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Self-similar renormalization approach to barrier crossing processes
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An algebraic self-similar renormalization method developed recently for summation of divergent field-
theoretical series is applied to the thermally activated escape of a Brownian particle over an arbitrarily shaped
barrier. Based on the Mel'nikov—Meshkov result for the underdamped Brownian motion and the inverse
friction expansion of the underlying Fokker-Planck equation for strong friction, an overall rate formula is
constructed. This formula agrees in the weak friction regime with the rate obtained from a diffusion equation
in energy variables and, in the limiting case of strong friction with the rate following from a Smoluchowski
equation. Its validity is tested for Brownian motion in bistable potentials with parabolic, cusped, and quartic
barriers of different heights. The proposed formula is found to give a reasonable description of activated rate
processes even though the barrier is quite low. Our comparison also includes results from various different
crossover theories. In most of the cases considered the present formula is in considerably better agreement with
exact numerical rates than the other interpolation form{B$063-651X%99)13610-9

PACS numbses): 05.40-a, 82.20.Db, 82.20.Fd

I. INTRODUCTION [14,21,22 friction regimes, extensions to the full damping
range [6,17,18,23 and non-Markovian dissipation models

The phenomenon of thermally activated escape of a clag24,25, generalizations to state-dependent frictig26],
sical particle from one metastable state to another by crossnore complex potential§27—33, systems with many de-
ing a barrier between the two states, as originally proposedrees of freedoni34], and cases without detailed balance
by Kramers in his seminal 1940 paper on chemical reactiof35]. In most of these investigations the barrier heighis
rates[1], has attracted a great deal of theoretical attention irassumed to be much larger than the energy of thermal mo-
recent years. For general reviews of the field see R2fs5].  tion BE>1. Of course, the presence of a relatively high
The present state of the art can be found in Réf. The  barrier is vital for the notion of metastability and the feasi-
dynamics of the Kramers model is governed by the Fokkerbility of a rate description. For these purposes, however, a
Planck equatiorfor its stochastic analog, the Langevin equa-barrier height of already a fewgT will suffice to separate
tion) which describes the Brownian motion under the com-the inter-well decay time being of the order ofexp(BE)
bined influence of an externally applied potentigk) and a  from the fast time scale; on which the intra-well relaxation
heat bath. The crossing of the particle over the barrier contakes place. In the above-mentioned asymptotic theories
stitutes reaction. The phenomenological rate constants fdt/(BE) itself, rather than exp{BE), enters as a small pa-
the reaction are related to the reciprocal of the longest relaxameter; accordingly, the theories do not cover the whole
ation time of the system. This rate is characterized by theange of parameters where a rate description is appropriate.
shape of the potential, the energy of thermal mot@n'  Therefore, various different approaches have been put for-
=kgT, and the strength of the couplingto the heat bath. ward in the literature to include finite-barrier height correc-
The Kramers model though simple exhibits generic featuretions to the escape raf&8,21-23,36,3 A common disad-
of many complex systems. Apart from chemical reactions, ivantage of these approaches is that they are all strongly
has found widespread applications in a multitude of othedependent on parabolicapproximation for the barrier. This
activated rate processes. In particular, it has been adopted &ssumption, though, is not always met in experimental situ-
describe a variety of phenomena in condensed-matter phystions. For example, the barrier of charge transfer reactions
ics, ranging from super-ionic conducti¢8] and Josephson is often of a cusp-shaped forfi27,30,38. In such a case,
junction theory[3] to a driven Ge photoconduct§®]. The large deviations of theoretical predictions from exact numeri-
ring-laser gyroscopglQ] and dye lasef11] are examples of cal rates are observed in the weak-to-intermediate friction
the Kramers problem in optical physics. Another interestingregime[30,31,33. The latter holds true even though the bar-
variety of its applications is the transport phenomenon irrier is extremely highBE— o, to say nothing of low barriers
complex systems as it occurs in glas$&&] and proteins for which the problem of finite-barrier corrections still poses
[13]. a challenge.

The enormous theoretical literature has evolved Kramers’ In this paper we present accurate calculations of thermally
theory in many directions that include more formal deriva-activated rates for a symmetric double well potential and
tions of Kramers’ own resultgl4,15, improvements of the compare these with known expressions, as well as with a
Kramers method in the wedk 6—20 and moderate-to-high new rate formula constructed in terms of the Mel'nikov—

Meshkov theory[17] for the energy diffusion regime
(v=1) and the expansion of the Fokker-Planck equation in
*Present address: Department of Chemistry, University of Caliteciprocal powers of the friction coefficient for strong
fornia, Davis, CA 95616. Permanent address: Institute for Highdamping (y>1). The calculations are performed for differ-
Temperatures, 13/19 Izhorskaya St., 127412 Moscow, Russia. ent shapes of the potential barrier and different temperatures
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and coupling strengths. In all the cases considered the best 2
results are attained with the present rate expression. The pa- aP(1,t)= ol ’m
per is organized as follows: In the next section, we briefly

review the Kramers rate problem. In Sec. lll, a unified ratewith (1) being the angular frequency at the action
expression valid for any barrier shape is constructed. Its util-

