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Damage spreading transition in glasses: A probe for the ruggedness of the configurational
landscape

M. Heerema*
Institute of Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

F. Ritort†

Department of Fundamental Physics, Faculty of Physics, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain
~Received 22 December 1998; revised manuscript received 10 June 1999!

We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes
relaxation processes in glasses in the mean-field approximation which are known to be characterized by the
presence of an exponentially large number of metastable states. For systems evolving under identical but
arbitrarily correlated noises, we demonstrate that there exists a critical temperatureT0 which separates two
different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit.
This transition exists for generic noise correlations such that the zero damage solution is stable at high
temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the
type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order
parameter, such as~i! independence of the initial damage;~ii ! independence of the class of initial condition;
and~iii ! stability of the transition in the presence of asymmetric interactions which violate detailed balance. For
maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent
number of saddle points~as well as metastable states! in the thermodynamic limit consequence of the rugged-
ness of the free-energy landscape which characterizes the glassy state. These results are then compared to
extensive numerical simulations of a mean-field glass model~the Bernasconi model! with Monte Carlo heat-
bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage
spreading an interesting tool to probe the ruggedness of the configurational landscape.
@S1063-651X~99!03810-6#

PACS number~s!: 05.40.2a, 64.70.Pf, 75.50.Lk
io
ic
in

fa
i

la
a
is
th
ll
r.
n

-
la
al

m
co
n

py

ss

e-
s a
rm
ons
f a
-
si-
the
p-
heir

nce
aly
of a
and
hich
ype
ious
ble
lass
r of

l,
I. INTRODUCTION

The theoretical understanding of the dynamical behav
of glasses is a longstanding problem in statistical phys
which has recently revealed new aspects of the underly
mechanism responsible for the glass transition@1–3#. The
dynamical behavior of glasses is characterized by the
growth of the characteristic time of relaxation processes
the vicinity of the glass temperatureTg . This increase of the
relaxation time, up to fifteen orders of magnitude in a re
tively small range of temperatures, is usually referred to
the viscosity anomaly. The first consideration of th
anomaly, the Vogel-Tamman-Fulcher law, goes back to
1920s. However, there is still no satisfying and genera
accepted theoretical explanation for this singular behavio

Currently, there are two main approaches to understa
ing the glass-transition problem. One approach~the Adam-
Gibbs-DiMarzio theory@4#! focuses on thermodynamic con
siderations and proposes the existence of the ideal g
transitionTg . This is a singularity where the configuration
entropy of the undercooled liquid vanishes atTg and a
second-order phase transition characterized by a finite ju
in the specific heat occurs. This scenario has been redis
ered in the framework of mean-field spin glasses with o
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step of replica symmetry breaking@5#. In the mean-field ap-
proach,Tg is the temperature where configurational entro
vanishes~the so-called Kauzmann temperature! and also rep-
lica symmetry breaks. In this paper we will denote the gla
transition both byTg andTs ~in this last case the subscripts
stands for statics!. The other approach relies on mod
coupling theory and describes the glass transition a
strongly nonlinear dynamical effect which induces long-te
memory properties in the correlation and response functi
@6#. A consequence of these effects is the existence o
dynamical singularityTd where ergodicity breaks and corre
lation functions do not decay to zero. This dynamical tran
tion Td is a consequence of the mean-field character of
mode-coupling approximation. Although these two a
proaches are apparently different, they have in common t
mean-field character.

One of the most distinct features of glasses is the prese
of a complex free-energy landscape. The viscosity anom
is a signature of activated dynamics due to the existence
rugged free-energy landscape with several maxima
minima separated by energy barriers and saddle points w
connect them. One could think that the existence of this t
of landscape is a necessary ingredient to finding the prev
scenario. Well known results on the number of metasta
states in spin glasses reveal that the interesting spin-g
behavior emerges in systems with an exponential numbe
states@7#. For instance, models such as the sphericalp-spin
interactions spin glass~with p.2), the Isingp-spin interac-
tions spin glass~with p.3), the Edwards-Anderson mode
3646 © 1999 The American Physical Society
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and Potts glasses are characterized by an exponentially
number of metastable states. All these models are chara
ized by the presence of quenched disorder, which facilita
analytical treatments always at the level of mean-fi
theory. In the absence of disorder, similar results are fo
@8–10# although exact calculations for the number of me
stable states turn out to be more difficult. It is largely b
lieved that an exponential number of metastable states
necessary condition for the existence of replica symme
breaking.

There have also been recent studies of exactly solv
models which, in the absence of quenched disorder, also
hibit glassy behavior@11,12# ~and, in particular, activated
behavior of the relaxation time!. These models are characte
ized by a small number of metastable states. What ca
them to display glassy behavior is the presence of entr
barriers, which leads to slow dynamics even in the abse
of metastability. Consequently, one is tempted to concl
that a rugged free-energy landscape with a large numbe
metastable states is not essential to finding glassy beha
but the presence of an enormous number of flat direction
phase space is essential.

A similar conclusion was reached in the study of t
Sherrington-Kirkpatrick spherical spin glass@13#. It was
found that an enormous number of zero modes are res
sible for the slow dynamics found in this model. Althoug
that model does not have an exponential large numbe
metastable states and does not show activated dynami
displays glassy behavior at low temperatures due to the
istence of flat directions around the metastable states@14#.

A possible way to investigate the existence of flat dire
tions in a rugged free-energy landscape is the study of d
age spreading. Damage spreading consists in the study o
dynamical evolution of the distanceD(t) ~to be defined
later! between two system configurations evolving under
same dynamical rules and differing only in their initial co
dition ~the so-called initial damage!.

The study of the damage spreading problem~hereafter
referred to as DS! was proposed by Kaufmann in the 196
for the study of the propagation of mutations in the genoty
in the biological growth of individuals@15#, that is, how a
small perturbation in the genotype~microscopic level! mani-
fests itself in the long-time term in the phenotype~macro-
scopic level!. Since then, such a problem has received c
siderable attention in the framework of statistical physi
particularly in the middle 1980s@16#. Almost fifteen years
ago it was realized that DS could be a powerful tool to d
tinguish different dynamical regimes in disordered syste
such as spin glasses@17,18#. Variants of damage spreadin
phenomena have also been proposed to numerically inv
gate equilibrium correlation functions in generic statistic
systems@19# and lattice gauge theories@20,21#. However, the
initial enthusiasm and exciting perspectives in the resea
of this problem decreased in subsequent years after real
that this transition was dependent on the type of dynam
used. So the existence of the DS transition could have n
ing to do with the presence of a thermodynamic phase t
sition. Physicists then started to systematically investig
the DS in well known ordered systems such as the Is
model. In particular, much work has been devoted to
study of the one-dimensional Domany-Kinzel automa
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@22# and the one-dimensional Ising model@23,24#. The ques-
tion of the nonuniversality of damage spreading has a
been emphasized in the context of nonequilibrium pheno
ena such as domain growth by Graham, Hernandez-Ga
and Grant@25#.

So the question remains whether this transition has a t
physical meaning or not. In this direction, Hinrichsen a
Domany tried to give a precise dynamic-independent defi
tion for DS. To define a damage spreading phase, one m
consider all possible dynamical procedures which lead
system to thermal equilibrium. For discrete systems with
small number of nearest neighbors, this definition can
implemented but not in the general case~for instance, con-
tinuous systems! where an infinity of dynamical rules ca
always be implemented.

The purpose of the present work is to present a deta
study of the DS in a model with a rugged free-energy lan
scape with an exponentially large number of metasta
states. In particular, we will study the DS in thep-spin
spherical spin glass, an exactly solvable model for the g
transition which is described by the Adam-Gibbs-DiMarz
scenario and whose dynamics is described by the mo
coupling equations. To be more specific, we will study da
age spreading for Langevin dynamics, the simplest dynam
which is continuous in time and satisfies ergodicity and
tailed balance. It must be stressed that although there
very few works on the DS problem using this dynami
~Stariolo @26# and Grahamet al. @25#!, the majority of theo-
retical works in DS have considered discrete dynamics~in
discrete systems!.

We suggest that damage spreading can be used as
namical method to show the existence of a large numbe
flat directions or saddle points in phase space. Also, the
istence of a dynamical transition will be shown. Although w
will check that damage spreading transitions are strictly n
universal, it is still possible to use the asymptotic distance
define an order parameter for this dynamical transition.
also anticipate that by considering correlations between
noises of the two evolving systems, an infinity of dynamic
transitions can be obtained. For Langevin dynamics, the c
of maximally correlated noises has a particularly interest
physical meaning.

Because our study considers the DS in the mode-coup
theory for glasses, it is expected to be generally valid
Langevin dynamics in systems with a rugged free-ene
landscape such as realistic glasses. Although the DS tra
tion is nonuniversal and depends on different dynami
rules ~or cross correlations between the stochastic nois!,
we believe that this transition gives interesting informati
on the free-energy landscape and could be investigate
structural glasses. Being a signature of the existence
saddle points in phase space~i.e., points which separate
stable and unstable phase-space directions!, it is natural to
expect that real glasses are good systems to manifest t
effects. This consideration makes our results more attrac
from the viewpoint of numerical simulations of realist
glasses@27#. Nevertheless, we point out to the reader th
some of our claims in this paper are not generally prov
~such as the connections between damage spreading tr
tions and saddle points in phase space! and the present re
search should be seen as a first step toward a better un
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3648 PRE 60M. HEEREMA AND F. RITORT
standing of some of these questions.
The contents of the paper are as follows. The second

tion is devoted to general considerations and definiti
about the DS problem. Section III demonstrates the existe
of a dynamical transitionT0 for DS. Section III is divided
into three subsections. Section III A describes the mo
coupling equations for thep-spin spherical spin glass, star
ing from a random initial configuration for different correla
tions between the noises. This subsection also describe
different numerical methods we have used to analyze
mode-coupling equations for different cases. Section II
analyzes the DS problem starting from an equilibrium init
condition. Section III C analyzes the DS in the presence
asymmetric interactions. Section IV presents an analysi
the damage spreading for glassy models with discrete
namics. Concretely, we study the DS transition in the B
nasconi model with heat-bath dynamics. Finally, Sec. V p
sents the conclusions. Two Appendixes are devoted to s
technical issues.

II. GENERAL CONSIDERATIONS ABOUT DS

In the most general framework, the DS problem can
stated as follows. Consider a dynamical system describe
a generic variableC which denotes a given configuration
Suppose that the system evolves under a deterministic
namical ruleF. For the sake of simplicity we take a continu
ous time dynamics. The equation of motion reads

Ċt5F~Ct!. ~1!

