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Electromigration-induced soliton propagation on metal surfaces
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It is demonstrated that under certain conditions, solitons can propagate on the surface of a current-carrying
metal thin film. The equation of motion for small amplitude, long waves is the Korteweg—de Vries equation in
the limit of high applied currents. The solitons are protrusions whose velocity decreases linearly with ampli-
tude and that propagate in the direction of the applied electric figt063-651X99)06710-0
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[. INTRODUCTION turbation at the edge of a metal strip to become a slit-shaped
void [14-17]. This slit propagates across the line, and causes

The motion of the free surface of an incompressible fluidelectrical failure when its tip contacts the opposite edge of
has been the subject of much research, from the 19th centuthe strip.
to the present day. Of the many fascinating phenomena that
have been investigated, soliton propagation is certainly Il. EQUATIONS OF MOTION
among the most intriguinfl].

Solitons were first observed in 1834 by John Scott Rus:se%I
on the surface of a narrow canal filled with wafa}. It was
not until 1895, however, that it was demonstrated that sollthIS plane. A constant current flows through the film in the
tons are solutions to the Korteweg—de VrigslV) equation,

the equation of motion for small amplitude, long gravity direction, and the electric field within the metall:‘r:éx. '
waves[4]. Now suppose that the upper surface of the film is per-

Although it is not yet widely appreciated, there are non- _turbed(Fig. 1). Let the outward-pointing unit normal to this
trivial electrical free boundary problems. When an electrical Surface ben. For simplicity, we shall restrict our attention to
current passes through a piece of solid metal, collisions beRerturbations whose form does not depend upao that the
tween the conduction electrons and the metal atoms at theeight of the film's surface above the substratelepends
surface lead to drift of these atoms. This phenomenon, whicRnly onx andt. The upper film surface will evolve in the
is known as surface e|ectromigratidSEM), can cause a Ccourse of time due to the effects of SEM and surface self-
solid metal surface to move and defo.[m_lsl The free diffusion. We assume that the current ﬂOWIng through the
surface of a metal therefore moves in response to the eleélm is held fixed.
trical current flowing through it, in much the same way that Clearly, the problem is two-dimension&kD), and the
flow in the bulk of a fluid affects the motion of its surface. dependence of all quantities onwill therefore be sup-
However, the analogy is not perfect — the boundary condifressed. The electrical potentid=®(x,z,t) satisfies the
tions are very different in the two problems. 2D Laplace equation

A natural question to ask is whether solitons can propa-
gate at the free surface of a current-carrying metal thin film.
Numerical studies have suggested that the answer to this I81d is subject to the boundary conditionV®=0 on the
guestion is affirmativ¢9,12,13. However, these studies did
not show conclusively that solitons propagate, or how theit/PPer surface and- V&=0 on the lower. More explicitly,
velocity varies with amplitude. we have

In this paper, | will demonstrate that under certain condi- z
tions, solitons do indeed propagate on the surface of a
current-carrying metal thin film. The equation of motion for vacuum
the surface height is the KdV equation in the limit of small 7
film thickness, slowly varying topography, and high applied ’_/
currents. The solitons are protrusions that propagate in the
direction of the applied electric field. Their velocitye-
creasedinearly with amplitude; in contrast, the velocity of a E, h(x,)
soliton in a narrow channel of water increases with ampli- metal
tude.

It is worth mentioning that SEM is not just of academic
interest: It can lead to the electrical failure of a current- FIG. 1. The current-carrying metal thin film. The height of the
carrying metal line, and consequently is an important factoffee surface above the substralte depends only ox andt. The
limiting the reliability of integrated circuits. For applied cur- outward-pointing unit normal to the free surfacenisand the elec-
rents in excess of a critical value, SEM causes a small pettic field far from the perturbation i&,.