1+

&,}P(I,t), (2.6

ity is illustrated in Sec. IV by comparing with estimates of w(l)=2md e(l), (2.7
the rates from numerical calculations. Section V provides a o » ) .
summary. and found a quasistationary probability flux of particles in

action spacehroughl ~=1(0)
0

I‘=2f dxy—=2V(x), V(x,)=0. (2.9
Xp

Il. PRELIMINARIES

In the framework of general rate theory, the escape rate
I'™ can always be expressed byg following from classi-

cal transition state theor§TST) This results in a linear dependence of the rateydior van-
ishingly weak coupling §—0)
0 -1
FTSTz( V2mp f dx eﬂWX)] , (2.1 ur=ypI-, (2.9

o o , which is valid if BE>1, anduit<1. It may be noted here
and a transmission factqr which is at most unity and de- 5 the right-hand side of Ed2.9) is nothing but a weak
scribes the deviation of the escape rate fiofr damping approximation for the dimensionless energy loss of

_ _ the particle as it transverses the reactant refiah.

I =ul'st. (2.2) On the other hand, for moderate-to-large frictiprocal
equilibrium is established in energy, and the escape dynam-
Scs is dominated by collisions with the heat bath when the
particle is near the top of the barrier. In this regime, the rate
is limited by spatial diffusion across the barrier ttgpatial
diffusion regime. Accordingly, when constructing a quasis-
tationary flux of particles out of the well, Kramers approxi-
mated the full potential/(x) entering Eq.(2.3) by its para-
bolic barrier part

In the above we have identified the transition state with th
location of the maximum o¥/(x) atx=0 and set for conve-
nienceV(x)=0. An early work which discussed non-TST
effects is the famous paper of Kraméfg, who provided a
dynamical framework for the original concepts of Arrhenius.
Proposing it primarily as a model of chemical reactions,
Kramers studied the motion of a Brownian particle with
mass weighted coordinatein a metastable potentiadl(x).
The dynamics of the model is governed by the Fokker— 1

Planck equation for the probability distributid®(x,v,t) of V(x)=— §w2X2+0(X3). w?=-V"(0), (2.10
finding the particle at time at the phase space poixtv

and fully neglected the anharmonic correctioNgx)
+ w?x?/2=0(x3). This yields for the spatial diffusion limit
transmission factor

where the prime denotes the derivative with respeck.to >
Kramers solved the rate problem outlined above in terms of T [1+0 Y Y 2.19)
his flux over population methofil]. Within its scope, the pb do? 20 '
escape rate is defined as the ratio of a stationary diffusion
current at the top of the barrier to the population of the well. The above formula is valid forBE>1 and y<y_
He showed that depending on the coupling strerfytbtion =w_/(27BE) with w_ being the frequency at the bottom
coefficient y, there are two qualitatively different mecha- of the well, i.e.,»® =V"(x_). Consequently, it becomes as-
nisms determining the escape dynamics. For vanishinglymptotically exact in the extreme high barrigow tempera-
small v, both the energy ture) limit, BE— o, in which case one will ultimately almost
. always be in the spatial diffusion regime. Kramers derived
e=3v2+V(X), (24 the explicit expressions for the escape rate in these two re-
) gimes, and noted the existence of a crossover region.
and the action The “crossover problem” was tackled by a great number
of investigators, most notably Biker, Harris, and Landauer
()= é dxv, (2.5 (BHL) [16], Me_l_’nikov and MeshkoWMM) [17], and Pollak,
Grabert, and Haggi (PGH) [25] (see also a collection of
references in[5]). In particular, BHL [16] extended the

asymptotic Kramers solution of E¢2.9) to the region of

are almost conserved quantities undergoing slow diffusionyeak-to-moderate frictiory. Their generalization for the en-
motion. The rate limiting step is thus the excitation of thegrgy diffusion limit transmission factor reads

particle to energies greater than the barrier endemergy
diffusion regime. In that case Kramers transformed the 1+4/uk -1
Kr

Fokker-Planck equatiof2.3) to a diffusion equation for the = = — (212
probability density of the action N1+ At 1

HP(X,v,t)=[—Vviy+ V' (X)d,+ yd,(v+ B 13,)]P(X,v,1),
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The overall transmission factor for the full damping range Il. IMPROVED INTERPOLATION FORMULA
can then be obtained by using ad hocmultiplicative factor

