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We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes
relaxation processes in glasses in the mean-field approximation which are known to be characterized by the
presence of an exponentially large number of metastable states. For systems evolving under identical but
arbitrarily correlated noises, we demonstrate that there exists a critical tempéeFgtufgich separates two
different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit.
This transition exists for generic noise correlations such that the zero damage solution is stable at high
temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the
type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order
parameter, such &$) independence of the initial damag@; independence of the class of initial condition;
and(iii ) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For
maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent
number of saddle point@s well as metastable stakés the thermodynamic limit consequence of the rugged-
ness of the free-energy landscape which characterizes the glassy state. These results are then compared to
extensive numerical simulations of a mean-field glass m@tel Bernasconi modelvith Monte Carlo heat-
bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage
spreading an interesting tool to probe the ruggedness of the configurational landscape.
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I. INTRODUCTION step of replica symmetry breakini§]. In the mean-field ap-
proach,T4 is the temperature where configurational entropy
The theoretical understanding of the dynamical behaviorvanishegthe so-called Kauzmann temperafuaed also rep-
of glasses is a longstanding problem in statistical physic§ica symmetry breaks. In this paper we will denote the glass
which has recently revealed new aspects of the underlyingansition both byT, andT; (in this last case the subscript
mechanism responsible for the glass transifitr3]. The stands for statigs The other approach relies on mode-
dynamical behavior of glasses is characterized by the fagioupling theory and describes the glass transition as a
growth of the characteristic time of relaxation processes irstrongly nonlinear dynamical effect which induces long-term
the vicinity of the glass temperatufg . This increase of the memory properties in the correlation and response functions
relaxation time, up to fifteen orders of magnitude in a relal6]: A consequence of these effects is the existence of a

tively small range of temperatures, is usually referred to a?ynamical singularityry where ergodicity breaks and corre-

the viscosity anomaly. The first consideration of this ation functions do not decay to zero. This dynamical transi-

anomaly, the Vogel-Tamman-Fulcher law, goes back to thé'onde IS al_consequen(_:e of the rr}er?n-flﬁld ﬁharacter of the
1920s. However, there is still no satisfying and generallymo e-coupling _approximation. Althoug these two ap-
‘ ! proaches are apparently different, they have in common their