Consider a metal film of thickneds, deposited on the
ane surface of an insulating substrate. We takez tinds to
be normal to the substrate surface and locate the origin in

V2P =0, 1

substrate [0} X

1063-651X/99/6()/37365)/$15.00 PRE 60 3736 © 1999 The American Physical Society



PRE 60 ELECTROMIGRATION-INDUCED SOLITON. .. 3737
d,(x,h,t)=h,d,(x,h,1), 2 9 ( Fi—-1 ) B .
oqali=—= — for z=1+al(x,t). (10
and IX l1+ a252§,;(
where f,=Jdf/ox and so forth. If the initial perturbation is e nextintroduce the scaled variables
localized, we will also have o2
= —(X+ogt), 11
®(x,2,t) = —EoX, (4) ¢=—5 (xtagt) (1D
for x— = and O<z=<h,. a®2
We assume that the mobility of the metal atoms is negli- =—5t (12)
gible at the metal-insulator interface, so that the form of that
interface remains planar for all time. Furthermore, in the in-and
terest of simplicity, we assume that the applied current is "
high enough that the effects of SEM are much more impor- _a 13
tant than those of capillarity. The equation of motion for the ¥= Td" (13

metal-vacuum interface is thgg]

1% 1 IP
h=qgM —| ——], 5
t=d Ix /‘—1+h>2< Ix 5

whereq is the effective charge of a metal ion ai the

adatom mobility, has been assumed to have negligible a

isotropy. Together, Eqs(1)—(5) completely describe the
nonlinear dynamics of the film surface.

. ASYMPTOTIC ANALYSIS

We wish to study the propagation of a localized distur-

bance whose amplitude is small comparedh§pand whose
width is large compared tiy. To do so, we will use multiple
scale asymptotic analysj&]. We puth=hy+a{, where the

constanta is a measure of the amplitude of the disturbance

and = {(x,t) is of order unity. Letl be the characteristic
width of the initial disturbance. We will study the limit in
which botha=al/hy and §=h,/I are small. More precisely,
we shall consider the limit in whick and § tend to zero, but
al 8% remains finite. It is in this limit that the effects of

nonlinearity and dispersion balance, and solitons propagate.

To simplify the description of the problem, we will set
®=—Eyx+ ¢, so thatp— 0 for x— £ . We also introduce
the dimensionless quantitesx=x/I, z=z/hy, t
=(|q|MEy/hoh)t, and $(x,z,t)=¢(x,z,t)/(Eol). Eq. (1)
becomes

Fivt P dz=0,

(6)

which applies for 8sz<1+ a{(x,t) and allx. The bound-
ary conditions are

#=0 for z=0, 7)
F=ad (B for z=1+al(xD), (®

and
$—0 for 0<z=<1 and X— * o, 9)

(&,7) is a moving coordinate system that translates with ve-
locity vo=—qMEg/hg relative to the laboratory frameg is
the velocity of surface waves in the limit of vanishing am-
plitude and wave vectd9].

For convenience, we drop the tilde anLaplace’s equa-

Jion becomes

¢zz+a¢§§:0’ (14

and this applies for &z<1+ a(&,7) and all¢. In terms of
the scaled variables, Eq&7)—(10) are

Y,=0 for z=0, (15)
Y=o’ (= 1)L for z=1+al(&7), (16
$p—0 for O=sz=<1 and §&—*oo, (17)

and
=1

J
aé'g-l— Uqa2§7=(9—§(

) for z=1+al(&, 7).
(18)

One advantage of introducing the scaled variables is now
manifest: 5 does not appear explicitly in Eq6l4)—(18).

We shall now begin our analysis of the smallimit. We
assume that for smadt and fixedé and, there is a solution
with

p= nzo a"n(€,7,2)

(19)
and
z=n§O a"¢o(€,7,2), (20)

where they,’s and{,’s are independent at.

We next insert the expansiorid9 and (20) into Egs.
(14)—(18) and equate terms of the same ordewinThe goal
will be to find a closed partial differential equation f¢g.

