

s

FIG. 2. Sequences of finite-size approximations to the criti
inverse temperature (bJ)L

j ~circles!, (bJ)L
s ~squares!, and (bJ)L

int

~diamonds! as a function of strip widthL for r51 ~the pure Ising
case! and for spin densityr50.75. It is apparent that in both case
the last sequence converges faster than the other two to the cr
inverse temperature of the infinite system represented by the da
line. Here, as well as in the following pictures, no error bars
shown if they are smaller than the symbol’s size.
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of the logarithmic-corrections scenario@32# ~see the Appen-
dix and the discussion in Sec. IV B below!. In spite of that,
the sequences (bJ)L

int still converge quite rapidly to thei
asymptotic value, again allowing extremely accurate de
mination of (bcJ)(r) ~see lower half of Fig. 2! also for the
lower values ofr, where closeness to the percolation thre
old induces stronger finite-size deviations from t
asymptotic behavior of the quantities under investigation

Figure 3 presents the phase diagram of the 2D site dilu
Ising model, showing the values ofTc(r)/J obtained in this
way for strip widths up toL513.

The critical slope of the curveTc(r) versusr at r51 is
exactly known @39# to be Sc5Tc

21dTc /drur5152/@ ln(1
1&)(11&/p)#51.564 785...; from an additional calculatio
limited to sizeL511 at a value ofr very close to 1 and from
a numerical evaluation of the derivative, we obtain an e
mate that differs from the exact result by approximat
0.01%.

Finally, let us point out that the method just describ
provides a very precise determination of the critical tempe
tures for each of our approximating systems. We make no
claim, however, that these values coincide with those of
fully quenched system: for fixedr they in fact turn out to be
slightly different from system~a! to system~d! @21# and need
not be the same as Monte Carlo data@14#. The reason is tha
nonuniversal quantities, such as indeed the critical temp
ture or the value of the percolation thresholdrc , do depend
on the approximating system chosen, while universal qu
tities, such as critical exponents, central charge, etc....
not. Our confidence in this statement, and consequentl
the validity of our method, will be addressed in Sec. V.

B. The exponenth and the ratio g/n

Having determined with great precision the critical te
perature of our model, we now turn to the evaluation
critical exponents.

The theory of conformal invariance@40# relates the am-
plitude A of the leading term in the FSS behavior ofj @Eq.
~13!# to the anomalous dimension of the spin-spin correlat
function viaA5ph, providing a simple method by which t

FIG. 3. Phase diagram of the 2D site-diluted Ising model, w
its ferromagnetic and paramagnetic phases. The diamond an
circle denote, respectively, the exact percolation threshold and
transition temperature of the pure Ising model; the squares co
spond to the values of spin densityr analyzed in this investigation
The line is merely a guide to the eye.
r-
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e
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in
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extracth just by extrapolating the sequenceL/jL to L→`.
The same procedure can be applied as well toLbsL , since
the amplitudes for the correlation length and for the wall fr
energy are equal.

In the pure Ising case,h is known to be1
4. Our extrapo-

lations unambiguously give the same value

h5
1

4
~14!

for all the values ofr considered, with a maximum estimate
error of 0.0004~the error arising from the uncertainty in th
location of the critical temperature being much smaller th
the difference between final values from different extrapo
tion procedures!. From this we can conclude that the exp
nenth does not depend on disorder, a result that is alre
known @20,21,9,41,11# but without the precision shown
above.

Note that the correlation lengthj extracted from the ratio
of TM eigenvalues@Eq. ~8!# within the EEA refers to the
decay of theaveragespin-spin correlation function in the
disordered system. This is to be contrasted with the corr
tion length that describes thetypical decay of the correlation
function in a given disorder configuration, a quantity read
obtainable from a corresponding ratio of Lyapunov exp
nents within a random TM approach@41,11#. Our identifica-
tion may be confirmed by plottingL/jL versus 1/L2 ~Fig. 4!
and noting that no corrections to a linear depende
smoothly extrapolating to1

4 appear, as it could instead b
expected for the behavior of the typical correlation leng
~see in particular the discussion focusing on Fig. 1 of R
@41#, and Ref.@11#!.

We would like to point out that the smallness of the es
mated error of the exponenth is of particular relevance. It
can in fact also be read as strong confirmation that our
proximations are sufficient to place the model under study
the right universality class, and that universal quantit
therefore turn out to be correctly reproduced.

This is confirmed by the behavior of the magnetic susc
tibility data obtained via the group-theoretical-reducti
technique. The finite-size scaling analysis of the suscept
ity x predicts a leadingL dependence of the formxL
;Lg/n, and the ratiog/n is extracted by analyzing the se
quence

the
he
e-

FIG. 4. Scaled inverse correlation lengthL/pjL plotted as a
function of 1/L2 for the pure Ising case~circles!, for r50.80 ~dia-
monds!, and for r5

2
3 ~squares!. The lines just connect the dis

played points. Note the vertical scale.
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S g

n D
L

5
ln~xL11 /xL!

ln~L11/L !
. ~15!

