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Electromigration-induced soliton propagation on metal surfaces

R. Mark Bradley
Department of Physics, Colorado State University, Fort Collins, Colorado 80523

~Received 9 April 1999!

It is demonstrated that under certain conditions, solitons can propagate on the surface of a current-carrying
metal thin film. The equation of motion for small amplitude, long waves is the Korteweg–de Vries equation in
the limit of high applied currents. The solitons are protrusions whose velocity decreases linearly with ampli-
tude and that propagate in the direction of the applied electric field.@S1063-651X~99!06710-0#

PACS number~s!: 05.45.Yv, 66.30.Qa, 68.35.Ja
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I. INTRODUCTION

The motion of the free surface of an incompressible fl
has been the subject of much research, from the 19th cen
to the present day. Of the many fascinating phenomena
have been investigated, soliton propagation is certa
among the most intriguing@1#.

Solitons were first observed in 1834 by John Scott Rus
on the surface of a narrow canal filled with water@3#. It was
not until 1895, however, that it was demonstrated that s
tons are solutions to the Korteweg–de Vries~KdV! equation,
the equation of motion for small amplitude, long gravi
waves@4#.

Although it is not yet widely appreciated, there are no
trivial electrical free boundary problems. When an electric
current passes through a piece of solid metal, collisions
tween the conduction electrons and the metal atoms at
surface lead to drift of these atoms. This phenomenon, wh
is known as surface electromigration~SEM!, can cause a
solid metal surface to move and deform@5–15#. The free
surface of a metal therefore moves in response to the e
trical current flowing through it, in much the same way th
flow in the bulk of a fluid affects the motion of its surfac
However, the analogy is not perfect — the boundary con
tions are very different in the two problems.

A natural question to ask is whether solitons can pro
gate at the free surface of a current-carrying metal thin fi
Numerical studies have suggested that the answer to
question is affirmative@9,12,13#. However, these studies di
not show conclusively that solitons propagate, or how th
velocity varies with amplitude.

In this paper, I will demonstrate that under certain con
tions, solitons do indeed propagate on the surface o
current-carrying metal thin film. The equation of motion f
the surface height is the KdV equation in the limit of sm
film thickness, slowly varying topography, and high appli
currents. The solitons are protrusions that propagate in
direction of the applied electric field. Their velocityde-
creaseslinearly with amplitude; in contrast, the velocity of
soliton in a narrow channel of water increases with am
tude.

It is worth mentioning that SEM is not just of academ
interest: It can lead to the electrical failure of a curre
carrying metal line, and consequently is an important fac
limiting the reliability of integrated circuits. For applied cu
rents in excess of a critical value, SEM causes a small
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turbation at the edge of a metal strip to become a slit-sha
void @14–17#. This slit propagates across the line, and cau
electrical failure when its tip contacts the opposite edge
the strip.

II. EQUATIONS OF MOTION

Consider a metal film of thicknessh0 deposited on the
plane surface of an insulating substrate. We take thez axis to
be normal to the substrate surface and locate the origin
this plane. A constant current flows through the film in thex

direction, and the electric field within the metal isE0x̂.
Now suppose that the upper surface of the film is p

turbed~Fig. 1!. Let the outward-pointing unit normal to thi
surface ben̂. For simplicity, we shall restrict our attention t
perturbations whose form does not depend upony, so that the
height of the film’s surface above the substrateh depends
only on x and t. The upper film surface will evolve in the
course of time due to the effects of SEM and surface s
diffusion. We assume that the current flowing through t
film is held fixed.

Clearly, the problem is two-dimensional~2D!, and the
dependence of all quantities ony will therefore be sup-
pressed. The electrical potentialF5F(x,z,t) satisfies the
2D Laplace equation

¹2F50, ~1!

and is subject to the boundary conditionn̂•¹W F50 on the
upper surface andẑ•¹W F50 on the lower. More explicitly,
we have

FIG. 1. The current-carrying metal thin film. The height of th
free surface above the substrate,h, depends only onx and t. The

outward-pointing unit normal to the free surface isn̂, and the elec-

tric field far from the perturbation isEW 0.
3736 © 1999 The American Physical Society
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Fz~x,h,t !5hxFx~x,h,t !, ~2!

and

Fz~x,0,t !50, ~3!

where f x[] f /]x and so forth. If the initial perturbation is
localized, we will also have