Finally, the equation of motion for the free surface of theWe will need to consider terms up to ordef. To prepare

film is

for this task, we note that to third order in, Eq. (16) is
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1 242 1 3,3 1
Uyt a€¢22+§a 4 ‘/’zzz"'ga' 227 0q§07+§§0§§§: ‘92§§_ glg- (30)

=a? (et alhe,= 1. (21) Equating terms of order® in Eq. (14) yields s,,
+ ,,¢=0 for O<z=<1. Integrating this twice with respect to

This result holds foz=1. To second order im, Eq. (18) z and applying Eqs(15) and (27), we find that

implies that forz=1

1 1
a§§+aqa2§ﬂr: lr//§§+a(§0+agl)(l/,0§§z+alr/jl§§z) 17/13: 03_ 502&:22"' ﬂ61§§§§24, (31)

1
+ §a2§%¢0§§zz- (220 where 0<z<1 and ;= 05(¢,7). We next equate terms of
third order in Eqg.(21). We obtain
We begin by working to zeroth order . To this order, B
Eq. (14) becomes)y,,= 0 for 0O<z=<1. This implies thatj,, Yzt Lothaz= Yaeboet (Yor— 1) 41 (32)

does not depend an Applying Eq.(15), we see thatin fact . ,_ 1 Tpi be simplified using EG€5). (27). (29
o,=0 for all £ and 7. We conclude tha#s, depends only on ;r:dz(:al). Th(lesrgzﬂlt ie;smp fied using Eqe25), (27). (29),
& and 7, and we write '

1
$o=0o(&,7). (23 O2ee {16= g Oreeee™ Cobre6— O1600¢ - (33

The boundary condition at the free surface of the film give

s _ . .
no new information to zeroth order i, as is readily seen Ntegrating Eq.(26) with respect to yields 6,,= o+ F,

from Eq. (21). Lastly, Eq.(23) shows that whereF is a function ofr. Recall that we have assumed that
a.(2Y) Y. Bq.(23 the disturbance is localized. This means tifat and ¢,
Boz:=0. (24) should both tend to zero whehis large, and hencé&(7)

=0 for all 7. Equation(33) may therefore be rewritten as
To first order in«, we find thaty, is independent of. follows:

We shall write L
Y= 01(£,7). (25) 026 = E16= g Losee = 240l0c (34)

Equation(21) again yields no new information. Using the Comparing this with Eq(30), we have
fact thaty,,= 0, we see that the equation of moti@®) is to
first order 1

oqlorT §§0§§§+2§0§O§:0- (35
Loe= O1¢¢ - (26)

Our next task will be to write out the equations of motion
to order . Equation(14) shows thaty,,,+ 1¢=0 for O
<z=<1, and hence/,,,= — 6. Integrating this with re- Ur— BUUs + Usry=0 36
spect toz and using the boundary condition at the metal- T X (36)

insulator interfaceg(15), we have,,= — 614z Integrating  the standard form of the KdV equation. This has the solitary
once again, we obtain wave solution

Equation(35) is the KdV equation, albeit in a nonstandard
form. Settingu=—{,, T=17/3, andX=o4¢, we obtain

%cl’z(x—cT) , (37)

1 1
lﬂzzﬁz_ialggzzy (27) U(X,T)I—EC secht

where 6, depends only o and 7. Equation(21) yields new  \yherec is a positive constant. In terms of the original, un-

information as well: specifically,,= (o~ 1){o; for z scaled variables, Eq37) is
=1. Inserting Eqs(23) and(27) into this result, we see that
0 L aew| s
1¢¢ 5\ p3X—Vvt) |
= 2
Loe 1= 60y ho
HereA=ac is the amplitude of the soliton and

1
h=ho+5A sech

(28)

We wish to find a nontrivial solution fot, i.e., one that
depends or€. 6, must therefore be nonzero. Comparing A
Egs.(26) and(28), we see that for a nontrivial solution, we vzvo( 1- ST) (39
must insist that 0

0o:=0. (29) is its velocity. Note that the velocity of the soliton decreases
with amplitude, in contrast to the behavior of solitary waves
Equation(22) gives {1+ 0qo,= thyss for z=1. Using Eqs.  in shallow water{2]. The width of the solitonwEZ\/hg/A,
(26) and (27) in this result, we have also decreases with the amplitude.
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The amplitudeA is positive, and so the solitons are pro- 1,
trusions. For metals, the effective chamjis negative, which Ug= —VoUx— M’ (0)Equyy+ 3 Voot (44)
means that a soliton will propagate to the right, in the direc-
tion of the applied fieldFig. 1). The reason for this is readily Incorporating the leading order nonlinearity, we have
apparent. The electric field on the metal surface has reduced 1 v
magmtu_de in thg vicinity of the S(_)Ilton._Therefore, the Wl_nd U= — VoUy— qM’ (0) EqUyy+ —thSuxxx+ 2_°qu_ (45)
force will deposit atoms on the right side of the protrusion 3 ho
and remove them from the left. The net result is a soliton thaf qM’(0)E>0, the second term on the right-hand side of
propagates to the right. In contrast, solitons can propagate 'Eq. (45) produces a linear instability in the surface, as first