Corrections to scaling generally modify the pure power la
and an extrapolation toL→` is needed. Corrections ma
again be of pure power-law form inL ~in the conventional
situation arising from irrelevant scaling fields!, or indeed by
terms containing logarithms ofL ~in the log-corrections sce
nario!. In the latter case, if the largest available system siz
too small, the data might still reflect a preasymptotic regim
and the very idea of extrapolating a sequence like Eq.~15!
may lose its validity in that case. We refer the reader to
Appendix for a discussion of this point. We are, howev
not able to detect the nonuniversal corrections predicte
be present in the preasymptotic regime of the log-correcti
scenario. They are either absent, or too small to be dete
~Eq. A16d!. The same is true forh.

Extrapolating the sequence~15! provides the result

g

n
5

7

4
~16!

for all the points studied in the present paper. The estima
error is around 0.001, bigger than forh because a shorte
sequence (Lmax59) has been utilized. These data show th
the ratiog/n is independent of the degree of dilution, a fin
ing in complete accord with the constancy ofh via the Fisher
relation g/n522h, which is thereby demonstrated to b
satisfied with a precision of the order of a tenth of a perce

The observed constancy ofh andg/n is unfortunately not
sufficient to discriminate between the two admissible s
narios, sinceboth predict that the ratio retains the pure Isin
value 7

4, irrespective of disorder. It only shows that for the
two quantities extrapolations are not noticeably misguid
by logarithmic corrections, in case they are present.

C. The central charge

Conformal invariance@42# provides a link between the
values of the dimensionless free energy per site at critic
f L in a finite strip with periodic boundary conditions, and t
central chargec which characterizes the universality class
a conformally invariant model. The relation reads

f L; f `2
pc

6L2 1¯ , ~17!

with f ` the nonuniversal bulk~infinite system! free energy
per site. Equation~17! is supposed to retain its validity als
in a random system, providedc is replaced by aneffective
central chargec8 ~Ref. @33#!. The next-to-leading term, omit
ted in Eq.~17!, differs depending on whether or not logarit
mic corrections are present. In the latter case, it is believe
depend onL asBfL

21yirr5BfL
24 if we adopt the valueyirr

522 of Ref. @37# or, equivalently, that borne out from th
analysis of Sec. IV B above. In the former case, inste
Ludwig and Cardy@33# derived the results presented in Eq
~A18! of the Appendix. To avoid dealing with thef ` term,
we prefer to extract finite-size estimates ofc8 through the
formula
,

is
,

e
,
to
s
ed

d

t

t.

-

d

ly

f

to

,
.

cL85
6

p
~ f L112 f L!

L2~L11!2

2L11
~18!

and analyze them both by extrapolating the above seque
to c8, and possibly looking for finite-size corrections~next-
to-leading terms!.

The outcome of our analysis does not differ substantia
from that which we obtained in the study of the exponenth.
That is, whilec8 appears to be clearly given by

c85 1
2 , ~19!

equal to the pure Ising value, for all the points studied~with
a maximum error of 0.0003!, we are not able to individuate
any correction of the kind expressed by Eq.~A18!. The plots
of cL8 versus 1/L2 are lines showing no appreciable bendin

The estimatescL8 always converge to their asymptot
value from above, both in the pure as well as in the dilu
case. This is at least a necessary condition for the reflec
positivity property, which holds for unitary models but mig
not hold for random models. The discussion on this point
Ref. @43# is indeed based on Eqs.~A18!, which would predict
a convergence from below, the first correction terms to
valuec85 1

2 being negative. But again, they are either abs
or too small to be discernible within our errors, or conve
gence from below sets in for system sizes beyond those
cessible through our TM calculations.

D. The analysis of the correlation length

The correlation length provides us with another tool w
which to push our investigation further: the study of the e
ponentn, extracted, in addition toh, from a FSS analysis o
j, can be of particular relevance since it is a single isola
exponent and is therefore predicted to show a different
havior in the two scenarios.

Our analysis follows general reasoning@29#. A recent ap-
plication to disordered Ising models has been provided
Aarão Reiset al. @12#. Two quantities at our disposal can b
subjected to the same investigation, the correlation lengj
as well as the domain free energybs: both show the same
asymptotic behavior, though with different corrections
scaling.

First we define the derivatives of these quantities w
respect to temperature:

m~ t !5
dj~ t !

dt
, ~20!

m8~ t !5
d@bs~ t !#21

dt
. ~21!

A pure power-law divergence ofj(t) at critically like t2n

impliesm(t);t2n21, which in turn translates into the finite
size predictionmL;L111/n. The same relations hold respe
tively for bs(t), m8(t) andmL8 . From themL sequence~and
similarly form themL8 sequence!, one obtains finite-size ap
proximationsnL of the correlation length exponent via

nL
215

ln~mL11 /mL!

ln~L11/L !
21. ~22!
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Extrapolated values clearly appear to vary withr, and to
change continuously from the Ising valuen51 to the perco-
lation valuen54/3 @44# in a way shown in Table I. The larg
error bars on the values corresponding to stronger dilu
are due to degradation in the quality of the fits, and even
the appearance of nonmonotonicities in the sequencenL ver-
susL extracted from the domain-wall free energy data, wh
prevent an extrapolation as precise as those for largerr val-
ues. The cause is probably the closeness of the percola
threshold, which requires a corresponding enlargemen
system size in order to disentangle the system’s correct c
cal behavior from crossover effects.