F~x,z,t !→2E0x, ~4!

for x→6` and 0<z<h0.
We assume that the mobility of the metal atoms is ne

gible at the metal-insulator interface, so that the form of t
interface remains planar for all time. Furthermore, in the
terest of simplicity, we assume that the applied curren
high enough that the effects of SEM are much more imp
tant than those of capillarity. The equation of motion for t
metal-vacuum interface is then@9#

ht5qM
]

]x S 1

A11hx
2

]F

]x D , ~5!

where q is the effective charge of a metal ion andM, the
adatom mobility, has been assumed to have negligible
isotropy. Together, Eqs.~1!–~5! completely describe the
nonlinear dynamics of the film surface.

III. ASYMPTOTIC ANALYSIS

We wish to study the propagation of a localized dist
bance whose amplitude is small compared toh0, and whose
width is large compared toh0. To do so, we will use multiple
scale asymptotic analysis@2#. We puth5h01az, where the
constanta is a measure of the amplitude of the disturban
and z5z(x,t) is of order unity. Letl be the characteristic
width of the initial disturbance. We will study the limit in
which botha[a/h0 andd[h0 / l are small. More precisely
we shall consider the limit in whicha andd tend to zero, but
a/d2 remains finite. It is in this limit that the effects o
nonlinearity and dispersion balance, and solitons propag

To simplify the description of the problem, we will se
F52E0x1f, so thatf→0 for x→6`. We also introduce
the dimensionless quantities x̃[x/ l , z̃[z/h0 , t̃

[(uquME0 /h0l )t, and f̃( x̃,z̃, t̃ )[f(x,z,t)/(E0l ). Eq. ~1!
becomes

f̃ z̃ z̃1d2f̃ x̃x̃50, ~6!

which applies for 0< z̃<11az( x̃, t̃ ) and all x̃. The bound-
ary conditions are

f̃ z̃50 for z̃50, ~7!

f̃ z̃5ad2~f̃ x̃21!z x̃ for z̃511az~ x̃, t̃ !, ~8!

and

f̃→0 for 0< z̃<1 and x̃→6`. ~9!

Finally, the equation of motion for the free surface of t
film is
i-
t
-
is
r-

n-

-

e

e.

sqaz t̃5
]

] x̃ S f̃ x̃21

A11a2d2z x̃
2D for z̃511az~ x̃, t̃ !. ~10!

Heresq[q/uqu.
We next introduce the scaled variables

j[
a1/2

d
~ x̃1sqt̃ !, ~11!

t[
a3/2

d
t̃ , ~12!

and

c[
a1/2

d
f̃. ~13!

(j,t) is a moving coordinate system that translates with
locity v0[2qME0 /h0 relative to the laboratory frame.v0 is
the velocity of surface waves in the limit of vanishing am
plitude and wave vector@9#.

For convenience, we drop the tilde onz. Laplace’s equa-
tion becomes

czz1acjj50, ~14!

and this applies for 0<z<11az(j,t) and allj. In terms of
the scaled variables, Eqs.~7!–~10! are

cz50 for z50, ~15!

cz5a2~cj21!zj for z511az~j,t!, ~16!

c→0 for 0<z<1 and j→6`, ~17!

and

azj1sqa2zt5
]

]j S cj21

A11a3zj
2D for z511az~j,t!.

~18!

One advantage of introducing the scaled variables is n
manifest:d does not appear explicitly in Eqs.~14!–~18!.

We shall now begin our analysis of the smalla limit. We
assume that for smalla and fixedj andt, there is a solution
with

c5 (
n50

`

ancn~j,t,z! ~19!

and

z5 (
n50

`

anzn~j,t,z!, ~20!

where thecn’s andzn’s are independent ofa.
We next insert the expansions~19! and ~20! into Eqs.

~14!–~18! and equate terms of the same order ina. The goal
will be to find a closed partial differential equation forz0.
We will need to consider terms up to ordera3. To prepare
for this task, we note that to third order ina, Eq. ~16! is
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cz1azczz1
1

2
a2z2czzz1

1

6
a3z3czzzz

5a2~cj1azcjz21!zj . ~21!

This result holds forz51. To second order ina, Eq. ~18!
implies that forz51

azj1sqa2zt5cjj1a~z01az1!~c0jjz1ac1jjz!

1
1

2
a2z0

2c0jjzz. ~22!