In addition to the configurationC and the dynamical rule
F, we also need to define a distance in the phase spac
configurations~for instance, a Hamming distance for sp
systems!. This distanceD needs to satisfy the usual goo
properties, in particularD(Ct ,Ct)50 at all times. Suppose
that we take two initial configurationsC0 ,C08 with initial dis-
tanceD05D(C0 ,C08) and consider the generic equal tim
distance,

D~ t !5D~Ct ,Ct8!, ~2!

whereC(t) andC8(t) start from configurationsC0 andC08 at
time 0 and evolve under thesame dynamical rule F, Eq. ~1!.
Our main interest is to investigate the value of t
asymptotic long-time distanceD` ,

D`5 lim
t→`

D~ t !. ~3!

Note that D(t)50 if D050. Quite generally the
asymptotic distanceD` will be a function of the type of
initial configurationsC0 ,C08 as well as their initial distance
D0. The dependence ofD` on those parameters is govern
by the dynamical properties of the deterministic rule, such
chaotic properties and Lyapunov exponents.

One could extend this general problem to stochastic s
tems, i.e., dynamical systems which evolve in the prese
of a stochastic noise. Let us consider two systems descr
by the configuration variablesCt ,Ct8 at time t, which evolve
following a Langevin dynamics,
c-
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Ċt5F~Ct!1h t , Ċt85F~Ct8!1h t8 , ~4!

whereF(C) is an external force~which can eventually derive
from a potential, although this is not a necessary conditi!
and h t ,h t8 are external white noises uncorrelated in tim
with variance 2T. Suppose now we makeC,C8 evolve fol-
lowing Eq. ~4! with the samerealization of the stochastic
noise and starting from two different initial conditions. W
are thinking of noises that are statistically identical, whi
coincide at equal times~i.e., h t5h t8) when Ct5Ct8 . So we
choose ^h i(t)h j (s)&5^h i8(t)h j8(s)&52Td(t2s)d i j and
cross correlations ^h i(t)h j8(s)&52TK(Ct ,Ct8)d(t2s)d i j ,
whereK is a generic function which satisfies the propert
K(C,C)51 and21<K(C,C8)<1,;C,C8. In the presence of
stochastic noise, againD(t)50 if D(0)50. Note that the
role of the correlations is irrelevant for the evolution of th
independent systemsC,C8 but crucial for their correlations
and the equal time distance, Eq.~2!. Different choices of the
cross correlationK for Langevin dynamics are the analog
different dynamical rules in discrete dynamics such as Mo
Carlo~these rules could be Glauber, Metropolis, or heat ba
among others!.

Now we are interested in the asymptotic long-time d
tance, Eq.~3!. Quite generally,D` will be a function of the
type of initial condition~for instance, random or stationary!,
the initial distanceD0, the intensity of the noiseT, and the
cross correlatorK. For the case in whichh t5h t8 (K51),
we will find that there is a dynamical phase transition a
finite temperatureT0 below which the asymptotic distance
different from zero. The origin of this dynamical transitio
can be explained quite simply. In Eq.~4! there is competition
between two different terms. On the one hand, theforce term
F(Ct) propagates the error~or damage! in the initial configu-
ration. Instead, the noiseh t acts in the same way in bot
systems smearing out possible differences in the initial c
dition. In other words, the stochastic noise is the synchron
ing force which tries to cause both evolving configurations
merge in time while the force term amplifies the initial dam
age playing the role of anoise. This argument only applies i
K51. In the general case21<K<1 the noise does no
necessarily synchronize both systems and its effect is sim
to that of theforce. In this case, the asymptotic distance w
also be a function of the cross correlationK ~i.e., the dy-
namical rule!.

To understand better the role of the cross correlationK,
let us consider as a starting point the simple problem o
particle which moves inside a harmonic potentialV(x)
5 1

2 x2 following a Langevin dynamics,

]x~ t !

]t
52

]V~x!

]x
1h~ t !, ~5!

whereh(t) is a stochastic white noise of variance 2T. The
configurationC corresponds to the positionx of the particle
and we define a distance between two configurationsx,y as
D(x,y)5(x2y)2. Take now two identical particlesx,y and
make them follow Eq.~5! both with the same stochasti
noisesh,h8 and cross correlationK(x,y). For simplicity, we
will take anx,y symmetric cross correlationK5K(D). If ^ &
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stands for the average over dynamical histories, then the
tance D(t)5^@x(t)2y(t)#2& satisfies the following equa
tion:

]D~ t !

]t
522D~ t !14T@12K~D !#. ~6!

This equation has several stationary solutions depen
on K. Obviously D50 is a stationary solution@remember
K(0)51], which implies K8(0),0. Only if 21/2T
,K8(0),0 is the solutionD50 stable. On the other hand
for K8(0),21/2T the solutionD50 is unstable andD(t)
converges to another stationary solution~which can be
shown to be always stable!. So, there is a dynamical trans
tion atTc51/@2uK8(0)u#, where the asymptotic distanceD`

changes from zero (T,Tc) to D`5D* , whereD* satisfies
the identityD* 52T@12K(D* )#. The asymptotic distance
is then given byD`5 limt→`D(t)5D* Q(T* 2T), indepen-
dent of the value of the initial distanceD0 between the two
particles. So whenK8(0) does not vanish, already for th
simple harmonic oscillator there is more than one station
solution. In other words, the effect of the cross-correlat
term K(D) manifests itself through the appearance of m
than one stationary solution. As the reader can imagine,
discussion turns out to be more difficult for other more co
plex potentials.

Although this dependence of the asymptotic distanceD`

on the cross correlationK is an intrinsic property of damag
spreading, it does not necessarily imply that this kind
dynamical phase transition does not give any relevant in
mation on the physical properties of the system. What
really means is that the results concerning DS may dep
on particular forms of the cross-correlation function betwe
the noises~similarly to what happens for discrete dynamic
where different dynamical rules yield different results!. Nev-
ertheless, generic results for DS may be obtained for corr
tors which satisfy quite general conditions~as we will see
later!.

The major part of the work in this paper will be devote
to the study of maximal cross correlations, i.e.,K51, al-
though the results can be extrapolated to more generic c
correlators. For Langevin dynamics, the caseK51 is par-
ticularly appealing for two reasons.

On the one hand, it followed from the simple example
the harmonic oscillator thatK51 implies K850 every-
where. Below, we will argue that this observation holds a
for more complex potentials. More specifically, we arg
that in the caseK51 there is a single stationary solutio
D`50 for any finite system and for any confining potent
which diverges in the boundaries@i.e., V(x)→` when
x→6`]. Clearly, the harmonic oscillator is a trivial case
which the asymptotic distance always goes to zero indep
dent of the temperatureT and of how farx is from y at t
50. In order to justify our assertion, let us take a mo
complex potential of two wells separated by a finite barri
for instance a particle moving inside a harmonic plus a qu
tic term potentialV(x)52 1

2 x21(l/4)x4. In this case the
potential has two wells located atx561/Al. If two systems
described by the variablesx,y start to evolve within the sam
well ~i.e., x,y.0 or x,y,0), they will always tend to finish
in the same final configuration because the synchroniz
is-
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effect of the noise is, at very long times, the dominant effe
If they start in different wells, the conclusion is also the sa
because there is always a finite probability that a strong fl
tuation in the stochastic noise drives both particles in
same well. This conclusion, which holds for maximal cro
correlationsK51, can be generalized for any potential wi
a finite number of wells separated byfinite energy barriers.
There is always a finite probability that a fluctuation of t
noise can take both particles into the same well and herea
the distanceD(t) between both configurations would ten
exponentially fast to zero. Obviously this argument appl
only for finite barriers, finite wells, as well as finite temper
ture. At zero temperature the synchronizing effect of the s
chastic noise is absent and the asymptotic distance may
vanish and show a nontrivial dependence on the initial d
tance.

From the discussion above, it follows that the role of t
thermodynamic limitN→` in the DS is also crucial. In this
limit the height of the barriers or the number of wells~i.e.,
metastable states! may diverge. The first case happens, f
instance, in the ferromagnetic Ising model where the tim
reversal symmetry of the Hamiltonian is broken belowTc .
The second case is realized in spin-glass models where
number of metastable states is exponentially large withN. In
both cases, a finite fluctuation of the stochastic noise~even
with K51) may not synchronize the system andD` can be
a nontrivial function of both the temperature and the init
distance. To be more precise,D` is defined as follows:

D`5 lim
t→`

lim
N→`

D~ t !. ~7!

Note that forN finite, we expect limt→`D(t)50, so it is
crucial that the thermodynamic limitN→` is taken before
the infinite-time limit. Taking the limits in reverse order wi
result inD` always vanishing at finite temperature. Note th
this discussion applies only when theD50 stationary solu-
tion is stable. This is indeed satisfied forK51 but may also
be fulfilled in more general situations withK,1 andD50
still being a stationary stable solution.

There is another property of the caseK51 which makes
it particularly interesting. Up to now our discussion was lim
ited to different mathematical properties of damage spre
ing transitions. But what about their physical significanc
Suppose we take two generic statistical systems describe
the set of variables$xi ,yi%, i 51, . . . ,N which evolve under
the Langevin dynamics,

]xi

]t
5Fi„$x~ t !%…1h t ,

]yi

]t
5Fi„$y~ t !%…1h t8 , ~8!

where, as before,h,h8 are white noises with cross correla
tion K which we will suppose is a generic function of th
Hamming distanceD. Let us suppose that the force deriv
from a potentialFi($x%)52]V($x%)/]xi . If we define the
new variableszi5xi2yi , we may obtain, subtracting bot
equations~8!,

]zi

]t
5Fi„$y~ t !1z~ t !%…2Fi„$y~ t !%…1n i~ t !, ~9!
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3650 PRE 60M. HEEREMA AND F. RITORT
wheren is a stochastic white noise of zero mean and va
ance 4T@12K(x,y)#. The solutionzi50 is a stationary so-
lution of Eq. ~9!. A linear stability analysis around that so
lution yields the equation

]zi

]t
5Hi j „$y~ t !%…zj~ t !1n i~ t !, ~10!

where Hi j (y)52]2V($y%)/]yi]yj is the Hessian matrix
evaluated at the point (y1 , . . . ,yN). The solutionzi50, cor-
responding to the vanishing Hamming distanceD50, is
stable if the Hessian is negative definite. The presence o
stochastic noisen in Eq. ~10! decreases the stability of th
D50 solution. BecauseK<1, we conclude that the regio
where theD50 stationary solution is maximally stable co
responds to the case whenK51 becausen vanishes. SoK
51 is the cross correlation for which the stationary solut
D50 is maximally stable. ForK51, Eq. ~10! is quite ap-
pealing and shows the physical origin of the DS transiti
An instability of the D50 solution may appear when a
eigenvalue of the Hessian matrixHi j vanishes. This corre
sponds to a saddle point of the potential landscapeV($y%).
Due to ergodicity, thex,y systems sample all the possib
configurations. So the asymptotic distanceD` is a direct
measure of the stability of theD50 solution along all pos-
sible configurations~weighted with their corresponding sta
tistical Boltzmann weight!. In other words, an instability in
the solutionD`50 and the existence of a DS transition a
indications of the presence of saddle points in the poten
landscape of systemsx,y. If K,1 the temperature of the DS
transition will depend on the particular form ofK @actually
we will see later, in the study of mode-coupling equatio
that it depends on the valueK8(D50)]. Furthermore, due to
the destabilizing effect of the noise, the damage spread
transition will increase whenK decreases, soK51 yields
the lowest damage spreading transition temperature am
all possible cross correlationsK(D) for which theD50 so-
lution is stable. In the presence of fixed points for t
asymptotic distance other thanD50, the stationary solution
D`50 may become unstable because the noisen is too
strong~similarly to what happens in the harmonic-oscillat
example! and damage spreading no longer shows the e
tence of saddle points. In other words, saddle points may
observedonly by studying theT dependence of the basin o
attraction of theQ50 stationary solution supposing it stab
at very high temperatures~free case!. Note that a similar
argument has already been presented by Loreto, Serva
Vulpiani @28# for systems described by a single variablex(t)
in a potential fieldV(x).