A similar data trend was extracted also from Monte Ca
simulations,@20# and analogous variation with the streng
of bond disorder was observed in Ref.@12#. The variation of
n as a function ofr at constanth and constantg/n would
qualify the observed nonuniversality—if it must b
upheld—to be of theweakform.

On the other hand, one should be wary of the fact t
preasymptotic logarithmic corrections might invalidate t
very idea of extrapolating anL sequence of limited length
see Eq.~A16c!. This was the attitude advocated by Aar˜o
Reis et al., who did not give much weight to an analogo
variation of their extrapolated exponentn as a function of
disorder. Rather, they proposed to fit theL-dependentmL
data to a form expected to hold in an intermediate~preas-
ymptotic! range ofL values within the logarithmic correc
tions scenario, viz.

mL;L2~12A ln L !1/2, ~23!

which predicts (mL /L2)2 to be linear in lnL. Note that this
expression used by Aara˜o Reiset al. was derived from heu-
ristic considerations. It formally agrees with the true expr
sion ~A16b! only to first order in lnL, but it predicts the
wrongsign for the coefficient of the leading lnL behavior of
the effective size-dependent correlation length exponennL
@Eq. ~A16c!#.

In Fig. 5 we plot our results in the same form as Aar˜o
Reis et al. do, both formL and for mL8 . The data show ex-
actly the same trend observed in Ref.@12#, both with respect
to system sizeL and with respect to the strength of the d
order. From this observation we derive additional strong c
fidence in the validity of our method. The pure system b
havior is soon replaced by an apparently linear term in lL
for (mL /L2)2 in the increasingly disordered system,

TABLE I. Various exponents for different values of spin dens
r. In the second column is the exponentn as extrapolated from Eq
~22!. The third column shows the value of the ratioa/n extracted
from Eq.~25!. The last column provides a test for the validity of th
hyperscaling relation 2/n2a/n5d52.

r n
a

n

2

n
2

a

n

0.95 1.05460.002 20.10260.0088 1.99960.012
8/9 1.11360.001 20.21460.007 2.01160.009
0.80 1.1560.03 20.30 60.02 2.0460.06
0.75 1.1860.02 20.35 60.02 2.0560.05
2/3 1.23 60.05 20.44560.005 2.0760.07
n
to

h

ion
in
ti-

t

-

-
-

would be expected from Eq.~A16b!. Note once more the
same asymptotic behavior ofmL andmL8 , with different cor-
rections to scaling.

The data can, however, be consistently interpreted wit
a scenario of nonuniversal critical exponents as well. Inde
for a power-law divergence of the correlation length withn
.1, FSS would predict (mL /L2)2;L2v with v5222/n at
sufficiently largeL for the data plotted in Fig. 5. In the dis
order range considered,v is a rather small quantity since th
n extrapolated from Eq.~22! only slightly exceed 1. The data
might therefore easily look to be exhibiting a (12A ln L)
behavior for the accessible range of system sizes, which
the form assumed in Ref.@12#. This might, however, just be
the result of an expansion to first order in the small quan
v ln L (L2v;12v ln L). Upon closer inspection, a curva
ture compatible with anL2v behavior is indeed discernibl
in the figure for larger disorder. Using a fit againstL2v we
have another way of analyzing our data to determinen, and
the values obtained this way are compatible with those
tained from extrapolation of thenL data. Nonetheless, a cu
vature of the (mL /L2)2 data may occur also in the log
corrections scenario@depending on the value ofD1 in Eq.
~A13!#.

We can, however, affirm with certainty that neither Aar˜o
Reis et al. nor we are seeing preasymptotic effects of log
rithmic corrections in the data fornL , because they arein-
creasingwith L ~in our case at least forr.0.8!, whereas
according to FSS they shoulddecrease; see Eq.~A16c!.
Thus, if logarithmic corrections are present, they are for t
available system sizes still masked by other corrections
scaling. Again, it seems that further investigation is requi
in order to be able to take sides on the critical behavior
this system.

E. The specific heat

The logarithmic-correction scenario predicts for the sp
cific heat the double-logarithmic divergence of Eq.~11!. This
translates, at criticality, into the FSS prediction@9#

CL;C081C18 ln~11C28 ln L !, ~24!

where the pure-system critical behavior is recovered by

FIG. 5. Quantities (mL /L2)2 (mL8/L2)2 at criticality plotted as a
function of lnL, for various values ofr.
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vanishing ofC28 ~but with C18C285const! for r51. On the
other hand, a scenario of nonuniversal critical expone
would lead to

CL;C`1C38L
a/n. ~25!

Though a/n is a ratio of exponents, it is expected to va
with r, being directly related ton via the hyperscaling rela
tion 22a5dn, with d the system’s dimensionality. More
over, this relation imposes a severe constraint ona: sincen
is found to be greater than 1,a should be smaller than 0, in
other words the specific heat should then turn out to be n
divergent, with its finite-size estimates saturating to a va
C` at Tc .