accepted theoretical explanation for this singular behavior. ean-field character.
. Currently, there are two main approaches to understand" One of the most distinct features of glasses is the presence
ing the glass-transition problem. One approdttte Adam- ¢ 5 complex free-energy landscape. The viscosity anomaly
Gibbs-DiMarzio theonf4]) focuses on thermodynamic con- js 4 signature of activated dynamics due to the existence of a
siderations and proposes the existence of the ideal g|a$§gged free-energy landscape with several maxima and
transitionTy. This is a singularity where the configurational minima separated by energy barriers and saddle points which
entropy of the undercooled liquid vanishes Bf and a connect them. One could think that the existence of this type
second-order phase transition characterized by a finite jumgf landscape is a necessary ingredient to finding the previous
in the specific heat occurs. This scenario has been rediscogeenario. Well known results on the number of metastable
ered in the framework of mean-field spin glasses with onestates in spin glasses reveal that the interesting spin-glass
behavior emerges in systems with an exponential number of
stateq 7]. For instance, models such as the sphenespin
*Electronic address: heerema@phys.uva.nl interactions spin glas@vith p>2), the Isingp-spin interac-
"Electronic address: ritort@ffn.ub.es tions spin glasgwith p>3), the Edwards-Anderson model,
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and Potts glasses are characterized by an exponentially lar§22] and the one-dimensional Ising modi@B,24]. The ques-
number of metastable states. All these models are charactdgien of the nonuniversality of damage spreading has also
ized by the presence of quenched disorder, which facilitatebeen emphasized in the context of nonequilibrium phenom-
analytical treatments always at the level of mean-fieldena such as domain growth by Graham, Hernandez-Garcia,
theory. In the absence of disorder, similar results are foundnd Gran{25].
[8—10] although exact calculations for the number of meta- So the question remains whether this transition has a truly
stable states turn out to be more difficult. It is largely be-physical meaning or not. In this direction, Hinrichsen and
lieved that an exponential number of metastable states is Romany tried to give a precise dynamic-independent defini-
necessary condition for the existence of replica symmetryion for DS. To define a damage spreading phase, one must
breaking. consider all possible dynamical procedures which lead the
There have also been recent studies of exactly solvablgystem to thermal equilibrium. For discrete systems with a
models which, in the absence of quenched disorder, also esmall number of nearest neighbors, this definition can be
hibit glassy behaviof11,12 (and, in particular, activated implemented but not in the general ca$er instance, con-
behavior of the relaxation timeThese models are character- tinuous systemswhere an infinity of dynamical rules can
ized by a small number of metastable states. What causegways be implemented.
them to display glassy behavior is the presence of entropy The purpose of the present work is to present a detailed
barriers, which leads to slow dynamics even in the absencstudy of the DS in a model with a rugged free-energy land-
of metastability. Consequently, one is tempted to concludacape with an exponentially large number of metastable
that a rugged free-energy landscape with a large number aftates. In particular, we will study the DS in thespin
metastable states is not essential to finding glassy behaviaspherical spin glass, an exactly solvable model for the glass
but the presence of an enormous number of flat directions itransition which is described by the Adam-Gibbs-DiMarzio
phase space is essential. scenario and whose dynamics is described by the mode-
A similar conclusion was reached in the study of thecoupling equations. To be more specific, we will study dam-
Sherrington-Kirkpatrick spherical spin glag43]. It was age spreading for Langevin dynamics, the simplest dynamics
found that an enormous number of zero modes are respomvhich is continuous in time and satisfies ergodicity and de-
sible for the slow dynamics found in this model. Although tailed balance. It must be stressed that although there are
that model does not have an exponential large number ofery few works on the DS problem using this dynamics
metastable states and does not show activated dynamics,(8tariolo[26] and Grahanet al. [25]), the majority of theo-
displays glassy behavior at low temperatures due to the exetical works in DS have considered discrete dynangics
istence of flat directions around the metastable s{dték discrete systems
A possible way to investigate the existence of flat direc- We suggest that damage spreading can be used as a dy-
tions in a rugged free-energy landscape is the study of damramical method to show the existence of a large number of
age spreading. Damage spreading consists in the study of tlilat directions or saddle points in phase space. Also, the ex-
dynamical evolution of the distancB(t) (to be defined istence of a dynamical transition will be shown. Although we
later) between two system configurations evolving under thewill check that damage spreading transitions are strictly non-
same dynamical rules and differing only in their initial con- universal, it is still possible to use the asymptotic distance to
dition (the so-called initial damage define an order parameter for this dynamical transition. We
The study of the damage spreading problémereafter also anticipate that by considering correlations between the
referred to as DBwas proposed by Kaufmann in the 1960s noises of the two evolving systems, an infinity of dynamical
for the study of the propagation of mutations in the genotyperansitions can be obtained. For Langevin dynamics, the case
in the biological growth of individual§15], that is, how a of maximally correlated noises has a particularly interesting
small perturbation in the genotygmicroscopic levelmani-  physical meaning.
fests itself in the long-time term in the phenotyfmacro- Because our study considers the DS in the mode-coupling
scopic level. Since then, such a problem has received contheory for glasses, it is expected to be generally valid for
siderable attention in the framework of statistical physicsLangevin dynamics in systems with a rugged free-energy
particularly in the middle 1980E16]. Almost fifteen years landscape such as realistic glasses. Although the DS transi-
ago it was realized that DS could be a powerful tool to dis-tion is nonuniversal and depends on different dynamical
tinguish different dynamical regimes in disordered systemstules (or cross correlations between the stochastic nhises
such as spin glass¢$7,18. Variants of damage spreading we believe that this transition gives interesting information
phenomena have also been proposed to numerically invesion the free-energy landscape and could be investigated in
gate equilibrium correlation functions in generic statisticalstructural glasses. Being a signature of the existence of
systemg19] and lattice gauge theori¢20,21]. However, the saddle points in phase spacee., points which separate
initial enthusiasm and exciting perspectives in the researcbtable and unstable phase-space directjoihss natural to
of this problem decreased in subsequent years after realizirgkpect that real glasses are good systems to manifest these
that this transition was dependent on the type of dynamiceffects. This consideration makes our results more attractive
used. So the existence of the DS transition could have nothfrom the viewpoint of numerical simulations of realistic
ing to do with the presence of a thermodynamic phase tranglasseq27]. Nevertheless, we point out to the reader that
sition. Physicists then started to systematically investigatsome of our claims in this paper are not generally proven
the DS in well known ordered systems such as the Isingsuch as the connections between damage spreading transi-
model. In particular, much work has been devoted to thaions and saddle points in phase spaaed the present re-
study of the one-dimensional Domany-Kinzel automatonsearch should be seen as a first step toward a better under-
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standing of some of these questions. b S / /