We have argued above that for Langevin dynamics
maximal cross correlatorK51 is a special case, resulting i
a simplification of the problem. We emphasize that in oth
dynamical systems it is unclear whether or not the maxim
cross correlatorK51 plays the same role in the context
damage spreading. This is due to the complexity of cr
correlations.

In the next section, we will analyze in detail the DS d
namics in the mode-coupling theory of glasses. As has b
previously said, these equations describe the relaxation
cesses and dynamics in glasses~in the undercooled liquid
i-

he

.

al

,

g

ng

s-
e

nd

e

r
l

s

en
o-

regime! in the mean-field approximation and represent
dynamical behavior of systems with an exponentially lar
number of metastable states.

III. DAMAGE SPREADING IN MODE-COUPLING
THEORY

Mode-coupling theory describes relaxational processe
glasses. In short, mode-coupling theory corresponds to
exact resummation of an infinite series of diagrams in
hydrodynamic theories. The kinds of diagrams that
mode-coupling approximation selects are those which p
cisely survive in the mean-field limit of some realistic mo
els. So a way to obtain mode-coupling equations is by c
sidering exact dynamical theories for mean-field disorde
spin-glass models@5#. Spherical spins allow for an exact clo
sure of the dynamical equations in terms of correlation a
response functions~as was shown by Crisanti, Horner, an
Sommers@29# in thep-interaction spherical spin glass!, lead-
ing to many analytical results. Although spherical spins
unrealistic~compared to Ising spins!, they capture the essen
tial aspects of the dynamics, which is universally found in
large variety of models. Whereas forp52 the physical de-
scription of the model is quite simple@13#, the behavior turns
out to be much more interesting forp.2, where an expo-
nentially large number of metastable states are present@30#.
In this type of model, metastability plays a very importa
role, so, according to the arguments of the preceding sec
we expect to get interesting results for the DS transiti
Forthcoming subsections analyze this transition in detail
good review of the main results obtained in this model h
been collected and reported by Barrat@31#.

A. Random initial configuration

This section is devoted to the study of the DS problem
the mode-coupling equations. It describes some prelimin
work already presented in@32#, but here we present mor
extended research on the problem, including asymmetr
different class of initial conditions, as well as general cro
correlations of the noises. The simplest solvable mod
whose dynamics is described by the off-equilibrium mod
coupling equations, is the sphericalp-spin-glass model intro-
duced by Crisanti, Horner, and Sommers@29#. In this case,
the configurations are described byN continuous spin vari-
ables$s i ;1< i<N% which satisfy the spherical global con
straint( i 51

N s i
25N.

The Langevin dynamics of the model is given by

]s i

]t
5Fi~$s%!2ms i1h i , ~11!

whereFi is the force acting on the spins i due to the inter-
action with the rest of the spins,

Fi5
1

~p21!! (
( i 2 ,i 3 , . . . ,i p)

Ji
i 2 ,i 3 , . . . ,i ps i 2

s i 3
¯s i p

.

~12!

The termm in Eq. ~12! is a Lagrange multiplier which
ensures that the spherical constraint is satisfied at all ti
and the noiseh satisfies the fluctuation-dissipation relatio
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^h i(t)h j (s)&52Td(t2s)d i j , where^•••& denotes the noise
average. TheJi

i 2 ,i 3 , . . . ,i p are quenched random variable
with zero mean and variancep!/(2Np21). The interactions
Ji

i 2 ,i 3 , . . . ,i p are symmetric under the interchange of the
perindicesi 2 ,i 3 , . . . ,i p but in the most general case may n
be symmetric under the exchange of the subindexi with a
generic superindex. So, for instanceJi

i 2 ,i 3 , . . . ,i p

ÞJi 2

i ,i 3 , . . . ,i p . Most of the studies undertaken in this mod

concentrate on the symmetric case whereJi
i 2 ,i 3 , . . . ,i p is sym-

metric under the permutation of all possible indices. T
case is particularly interesting because there exists an en
function such that the forceFi derives from a Hamiltonian o
potential functionFi52]H/]s i so there exists a stationar
state described by a Boltzmann-Gibbs distribution. Due
the mean-field character of the model, the dynamical eq
tions depend on the statistical properties of the force o
through its correlations. On the other hand, the statist
properties of the forceFi depend on the correlations of th
J’s. The simplest case@33# corresponds to correlations of th
type

Ji 1

i 2 ,i 3 , . . . ,i p Ji k

i 1 , . . . ,i k21 ,i k11 , . . . ,i p5a
p!

2Np21
~13!

for every k. So if a51, we recover the symmetric cas
while for a50, we obtain the asymmetric case. Equati
~13! implies the following statistical properties for the forc
Fi @33#:

Fi~$s%!F j~$t%!5d i j f 8~q!1~12d i j !a f 9~q!
t is j

N
,

~14!

where f (q)5qp/2. In the asymmetric casea50 the forces
are completely uncorrelated at different sites. Hence Eq.~11!
becomes uncorrelated and the problem can be part
solved. This particular case will be analyzed later. Fora
,1, there does not exist an energy functionH that drives the
system to thermal equilibrium and the fluctuation-dissipat
theorem is not fulfilled.

We define the overlap between two configurations of
spins s,t by the relationQ5(1/N)( i 51

N s it i so the Ham-
ming distance between these two configurations is

D5
12Q

2
~15!

in such a way that identical configurations have zero dista
and opposite configurations have maximal distanceD51.
Then we consider two copies of the system$s i ,t i% which
evolve under the same statistical noise, Eq.~11! with cross
correlationK but with different initial conditions. We as
sume the cross correlator to be a function of the Hamm
distanceD or the overlapQ. As a consequence, other choic
for the cross correlator~in general this could depend on bo
configurationsC,C8) may change our results obtained belo
for K(Q)Þ1. The major part, however, is concerned w
K51 ~we will explain why! and will not be adversely af
fected by this. In this section we restrict our attention
-
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random initial configurations~i.e., equilibrium configurations
at infinite temperature! with initial overlapQ(0). Thecase of
initial equilibrium configurations will be analyzed in the ne
subsection. The different set of correlation functions wh
describe the dynamics of the system is given by

C~ t,s!5~1/N!(
i 51

N

^s i~ t !s i~s!&5~1/N!(
i 51

N

^t i~ t !t i~s!&,

~16!

R~ t,s!5~1/N!(
i 51

N
]^s i&

]hi
s

5~1/N!(
i 51

N
]^t i&

]hi
t

, ~17!

Q~ t,s!5~1/N!(
i 51

N

^s i~ t !t i~s!&, ~18!

where^ & denotes the average over dynamical histories
hi

s ,hi
t are fields coupled to the spinss i ,t i respectively. In

what follows we take the conventiont.s. The previous cor-
relation functions satisfy the boundary conditionsC(t,t)
51, R(s,t)50, limt→(s)1R(t,s)51 while the two-replica
overlap Q(t,s) defines the equal-time overlapQd(t)
5Q(t,t), which yields the Hamming distance at equal tim
or damageD(t) through the relation~15!. Following stan-
dard functional methods@34,31#, it is possible to write a
closed set of equations for the previous correlation functio
Some details of the computation are shown in Appendix
The final result is

]C~ t,s!

]t
1m~ t !C~ t,s!

5
p

2E0

s

duR~s,u!Cp21~ t,u!1a
p~p21!

2

3E
0

t

duR~ t,u!C~s,u!Cp22~ t,u!, ~19!

]R~ t,s!

]t
1m~ t !R~ t,s!5d~ t2s!1a

p~p21!

2

3E
s

t

duR~ t,u!R~u,s!Cp22~ t,u!,

~20!

]Q~ t,s!

]t
1m~ t !Q~ t,s!

5
p

2E0

s

duR~s,u!Qp21~ t,u!1a
p~p21!

2

3E
0

t

duR~ t,u!Q~u,s!Cp22~ t,u!, ~21!

while the Lagrange multiplierm(t) and the diagonal corre
lation functionQd(t) obey the equations



a
ed

ir
l
re

d
a

n-

ic
ns

b
a
u-
w

the
ns

ct
ses
rs.
the

s is
era-
xed
may
onds
gh-
ge

er-

te

-
ter-
As
m-
s

-

the

d
tain
-
n

cal

ure

to
0

3652 PRE 60M. HEEREMA AND F. RITORT
m~ t !5T1
p@11a~p21!#

2 E
0

t

duR~ t,u!Cp21~ t,u!,

~22!

1

2

]Qd~ t !

]t
1m~ t !Qd~ t !

5TK„Qd~ t !…1
p

2E0

t

duR~ t,u!Qp21~ t,u!

1a
p~p21!

2 E
0

t

duR~ t,u!Q~ t,u!Cp22~ t,u!. ~23!

Note that the cross correlationK(Qd) only enters explic-
itly through Eq.~23!, so it does not affect the evolution of
single replica. The whole set of equations is quite involv
For the correlationC and response functionsR, Eqs. ~19!,
~20!, and ~22!, several results are known, in particular the
behavior in the equilibrium regime~where time-translationa
invariance is satisfied and the fluctuation-dissipation theo
is obeyed! as well as in the nonstationary aging regime@34#.

In what follows we analyze different dynamical fixe
points of Eq.~23! and show the existence of a dynamic
instability in the DS equations.

B. Fixed-point analysis for a generic cross correlationK
Different types of dynamical regimes may be disti

guished depending on the cross correlatorK. Our analysis is
similar to that performed in Sec. II for the simple harmon
oscillator. Different fixed points for the dynamical equatio
can be analyzed from Eq.~23!. If the temperatureT is very
large, then Eq.~23! becomes

1

2

]Qd~ t !