We plot our data for the specific heat in the same form
in Ref. @13#, i.e., against both lnL and ln lnL ~Fig. 6!. The
pure-system divergence is well reproduced by the stra
line the data show when plotted against lnL and, equiva-
lently, by the upward curvature when plotted against ln lnL.
Exactly as it happens in Ref.@13#, as disorder is switched o
and increased, it is apparent that both curves tend to b
downward, the former markedly deviating from, the lat
instead approaching, a straight line~from top left to bottom
right of Fig. 6!. The law describing these finite-size da
therefore has to be at least less divergent withL than lnL.
However, the same kind of behavior must at moderate s
tem sizes be expected inbothscenarios~as we shall argue in
greater detail in the concluding section!. It is therefore diffi-
cult to conclude definitely in favor of Eq.~24!: here more
than elsewhere the need for significantly larger system s
is particularly felt.

If we fit the data to a nondiverging size dependence
accordance with Eq.~25!, there is a consistency check
carry out, i.e., one may ask oneself whether or not the
perscaling relation is verified, given then values from the
correlation length. The fitting of the specific heat to the fo
~25! is performed first by taking all the points into accoun
then by reducing the data set by successively increasing
initial value ofL considered. In this way one can both che
for the stability of such a fit and get a sequence of values
a/n that may be subjected to subsequent extrapolation
cedures when needed. The results of this analysis are sh

FIG. 6. Finite-size approximants of the specific heat at critica
CL versus ln lnL ~circles! and lnL ~squares!.
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in Table I. Its main outcome is the fact that, within a wea
universality interpretation of the data, a small, seemin
systematic offset from hyperscaling though still within es
mated error bars, appears.

We have tried to discriminate between Eqs.~24! and~25!
on the basis of ax2 test. Although such a test appears
favor the log-corrections scenario by roughly an order
magnitude inx2, the x2 values for both alternatives are s
small @typically O(1028) and O(1027), respectively, for a
choice of the data set# as to make it doubtful whether
meaningful model selection should be based on them. In
ticular, our data are not normally distributed random d
~indeed, they are deterministic!, as instead strictly required
by a reliablex2 analysis.

V. DISCUSSION AND CONCLUSIONS

In this paper we studied the critical behavior of the 2
Ising model with quenched random site dilution via the EE
Our purpose was twofold: first we wanted to address ag
the question about the reliability of the method; second,
extended the study begun in Ref.@21# to systems of larger
sizes, also in view of the new results which have appeare
the literature since then@12–16#, in order to enable perhaps
clearer discrimination between the two contradictory pictu
of the system’s critical behavior that have survived so f
the logarithmic corrections and the weak-universality s
nario.

A. Reliability of the method

Since the description of quenched disorder within o
EEA is only approximate, we have to worry about how go
it actually is. Before gathering the different pieces of e
dence accumulated during our numerical study confirm
the validity of our approach, we would like to address t
question from a more general viewpoint. In Ref.@21# the
correlation lengthjk describing the asymptotic decay of th
correlation functionGk(r i j ) of the disorderdegrees of free-
dom was introduced and studied. Its finite-size estimates
be computed from the ratio of two TM eigenvalues in co
plete analogy to Eq.~8! by replacingg2 with g̃2 , whereg̃2 is
the second eigenvalue of the symmetric block of the tran
matrix G.

As regards the analysis of this new correlation length,
have both bad and good news. The bad news is thatjk actu-
ally diverges at criticality in our different approximating sy
tems. This escaped our attention in Ref.@21#: while jk was
observed never to exceed a few lattice spacings for the
cessible system size, its size dependence atTc had not been
monitored. However, before concluding from this that o
systems provide only a rather poor description of quenc
disorder, we have also determined the behavior of the r
RL5jk,L(Tc)/jL(Tc) of these two correlation lengths a
criticality, and the results of this study may be taken for t
good news. We find thatRL→ 1

8 at largeL, independently of
r. Since this limit represents nothing but the ratioh/hk of
the anomalous dimensions of the spin and occupat
variable correlation functions atTc , this implies thathk
52, hence is unusually large. Theki correlator is thus ‘‘al-
most summable’’ at criticality~its sum has a logarithmic



-
-
ffe
th
u
en

o
ob

b
ou
al
l

a
, a

a
in

ca
n

di
o
si
,

ap
-

io
m

ee
os

a
a
th

th

is
rit
ie
d

tter
uss

nd-
ble

s
io.
off

ff-
th
ms
ion
k of
eir
till

of

nd
on-
e
not

of
po-
ly
ail-
zes
iga-
d so
ot

he
as
-
of

een
ther

d to
,
to

c-
es,

D,
is-

in
-
is
size
m-
p-

3832 PRE 60GIORGIO MAZZEO AND REIMER KÜHN
infrared divergence!. Note that the ratioGk(r )/G(r ) behaves
as

Gk~r !

G~r !
;

1

r 7/4 ~26!

and thus decays to zero, stating thatki correlations are neg
ligibly small if compared tos i correlations at large dis
tances. This is why the system may be regarded as e
tively quenched despite remaining correlations between
ki , and it may be regarded as the reason why our res
compare so favorably with those obtained via more conv
tional approaches.