The contents of the paper are as follows. The second sec- Q=R+, G=FC)+m, @
tion is devoted to general considerations and definitions ) ) )
about the DS problem. Section Il demonstrates the existencéhereF(C) is an external forcewhich can eventually derive
of a dynamical transitiorT, for DS. Section Il is divided from a potential, although this is not a necessary condition
into three subsections. Section Il A describes the modeand 7;,7; are external white noises uncorrelated in time
coupling equations for thp-spin spherical spin glass, start- With variance 2. Suppose now we makgC’ evolve fol-
ing from a random initial configuration for different correla- lowing Eg. (4) with the samerealization of the stochastic
tions between the noises. This subsection also describes th@ise and starting from two different initial conditions. We
different numerical methods we have used to analyze thére thinking of noises that are statistically identical, which
mode-coupling equations for different cases. Section Il Bcoincide at equal time§.e., 7= 7;{) when(C;=C; . So we
analyzes the DS problem starting from an equilibrium initialchoose ( #%;(t) 7;(s))=(#/ (t) ni’(s))=2T5(t—s) 8 and
condition. Section IlIC analyzes the DS in the presence otross correlations(7;(t) 7| (s))=2TK(C;,C) 6(t—9) §;; ,
asymmetric interactions. Section IV presents an analysis ahereK is a generic function which satisfies the properties
the damage spreading for glassy models with discrete dyk(C,C)=1 and—1<K(C,C’')<1,VC,C'. In the presence of
namics. Concretely, we study the DS transition in the Berstochastic noise, agaid(t)=0 if D(0)=0. Note that the
nasconi model with heat-bath dynamics. Finally, Sec. V prerole of the correlations is irrelevant for the evolution of the
sents the conclusions. Two Appendixes are devoted to somadependent system@&C’ but crucial for their correlations

technical issues. and the equal time distance, H8). Different choices of the
cross correlatioriC for Langevin dynamics are the analog of
Il. GENERAL CONSIDERATIONS ABOUT DS different dynamical rules in discrete dynamics such as Monte

Carlo(these rules could be Glauber, Metropolis, or heat bath,
In the most general framework, the DS problem can beamong others

stated as follows. Consider a dynamical system described by Now we are interested in the asymptotic long-time dis-
a generic variable which denotes a given configgrgtipn. tance, Eq(3). Quite generallyD.. will be a function of the
Suppose that the system evolves under a deterministic dyyne of initial condition(for instance, random or stationayy
namical ruleF. For the sake of simplicity we take a continu- {,q initial distanceD,, the intensity of the noisd&, and the
ous time dynamics. The equation of motion reads cross correlatoiC. For the case in whichy= 7 (K=1),
. we will find that there is a dynamical phase transition at a
C=F(C). (D) finite temperaturd, below which the asymptotic distance is
N ] ) . different from zero. The origin of this dynamical transition
In addition to the configuratiod and the dynamical rule cgn pe explained quite simply. In E@) there is competition
F, we also need to define a distance in the phase space gktween two different terms. On the one hand,ftreeterm
configurations(for instance, a Hamming distance for spin F(C,) propagates the erréor damaggin the initial configu-
systems This distanceD needs to satisfy the usual good ration. Instead, the noise, acts in the same way in both
properties, in particulab(C;,C;)=0 at all times. Suppose systems smearing out possible differences in the initial con-
that we take two initial configuration,Cq with initial dis-  dition. In other words, the stochastic noise is the synchroniz-
tanceDy=D(Cy,Cy) and consider the generic equal timesing force which tries to cause both evolving configurations to
distance, merge in time while the force term ampilifies the initial dam-
age playing the role of noise This argument only applies if
D(t)=D(¢,C), (20 K=1. In the general case-1<K<1 the noise does not
necessarily synchronize both systems and its effect is similar
whereC(t) and(C’(t) start from configuration§, andCj at  to that of theforce In this case, the asymptotic distance will
time 0 and evolve under treame dynamical rule FEq. (1). also be a function of the cross correlati@n (i.e., the dy-
Our main interest is to investigate the value of thenamical rule.

asymptotic long-time distande., , To understand better the role of the cross correlation
let us consider as a starting point the simple problem of a
D.=IlimD(t). (3)  particle which moves inside a harmonic potenth(x)
t—oe = 1x2 following a Langevin dynamics,