1y [5] During the past two decades one could broadly identify
pb

two approaches of calculating the rate of thermally activated
M,?ELZMSgiLMpb. (213  escape of a par_ti(;Ie over a barri_er out of a well. One i; to
recognize the difficulty of obtaining exact rate expressions
which assures that the bridging expression reduces to thexcepting some special cases, such as a parabolic barrier, and
correct spatial diffusion limit. An alternative asymptotic so- proceed to find the numerically exact rate. A number of ef-
lution for the energy diffusion regime and, accordingly, anficient methods for numerically integrating Brownian motion
interpolating formula were given by Mel'nikost al.[6,17].  on a grid have been devised during the past decade which
These read help to reveal and clarify some interesting phenomena in the
MM Kr transition region between the two extreme limits of weak and
Ped = Alfwe), (2.14 strong friction[3,39,40,42—4% A second approach was to
replace rigor with reasonable approximations. The advantage
. In(l— ex;{—y X2+ %) of having accurate analytical formulas as compared to nu-
— f dx
o X%+

merical results of numerical methods is in the simplicity of
’ analyzing such formulas with respect to the variation of pa-
rameters. A strategy that has gained much popularity in re-
cent years is entirely based on the underlying Fokker-Planck
and equation and involves various different techniques, such as
the Kramers flux over population method, the mean first pas-
b = 1aog” Hpb- (2.15  sage time formalism, the generalized moment expansion
technique, and the eigenmode expansion method
The last equation also contains the correct limiting behaviorg1—3,5 22 23,28,31,32,34—37}4Bnother major class of ap-
at weak and strong damping, but more accurately capturgsroximation methods rests on the transformation of the origi-
the crossover behavior thangff" does. A generalization of nal stochastic and dissipative dynamics by an infinite dimen-
Egs.(2.13 and(2.15 to a parabolic double well is straight- sional Hamiltonian system[46,47]. The rate is then
forward [5,17]. More recently, PGH25] generalized the calculated by means of the reactive f[#8] through an op-
theory to an arbitrary time-dependent friction. They showedimized planar dividing surfac§25,29,30,40,4p Both ap-
that the MM crossover formula can be obtained without anyproaches are rather efficient when treating bistable potentials
ad hocbridging and gave a different approximation for the with high parabolicbarriers. However, complications arise if
energy loss. The PGH theory rate constant has been conthe barrier is not parabolic.
pared directly to reactive flux simulatiof39], and found to In this paper we choose a different starting point. It is
provide a good description of the rate in the Kramers turnbased on the observation that exact solutions of the barrier
over regime in many cas¢&5|. However, subsequent stud- crossing problem are available only in the limiting cases of
ies have revealed some general situations for which PGlinderdamped and overdamped Brownian motion. Before
theory will fail to correctly predict the escape rafté0]. proceeding two remarks are in order. First, by “exact solu-
Therefore, new rate theories that account for these situatiortfon” we mean a closed form expression for the escape rate
have been set fortfi9,41,42. derivedwithout using high-barrier approximations. The deri-
Note that all the mentioned theories make extensive useation is straightforward in both limits of weak and strong
of the parabolic barrier approximation. Only very recently, afriction where the dynamics is governed by one-dimensional
generalization of the flux over population method to an arbidiffusion equation$Eqgs.(2.6) and(3.5), respectively. In the
trarily shaped barrier was put forward by one of the presentvhole friction range such an expression cannot be obtained
authors[32]. In this way an interpolating formula was con- with present mathematical techniques. Thus numerical meth-
structed that approaches the correct limiting behavior abds must be used. The latter are, in principle, approximate.
weak and strong damping. Its validity was tested for Brown-However, since the error of a general numerical calculation
ian motion in bistable potentials with parabolic, cusped, ands controllable and can be made as small as one wants, we
quartic barriers. We found that the proposed expressiowill refer to such a solution as theumerically exactesult.
agrees roughly to within 20% with exact numerical rates forSecond, we note that it is generally impossible to derive a
BE=10 regardless of the particular barrier shape. Howevemphenomenological rate description from the underlying dis-
subsequent studies have revealed that with decregdiing sipative dynamics. As a consequence, there is no unique
the accuracy of this formula deteriorates very rapidly so thaidentification(precise definitiopn of the escape rate with dy-
already for BE=5 it deviates from the exact result up to namical characteristics of Eq2.3). Thus various different
40%. The latter holds true even though the barrier is paradeterminations of this phenomenological quantity have re-
bolic. A possible reason for this is the failure of the gener-sulted. In the above we have already mentioned four rather
alized flux over population method to correctly predict thegeneral approaches to this problem. The calculation of the
transmission factor in the crossover region. Yet anotheratio of a stationary current at the top of the barrier to the
source of errors may be finite-barrier corrections fully ne-population of the well, as originally proposed by Kramers
glected in all the above-mentioned crossover formulas. A1], is the method most frequently used in the past
simple way to resolve both problems is presented in the nexX®2,3,5,22,31-34 Alternative derivations are based on the
section. mean first passage time formalig§i2,3,5,29 and the gener-

A(y)= exp

N
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D)=yt y V' (x)+0(y®), (3.6)