Indeed, both checks against exact results, wherever
tainable, and direct comparison of our data with those
tained by the random TM approach~which allows for an
in-principle exact treatment of the disorder! increase our con-
fidence in the validity of our method beyond any reasona
doubt. Among the exact results correctly reproduced by
method we mention~i! data obtained for a one-dimension
system@45#, ~ii ! the value of the initial slope of the critica
line in the phase diagram, reproduced to within 0.01%;~iii !
the correct value of the connectivity length exponentnp and
of the crossover exponentf5np /n51 at percolation@21#
~iv! the precision with which the values of the exponenth, of
the ratiog/n, and of the central charge are determined for
the points investigated in the phase diagram. In addition
mentioned above, the random TM data~obtained in the case
of bond-disordered systems! @12,13# exhibit the same finite-
size signature, and qualitatively the same behavior as reg
their dependence on the disorder strength as those obta
in the present paper.

A definite advantage of our method over other numeri
methods dealing with disordered systems is that it does
suffer from non-self-averaging difficulties, and provides
rectly through the ratio of TM eigenvalues the average c
relation length, not the typical one, such that the succes
analysis turns out to be more straightforward than, e.g.
Ref. @12#.

The results discussed so far were all obtained within
proximating system~d!. Comparative studies including re
sults also from the other systems (a) – (c) were presented in
Ref. @21#. They showed that systems (a) – (d) appear to be in
the same universality class as regards their critical behav
Nonuniversal quantities, however, such as the critical te
perature itself, or the value of the percolation thresholdrc ,
do depend on the approximating system, differing betw
those with and without the plaquette constraint and th
estimated by other numerical works@14,34#. The conclusion
is that the description of quenched disorder, though only
proximate, appears to be precise enough to put all our
proximating systems into the same universality class as
fully quenched system, and this is all that is required for
purpose of the present study.

B. Discriminating between the scenarios

We now come to our second point, concerning the d
crimination between the two scenarios proposed for the c
cal behavior of the model considered in this paper. Our v
is that some of the FSS investigations that have appeare
c-
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the literature—including the recent ones@8,10,12–
14,16,20,21#—may perhaps not be as decisive on this ma
as their authors have tended to believe. We shall now disc
some issues on which, we believe, clarification or ame
ments are needed, presenting a critical review of availa
material in the light of our own data analysis.

The results of Refs.@20# and@21# have been interpreted a
providing evidence in favor of a weak-universality scenar
The former is a Monte Carlo investigation both at and
criticality of the site-diluted system. On the basis ofx2 data
analyses, Kim and Patrascioiu concluded that their o
critical simulations of susceptibility and correlation leng
were better described by modified power laws than in ter
of the log-corrections scenario. No analogous discriminat
was attempted for the specific heat, and hence no chec
hyperscaling was performed. The main weakness of th
off-critical simulations is that reduced temperatures are s
sizeable, and the constancy of the ratiog/n appears slightly
less well satisfied than the individual errors on the values
g and n would allow. Simulations at criticality yielded a
specific heat very slowly increasing with system size, a
arguments in favor of a saturation were advanced. The c
stancy of g/n was clearly shown and the validity of th
Fisher relation confirmed, but—as noted above—this can
be taken to support either scenario over the other.

Our own earlier TM strip-scaling results@21#, too, were
interpreted in terms of weak universality. Possible effects
logarithmic corrections in the effective size-dependent ex
nentsnL were looked for, but were either absent or simp
not discernible due to the rather moderate strip widths av
able in that study. Indeed, the rather limited system si
may be taken as one of the weakest points of that invest
tion. Moreover, specific heats had not been computed an
hyperscaling within a varying exponents picture was n
checked. Again, the observed constancy ofg/n andh may be
regarded as a piece of evidence for the reliability of t
method, but not in favor of either scenario, except insofar
they imply that if critical behavior in the model were non
universal, the observed nonuniversality would have to be
the weak form.

Let us now turn to the recent investigations that have b
taken to support the log corrections scenario. They are ei
of the TM strip-scaling@10,12,13# or of the Monte Carlo
@8,14,16# type.

The strip-scaling data of Aara˜o Reiset al. @10,12# for the
correlation length in the bond-disordered system appeare
give values ofn slightly greater than that of the pure system
which the authors, however, discarded, attributing them
preasymptotic effects originating from logarithmic corre
tions. Their interpretation of the data in these terms do
indeed, describe the data rather well on the level of themL ,
but not on the level of the size-dependent exponentsnL .
Moreover, we recall our discussion of this point in Sec. IV
according to which the power-law picture provides a cons
tent interpretation of the data as well.

Turning to the critical specific-heat data presented
Refs. @12# and @13#, they were interpreted as ‘‘clearly sug
gesting a divergence in the thermodynamic limit.’’ Th
point was claimed to be strengthened by pushing system
up to L518 ~and in less precise simulations even to an i
pressiveL523!, and by noting that specific-heat data a
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peared to be halfway between single- (lnL) and double-
(ln ln L) logarithmic dependence on strip width, from whic
a divergence in the thermodynamic limit was inferred. O
should, however, note that at moderateL this kind of behav-
ior is to be expected inboth scenarios if the correlation
length exponent is close to 1 and, hence,a is only slightly
negative. The difference is thatCL will continue to increase
at least as fast as ln lnL for all L in the log-corrections sce
nario, whereas there will be a crossover to a growth whic
slower than ln lnL at L* .exp$2n/a% in the case of a modi-
fied power law~25! with a,0. Tentatively accepting the
valuen.1.083 determined by Aara˜o Reiset al. @10# for the
r[J1 /J250.25 case investigated in Ref.@13#, one would
have to locate the crossover length atL* .680. ThusLmax
523 is still much too small to allow conclusion in favor o
either scenario.