both directions in a shallow channel of water. recognized by Krug and Dobls]. If ¢M’ (0)E, is negative,
on the other hand, any surface disturbance will decay in the
IV. DISCUSSION course of time. In both cases, solitons will not propagate.
) . Does this mean that the result of our analysis is physically
_In our formulation of the problem, we made two key Sim- jrrelevant? Fortunately, the answer to this question is no —
plifications: we took the adatom mobilityl to be isotropic,  solitons will propagate iM’(0)=0, andM’(0) vanishes for
and assumed that the electric field is strong enough that thg singular surface of a single crystal film. To establish that
effects of surface self-diffusion are negligible compared tosolitons propagate #’(0)=0, we must show that the lead-
those of surface electromigration. We will now discuss theséng order nonlinear term coming from the mobility anisot-
simplifications in greater detail. ropy is negligible compared to the dispersive and nonlinear
We begin by writing Eq.(35) in terms of the unscaled effects of SEM. Setting M(h,)=M(0)+ % M”(0)h?
variablesx andt. Let u=h—h,. Equation(35) may be writ- i Eq. (43), we obtain

ten
J 1 P
U=aM(0) | ——= —
1 2 VO ¢9X 1+ u>2( (9X
U;= — VoUy+ §v0h0uxxx+ Zh—qu . (40
0 1 g/ w2 ad
+=qM”(0) — —. (46)
/ 2
How large must the electric field be for the effects of 2 % 1+uy x
surface self-diffusion to be negligible? If the effects of sur- leading order, this reduces to
face self-diffusion are taken into account, a teffiB Uy
must be added to the right-hand side of E4). Here d 1 90 .
u=qM(0) — 3 A —qM"(0)EqUyUyy.
07X A\ 1+ uX &X
_DyQ% 41 (47)
keT The equation of motior40) therefore becomes

1 \Y
whereD is the surface self-diffusivityy is the surface ten- U= —vgu,+ §Vohguxxx+ 2h—0uux—qM”(0)EouXuXX. (48)
sion, () is the atomic volume, and is the number of mobile 0

adatoms per unit surface argk8]. We require that the ef- A straightforward scaling analysis shows that the final term
fects of surface self-diffusion be small compared to those obn the right-hand side of E¢48) is smaller by a factor o

the dispersive and nonlinear terms. A straightforward scalinghan the preceding two terms, and this is what we set out to

analysis reveals that this will be so if show.
Electromigration-induced soliton propagation has not yet
|E< hol, (42) been observed experimentally. For it to be observed, a single

crystal metal thin film with a singular surface should be pre-
wherelz=(yQ/qEy)Y? is a length characterizing the rela- pared. Once the su_rface has bgen perturbed, a hi_gh electric
tive importance of SEM and capillarity. For the remainder offi€ld should be applied. The solitons will be protrusions that
our discussion, we assume that E4@) is valid and neglect Propagate in the direction of the applied field. Suppose the
surface self-diffusion. applied field points to the right, as in Fig. 1. As we have
The adatom mobilityM is anisotropic for any real single S€€N: small amplitudg solitons move fa_ster than large ampli-
crystal metal film. If the mobility is not isotropic, thel  tude solitons. Thus, it should be possible to watch a small
depends orh, and Eq.(5) must be replaced by a}mplltude soliton oygrtake a large amplitude soliton to its
right. After the collision has taken place, the two solitons
will emerge with their identities intact, with the smaller soli-

htzqi M (h) g . (43 tonto the right of the larger. A phase shift will be the only
X | \J1+n2 X aftereffect of the collisio2].
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