-1

F dx e2VO/D(x) (3.7

wp ¥>1) =l y— (0l y)*+2(wly)°+0(y™ ),
(3.8

p(y—°)=wely—9y*+0(y ),

-1

wo=\2718 f ™ dx BV 3.9

alized moment expansion methf&¥7]. The former identifies
a stochastic trajectory starting within the well passes the stoFhe exact transmission factor is then easily obtained in terms
chastic separatrix for the first time. While the latter deter-of the mean first passage time formalism to give
given by the first moment of the equilibrium time correlation
function[48]. Finally, a more precise definition of the kinetic
recognizes the smallest nonzero eigenvalue of the Fokketn the limit of a high parabolic barrier this approach leads to
Planck operator as the sum of forward and backward ratea perturbative approximation of the forf&0]
different give almost indistinguishable results in the high-
barrier limit. With decreasing barrier height the difference

iceabl houah Y h b ose terms coincide, of course, with the corresponding
hoticeable even though no approximations have been magg g i, the series expansion of E2.11), in powers ofy L.
to derive these estimations. It is of order exfE) and g 5 pistable potential with an arbitrary barrier height ex-
One may note, however, that this difference is usually muc he inverse friction expansion. These are
smaller than the error involved in asymptotic rate theories '
order of 1/(BE).

Turning back to the problem of interest we first consider
proximated by a diffusion equation for the action, E2.6).
This equation is readily solved exactly by the flux over popu-

w
tial with only one metastable welb] N
Finally, we note that exact results for the full friction range
ture) limit, BE— o, and only for a potential with a parabolic

-1 barrier, Eq.(2.15.

the escape rate with the inverse of the mean time after which
mines the rate as the inverse of the mean relaxation time 5
a
u(y—®)= VF
rate is adopted in the eigenmode expansion method, which
[3,21,22,28,36,4b All the above-mentioned methods though
between the various estimations for the escape rate becom
1
comes from the different determinations of the rate constan{,jiqit expressions are available only for the first two terms of
due to neglecting finite-barrier corrections, which are of the
the weak damping limity— 0, where Eq.2.3) can be ap-
. . R . 2[83/2 X
lation method to yield for the transmission factor in a poten- 9= —° f T dx V'2(x)eBV0)
2 Jx_
are available only in the extreme high-barrilaw tempera-
(3.1

(7—0)= iy vfﬁr;STfo'dlexp[—ﬁsM

1~ ,w(l’) )
xfl dl Y exd Be(l )]J

A. Unified rate expression

The generalization to a bistable potential with minimaat
is straightforward reading

-+
MyweMwe

—, (3.2
MoweT M

u(y—0)=

where u,. is given by Eq.(3.1) with the transcription— —
+ and

(3.3

% -1

0

In the opposite limiting casey— <) the reaction coordi-

Now let us see how this asymptotic information can be
used when constructing an accurate rate expression. On ac-
count of Eg.(2.15 one may assume that the overall trans-
mission factoru for an arbitrary bistable potential has a
multiplicative form (MF) reading

(3.10

Here uoq, respectively,usy are transmission factors for the
energy, respectively, the spatial diffusion limit. These factors
must be determined so that they approach the TST value in
the two opposing limits

MMF— MedWsd-

Med Y—°) = psd y—0)=1. (3.11

nate is a slowly varying quantity undergoing diffusive mo- |t may pe noted that the ansatz of writing a uniform formula
tion. In this regime, the velocity may be eliminated adiabati-i the multiplicative form is extensively used in the literature

cally from Eq.(2.3) leading us to a Smoluchowski equation g,

for the reduced probability

P(x,t)zﬁc dvP(x,v,t). (3.9
The equation i$50,3]
aP(X,1)=a,D(X)[B Lo, + V' (x)]P(x,t), (3.5

where

activated rate processes(see, e.g., Refs.
[5,6,17,18,23,26,28,32,33 B4A reason for this seems to be
the belief that it yields much better results than nonmultipli-
cative overall rate expressions. In the following we shall see
that this assumption is not actually necessary for accuracy.

B. Weak and intermediate damping

With Eq. (3.10 the construction of a unified rate formula
reduces to two separate problems, namely, the derivation of
Meq @nd ugy. A straightforward approach to the energy dif-
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fusion limit transmission coefficientqq is based on two re- K

marks. First, when deriving their weak-to-moderate friction f(y)=> any™ (y—0). (3.19
result, Eq.(2.14), Mel'nikov et al. [6,17] did not make any m=0

assumption on the shape of the potential barrier. Second, iR
the limit of vanishing friction a correct rate formula should
reduce to Eq(3.2 which is exact. For a bistable potential
this immediately yields the following rate expression:

ssume further that an asymptotic behaviorf ¢§) at large
y is also known

fas(y)=lim f(y). (3.19

Yy
— (3.12 . . ,
A(fgyeT M) Two important points of the SSR approach are the following.
First, we have to rearrange the sequence in such a way as to
where A(y) is the MM depopulation factor defined by Eq. improve its convergence properties. The latter is achieved
(2.14). As we shall see in Sec. IV, such the simple transfor-with the help of a simple algebraic transformati&3]
mation of the MM rate formula reduces the error in the weak
damping regime by factors and even by orders of magnitude. s
Mel'nikov and co-workerd44] also have attained a similar Fi(y.s)= 2—0 amy (3.19
reduction of errors in this regime but with much more in-
volved mathematic§l18].