We have carried outx2 data analyses on the raw data
Ref. @13#, comparing the two scenarios, as we did on o
own data. Power-law fits and fits according to Eq.~24! show
no significantly different quality. In particular, it seems tha
double-logarithmic law provides a better fit to the data
lected from a window@Lmin,23# with Lmin up to 8, while
power laws give a smallerx2 for the largerLmin up to 13; for
still larger L the results of the fits become questionable
both hypotheses. Other kinds of fits have been tried, e.g.
selecting a movable window@Lmin ,Lmin17# and lettingLmin
run over the data, but without any significant improveme
Only by discarding the largerL values, which are still much
too noisy~as is obvious from a quick look at the derivativ
information plotted in Fig. 3 of Ref.@13#!, one gets values o
x2 that slightly favor the double-logarithmic form~24!. Inci-
dentally, however, the power-law fits lead to an estimate
a/n compatible via hyperscaling with then value reported in
Ref. @10#. This analysis cannot thus be seen as conclusiv

The Monte Carlo study of site-diluted systems by Balle
teroset al. @14# shows critical specific-heat data reasona
well fitted ~in terms ofx2! by a double-logarithmic form, a
least for intermediate dilution. The same is true for a rec
study by Selkeet al. @16# However, no power-law fitting is
attempted for comparison. In earlier work on bon
disordered systems@7#, such power-law fits had been a
tempted, and were regarded as inferior to double-logarith
ones. Note, however, that the maximum system sizes stu
in Ref. @7# are for r 50.25 still below, and forr 50.1 above
but still very close, on a double-logarithmic scale, to t
crossover lengthsL* expected from then values reported in
Ref. @10#.

ThenL data presented in Ref.@14# have, in our view, error
bars somewhat too large to allow concluding with confiden
that nL→1 for largeL for all the values ofr also because
Ballesteroset al. force the intercept through 1 rather tha
fitting it. The reasonably large values ofL reached in this
investigation would probably put the system in t
asymptotic regime~at least for the stronger disorder!, and the
FSS expression used by Ballesteroset al. is indeednL51
1A8/ ln L. Nonetheless, the constantA8 in this expression
should, strictly speaking, come out to be1

2, independentlyof
the degree of disorder@see Eq.~A17c!#, a property which
their data and their fits donot respect.

In the off-critical Monte Carlo study of Talapov an
Shchur@8#, bond disorder was observed to lead to increa
e
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values for the magnetization and susceptibility exponentb
andg, while the behavior of the specific heat showed go
agreement with the double-logarithmic form~11!. Together
with the Rushbrooke equalitya12b1g52, these findings
embody an inconsistency from which the authors conclu
that their increased values forb andg cannot be asymptotic
On the other hand, it turns out that the specific-heat data
Ref. @8# can be fitted equally well to a power-law form wit
a value ofa compatible via the Rushbrooke relation with th
increased values ofb andg @46#. Note also that the ratiob/g
in the disordered system is the same~to within a fraction of
a percent! as in the pure system, as would be expected i
weak universality scenario, whereas individuallyb and g
change in the 6% range.

The difficulties of FSS are avoided in the series expans
study of Roderet al. @15#, their determination of the expo
nent g̃ in Eq. ~10!, which appears to saturate at7

8 for suffi-
ciently strong disorder, may perhaps be taken as the st
gest piece of evidence currently available in favor of t
validity of the logarithmic-corrections scenario. Still, th
analysis suffers from the relatively small length of the seri
at least in some regions of the phase diagram, and one w
wish this to be made more conclusive by including high
order terms, so as to reduce error bars. It is also worth no
at this point that their claim thatxL(Tc) is unaffected by
logarithmic corrections cannot be upheld: see Eq.~A15!.

We now turn to the present investigation. First, by co
bining finite-size signatures of correlation length a
domain-wall free energy, we have in particular been able
locate critical temperatures with extreme precision. Seco
we have significantly enlarged our system sizes. In interp
ing our data, maximum care was constantly taken to be o
to both possibilities. Based on results of Cardy and Ludw
a more systematic FSS analysis than in previous nume
studies has been performed. As we will presently show, n
ther way of looking at the available finite-size data is co
pletely satisfactory.

The value of the effective central charge is found to
c85 1

2 with extremely high precision. If conformal invarianc
and reflection positivity also held for disordered systems, t
finding would put the model into the Ising universality cla
and exclude continuously varying exponents@47#. However,
the results of Ludwig and Cardy@33# imply that the latter
condition doesnot hold, at least for the weakly disordere
ferromagnetic Ising model.