]t
5T@K„Qd~ t !…2Qd~ t !#, ~24!

where we have usedm5T using Eq.~22!. Equation~24! can
be exactly solved. The stationary solutions are given
K(Q)5Q. In Fig. 1 we analyze the different solutions for
genericK. We find that there are different stationary sol
tions corresponding to all possible intersections of the t
curves@Q andK(Q)]. A linear stability analysis of Eq.~24!
reveals that stationary solutionsQ* are stable ifK8(Q* )

FIG. 1. Flow diagrams and fixed points for a generic correla
K at infinite temperature.Q* and 1 are stable fixed points and
and the fixed point betweenQ* and 1 are unstable.
.

m

l

y

o

,1. A dynamical flow diagram can be constructed where
region of stability is indicated by different arrows. Regio
where K(Q).Q satisfy ]Qd /]t.0 and regions where
K(Q),Q satisfy]Qd /]t,0. So in this case one may depi
a diagram of all possible high-temperature dynamical pha
which separate regions with different fixed-point attracto
Damage spreading transitions will strongly depend on
type of cross correlator. The caseK51 is shown in Fig. 2,
where there is a unique attractor atQ51 at very high tem-
peratures. This analysis of the different dynamical phase
valid only at very high temperatures. As soon as the temp
ture is finite and starts to decrease, some of the stable fi
points may become unstable and other unstable points
become stable. The damage spreading transition corresp
to the appearance of an instability in one of these hi
temperature fixed points. As we will see below, the dama
spreading transition temperature may be different for diff
ent fixed points since it depends on the value ofK8(Q* ),
which may vary for different fixed pointsQ* .

In what follows, most of our discussion will concentra
on the particularly interesting caseK51, which has a unique
fixed point at Q* 51. Although the analysis may be ex
tended to other fixed points, this case is also the most in
esting according to our preceding discussion in Sec. II.
we will check below, this case also defines the lowest da
age spreading temperatureT0 among all the possible cros
correlatorsK for which the fixed pointQ* 51 is stable.

1. Existence of T0 : Lower and upper bound fora51

A first glance at Eqs.~21! and ~23! reveals that the over
lap Q(t,s) and its diagonal partQd(t) are coupled to each
other through the correlationC(t,s) and response function
R(t,s). The trivial solutionQ(t,s)5C(t,s) and Qd(t)51
corresponds to the case where the initial conditions are
same,Qd(0)51, and the distanceD(t)50 for all times.
This high-temperature fixed point~hereafter we will denote it
by HT! corresponds toD`50 and is asymptotically reache
by the dynamics for high enough temperatures under cer
conditions of the cross correlatorK ~see the preceding dis
cussion!. In what follows, we concentrate our attention o
the casea51, where there is a stationary solution forC, R,
andm corresponding to the equilibrium measure. Numeri
integration of those equations~see later! reveals that the typi-
cal time needed to reach that solution grows if temperat
decreases. At a given temperature~which we identify with
T0) there is an instability in the dynamical equations~21!

r
FIG. 2. Flow diagram forK51.
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and ~23! and the asymptotic solution differs from the H
one. We did not succeed in finding an explicit expression
T0, but we have been able to show its existence and fin
lower and upper bound for its value~see Appendix B!:

A p22

2@12K8~1!#
<T0<A p

2@12K8~1!#
. ~25!

Note that for the particular casep52 andK8(1)50, the
inequality ~25! yields T0<1. Taking into account that~25!
was derived under the assumptionT0>Ts51 ~i.e., we sup-
posed we were in the high-temperature regime!, this is not
inconsistent with the resultT051 derived by Stariolo@26#.

Note that both the lower and upper bounds forT0 diverge
whenK8(1)51. This limiting value sets a condition on th
possible cross correlationsK(Q), where theQ51 solution is
stable.Only those functionsK(Q) for which K8(1),1 are
those for whichQ51 is linearly stable at very high tempera
tures. According to our discussion in Sec. II, the appeara
of DS in this case is related to the presence of a diverg
number of saddle points which mark the onset of a dyna
cal instability. BecauseK8(1),0 @according to Eq.~25!#,
the limiting caseK8(1)50 @for instance, ifK(Q)51] sets
the lowest value of the temperatureT0 where DS appears
This is important because it means that whatever correl
K we consider~such that the solutionQ51 is stable for
high-enough temperatures!, damage spreads belowT0

5A(p22)/2. Note that in the general casep>3 the dynami-
cal instability temperatureT0 stays well above any relevan
critical temperature (Ts or Td).

In the next section we discuss the behavior of
asymptotic distance as a function of temperature. For s
plicity, our analysis is restricted to the caseK51 for which
most of the numerical work has been done. We will see t
D` , for a given specification of the correlatorK, seems in-
deed to play the role of a dynamical order parameter in
transitions.

2. Numerical analysis

In general it is too complicated to obtain an analytic
solution of the set of equations~19!–~23!. We shall devote
this section to a numerical study of Eqs.~19!–~23! for the
DS problem. Although in some particular cases an exact
lution can be found~see below!, this is not the general situ
ation.

First, one could investigate the long-time limit ofQd via a
numerical integration of the set of equations~19!–~23!.
However, the CPU time and the memory needed to do
grow very fast with time because of the integrals occurring
the equations. Thus the spreading of damage at large t
can only be obtained from the dynamical equations do
some extrapolations. This enlarges the error in the estim
of D` , especially in cases whereQd(t) is a nonmonotonic
function of time. In Fig. 3 we show how the overlapQd(t)
depends on the initial condition. Although direct extrapo
tions from numerical data of the value of the asympto
damage are difficult, the figure is not incompatible with
independence ofD` on the initial condition. Another more
powerful technique is necessary to corroborate this resu
r
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An alternative approach to obtain the long-time behav
of time-dependent variables with high accuracy was int
duced by Franz, Marinari, and Parisi@35# to study the long-
time behavior of the energy. Here we extend their method
analyze the asymptotic behavior ofD(t). In their method
they first decompose the time-dependent variables in a se
expansion before extrapolating for large times with the h
of Padéapproximants. For the DS problem, it leads to
Taylor expansion of the correlation functionC, the response
function R, and the overlapQ:

C~ t,s!5 (
k50

`

(
l 50

`

cklt
ksl , R~ t,s!5 (

k50

`

(
l 50

`

r klt
ksl ,

Q~ t,s!5 (
k50

`

(
l 50

`

qklt
ksl ,

~26!

wherec005r 0051 sinceC(t,t)51 and limt→(s)1R(t,s)51
@36#. Moreover,m(t) and the diagonal correlation functio
Qd(t) can be written as

m~ t !5 (
k50

`

mkt
k, Qd~ t !5 (

k50

`

(
l 50

k

q(k2 l ) l t
k, ~27!

wherem05T andq00 is a parameter identical to the value
Qd at t50. Assuming alwayst.s, the dynamical equations
~19!–~23! can be transformed into recurrence relations
the coefficients of the expansion. To this end one first s
stitutes Eqs.~26! and ~27! into Eqs. ~19!–~23! under the
constraintt.s, then calculates the integrals, and finally r
arranges terms.

Numerically, the coefficients of the expansion are no
readily obtained. In the case in whichp53, the first 80 co-
efficients of the expansions can be computed on a R
workstation in a few hours. However, for larger values op
the computational effort is larger.

To ensure high accuracy of the asymptotic extrapolati
one needs a large radius of convergence of the series ex
sion. A good method to enlarge the radius of convergenc

FIG. 3. Qd(t) for p53 (a51,K51) at temperaturesT50.1,
0.5 ~from bottom to top at large times! for three different values of
the initial overlapQd(0)521, 0, 0.5 as a function of time. The
continuous lines are the numerical integrations with time stepDt
50.01.
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3654 PRE 60M. HEEREMA AND F. RITORT
a series expansion is to use Pade´ approximants. In this
method one introduces two polynomialsUm(t) andVk(t) of
degree at mostm andk, respectively. The goal is to choos
Um(t) and Vk(t) for given m and k such thatQd(t) and
Um(t)/Vk(t) are equal att50 and have as many equal d
rivatives as possible att50.

The computations have been performed for the symme
casea51 andK51. Moreover, three different initial con
ditions have been considered:~a! anticorrelated random ini
tial conditions with Qd(0)521, ~b! uncorrelated random
initial conditions withQd(0)50, and~c! partially correlated
random initial conditions withQd(0)50.5.

To check that the extrapolationsD` using the Pade´ ap-
proximants are correct, the Pade´ series have been compare
with numerical integrations of the dynamical equations.
deed, the Pade´ series and the numerical integration fit close
@32#.

The estimate forD` is obtained by division of the
highest-order coefficients ofPm(t) and Qk(t), i.e., by
am /bk . Moreover, an asymptotic estimate can be obtain
assuming a power-law decay of the equal-time overl
Qd(t)5Qd(`)1At2g. The analysis ofD` suffers in some
cases from a small radius of convergence~even with Pade´! as
well as from the presence of poles in the Pade´ expansion.
The results are displayed forp53 in Fig. 4 and forp54 in
Fig. 5 for cases~a!, ~b!, and~c! as a function of the tempera
ture. Let us remark that a lower number of coefficients in
Taylor expansion in the casep54 with respect top53 leads
to a less accurate estimate of the asymptotic distance.

Inspection of Figs. 4 and 5 reveals that the dynami
transitionT0 is in the predicted regime Eq.~25!. It can be
estimated more accurately from the relaxation timet relax as-
sociated to the decay of the distanceD(t) to zero. Starting
from high temperatures, we assume that the relaxation t
diverges atT0 according to a power law:t relax.(T2T0)2g.
We thus have foundT0(p53)51.0460.02 with g.1.1
60.1 andT0(p54)51.1360.02 withg.1.160.1.