Note that D(t)=0 if Dy=0. Quite generally the
asymptotic distanc® ., will be a function of the type of
initial configurationsCy,Cq as well as their initial distance at X
Dy. The dependence &, on those parameters is governed
by the dynamical properties of the deterministic rule, such asvhere 7(t) is a stochastic white noise of varianc&.2The
chaotic properties and Lyapunov exponents. configurationC corresponds to the positionof the particle

One could extend this general problem to stochastic sysand we define a distance between two configuratiggsas
tems, i.e., dynamical systems which evolve in the presencB(x,y)=(x—y)?. Take now two identical particles,y and
of a stochastic noise. Let us consider two systems describadake them follow Eq.(5) both with the same stochastic
by the configuration variable ,C{ at timet, which evolve  noisesz,n’ and cross correlatioki(x,y). For simplicity, we
following a Langevin dynamics, will take anx,y symmetric cross correlatioki= (D). If ()

ox(t) B dV(X)

+7(1), ®)
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stands for the average over dynamical histories, then the digffect of the noise is, at very long times, the dominant effect.
tance D(t) =([x(t)—y(t)]?) satisfies the following equa- If they start in different wells, the conclusion is also the same

tion: because there is always a finite probability that a strong fluc-
tuation in the stochastic noise drives both particles in the

aD(t) same well. This conclusion, which holds for maximal cross

S —2D(t)+4T[1-K(D)]. (6) correlationskC=1, can be generalized for any potential with

a finite number of wells separated Hinite energy barriers.
This equation has several stationary solutions dependin@here is always a finite probability that a fluctuation of the
on K. ObviouslyD=0 is a stationary solutiofiremember noise can take both particles into the same well and hereafter
K(0)=1], which implies £'(0)<0. Only if —1/2T  the distanceD(t) between both configurations would tend
<K’(0)<0 is the solutiorD =0 stable. On the other hand, exponentially fast to zero. Obviously this argument applies
for £'(0)<—1/2T the solutionD =0 is unstable and (t) only for finite barriers, finite wells, as well as finite tempera-
converges to another stationary solutiowhich can be ture. At zero temperature the synchronizing effect of the sto-
shown to be always stableSo, there is a dynamical transi- chastic noise is absent and the asymptotic distance may not
tion atT,=1/2|K’(0)|], where the asymptotic distan&e, vanish and show a nontrivial dependence on the initial dis-
changes from zeroT(<T;) to D,,=D*, whereD* satisfies tance.
the identityD* =2T[1—-/K(D*)]. The asymptotic distance From the discussion above, it follows that the role of the
is then given byD ., =lim,_..D(t)=D*®(T* —T), indepen- thermodynamic limitN—o in the DS is also crucial. In this
dent of the value of the initial distand®, between the two limit the height of the barriers or the number of wefi®.,
particles. So wherkC’ (0) does not vanish, already for the metastable statgsnay diverge. The first case happens, for
simple harmonic oscillator there is more than one stationarynstance, in the ferromagnetic Ising model where the time-
solution. In other words, the effect of the cross-correlationreversal symmetry of the Hamiltonian is broken bel®w.
term /(D) manifests itself through the appearance of moreThe second case is realized in spin-glass models where the
than one stationary solution. As the reader can imagine, theumber of metastable states is exponentially large iNitm
discussion turns out to be more difficult for other more com-both cases, a finite fluctuation of the stochastic n¢&sen
plex potentials. with J=1) may not synchronize the system &bd can be
Although this dependence of the asymptotic distabge a nontrivial function of both the temperature and the initial
on the cross correlatiok is an intrinsic property of damage distance. To be more precis®,. is defined as follows:
spreading, it does not necessarily imply that this kind of
dynamical phase transition does not give any relevant infor- D,=lim lim D(t). @)
mation on the physical properties of the system. What this t—ooN—o
really means is that the results concerning DS may depend
on particular forms of the cross-correlation function between Note that forN finite, we expect lim,..D(t)=0, so it is
the noisegsimilarly to what happens for discrete dynamics, crucial that the thermodynamic limli— is taken before
where different dynamical rules yield different respltdev-  the infinite-time limit. Taking the limits in reverse order will
ertheless, generic results for DS may be obtained for correlaesult inD.. always vanishing at finite temperature. Note that
tors which satisfy quite general conditiofas we will see  this discussion applies only when tBe=0 stationary solu-
laten. tion is stable. This is indeed satisfied fio.=1 but may also
The major part of the work in this paper will be devoted be fulfilled in more general situations witi<1 andD=0
to the study of maximal cross correlations, i.£+=1, al-  still being a stationary stable solution.
though the results can be extrapolated to more generic cross There is another property of the caSe=1 which makes
correlators. For Langevin dynamics, the cdse 1 is par- it particularly interesting. Up to now our discussion was lim-
ticularly appealing for two reasons. ited to different mathematical properties of damage spread-
On the one hand, it followed from the simple example ofing transitions. But what about their physical significance?
the harmonic oscillator thatC=1 implies £'=0 every-  Suppose we take two generic statistical systems described by
where. Below, we will argue that this observation holds alsahe set of variable$x; ,y;}, i=1, ... N which evolve under
for more complex potentials. More specifically, we arguethe Langevin dynamics,
that in the caseC=1 there is a single stationary solution
D..=0 for any finite system and for any confining potential X Vi
which diverges in the boundarieg.e., V(x)—o~ when —=F{x(OD+n, —-
. - . L . at ot
x— * o], Clearly, the harmonic oscillator is a trivial case in