Med=

k

whose powers play the role of control functions. This trans-
S _ form increases the approximation order frérto k+ s, thus
C. Spatial diffusion regime changing the convergence properties of the renormalized se-

The construction of a spatial diffusion limit transmission fi€s. The objective is to find a self-similar transformation
factor is a bit more complicated. In this case, the interpolaffom Fi—1(y,S¢-1) to Fi(y,s,) such that having only a few
tion problem consists in answering the following question:initial terms we would be able to extrapolate them to higher
What can be said about the behaviona; in the full damp-  orders ofk defining finally an effective .I|m|_1f* of the origi-
ing range[ 0) being based on the asymptotic information nal sequence. A straightforward application of this strategy
in Egs. (3.9 and (3.11)? Clearly, not much, because the fesults in a sequence of nested roots reagj
asymptotic expression§3.9) and (3.11) have nothing in n
common with each other. In addition, the inverse friction  fi = -[(fy +Byy)"/"2+ Byy?]"2/Ms. . .31/
T e e o 2 B 2 o

ques, such as Pade
approximation and Borel summation, in order to ascribe an . o
effective sum to a divergent serigs1,52. However, to be With fo=ao. The parameters and By appearing in Eq.
accurate, all these summation techniques usually require tH&-17 are two sets of control functions which govern the
knowledge of tens of terms in an asymptotic series. It isconvergence of the sequendg (y,ni,B)}.
evident that such luxurious information is not available in ~Since we are interested here in treating crossover phe-
principle for the problem we are interested in here, wherd'omena, yet another important point of the SSR procedure is
only the first two terms are generally known. How could we 0 self-similarly connect the left and right asymptotic expan-
proceed in such a difficult case in order to find an accurat&ons of a function on a given interval. The latter is attained
formula connecting Eq€3.9) and (3.11)? W|th Fhe requwement.that thg_ found approximatit17)

An obvious way to resolve the above-mentioned problensatisfies the asymptotic conditi¢8.15
is to employ instead of summation techniques an efficient
interpolation method which is capable of treating crossover K (y—2)=Tady). (3.18
phenomena where just a few asymptotic terms are available.

Only very recently has such a method been developed foFhis defines the sets of crossover indejsg and crossover
summation of divergent field-theoretical serigg3]. The  amplitudes{B,}. Practical applicationof the SSR approach
method is based on an algebraic self-similar renormalizatiots the following. If we want to construct kth-order approxi-
(SSR of asymptotic series, with control functions defined by mation we may at once write down it in the form of nested
crossover conditions. To make this paper self-contained weoots, Eq.(3.17), and directly definen, and By from the
briefly outline the main ideas of the SSR approach. Assumeondition (3.18).

that a physical characteristic we are looking for is presented Clearly, an analogous procedure can be constructed to
by a functionf(y) in the interval[0>) and has a power self-similarly connect an asymptotic expansion at the right

series expansion of the form boundary of the interva]0,°) with a known asymptotic
form at the left boundary where— 0. But we will not do so
_ m here. Instead, we cast the problem of interest, E}9) and
) mzzo AmY 313 (3.11), into the standard form considered above by defining

f=(ylwe) usg andy =y~ 2. This yields
where the expansion coefficierds, are derivable by a kind
of perturbation theory. Being truncated at differantthis 1-(Hwe)y, y—0
series forms a divergent sequence of approxim@ht&x)} f(y)= (3.19
defined by UoweVy),  y—=.
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When applied to Eq(3.19, the second-order crossover ap-  TABLE I. First nonzero eigenvalue in a symmetric double well

proximation gives potential, Eq.(4.1), calculated for parabolica=2, b=4), cusped
(a=1,b=4), and quartic 4=4,b=6) barriers of different
74 49 \" —va heights. Exponential notatidgn-k] means that the number preced-
Msg=| 1+ —| 1+ 2) , (3.20 ing is to be multiplied by 10X,
We Nwey

Parabolic Parabolic Parabolic ~ Cusped Quartic
wheren is any number from the interv@0,2]. As prescribed BE=1.25 BE=25 PBE=5 BE=5 BE=5
by Gluzman and Yukaloy53], if the condition(3.18 gives
several solutions for control functions, one should opt for thed-01 ~ 0.681-2] 0.204-2] 0.269-3] 0.263-3] 0.299-3]
solution that leads to the decreaseBgfwith increasingk. It~ 0.05 0.300-1] 0.90§-2] 0.12Q-2] 0.12Q-2] 0.134-2]
is not difficult to see, however, that this prescription does nof.1 ~ 0.54¢-1] 0.167-1] 0.219-2] 0.209-2] 0.239-2]
fit well in the present case. Instead, we suggest to determin@25 0.112 0.3521] 0.453-2] 0.410-2] 0.504-2]
the free parameterfrom the requirement that for a parabolic 0.5 0.176 0.5651] 0.711-2] 0.625-2] 0.817-2]
barrier Eq.(3.20 reproduces the fifth-order term in the in- 0.75 0.215 0.70%1] 0.864-2] 0.738-2] 0.107-1]