We conclude that for all temperatures, bothp53 andp

FIG. 4. Asymptotic distanceD` for p53 (a51,K51) ob-
tained from the Pade´ analysis of the series expansions for differe
initial conditions D051 ~circles!, D050.5 ~triangles!, D050.25
~stars!. Typical error bars are shown for the last case.
ic

-

d
:

e

l

e

54, the asymptotic distance is independent of the initial d
tance. This is in contrast with the casep52, where a depen-
dence on the initial distance is found for the low-temperat
region @26#. We must point out that we have obtained t
same results, as in casesp53,4, for a model which is a
combination of thep52 and p54 spherical spin-glass
model @37#. For a certain range of parameters, this mode
known to have a continuous phase transition with continu
replica symmetry breaking and without collapse of the co
figurational entropy. So the first-order character of the sp
glass transition found in our model forp.3 is not essential
for the appearance of the DS transition. Still, that model@37#
is also characterized by the presence of an exponent
large number of metastable states. From the point of view
the form of the dynamical equations, the fact thatT0 is
present forp.2 as well as in a model which combinesp
52 and p54 is a consequence of the nonlinearity in t
coupling between the damageQd(t) and the two-time corre-
lation functionQ(t,s) which occurs for allp.2. From the
physical point of view, this independence ofD` on the initial
distance is quite appealing. In general, one would expect
p54 is quite similar top52 due to the presence of th
time-reversal symmetry. The fact that the damage does
have this symmetry forp.2 means that the separation
dynamic trajectories does not occur in the borders or max
which separate equilibrium states, but within saddle points
the phase space which divide configurations separated
finite energy barriers. This is supported by the fact that
transition occurs at a temperature much higher thanTs and,
as we will see in the following section, by the fact that
happens starting already from an equilibrium configurati
The asymptotic valueD` can, on the basis of our computa
tions, be regarded as an order parameter for the transitio
T0. Although D` and the transitionT0 itself do depend on
the specific choice of the correlatorK, it is interesting that
the asymptotic state does not depend on the initial dista
For a better understanding of the physical origin of this tra
sition, we shall consider the case of equilibrium initial co
ditions in the next section.

t

FIG. 5. Asymptotic distanceD` for p54 (a51,K51) ob-
tained from the Pade´ analysis of the series expansions for differe
initial conditions D051 ~crosses!, D050.5 ~triangles!, D050.25
~stars!. Typical error bars are shown for the caseD050.5.



to
h

be
o
n

n
th
In
a
a
e
w

u
s
S

th

lib
n
fo
a

g
-

y

-

ili

n

e
p.
n
er

s

e

-

ons
r-

t

n

at

dent
e
.,
nt
s to

al

f a

in-
that
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C. Equilibrium initial condition

We have seen in the preceding section that the asymp
distanceD` is a nontrivial function of the temperature whic
is finite belowT0 and vanishes aboveT0. The relevance of
the existence of the metastable states has already
pointed out in previous sections, especially when the cr
correlator is maximal,K51. The fact that the DS transitio
exists suggests that the nature of this phase transition is
lated to the corrugated properties of the free-energy la
scape. To check this result it is convenient to investigate
DS transition starting from an equilibrium configuration.
this case the system starts from a stationary state and rem
there forever. At high temperatures this state is param
netic, so in this case the DS is a direct check of the rugg
ness of the paramagnetic state. In fact, we will find that if
start from an initial equilibrium condition@38#, then the DS
transition persists and actually coincides with the previo
T0 found for a random initial configuration. This reinforce
the idea ofD` as a dynamical order parameter for the D
transition for a given choice of the correlatorK. Again, for
the sake of simplicity, we restrict our analysis here to
caseK51.

The analysis of the dynamical equations for an equi
rium initial condition follows the same steps as for the ra
dom case, but now we must impose a Gibbs distribution
the configurationss andt at time 0. Nevertheless, there is
point that must now be considered. Let us takeT.Ts ~i.e.,
we will suppose equilibrium configurations in the parama
netic phase!. Suppose thatp is odd and we take an equilib
rium configuration at temperatureT. To imposeQ0521 or
D051, we must takes i52t i for all i. Because the energ
is an odd function of the spin variables, we haveE($s%)
52E($t%). If the equilibrium energy is not zero~this hap-
pens everywhere except atb50) we cannot put both con
figurations at equilibrium at the same temperature~because
the temperature uniquely determines the value of the equ
rium energy!. Then, if both initial conditionss and t are
equilibrium initial configurations, their overlapQ(0) must
vanish. Actually, forT.Ts two equilibrium configurations
do have overlap zero with probability 1 and overlap differe
from zero with probability exponentially small withN. So if
we take the thermodynamic limit before the infinite tim
limit, it is clear that we must start with zero initial overla
To be more precise, the probability that two equilibrium co
figurations$s%,$t% in the paramagnetic phase do have ov
lap q5(1/N)( i 51

N s it i is given by

P~q!;exp„2Nb f ~q!…, ~28!

where f (q) is the free-energy cost to find a correlationq
between the configurations. Clearly, becauseq50 corre-
sponds to the equilibrium value in the paramagnetic pha
f (q) has a minimum atq50 so we can writef (q)5const
1q2/(2bxSG),

P~q!;expS 2
Nq2

2xSG
D , ~29!

where xSG5N^q2& is the spin-glass susceptibility. Abov
Ts , the xSG is finite and the probability to haveqÞ0 is
exponentially small withN. Now the cost in free energyf (q)
tic
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has two parts, a cost in energyu(q) and a cost in entropy
s(q)5b@u(q)2 f (q)#. The cost in energy vanishes at infi
nite temperature and the full cost off (q) is due to the en-
tropy. So only at infinite temperature~i.e., random initial
configurations, the case considered in the preceding secti!
can we impose an initial condition with initial nonzero ove
lap.

The equivalent of the dynamical equations~19!, ~20!, and
~21! can be easily obtained forT.Ts in the replica symmet-
ric approximation@31#. The correlation functionC(t,s) and
the response functionR(t,s) are time-translational invarian
and satisfy the fluctuation-dissipation theoremTR(t)
52@]C(t)/]t#Q(t). TheC(t) satisfies the equation

]C~ t !

]t
1TC~ t !1

bp

2 E
0

t

du Cp21~ t2u!
]C~u!

]u
50

~30!

with C(0)51. The two-times overlap satisfies the equatio

]Q~ t,s!

]t
1S T1

pb

2 DQ~ t,s!

2
pb

2 E
0

s

du Qp21~ t,u!
]C~s2u!

]u

2
pb

2 E
0

t

du Q~s,u!
]Cp21~ t2u!

]u
50 ~31!

with the initial conditionQ(t,0)5Q(0,t)50. The diagonal
part Qd(t)5Q(t,t) is given by

1

2

]Qd~ t !

]t
1S T1

pb

2 DQd~ t !2T

2
pb

2 E
0

t

du Qp21~ t,u!
]C~ t2u!

]u

2
pb

2 E
0

t

du Q~ t,u!
]Cp21~ t2u!

]u
50 ~32!

with the initial conditionQd(0)50. Now we are in equilib-
rium so m(t)5T1pb/2 @31#. We have looked for a time-
translational invariant solution forQ(t,s) @i.e., a solution of
the typeQ(t,s)5Qd(s)Q̂(t2s) for t.s] but we have not
found it ~even forp52). Our numerical results suggest th
such an asymptotic solution does not exist.

Using as before a series expansion in the time-depen
variables and Pade´ approximants, we have estimated th
asymptotic distance for equilibrium initial conditions, i.e
for Q(0)50. The results are displayed in Fig. 6 for differe
temperatures. The divergence of the relaxation time lead
T0(p53)51.0160.04 with g51.460.3, which indicates
that T0 coincides with the result obtained for random initi
conditions. This supports the idea that the transition atT0 is
of a dynamical nature and unrelated to the existence o
thermodynamic phase transition.

D. The nonsymmetric aÞ1 case

As we saw in the preceding section, one of the most
teresting results concerning the DS transition is the fact
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D(`) is a nontrivial quantity which does not depend on t
initial condition ~and depends only on the cross correlati
K). In equilibrium thermodynamics, this is one of the fe
tures of order parameters which separate different equ
rium phases. In the stationary state, when fluctuati
dissipation theorem is obeyed, the order parameter
quantity which characterizes the equilibrium state and~in the
absence of ergodicity breaking! does not depend on the in
tial condition.

In order to present convincing proof of this result, w
have investigated the general nonsymmetric caseaÞ1. A
difficulty inherent in the extrapolations made from Figs.
and 2 is the fact that, belowT0, the convergence of the
distanceD(t) towards its asymptotic valueD` is very slow
~a power law in time!. Consequently, both numerically o
using the Pade´ method, it is very difficult to extrapolate to
the asymptotic value. As the asymmetry of the interactio
Eq. ~13! is turned on~i.e., if a,1), the relaxation of the
system to the stationary state turns out to be faster. Actu
for the asymmetric case (a50) or the antisymmetric cas
@a521/(p21), see later#, the relaxation of the distanc
D(t) is nearly exponential. We have no reasons to supp
that the independence of the asymptotic value on the in
distance isa dependent. Our analysis fora,1 suggests tha
the independence ofD(t) on the initial distanceD0 holds for
all generic values ofa.

It is important to note that, fora,1, there is no equilib-
rium stationary state and the fluctuation-dissipation theo
is not satisfied. Still we expect, forp.2, the DS transition to
survive for any quantity of finite asymmetry. The reason
that the DS transition~even fora51) is inherently a non-
equilibrium transition, so the effect of the asymmetry m
not change the character of that transition.

The nonsymmetric case forp52 was already considere
by Crisanti and Sompolinsky ten years ago@39#. By assum-
ing that, in the stationary state, the correlation and respo
functions are time-translational invariant, they succeede
showing that the thermodynamic transitionTs51 for a51
turned out to be unstable against the asymmetry for

FIG. 6. Asymptotic distanceD` as a function of temperature
starting from an equilibrium configuration, forp53 (a51,K
51).
-
-
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value of a,1. They also derived the resultm(`)
5A11T2 for a50.

In the next paragraphs we study the casesa50, 21/(p
21) starting from a random initial configuration in som
detail. Unless stated, we will consider the caseK51.

1. The asymmetric casea50

The casea50 is quite interesting. The equation for th
response function~20! simplifies considerably,

]R~ t,s!

]t
1m~ t !R~ t,s!5d~ t2s!, ~33!

which can be readily written usingR(t,s)5z(s)/z(t) with
z(t)5exp„*0

t m(t8)dt8…. The equation for the correlation
function becomes

]C~ t,s!

]t
1m~ t !C~ t,s!5

p

2E0

s

du
z~u!

z~s!
Cp21~ t,u!. ~34!

Define the new functionA(t,s)5z(t)C(t,s)z(s). In
terms of this new function, Eq.~34! is

]A~ t,s!

]t
5

p

2E0

s

du
Ap21~ t,u!

zp22~u!zp22~ t !
. ~35!

From Eq.~22! it is easy to derive an equation forz(t),

1

2

]z2~ t !

]t
5Tz2 1

p

2E0

t

du
Ap21~ t,u!

zp22~u!zp22~ t !
. ~36!

Equations~35! and ~36! form a closed set of equation
which can be solved with the initial conditionsA(t,t)
5z2(t), z(0)51. Once this set of equations is solved, o
can also find a solution for the overlapQ(t,s) in Eq. ~21!.
Again, we defineB(t,s)5z(t)Q(t,s)z(s), which satisfies
the equation

]B~ t,s!

]t
5

p

2E0

s

du
Bp21~ t,u!

zp22~u!zp22~ t !
, ~37!

and the equal-time overlap Eq.~23!, b(t)5B(t,t), satisfies
the equation

1

2

]b~ t !