Considering the correlation-length exponentn, we ob-
serve that our FSS estimates converge to values continuo
varying with r. One might suspect, of course, that our e
trapolations are misled because the algorithm would not p
up slowly varying logarithmic corrections. However, if w
adopt this hypothesis, we find it not easy to reconcile w
the fact that not even the slightest such effect is detectab
our extrapolations ofh, g/n, and the central chargec, even
though similar, albeit smaller offsets must be expected
occur in these quantities as well, as is borne out by
analysis of FSS in the Appendix.

The fact that the critical specific-heat data may be w
fitted both to a double-logarithmic behavior~24! and to a
cusp singularity~25! shows that it is difficult to discriminate
with confidence between the two laws. However, we rec
that a fit according to a modified power law~25! entails a
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weak violation of hyperscaling, though it is still within erro
bars.

In conclusion, as regards the two issues raised in
paper, we believe to have provided if not a proof, at le
satisfying arguments in favor of the trustworthiness and
curacy of the EEA to disordered systems. As to the sec
issue, we feel that further investigation would still be need
to provide clearer and definite evidence in favor of eith
picture. The problems seen in the FSS analyses of the sy
are not exclusive to our results, but are—as we believe
have demonstrated—common to virtually all previous F
data obtained so far.

Let us finally emphasize that we have no reasons ta
priori distrust the correctness of the theoretical picture t
began to emerge through the work of Dotsenko and D
senko @2# and the improved and corrected versions
Shalaev@3#, Shankar@4#, and Ludwig@5#. Still, in an ideal
world, one would like to see this picture supported by n
merical evidence much better than that which is curren
available.
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APPENDIX: FSS WITH LOGARITHMIC CORRECTIONS

In this Appendix, we collect the main results of th
renormalization-group analysis for the case where sm
amounts of disorder constitute a marginally irrelevant per
bation at the pure system’s fixed point, thus giving rise
logarithmic corrections, as in the field-theoretical approa
to the weakly disordered2D Ising model. We do this both
for the sake of completeness, and to obtain a sound un
standing of the effects such corrections would have in a F
analysis. This will turn out to be relevant not only in th
asymptotic regimeL@1, but especially in thepreasymptotic
regime as specified below.

We feel it particularly important to collect these resu
here, because the literature in the field abounds in heur
derivations which have sometimes produced erroneous
sults and still more frequently even misconceptions as
what the effect of logarithmic corrections might be in t
FSS signature of various thermodynamic functions and c
cal exponents.

The following basically involves exploring results Lud
wig and Cardy@33# obtained in a replica approach to th
problem, which are in turn based on earlier results on lo
rithmic corrections obtained by Cardy in a more general c
text @32#.

If g denotes the marginally irrelevant coupling arisi
from disorder averaging in the~replicated! Hamiltonian, and
by $un% the set of other scaling fields at the pure syste
is
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critical point, the RG flow equations read

dg

dl
52pbg21O~g3!, ~A1!

dun

dl
5ynun22pbngun1O~g2un!, ~A2!

where theyn are the eigenvalues of the linearized RG equ
tions and thebn are operator product expansion~OPE! coef-
ficients, which can be formulated in terms of correspond
three-point functions@33#.

Up to the order shown, these equations integrate to

g~ l !5
g0

11pbg0l
, ~A3!

with g05g(0) and

un~ l !5un~0!eynl~11pbg0l !22bn /b[un~0!ũn~ l !.
~A4!

Among the $un%, the two relevant fields areu« which
couples to the energy density and has RG eigenvaluey«

51, andus coupling to the magnetization density withys

5 15
8 . One may thus putu«(0)5t andus(0)5h. In a finite

system of linear extentL one may formally interpretL21 as
another relevant scaling field with RG eigenvalue 1.

In the context of the replica formulation, the OPE coef
cients and the couplingg are normalized such that the zer
replica limit of the productbg0 and of the ratiosbn /b exist
and are finite. The results of Ludwig and Cardy implybg0
58D and b« /b5 1

4 in this limit, whereasbs /b50. HereD
denotes the~bare! disorder strength:D}r(12r) for a ran-
domly site-diluted model

The RG equations for the singular part of the free ene
and the correlation length read

f ~ t,h,g0 ,L21!5e2dl f „u«~ l !,us~ l !,g~ l !,elL21
… ~A5!

and

j~ t,h,g0 ,L21!5elj„u«~ l !,us~ l !,g~ l !,elL21
…. ~A6!

Irrelevant scaling fields providing additional corrections
scaling have for simplicity been suppressed in these exp
sions. As usual, critical behavior characteristics of the in
nite system are obtained by consideringf and j and their
derivatives with respect to temperature~and field! at a scalel
chosen such thatu«( l )561. For utu!1 this gives

ey« l5
1

utu S 11
pbg0

y«
ln

1

utu D
2b« /b

. ~A7!

Inserting the values for the OPE coefficients reported in R
@33#, andn51/y«51 for the pure 2D Ising model, this give
the divergence of the correlation length ath50 to leading
order,

j~ t !;utu21S 118pD ln
1

utu D
1/2

. ~A8!
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The fact thatbs /b50 entails that magnetization and susce
tibility will to leading orderscale as pure powers of th
correlation length, in agreement with the earlier results
Shalaev@3#.