We begin by working to zeroth order ina. To this order,
Eq. ~14! becomesc0zz50 for 0<z<1. This implies thatc0z
does not depend onz. Applying Eq.~15!, we see that in fact
c0z50 for all j andt. We conclude thatc0 depends only on
j andt, and we write

c05u0~j,t!. ~23!

The boundary condition at the free surface of the film giv
no new information to zeroth order ina, as is readily seen
from Eq. ~21!. Lastly, Eq.~23! shows that

u0jj50. ~24!

To first order ina, we find thatc1 is independent ofz.
We shall write

c15u1~j,t!. ~25!

Equation ~21! again yields no new information. Using th
fact thatc0z50, we see that the equation of motion~22! is to
first order

z0j5u1jj . ~26!

Our next task will be to write out the equations of motio
to ordera2. Equation~14! shows thatc2zz1c1jj50 for 0
<z<1, and hencec2zz52u1jj . Integrating this with re-
spect toz and using the boundary condition at the met
insulator interface~15!, we havec2z52u1jjz. Integrating
once again, we obtain

c25u22
1

2
u1jjz

2, ~27!

whereu2 depends only onj andt. Equation~21! yields new
information as well: specifically,c2z5(c0j21)z0j for z
51. Inserting Eqs.~23! and~27! into this result, we see tha

z0j5
u1jj

12u0j
. ~28!

We wish to find a nontrivial solution forz0, i.e., one that
depends onj. u1jj must therefore be nonzero. Comparin
Eqs.~26! and ~28!, we see that for a nontrivial solution, w
must insist that

u0j50. ~29!

Equation~22! givesz1j1sqz0t5c2jj for z51. Using Eqs.
~26! and ~27! in this result, we have
s

-

sqz0t1
1

2
z0jjj5u2jj2z1j . ~30!

Equating terms of ordera3 in Eq. ~14! yields c3zz
1c2jj50 for 0<z<1. Integrating this twice with respect t
z and applying Eqs.~15! and ~27!, we find that

c35u32
1

2
u2jjz

21
1

24
u1jjjjz

4, ~31!

where 0<z<1 andu35u3(j,t). We next equate terms o
third order in Eq.~21!. We obtain

c3z1z0c2zz5c1jz0j1~c0j21!z1j ~32!

for z51. This can be simplified using Eqs.~25!, ~27!, ~29!,
and ~31!. The result is

u2jj2z1j5
1

6
u1jjjj2z0u1jj2u1jz0j . ~33!

Integrating Eq.~26! with respect toj yields u1j5z01F,
whereF is a function oft. Recall that we have assumed th
the disturbance is localized. This means thatu1j and z0
should both tend to zero whenj is large, and henceF(t)
50 for all t. Equation~33! may therefore be rewritten a
follows:

u2jj2z1j5
1

6
z0jjj22z0z0j . ~34!

Comparing this with Eq.~30!, we have

sqz0t1
1

3
z0jjj12z0z0j50. ~35!

Equation~35! is the KdV equation, albeit in a nonstanda
form. Settingu52z0 , T5t/3, andX5sqj, we obtain

uT26uuX1uXXX50, ~36!

the standard form of the KdV equation. This has the solit
wave solution

u~X,T!52
1

2
c sech2F1

2
c1/2~X2cT!G , ~37!

wherec is a positive constant. In terms of the original, u
scaled variables, Eq.~37! is

h5h01
1

2
A sech2F1

2
AA

h0
3~x2vt !G . ~38!

HereA[ac is the amplitude of the soliton and

v[v0S 12
A

3h0
D ~39!

is its velocity. Note that the velocity of the soliton decreas
with amplitude, in contrast to the behavior of solitary wav
in shallow water@2#. The width of the soliton,w[2Ah0

3/A,
also decreases with the amplitude.



o-

ec

c
d

on
ha
te

-

t t
t

es

of
r

o
lin

-
o

e
-

of
rst

the
.
ally
—

hat
-
t-
ear

rm

t to

yet
ngle
re-
ctric
at
the
ve
pli-
all
its
ns
li-
ly

.

PRE 60 3739ELECTROMIGRATION-INDUCED SOLITON . . .
The amplitudeA is positive, and so the solitons are pr
trusions. For metals, the effective chargeq is negative, which
means that a soliton will propagate to the right, in the dir
tion of the applied field~Fig. 1!. The reason for this is readily
apparent. The electric field on the metal surface has redu
magnitude in the vicinity of the soliton. Therefore, the win
force will deposit atoms on the right side of the protrusi
and remove them from the left. The net result is a soliton t
propagates to the right. In contrast, solitons can propaga
both directions in a shallow channel of water.