verse friction expansiofB.8). This givesn=_8/7. The result- 1 0.235 0.78B1] 0.954-2] 0.824-2] 0.114-1]
ing spatial diffusion limit transmission factargy reduces to 1.5 0.241 0.8391] 0.101-1] 0.893-2] 0.124-1]
the TST value at zero damping and, in the strong damping 0.225 0.82B1] 0.100-1] 0.91Q-2] 0.123-1]
limit to Eq. (3.9). Besides, it becomes effectively a third- 3 0.182 0.72B1] 0.927-2] 0.904-2] 0.111-1]
order approximation for a purely parabolic barrier. The over— 0.148 0.63p1] 0.83§-2] 0.86§-2] 0.974-2]
all rate formula thus obtainddegs.(3.10), (3.12, and(3.20 ¢ 0.105  0.48f1] 0.68%-2] 0.779-2] 0.757-2]

with n=8/7] is exact in both limits of underdamped and g 0812-1] 0.387-1] 0570-2] 0.662-2] 0.611-2]
overdamped Brownian motion. One may thus expect that ity g58.1] 0315-1] 0.484-2] 0.613-2] 0.509-2]
will be reasonably accurate in the crossover region as welloy 33411 0165-1] 0267-2] 0.37§-2] 0.271-2]
Before closing this section we note that the SSR approach, 02241 0111-1] 0181-2] 0273-2] 0.184-2]
allows one to go beyond the standard MF approximation for100 0.6782] 033%-2] 0554-3] 0.83§-3] 0.558-3]
the transmission factog. For this purpose it is enough to 1000 0 6733]6 0 '335{_3]6 0 '555{_4]a 0 '76&1_4]6‘ 0 '555{_4]6
self-similarly connect the strong dampirt@moluchowski i ' ' ' '
expressiorn3.9) with the corrected MM formul&3.12) rather  axact estimate of the eigenvalue calculated from the respective
than with the TST result. In that event, the SSR approaclsmoluchowski equation.
gives for the overall transmission factor

[42,54). However, since we are interested here not only in

high- but also in low-barrier heights, we have carried out
(3.2 similar calculations for smaller values BE. The results for

the least nonvanishing eigenvalue are presented in Table I. In

By construction, it approaches the correct limiting behavioraddition, we have recalculated the least nonvanishing eigen-
for both regimes of weak and strong friction. Applications to value in the quartic double well fgE=10 andy=0.01. It
bistable potentials with different barrier shapes show that irs 0.448-5] rather than 0.485-5] as was reported if32].
these regimes the interpolating formulassg agrees well  The reason is that in the weak friction limit, the long time
with the MF approximation, Eq(3.10, and may slightly behavior is governed by a set of low lying eigenvalues that
deviate from the latter in the intermediate friction region are all very small. In such a case, calculations over very long
0.1= y=10. times are required to get a convergent result for the first
nonzero eigenvalue, even though this eigenvalue is well
IV. APPLICATIONS separated from the rest of the spectrum of the Fokker-Planck
operator. The previously reported result 0.485-5 was ex-
tracted from the time evolution of the distribution function in
The proposed formulas are tested for Brownian motion irthe intermediate time domain where the single exponential
a symmetric double well of the form decay had not yet been reached.

,y4

—4
Med T+ 2
We

70
1+

MSSR—

8/71 —1/4

2wey2

A. Numerical results

E
X)=——(ax’—b|x|?), <a<b, . . Comparison of the interpolating formulas with numerica
V)b_abba)o b (41) B.C ison of the i lating formulas with ical
results for the parabolic double well

whose barrier part-bE|x|?/(b—a) varies with the param- As closed form expressions for the leading nonvanishing
etera from cusped (6<a<1) to smooth (kXa<?2), para- corrections of the Kramers rate in powers of the inverse bar-
bolic (a=2), and higher ordera>2) barriers. Numerically rier height are available only for potentials with parabolic
exact results for the least nonvanishing eigenvalue in thidarriers, it would be instructive to begin our comparison with
potential were calculated in a previous paf®2] for a para-  a parabolic barrier double welb&2, b=4). In this case, a
bolic (a=2b=4), a cusped §=1,b=4), and a quartic second-order perturbation theory based on a Rayleigh quo-
(a=4,b=06) barrier. The calculation was performed for tient method gives for the spatial diffusion limit transmission
BE=10 by a path integral method described elsewherdactor[22]
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20 ' weak damping regimey< 1) the present expression is with

1 \;":f:,\ ° PE=10 maximally 2% considerably better than the other three inter-
TN N 1 . polating formulas, which have maximal relative errors of
g z BT, s more than 15%. The small deviations, which still exist in the
M e A B underdamped regime, betweer5™ and estimates of the

10 f g transmission factor from path integral calculations can be

15 *w . fully taken into account by the difference between the flux-

20 sl . PP over-population rate expressipggs.(3.1) and(3.2)] and the

least nonvanishing eigenvalue.