]t
5Tz2~ t !1

p

2E0

t

du
Bp21~ t,u!

zp22~u!zp22~ t !
~38!

with b(0)5Qd(0). Note that this set of equations is qui
involved for p.2. Only for p52 do they simplify dramati-
cally ~the case considered by Crisanti and Sompolinsky! and
become linear. For generalp, the previous equations are non
linear. We have not succeeded in finding the asymptotic
lution of these equations, although we have guessed the
sults from the numerical results. We find that the D
transition is still present at finite temperature forp.2. The
analytical expression forTc is given by

Tc5Ap22

2
. ~39!
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Note thatTc coincides precisely with the lower boun
previously derived in Eq.~25!. The asymptotic value ofm(t)
is given by m(`)5A11T2 and is p-independent. The
asymptotic distance forp53,4 is given by@40#

D`5

12T2~12Tc!S T

Tc
D 2

2
. ~40!

A full theoretical derivation of this result remains an i
teresting open problem. In what follows, we compare o
results obtained by numerical integrations with time s
Dt50.01 with these theoretical guesses. In Fig. 7 we sh
the overlapQd(t) as a function of time for different tempera
tures belowTc for p53. Note that the asymptotic valu
clearly does not depend on the initial condition. The horizo
tal dotted lines correspond to the asymptotic value Eq.~40!.
This figure unambiguously demonstrates that the asymp

FIG. 8. m(t) for a50,K51 (p53 solid, p54 dashed! with
Qd(0)521 as a function of time for temperaturesT
50.1,0.3,0.5,0.7~from bottom to top!. The horizontal line is the
theoretical prediction. Note thatm(0)5T.

FIG. 7. Qd(t) (p53, a50, K51) with Qd(0)50, 0.5,21 as
a function of time for temperaturesT50.1, 0.3, 0.5~from bottom to
top at large times!. The horizontal dotted lines are the theoretic
guesses.
r
p
w

-

tic

distance does not depend on the value of the initial ove
Qd(0). In Fig. 8 we showm(t) for p53,4 compared with
the theoretical predictionm(`)5A11T2.

2. The antisymmetric casea521/p21

This is an extremal case wher

Ji 1

i 2 ,i 3 , . . . ,i pJi k

i 1 , . . . ,i k21 ,i k11 , . . . ,i p is maximally negative.

Physically this means that the force experienced by a spi
due to a multipletM of p21 spins is as contrary as possib
to the force which experiences another spin contained in
multiplet due to the action of another multipletM8 of p
21 spins constructed from the rest of thep22 spins in the
previous multipletM plus the spini. In the particular case
p52, this can be easily achieved makingJi

j52Ji
j , which

corresponds, according to Eq.~13!, to a521. But in gen-
eral, a can never be equal to21 for p.2. Takep53 and
three couplingsJi

jk ,Jj
ik ,Jk

i j . It is clear that ifJi
jk52Jj

ik and
Ji

jk52Jk
i j , thenJj

ikÞ2Jk
i j . It can be easily shown that th

minimum value fora is given bya521/(p21).
Interestingly, this case can be exactly solved for the c

relation and response function. Although it turns out to
quite difficult to solve for the overlap function, we will ana
lyze here a general correlatorK. For a521/(p21), Eqs.
~19!–~23! considerably simplify becausem(t) in Eq. ~22! is
time independent. Because the initial configuration w
taken random at time 0, this means that the stationary s
follows completely random configurations.

To solve the equations, define the following correlator

C~ t,s!5c~ t,s!exp„2T~ ut2su!…,

R~ t,s!5r ~ t,s!exp„2T~ t2s!… t>s.
~41!

In this case the dynamical equations forC andR simplify.
A particular solution forc(t,s) and r (t,s) can be found
which simplifies dramatically the dynamical equations. Th
solution is given byc(t,s)5r (t,s)5 f (t2s). This time-
translational invariant solution is consistent withall dynami-
cal equations forall times. The final closed equation forf (t)
is given by

] f ~ t !

]t
52

p

2
exp„2T~p22!t…E

0

t

du fp21~ t2u! f ~u!

3exp„2T~p22!u… ~42!

with the initial condition f (0)51. But the equation for the
overlapQ(t,s) is more complicated and cannot be reduc
to a time-translational invariant solution. WritingQ(t,s)
5q(t,s)exp(2Tut2su) @with q(t,t)5Qd(t)], we obtain the
following equations:

]q~ t,s!

]t
5

p

2E0

s

du exp„22T~s2u!…

3@ f ~s2u!qp21~ t,u!2 f p21~ t2u!q~s,u!#

~43!

l
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2
p

2Es

t

du fp21~ t2u!q~u,s!exp„2T~p22!~ t2u!…

~44!

1

2

]Qd~ t !

]t
1T@Qd~ t !2K~Qd!#

5
p

2E0

t

du exp„22T~ t2u!…

3@ f ~ t2u!qp21~ t,u!2 f p21~ t2u!q~ t,u!#. ~45!

A time-translational invariant solution forq(t,s) does not
exist for all times~contrary to what happens forC and R)
because the first integral in the right-hand side of Eq.~44!
does not vanish.

Previous equations are solvable forp52 and K51. In
this case we get

] f ~ t !

]t
52E

0

t

du f~ t2u! f ~u!, ~46!

Qd~ t !512@12Qd~0!#exp~22Tt!, ~47!

and there is no DS transition forp52 as expected~i.e., T0
50). For a generic cross correlationK, let us note that Eq
~45! reduces to Eq.~24! so there will be different asymptoti
values depending on the value ofK8(Q* ) at the different set
of fixed pointsQ* 5K(Q* ). It is notorious that the casep
52, a521 at finite temperature reduces to the infinite te
perature case for anya. This is closely related to the fact tha
the stationary solution in this case coincides with the rand
initial configuration, although this is not true anymore f
p.2. Forp.2 the lowestT0 temperature for maximal cros
correlationK51 becomes finite and this is due to the rugg
structure of theforce landscape.

Equations for the damage forp.3 are difficult to solve.
We have not succeeded in obtaining an analytical expres
for the asymptotic values as well as forTc andD` . Numeri-
cal integrations of the equations reveal that the transi
persists at finite temperatures forp.2. Figure 9 shows the

FIG. 9. Qd(t) (p53, a521/2, K51) with Qd(0)50, 0.5,
21 as a function of time for temperaturesT50.1, 0.3, 0.5~from
bottom to top!.
-

m

on

n

overlap Qd(t) as a function of time for different tempera
tures forp53, K51. In this case the transition is located
T0.0.59560.005. Note that again relaxation to the statio
ary state is faster than in the casea51 and D` is again
independent ofD(0).

These results are quite appealing. Here we find a DS t
sition in the presence of a time-translational invariant so
tion for C andR, i.e., when the system starts already in t
stationary state. This is in agreement with the results of S
III B for a51, where a DS transition was found~at the same
temperature as that starting from random initial conditio!
when the system already started in the stationary state.
ure 10 summarizes our results. We show theT-a phase dia-
gram of the DS transition forp53.

Let us remark on our final conclusion for this section.
DS transition is present for all models withp.2 above the
TAP temperature where an exponentially large number
states appears. For a given choice ofK such thatQ51 is
stable at infinite temperature, this transition has the follow
interesting properties: The asymptotic distance~a! is inde-
pendent of the initial distance;~b! is also independent of the
type of initial configuration; and~c! is stable in the presenc
of asymmetry~but is unstable forp52, in agreement with
results derived by Crisanti and Sompolinsky!. This suggests
that D` has some of the crucial properties to being a go
dynamical order parameter. The correlatorQ(t,s) is not
time-translational invariant in the time scale in which t
correlation and the response are.

As we said previously, we expect the properties of t
transition to depend strongly on the type of dynam
through the cross correlatorK. In the next section, we will
discuss discrete~Monte Carlo! dynamics, the case in which
different algorithms correspond to different cross correlato

IV. DAMAGE SPREADING IN DISCRETE GLASSY
MODELS

Up to now we have considered the DS problem in t
case of a dynamics continuous in time, such as Lange
dynamics. Here we want to investigate damage spread
and in particular the existence ofT0 for discrete dynamics
such as Monte Carlo algorithms.

FIG. 10. T-a phase diagram forp53, K51. The line is a guide
to the eye.
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The analog of the functionsK for continuous dynamics is
the different algorithms used in Monte Carlo dynamics
discrete dynamics. So different Monte Carlo algorithms
termine different types of correlations between the noises
for the cross correlatorK, this implies that the algorithms
determine the structure of the high-temperature fixed poi
Their instabilities determine the subsequent low-tempera
behavior. As we have already commented on in the Introd
tion, we therefore do not expect the DS transition to be u
versal, and the results of this section aim to be compa
with the results already obtained for the Langevin dynam
in a continuous system.

One of the essential ingredients for the DS transition
the presence of two competing effects: a synchronizing fo
~the stochastic noiseh in the Langevin dynamics! and a
landscape-dependent force which pulls configurations a
into different directions. In the case of a discrete~Monte
Carlo! dynamics, the equivalent role of the stochastic no
is played by the set of random numbers generated during
Monte Carlo updates. Now, the random number in the Mo
Carlo algorithm~uniformly chosen between 0 and 1! deter-
mines the probability of a move depending also on the c
figuration of the system. This last dependence correspond
the role played by the cross correlatorK in the Langevin
case where the two noisesh,h8 may be different depending
on the value ofK(C,C8). Roughly speaking, the Metropoli
algorithm for Monte Carlo dynamics corresponds to the c
K(Q)5Q for Langevin. It is easy to check that, at infini
temperature, the fixed points in both dynamics are the sa

For continuous~Langevin! dynamics we had the freedom
to choose the maximal cross correlationK51. For discrete
dynamics, however, this is not the case. There are sev
well known algorithms in the Monte Carlo approach acco
ing to which updating rule they use, for instance Metropo
Glauber, or heat bath. Among these, the last one is the
one which has a unique fixed pointQ* 51 at infinite tem-
perature. So, heat-bath dynamics is the closest case~but dif-
ferent! to theK51 of Langevin dynamics. Here, our numer
cal investigation will focus on this type of discrete dynamic
Let us note that the other algorithms may show differ
behavior~due to the presence of other infinite-temperat
fixed points! and consequently also different DS transition
This nonuniversality of the DS transition~as in our previous
analysis of the Langevin case! has received some attention
the literature@41#.

Damage spreading in the Bernasconi model

Here we will analyze the Monte Carlo dynamics with t
heat-bath algorithm for the Bernasconi model@42#. This is a
long-range interaction model without disorder which
known to have a glassy behavior being in the universa
class of spin-glass models with one step of replica symm
breaking @8#. Consequently, its dynamical behavior is t
same as predicted by the mode-coupling theory.