IV. DISCUSSION

In our formulation of the problem, we made two key sim
plifications: we took the adatom mobilityM to be isotropic,
and assumed that the electric field is strong enough tha
effects of surface self-diffusion are negligible compared
those of surface electromigration. We will now discuss th
simplifications in greater detail.

We begin by writing Eq.~35! in terms of the unscaled
variablesx and t. Let u[h2h0. Equation~35! may be writ-
ten

ut52v0ux1
1

3
v0h0

2uxxx12
v0

h0
uux . ~40!

How large must the electric field be for the effects
surface self-diffusion to be negligible? If the effects of su
face self-diffusion are taken into account, a term2Buxxxx
must be added to the right-hand side of Eq.~40!. Here

B[
DgV2n

kBT
, ~41!

whereD is the surface self-diffusivity,g is the surface ten-
sion,V is the atomic volume, andn is the number of mobile
adatoms per unit surface area@18#. We require that the ef-
fects of surface self-diffusion be small compared to those
the dispersive and nonlinear terms. A straightforward sca
analysis reveals that this will be so if

l E
2!h0l , ~42!

where l E[(gV/qE0)1/2 is a length characterizing the rela
tive importance of SEM and capillarity. For the remainder
our discussion, we assume that Eq.~42! is valid and neglect
surface self-diffusion.

The adatom mobilityM is anisotropic for any real single
crystal metal film. If the mobility is not isotropic, thenM
depends onhx and Eq.~5! must be replaced by

ht5q
]

]x S M ~hx!

A11hx
2

]F

]x D . ~43!

The anisotropy alters the equation of motion of the surfac
linear order @5#; for slowly varying topography, the linear
ized equation of motion is
-

ed

t
in
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ut52v0ux2qM8~0!E0uxx1
1

3
v0h0

2uxxx . ~44!

Incorporating the leading order nonlinearity, we have

ut52v0ux2qM8~0!E0uxx1
1

3
v0h0

2uxxx12
v0

h0
uux . ~45!

If qM8(0)E0.0, the second term on the right-hand side
Eq. ~45! produces a linear instability in the surface, as fi
recognized by Krug and Dobbs@5#. If qM8(0)E0 is negative,
on the other hand, any surface disturbance will decay in
course of time. In both cases, solitons will not propagate

Does this mean that the result of our analysis is physic
irrelevant? Fortunately, the answer to this question is no
solitons will propagate ifM 8(0)50, andM 8(0) vanishes for
a singular surface of a single crystal film. To establish t
solitons propagate ifM 8(0)50, we must show that the lead
ing order nonlinear term coming from the mobility aniso
ropy is negligible compared to the dispersive and nonlin
effects of SEM. Setting M (hx)5M (0)1 1

2 M 9(0)hx
2

in Eq. ~43!, we obtain

ut5qM~0!
]

]x S 1

A11ux
2

]F

]x D
1

1

2
qM9~0!

]

]x S ux
2

A11ux
2

]F

]x D . ~46!

To leading order, this reduces to

ut5qM~0!
]

]x S 1

A11ux
2

]F

]x D 2qM9~0!E0uxuxx .

~47!

The equation of motion~40! therefore becomes

ut52v0ux1
1

3
v0h0

2uxxx12
v0

h0
uux2qM9~0!E0uxuxx . ~48!

A straightforward scaling analysis shows that the final te
on the right-hand side of Eq.~48! is smaller by a factor ofa
than the preceding two terms, and this is what we set ou
show.

Electromigration-induced soliton propagation has not
been observed experimentally. For it to be observed, a si
crystal metal thin film with a singular surface should be p
pared. Once the surface has been perturbed, a high ele
field should be applied. The solitons will be protrusions th
propagate in the direction of the applied field. Suppose
applied field points to the right, as in Fig. 1. As we ha
seen, small amplitude solitons move faster than large am
tude solitons. Thus, it should be possible to watch a sm
amplitude soliton overtake a large amplitude soliton to
right. After the collision has taken place, the two solito
will emerge with their identities intact, with the smaller so
ton to the right of the larger. A phase shift will be the on
aftereffect of the collision@2#.
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