For a relatively low barrier gE=5) the overall situation
remains almost the same. In the strong damping regime (
=10) uE5C and ussr are characterized by a similar accu-
racy, underestimating the transmission factor by less than
1%. The PGH theory is with maximally 2% only a bit worse,
while wpft and uip" deviate up to 9%. In the crossover
region (y~1.5) the SSR and PGH expressions deviate by
roughly the same amount, the former overestimates the rate
by 2% while the latter underestimates it by 3%. The relative

FIG. 1. Percentage errors, 1QQapproximate—exagfexact, errors of the MM and BHL interpolating formulas in this
made inu for a parabolic double well, Ed4.1) with a=2,b=4,  region are 6% and 15%, respectively. For weak damping
andfE=1.25, 2.5, 5, and 10. Solid linepssp, EQ.(3.21); dashed (1) the present expression is again in considerably better
lines, upp”, Eq. (2.19; dot-dashed lines, PGH crossover theory agreement with numerical calculations than the other three

Yoerror
Yoerror

0.01 0.1 1 10 100

. BHL . H FBC
[25]; crossesupy™, Eq. (2.13; open circlesugg ™, EQ. (4.2). interpolating formulas. It underestimates the transmission
factor by less than 6%, while the other three approaches
cBe 3 [1-v\? 3 1-v\4 overestimate it by more than 30%.
Psd = Mpb) 1~ 168E |1+ v + 51282E2| 1+ v With further decreasing barrier height all the theoretical

expressions become relatively inaccurate. Even the present
] formula ugsr, Which is exact for both weak and strong fric-
, (4.2

tion, deviates in these limits fgBE=2.5 by 17% and 10%,
respectively. For strong friction the deviations are due to the
) ] o difference between the mean-first passage-time expressions
wherev= u,. It contains all contributions to the rate up to for the rate and the least nonvanishing eigenvalue. This dif-
(BE)~2. An alternative approach to this problem, that givesterence becomes noticeably large RE<5. The same rea-
finite-barrier corrections in the whole friction range, has beergoning holds true for the limit of underdamped motion, in
put forward by Mel'nikov[18]. However, this method ap- \hich caseussgreduces to the flux-over-population expres-
pears to be very complicated for practical applications a”dsion, Eq.(3.2). As far as the Rayleigh quotient formLuég_('fC

we will not consider it here. - o is concerned, the reason for its failure in the strong damping
The relative error made by, in the transmission factor imit is different. It is caused by the dependence, RE
of the parabolic double well is exhibited in Fig. 1, together<5, of the denominator of the Rayleigh quotient on the de-
with those of the other theoretical predictions discusseqyjjeq shape of the trial functiof86,37], the fact fully ne-
above. Since the proposed formulagr and wssr give In glected by Talknef22] in his derivation of Eq.(4.2). The
this case results that differ at most by a few percent, we shoWhove observations indicate that the rate description as a
only those forussg. As anticipated, for a high barrieB€  \yhole looses its meaning for too low barriers. In such a case,
=10) the rate expression obtained from the Rayleigh quothe equilibrium distribution no longer allows an unambigu-
tient, Eq.(4.2), is most accurate in the spatial diffusion re- gys definition of the populations of the different metastable
gime. Fory=4 the relative error made byg® is less than  states and, correspondingly, the rate constants, although the
0.03%. With the present expressipgsgan analogous accu- |ong-time dynamics may still be governed by a single least
racy is attained fory=10. The other three interpolating for- nonvanishing eigenvalue that is well separated from the rest
mulas overestimate the rate by4% in this damping region. of the finite eigenvaluef36,45. It is remarkable, however,
Away from the spatial diffusion regime, that is, in the cross-that the accuracy of the interpolating formylagg deterio-
over region where the rate reaches its maximal valug at rates with decreasing barrier height only slowly. Thus for
~1.5 and then falls off with further decreasingthe relative  instance, its maximal relative error for a very low barrier
error made by,uggc rapidly increases and very soon grows (BE=1.25) is 24%. It is not so bad, taking into account that
out of the scale of the figure. In this region the best agreethe other interpolating formulas deviate in this case by 43%
ment is attained with the PGH crossover theory, which un-and over.
derestimates the rate by 0.3%. While the MM and SSR in- Summarizing the results of this subsection, the present
terpolating formulas give results that are larger than thdreatment is characterized by the best predictions for the rate
numerically exact transmission factor by 3% and 5%, respedn both regimes of weak and strong friction. As long as the
tively. The BHL expression is least accurate in the crossoverate description is valid, the relative errors made in these

region, underestimating the rate fer=1 by 17%. In the regimes by the proposed formulagsgand uye are less by

|35 16(30v3+ 103v%+ 700+ 12)
(1-v)(3v3+ 132+ 13v+3)
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FIG. 2. Percentage errors made in the transmission factor for a FIG. 3. Same as in Fig. 1 but for a quartic double well, &q1)
cusped double well, Eq4.1) with a=1,b=4, andBE=5 and 10. with a=4 andb=6. Dashed lines are fqir, Eq. (3.10.
Solid lines, ussr, EQ. (3.21); dot-dashed lines, deterministic ap-