The Bernasconi model~for simplicity we will consider the
closed model, see@8# for more details! consists ofN Ising
spinss i561 in a one-dimensional chain interacting throu
a long-range four-spin interaction. It is defined by the f
lowing Hamiltonian:
r
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H5
1

N (
k51

N21

Ck
2 ~48!

with Ck5( j 51
N s js j 1k and where we take periodic bounda

conditionss i5s i 1N .
In this model there are particular values ofN for which

the ground state is exactly known@8#. The interesting aspec
of this model is that it behaves like a disordered spin glas
the absence of explicit quenched disorder in the Hamilton
Apparently, disorder is self-induced by the dynamics@43,8–
10#. This means that dynamics itself generates slow evolv
variables which effectively act as quenched disordered fie
This model is characterized by three temperatures: a me
crystal-liquid first-order transformation temperatureTM , a
dynamical transition temperatureTd.0.5 @44#, where the re-
laxation time diverges and ergodicity breaks, and, finally
static ~or glass! transition temperatureTs.0.25, where rep-
lica symmetry breaks and the configurational entropy c
lapses~this is the ideal glass transition predicted in the AG
theory!.

In the heat-bath algorithm, to go from a configuratio
$s i(t)% at a given timet to a configuration$s i(t1Dt)% at
the next time stept1Dt with Dt51/N, a spinsk is chosen
at random among theN spins to be updated. The probabilit
to put the spin up or down is decided according to the int
sity of the local field acting on that spin. More precisely,
we write the Hamiltonian~48! in terms of the local fieldH
52(k hk sk , then the probability of putting the spinsk up
(sk51) or down (sk521) at timet1Dt is given by

P@sk~ t1Dt !5s#5
1

2
1

1

2
tanh„bhk~ t !s… ~49!

wheres561 andhk(t) is the local field acting on the spin
k at timet. Note that the probability~49! only depends on the
local field acting on the spink and not on the actual value o
that spin at timet. Then, a random numberz(t) with a uni-
form distribution between 0 and 1 can be introduced a
spins are sequentially updated according to the dynam
rule

sk~ t1Dt !5sgnF1

2
1

1

2
tanh„bhk~ t !…2z~ t !G . ~50!

With this rule~50!, we have studied numerically the dam
age spreading of three different initial conditions, as in t
p-spin model: ~a! anticorrelated random initial condition
with D(0)51, ~b! uncorrelated random initial condition
with D(0)50.5, and~c! partially correlated random initia
conditions withD(0)50.1. For each of these cases, the d
tanceD(t) is computed up to 100 000 and 10 000 Mon
Carlo time steps forN51000 andN55000, respectively. To
analyze the data, the logarithmic time with basea51.1 is
considered. Moreover, the data are averaged in interval
the form (ak,ak1121) with k a positive integer. ForT
50.3, the evolution ofD(t) is plotted in Fig. 11.

To obtain the asymptotic valueD` from figures such as
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Fig. 11, a power-law fit for low temperatures is used. F
high temperatures an exponential fit up to 2000 Monte Ca
steps in real time is used. The results are displayed in
12.

One observes that the distance does not vanish for
finite temperature. Moreover, Fig. 12 indicates the existe
of a temperatureT1 above which the asymptotic distance
independent of the initial distance. Below this temperat
T1 , D` does seem to be dependent on the initial distan
This dependence is supported by a numerical extrapola
which could well fail when going to enormously large tim
scales. Still, what we certainly find is the appearance o
dynamical transition temperatureT1.0.5 in very good

FIG. 11. The distanceD averaged per interval (ak,ak1121) as
a function of logarithmic time with basea51.1 for temperatureT
50.3. The upper two curves are the result of the initial condit
D(0)51 for N51000 ~boxes! and N55000 ~diamonds!. In the
same manner, the middle~lower! curves are the result ofD(0)
50.5 @D(0)50.1#.

FIG. 12. The asymptotic distanceD` as a function of tempera
ture for three different initial conditions:D(0)51 with N55000
~1000! as closed~open! triangles,D(0)50.5 with N55000~1000!
as closed~open! circles, andD(0)50.1 with N55000 ~1000! as
closed~open! diamonds.
r
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agreement with the transitionTd where ergodicity breaks
@8,44#.

The behavior we find here, when compared to the pre
ous Langevin analysis for thep-spin model, may appea
quite different. But a careful analysis reveals that this is
the case. If we consider thatK, for the Langevin case, is a
generic function which may depend on the overlap as wel
on the temperatureT51/b, we may then imagine a situatio
such as that depicted in Fig. 13, where the infini
temperature fixed-pointQ51 becomes unstable as soon asb
is finite. In this case the asymptotic distance would be
nontrivial function ofb and the damage spreading transiti
could well happen at the usual dynamical transitionTd where
ergodicity is broken. The dependence of the asymptotic ov
lap on the initial value could be a consequence of the p
ence of different fixed points at low temperatures.

In the most general case, one could imagine a scen
with three possible different regimes: A high-temperature
gime T.T0, whereD`50 independently of the initial dis-
tance D0; an intermediate regimeT1,T,T0, where D`

5D`(T), is not zero but is independent of the initial di
tance~this regime would correspond to the appearance o
temperature-dependent fixed point forb finite as depicted in
Fig. 13!; and finally, a low-temperature regimeT,T1, where
D`5D`(T,D0) depends on both temperature and initial d
tance. The results we find for the Bernasconi model are
same as those found by Derrida and Weisbuch@17# for the
Sherrington-Kirkpatrick model. In this model,T0→` is re-
lated to the infinite-range character of the interaction. Ac
ally, Derrida @18# has found numerical evidence that fo
finite-dimensional spin glasses there exists a range of t
peratures where the asymptotic distance vanishes andT0 is
finite. The dependence of the asymptotic overlap on the
tial condition found here and in@18# belowT1 could well be
an artifact of the large-time extrapolation where the sim
lated time window and the size are not sufficiently larg
Unfortunately, it is not easy to simulate very large times a
sizes in infinite-ranged models such as the present one.

The results of this section show that the DS transition
very close to~and probably coincides with! the dynamical
transition temperatureTd ~below which the system never a
tains equilibrium and ergodicity is broken!. Nevertheless, in
this case the asymptotic damage belowT1 apparently de-
pends on the initial condition~and probably on the type o
initial condition as well!, although such a firm conclusio

FIG. 13. Possible flow diagram at different temperatures
heat-bath dynamics.
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needs more understanding of damage spreading transi
for generic updating rules.

V. CONCLUSIONS

In this paper we have studied the problem of dama
spreading in the mode-coupling theory of glasses. Mo
coupling theory is well known to describe relaxation pr
cesses in glasses in the mean-field approximation. A sim
way to obtain the mode-coupling equations is by analytica
solving the dynamics of multipsin interaction spherical sp
glass models. These models are characterized by the
ence of a huge number of metastable states~exponential with
the system size! which appear at a temperatureTTAP higher
than Td ~where ergodicity breaks! and Ts ~where replica
symmetry breaks!. Because the phase space in this class
models is characterized by an extremely rugged and com
free-energy landscape, they are good candidates to stud
landscape properties using techniques taken from dynam
systems.

A very interesting technique which is able to probe t
topological features of the phase-space landscape is dam
spreading. This consists in the study of the distance betw
the configurations of two stochastic systems submitted to
same realization of the stochastic noise but differing in
initial conditions. By the same realization of the stochas
noise, we mean noises that are statistically identical altho
generally correlated through a functionK(Q), which satis-
fies the conditionK(Q)<K(Q51)51. In general, any
choice for the correlatorK alters the results. For Langevi
dynamics, we have shown that interesting results appea
the caseK51. In that case, both noises are identical for t
two copies independent of their configurations. This yie
the lowest damage spreading transition for which theQ*
51 fixed point is stable at high temperatures. Depending
the value ofK8(Q51), one finds a different damage sprea
ing transition temperature up to the limiting caseK8(Q
51)51 @see Eq.~25!#, where T05` and the fixed point
Q* 51 becomes unstable. Whether this holds for other ty
of dynamics is not studied and remains unclear.

An exhaustive study has been done for the caseK51,
although similar results are obtained for anyK for which the
solutionQ51 is asymptotically stable. In this case, throu
functional methods and using the Pade´ series expansion
method~to make safe extrapolations in the asymptotic lon
time limit!, we have shown the existence of a dama
spreading transitionT0 in general mode-coupling equation
with any degree of asymmetry in the interactions. In parti
lar, in the case of symmetric interactions~where detailed
balance holds! we have found evidence for a damage spre
ing transition at a finite temperature. This transition occur
temperaturesT0 higher thanTTAP , this last one being the
temperature where an exponentially large number of m
stable states start to appear. The transition is characterize
a dynamical order parameterD` , which is the asymptotic
distance between the two evolving replicas. Interestingly,D`

has the good properties of order parameters being abl
distinguish different dynamical phases~in our case, there are
two possible phases depending on whetherD` vanishes or
not!. These properties are as follows:~a! D` is independent
of the initial distanceD0 for a given class of initial condi-
ns
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tions, ~b! D` does not depend also on the class of init
condition ~whether they are random or thermalized!, ~c! the
DS transition is stable against the inclusion of asymmetry
the interactions~i.e., against the violation of detailed balanc
in the dynamics!. Furthermore, regarding the mode-couplin
equations with asymmetry, we have obtained some exac
sults for the asymmetric casea50 and exactly solved the
correlation and the response function for the antisymme
case a521/(p21), which interestingly turns out to be
time-translational invariant. The existence of DS transition
this case reveals that this transition already appears when
system is time-translational invariant.

We stress the fact that the precise value of the dam
spreading temperatureT0 as well as the asymptotic distanc
D` both depend on the correlatorK considered. This fact
expresses the nonuniversal character of this transition w
the cross correlatorK plays the equivalent role of a stocha
tic noise for the dynamical order parameterQd(t). Different
functionsK imply different dynamical phase transitions s
their physical significance must be appropriately interpret
In this direction we have tried to interpret our results in ter
of saddle points in phase space for those cases whereQ*
51 is an asymptotically stable solution at high temperatur
The essential aspects of the argument were given in Sec
where it was shown that for close enough initial conditio
an instability in theQ51 high-temperature solution is due t
the presence of vanishing modes in the Hessian of the po
tial function. This signals the presence of saddle points in
free-energy landscape, of which an infinite amount yield
DS transition. This certainly happens atTTAP , but we have
found that the transition occurs already at a temperatureT0
much above that temperature. How can we reconcile
results with that? AtTTAP the number of metastable states
exponentially large withN. It is probable that for the DS
transition to occur it is only necessary that this number
big ~for instance a power ofN) but not exponentially large
Consequently, a divergent number of metastable states
saddle points~but not exponentially large withN) should be
enough to make the DS transition appear. Unfortunately,
analytical computation of the temperatureT0 by counting the
number of metastable states is not so direct because su
calculation involves the estimate of finite-size corrections
the dominant saddle-point calculation@45#. Actually, the
evaluation of finite-size corrections in spin glasses~even in
mean field! is known to be quite difficult. Concerning th
role of the cross correlations between the noises, we rem
the reader that the appearance of vanishing modes tends
suppressed by cross correlationsK,1, which play the role
@according to Eq.~10!# of a thermal noise on the system
described by the effective distance variableszi5xi2yi . This
explains whyK51 yields the lowest damage spreading te
perature. We must stress that this transition should pe
beyond mean field. Actually, the presence of a huge num
of saddle points in phase space is not an exclusive mean-
feature but should persist in the presence of short-range
rections. Short-range corrections dramatically modify t
height of the barriers but not their number, which still cou
remain as large as in the mean-field approximation.