Phenomenological renormalization is based on analyz
the finite-size signatures of Eq.~A6! and of its temperature
derivative

mL~ t ![
d

dt
j~ t,h,g0 ,L21!

5el ũ«~ l !j«„u«~ l !,us~ l !,g~ l !,elL21
…, ~A9!

wherej« designates the partial derivative of the correlatio
length scaling function~A6! with respect tou«( l ). Finite-
size signatures at criticality~t50, h50! are obtained by ana
lyzing these quantities at a scaleel5L, giving

jL
215L21j21

„0,0,g~ ln L !,1…5L21F„g~ ln L !…
~A10!

and

mL5L2~118pD ln L !21/2j«„0,0,g~ ln L !,1…

5L2~118pD ln L !21/2F«„g~ ln L !…, ~A11!

respectively. Equations~A10! and~A11! define the universa
scaling functionsF(x) andF«(x) of the argumentx which,
in the zero-replica limit, isx5D/(118pD ln L). In the
weak-disorder limit or at largeL this quantity is small, and
one assumes that an expansion of these scaling functionsx
exists. ForF one getsF(x)5f01f1x1f2x21O(x3), the
coefficients being known to bef05ph from conformal in-
variance@40#, andf150 on account of the vanishing ofbs .
Thus

jL
215L21H ph1f2F S D

118pD ln L D 2G
1OF S D

118pD ln L D 3G J . ~A12!

A similar expansion is expected to hold forF« , i.e.,
F«(x)5f«01f«1x1O(x2), so ~with D15f«1 /f«0!

mL5f«0L2~118pD ln L !21/2H 11
D1D

118pD ln L

1OF S D

118pD ln L D 2G J , ~A13!

though the coefficientsf«0 and f«1 are to the best of ou
knowledge not known. Interest in this quantity stems fro
the fact that, within the phenomenological renormalizatio
group scheme, the correlation-length exponentn is obtained
by computing the sequence of finite-size approximantsnL ,
defined by

nL
215

d ln mL

d ln L
21, ~A14!
-

f

g

-

n

-

and by extrapolating this sequence to the large system li
Equation~22! is just the finite-difference approximation t
Eq. ~A14!.

Similarly, the FSS analysis for the susceptibility gives

xL5Lg/n f ss„0,0,g~ ln L !,1…5Lg/nFx„g~ ln L !…
~A15!

with the same conventions for the notation. The ratiog/n is
that of the pure system, i.e.,g/n5 7

4 . On account of the
vanishing ofbs , no additional logarithmic terms above thos
following from the expansion ofFx appear in Eq.~A15!, in
contrast to what happens formL . As before, one assume
that an expansion of the formFx(x)5fx01fx1x1fx2x2

1O(x3) exists, and defines the effective size-dependent r
(g/n)L by (g/n)L5] ln xL /]ln L. It will be useful to intro-
duce the abbreviationEi5fx i /fx0 below.

For the interpretation of numerical data it is relevant
note results for these quantities both in the preasympt
regime 8pD ln L!1 and in the asymptotic regime 8pD ln L
@1.

~i! In the preasymptotic regime, they read

jL
215L21@ph1f2D2~1216pD ln L !# ~A16a!

mL5f«0L2@11D1D2~112D1D!4pD ln L#
~A16b!

nL5114pD1~4pD!2~11D1/2p22 lnL !
~A16c!

S g

n D
L

5 7
4 28pD2E118pD3~E1

222E2116pE1 ln L !,

~A16d!

where we have kept the lowest order inD ln L. Additional
terms down by further factors ofD or D ln L are not shown.
These results exhibit nonuniversal corrections.

~ii ! In the asymptotic regime, on the other hand, one h

jL
215L21H ph1f2S 1

8p ln L D 2

1OF S 1

ln L D 3G J ,

~A17a!

mL5f«0L2~8pD ln L !21/2H 11
D1

8p ln L
1OF S 1

ln L D 2G J ,

~A17b!

nL511
1

2 lnL
1OF S 1

ln L D 2G , ~A17c!

S g

n D
L

5
7

4
2E1

1

8p~ ln L !2 1OF S 1

ln L D 3G , ~A17d!

so the asymptotic corrections tojL
21, nL , and (g/n)L turn

out to be universal.
Ludwig and Cardy have also reported corresponding F

expressions for the central charge, in both regimes@33#.
These are

c5 1
2 2128p3D3~1224pD ln L ! ~A18a!
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and

c5 1
2 2 1

4 ~ ln L !231OS 1

8p ln L D 4

. ~A18b!

respectively, where we have once more kept the lowest o
in D ln L in the preasymptotic regime.

Additional terms further down by powers ofLya(1
18pD ln L)22ba /b, with ya&22, will appear due to irrel-
evant scaling fields.
S
,

s

s

.

.

r.
er

Equations~A16!–~A18! are of great importance whe
analyzing FSS data, if logarithmic corrections are expec
to be present. Especially in a strip-scaling approach suc
ours, the preasymptotic results may turn out to be of parti
lar relevance, since the maximum size available is such
one may not reach the asymptotic regime, which is likely
be true at least for weak disorder. This has indeed been
point of view emphasized by Aara˜o Reiset al. @12#.
-
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