proach[32]. erate, in a reasonable amount of time, convergent results
only with two to three stable digits. Whereas more accurate
nearly one order of magnitude than those of the BHL, MM, results would require an excessive computational effort. That
and PGH expressions. In the crossover region, the accuragy the reason for slight oscillations of the curves presented in
of all methods is a few percent, excepting the BHL methodFig. 2. Turning back to our comparison one sees that the
The latter is least accurate in this regime, underestimatingresent approach gives the best predictions in the whole fric-
the rate by more than 15%. tion range regardless of the barrier height. As is the case for
the parabolic double well, the accuracy of the method dete-
riorates with decreasing barrier height slowly. The maximal
deviation from the exact numerical rate varies from 8% for
Next we apply the present approach to a cusped and BE=10 to 14% forBE=5. This in contrast to the determin-
quartic barrier. Since the standard rate expressions discussggic approach, whose maximal relative error are 20% and
in Sec. Il are not applicable in such a case, we will compare7,, respectively.
to an interpolating formula suggested in a previous paper Finally, we consider the rate of escape over a quartic bar-
[32]. Based on the MM weak damping resl#q. (2.14]it  rier (a=4, b=6). The corresponding results are shown in
combines a generalized spatial diffusion limit transmissior]:ig_ 3. We find that in this case the interpolating formulas
factor with a properly defined energy loss of the particle per,, - and ugsznoticeably differ from each other in the cross-
oscillation. The former is derived by approximately solving gver region )~ 1.5) where the former overestimates the rate
the Fokker-Planck equation while the latter is obtained fromyhile the latter underestimates it. The maximal relative er-
the deterministic particle dynamics. In _th(_e following we will qrg for wssg are 4% and 12% foBE=10 and 5, respec-
refer to this approach as the deterministic method. tively, while e deviates in both cases up to 8%. The de-

Relative errors made by the different interpolating formu-terministic approach is, with maximally 32% and 39%,
las in the transmission factor of a cusped double well potengonsiderably worse thapssg and wye.

tial are shown in Fig. 2. Since theoretical predictions ob-

tained with uye and Mssr are almost indistinguishable i.n V. CONCLUSIONS

this case, both expressions are presented by one curve in the

figure. Moreover, we note that unlike smooth potentials for Based on the exact rate expressions available in the limits
which an accuracy of 0.01% is easily attained with a mildof underdamped and overdamped Brownian motion we con-
computational effort, path integral calculations for a cuspedstructed a formula for the transition rate over a barrier of
potential are much less stable. In fact we were able to gerarbitrary shape by means of the self-similar normalization

C. Cusped and quartic double well potentials
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method. Moreover, path integral calculations were presentetion the present approach gives a reasonable description of
for the least nonvanishing eigenvalue in a double well potenthe escape dynamics, underestimating the numerical rate for
tial with a parabolic, a cusped, and a quartic barrier. TheBE=1.25 up to 24%. For comparison, the maximal errors of
calculations were performed over a broad range of the fricthe other three approaches are nearly two times larger in this
tion coefficient y and for different temperature&)arrier case. Fina”y, app"ca’[ions to nonparabdﬁmsped and quar-
heights BE. The results for a parabolic barrier were used totic) barriers showed that the SSR method is in considerably
analyze the relative validity of existing approaches to thepetter agreement with the numerically exact rates than the

calculation of the overall rate expression. Besides the SSBeterministic approach to the crossover problem suggested in
method, our comparison includes predictions from the BHL 4 previous papeli32].

MM, and PGH crossover theories. We found that the present Summarizing the results of this work, one may conclude

approach is most accurate in the regimes of wegk'{)  hat the present method offers a systematic strategy for con-
and strong ¢>3) damping. In both regimes its maximal sirycting explicit analytical expressions for the rate valid in
relative error is smaller by factors and even by orders Ofne whole parameter space. We note the relative ease with
magnitude than those of the other three approaches. In thgnich highly accurate predictions for the escape rate can be
crossover region¥~1.5) the SSR, MM, and PGH expres- gptained using the SSR technique. The accuracy of the
the BHL formula is the worst, systematically underestimat-yhen more terms of the asymptotic expansion are available.
ing the rate in this region by over 15%. The above observaa|though this whole paper was limited to a one-dimensional
tions hold true as long as the barrier height is high enoughyayrier crossing process with Markovian dissipation, the ap-
ﬁEZS OtheI’Wise, a.” the theOI’etica| eXpI’eSSionS becom%roach may be genera"zed to the case of memory friction
relatively inaccurate. This failure is due to the equilibrium gng systems with many degrees of freedom. Yet another in-
properties of the system that do not allow an unambiguougeresting variety of its applications is the crossover phenom-
for too low barriers. Although the difference between thedifficult to treat by other means.

mean-first passage-time expressions for the rate and the least

nonvanishing eigenvalue is “exponentially small,” f@E

=<3 it does not much differ in magnitude from the “leading” ACKNOWLEDGMENT

algebraic corrections in powers of the inverse barrier height.

Accordingly, the rate description looses its meaning for very Financial support of the Ministry of Education, Science,
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