To remark on the advantage of considering Langevin
namics for DS, we have also investigated the DS in discr
glassy models without disorder such as the Bernasc
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model with heat-bath dynamics. The difference between
discrete dynamics and Langevin dynamics is that the typ
correlatorK in the last case may be chosen at will. So t
caseK51 which has been studied for Langevin dynam
cannot be implemented for Monte Carlo dynamics. Each
gorithm for Monte Carlo dynamics defines a givenK, so the
study of damage spreading in those cases remains m
speculative becauseK is essentially unknown. For the pa
ticular case of the heat bath in the Bernasconi model, we
a DS transition which separates two regions: a regionT
.T1, where D` is independent of the initial distance b
finite, and a regionT,T1, whereD` depends on the initia
distance.T1 coincides~within numerical precision! with the
mode-coupling transitionTd . Although for heat-bath dynam
ics D` depends on the initial distance, we must not igno
the fact that convergence to the asymptotic limit is extrem
slow and convergence poor.

We end our discussion by describing some opening pr
lems. Much work on the DS has been devoted to the stud
discrete dynamics in discrete systems, the situation being
opposite for continuous-time dynamics. In this work we ha
shown that for Langevin dynamics we may choose spec
noise correlations so that it is easier to interpret what ph
cal properties of the system we are looking at. It is diffic
to ascribe any physical significance to the properties m
sured for arbitrary discrete algorithms, and this has been
of the major problems to interpret the large amount of n
merical results obtained in the study of damage spreadin
Monte Carlo simulations. Here we have seen that for Lan
vin dynamics such a task turns out to be easier. Still one
the major tasks which remains open is to understand be
under which conditions there is a unique absorbing state
the damage. In another direction, one would like to get a
lytical proof and equilibrium-based analytical methods to
vestigate the connection between the DS transition and
topological properties of the phase space~such as the pres
ence of saddle points in phase space!. Finally, we would like
to extend our research to real structural glasses, whe
might be interesting to study DS and investigate under wh
conditions such a transition would be a precursor to the g
transition.
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APPENDIX A

In this appendix we describe some of the main steps n
essary to deriving Eqs.~19!–~23!. Consider two replicas
$s%,$t% submitted to the dynamics~11!,

]s i

]t
5Fi~$s%!2ms i1h i ,

]t i

]t
5Fi~$t%!2mt i1h i8 ,

~A1!
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of
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whereFi is the force acting on the spins i due to the inter-
action with the rest of the spins Eq.~12!. The noisesh, h8
are generically correlated̂h i(t)h j8(s)&52TK($s%,$t%)d(t
2s)d i j . Following Domany and Hinrichsen@41#, we will
suppose that the correlatorK is a generic function of the
overlap due to the infinite-ranged nature of the model. So
will take K($s%,$t%) as a generic function of the equal-tim
overlapK(Qd), whereQd5(1/N)( i 51

N s it i . Following the
same steps as are usually taken in the study of the dyna
of a single replica~see@31# for details!, we may write the
generating functional for the dynamics in the Ito prescr
tion,

Zdyn5E @dsdt#d@ṡ i2Fi~s!1ms i2h i #

3d@ṫ i2Fi~t!1mt i2h i8#. ~A2!

Introducing a new set of fieldsŝ i ,t̂ i and averaging over
the noise, we get

Zdyn5E @dsdŝdtdt̂ #exp„L~s,ŝ,t,t̂ !…, ~A3!

where

L~s,ŝ,t,t̂ !52 i E dt(
i

ŝ i
t@ṡ i

t2Fi~s t!1ms i
t#

2 i E dt(
i

t̂ i
t@ ṫ i

t2Fi~t t!1mt i
t#

2TE dt(
i

S 11K
2

~ ŝ i
t1 t̂ i

t!2

1
12K

2
~ ŝ i

t2 t̂ i
t!2D . ~A4!

BecauseZdyn51, we may average the dynamical partitio
function over the disorder. We use the cumulant expans
and retain only the first- and second-order termsexp(V)

.exp$V̄11
2@V

2̄2(V̄)2#%, where ( )̄stands for disorder average
Using Eq.~14!, we obtain the final result,

Zdyn5E @dsdŝdtdt̂ #exp„S~s,ŝ,t,t̂ !…, ~A5!

where
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S~s,ŝ,t,t̂ !52 i E dt(
i

ŝ i
t~ ṡ i

t1ms i
t!2 i E dt(

i
t̂ i

t~ ṫ i
t1mt i

t!2TE dt(
i

S 11K
2

~ ŝ i
t1 t̂ i

t!21
12K

2
~ ŝ i

t2 t̂ i
t!2D

2
1

2E dt dsS (
i

ŝ i
tŝ i

sf 8„C~ t,s!…1(
i

t̂ i
tt̂ i

sf 8„D~ t,s!…1(
i

ŝ i
tt̂ i

sf 8„Q~ t,s!)

1(
i

t̂ i
tŝ i

sf 8„Q~s,t !…D 2
a

2NE dt ds(
i j

~ ŝ i
tŝ j

ss i
ss j

t f 9„C~ t,s!…

1 t̂ i
tt̂ j

st i
st j

t f 9„D~ t,s!…1ŝ i
tt̂ j

st i
ss j

t f 9„Q~ t,s!…1 t̂ i
tŝ j

ss i
st j

t f 9„Q~s,t !…!. ~A6!
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The correlation functionsC,D,Q are defined by

C~ t,s!5
1

N (
i

^s i
ts i

s&, D~ t,s!5
1

N (
i

^t i
tt i

s&,

Q~ t,s!5
1

N (
i

^s i
tt i

s&.
~A7!

After introducing the necessary response functions,
instanceR(t,s)5 i ^ŝ i

ss i
t&, we may solve the saddle-poin

equations. Introducing also appropriate causality relati
~for instancê t̂ i

ss i
t&50), we obtain the desired set of equ

tions. Note that only the dynamical equation for the eq
time overlapQd(t)5Q(t,t) depends on the correlatorK.

APPENDIX B

In this appendix we prove the existence of the lower a
upper bounds Eq.~25! for T0 in the casea51, K51.

To obtain the lower bound, we start from Eq.~23! and
write

1

2

]Qd~ t !

]t
1m~ t !Qd~ t !2TK~Qd!2

p

2E0

t

duR~ t,u!Qp21~ t,u!

2
p~p21!

2 E
0

t

duR~ t,u!Q~ t,u!Cp22~ t,u!50. ~B1!

Let us assume now that we are in the high-tempera
phase where theR andC are time-translational invariant an
the fluctuation-dissipation theorem is satisfied,

TR~ t2s!5
]C~ t2s!

]s
. ~B2!

At first glance, this condition may seem too strong. Ne
ertheless, we assume FDT is allowed if we are in the hi
temperature phase. At the DS temperature~which is deep in
the high-temperature phase, as we show in detail in S
III A and III B !, the typical relaxation time for the quantitie
C andR is finite, so we may introduce FDT with no adver
effect. On the other hand, Sec. III B shows that the DS tr
sition is already present if we start from an equilibrium co
dition where condition~B2! is satisfied for all times.

Using the inequalityQ(t,s)<Qd(s), wheret.s we ob-
tain
r

s

l

d

re

-
-

s.

-
-

1

2

]Qd~ t !

]t
1m~ t !Qd~ t !2TK~Qd!

2
b

2E0

t

du
]Cp~ t2u!

]u
Qd

p21~u!

2
b~p21!

2 E
0

t

du
]Cp~ t2u!

]u
Qd~u!<0. ~B3!

Doing an integration by parts for the two integrals appear
in Eq. ~B3!, we may write

1

2

]Qd~ t !

]t
1m~ t !Qd~ t !2TK~Qd!2

b

2 S Qd
p21~ t !

2Qd
p21~0!Cp~ t !2E

0

t

du
]Qd

p21~u!

]u
Cp~ t2u! D

2
b~p21!

2 S Qd~ t !2Qd~0!Cp~ t !

2E
0

t

du
]Qd~u!

]u
Cp~ t2u! D<0. ~B4!

Noting thatQd(t) is a monotonous increasing function o
time ~again, this is true only above the DS transition!, we
may write

E
0

t

du
]Qd

p21~u!

]u
Cp~ t2u!>0, E

0

t

du
]Qd~u!

]u
Cp~ t2u!>0

~B5!

so, in the long-time limitt→` where theC(t) vanishes, we
get

1

2

]Qd~ t !

]t
1T@Qd~ t !2K~Qd!#2

b

2
@Qd

p21~ t !2Qd~ t !#<0,

~B6!

where we have replacedm(t) by its equilibrium valueT
1pb/2. Finally, due to the monotonicity ofQd(t), we reach
the desired inequality,

0<
1

2

]Qd~ t !

]t
<T@K~Qd!2Qd~ t !#1

bQd~ t !

2
@Qd

p22~ t !21#.

~B7!
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If we approach the DS transitionT0 from above, we ex-
pect Qd(t) to relax very slowly to its asymptotic valu
Qd(`)51. So, we expectu]2Qd(t)/]t2u<u]Qd(t)/]tu<@1
2Qd(t)# for large times. We may differentiate the inequali
~B7! and setQd51, which yields

0>
1

2

]2Qd~ t !

]t2
>

]Qd~ t !

]t S @K8~1!21#T1
b~p22!

2 D .

~B8!

At the DS transition, the inequality is satisfied only
T0>A(p22)/2@12K8(1)#. For the casep52, the second
member in the final expression of the inequality~B8! van-
ishes, so the inequalities are never violated as soon asQd
<1. This means that there is no DS transition in the hig
temperature phase forp52. The only possible transition oc
curs whenC(t,s) and R(t,s) are not time-translational in
variant anymore, and this may happen only atTd . Actually,
the calculations of Stariolo@26# show that the DS transition
is present at the static transition temperatureTs ~which is
equal toTd).
vi

rd

in

tat
-

As a curiosity~for which we have no analytical deriva
tion! we note that this lower bound~for the caseK51)
seems to coincide with the exact DS transition tempera
for the fully asymmetric casea50 ~see Sec. III C!.

On the other hand, the upper bound can be obtained v
linear stability analysis of Eqs.~21! and~23! around the HT
solution. Writing Qd(t)512e f (t) and Q(t,s)5C(t2s)
2eg(t,s) with f (0)51 andg(t,t)5 f (t) yields for Eq.~23!
in the larget limit

1

2

] f

]t
52S T@12K8~1!#2

pb

2 D f 2bp

3E
0

t

duCp21~ t2u!
]g~ t,u!

]u
. ~B9!

Finally, the inequality]g(t,u)/]u>0 yields the upper
bound.
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