which the asymptotic distance always goes to zero indepen- , . : :
dent of the temperatur® and of how farx is from y at t where, as beforeyp, ' are white noises with cross correla-

—0. In order to justify our assertion, let us take a morelion & which we will suppose is a generic function of the
complex potential of two wells separated by a finite barrier, Famming distanc®. Let us suppose that the force derives
for instance a particle moving inside a harmonic plus a quarl’oM & potentialF;({x}) = —dV({x})/dx; . If we define the
tic term potentialV(x) = — 12+ (\/4)x*. In this case the €W \{arlableszi=xi—yi, we may obtain, subtracting both
potential has two wells located at= + 1/y/x. If two systems equations(g),

descr.ibed by the variablesy start to. evolve within the same a7

well (i.e.,x,y>0 orx,y<0), they will always tend to finish i

in th(e sam)é final co)r/1figu)rati0r)1/ becauseythe synchronizing H_Fi({y(t)+z(t)})_Fi({y(t)})+Vi(t)’ ©

=Fi{y®Ob+n., (B
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wherev is a stochastic white noise of zero mean and vari+egime in the mean-field approximation and represent the
ance &[1—K(x,y)]. The solutionz;=0 is a stationary so- dynamical behavior of systems with an exponentially large
lution of Eq. (9). A linear stability analysis around that so- number of metastable states.
lution yields the equation
Il. DAMAGE SPREADING IN MODE-COUPLING

THEORY

&Zi
—=H;; )}z (t)+vi(t), 10
Jt s ODZ O+ (19 Mode-coupling theory describes relaxational processes in

glasses. In short, mode-coupling theory corresponds to an
where H;;(y)=—3?V({y})/dy;dy; is the Hessian matrix exact resummation of an infinite series of diagrams in the
evaIuateoJI at the point(, . .. yn). The solutionz,=0, cor-  hydrodynamic theories. The kinds of diagrams that the
responding to the vanishing Hamming distaride=0, is ~ Mode-coupling approximation selects are those which pre-
stable if the Hessian is negative definite. The presence of tHgiSely survive in the mean-field limit of some realistic mod-
stochastic noise’ in Eq. (10) decreases the stability of the €IS- S0 a way to obtain mode-coupling equations is by con-
D=0 solution. Becaus&<1, we conclude that the region sidering exact dynamical theories for mean-field disordered
where theD =0 stationary solution is maximally stable cor- SPin-glass model5]. Spherical spins allow for an exact clo-
responds to the case whéf=1 becauser vanishes. S&  Sure of the dynamical equations in terms of correlation and
=1 is the cross correlation for which the stationary solutionf®SPONse functionéas was shown by Crisanti, Horner, and
D=0 is maximally stable. Fok’=1, Eq. (10) is quite ap- _Sommers{zg] in the_p—mteractlon spherical spin gla)s:tead-
pealing and shows the physical origin of the DS transition!Nd 0 many analytical results. Although spherical spins are
An instability of the D=0 solution may appear when an unrealistic(compared to Ising sp@,sthey cfapture the essen-
eigenvalue of the Hessian matri;; vanishes. This corre- tial aspects of the dynamics, which is universally _found ina
sponds to a saddle point of the potential landscdpy}).  'arge variety of models. Whereas fpr=2 the physical de-
Due to ergodicity, thex,y systems sample all the possible scription of the model is quite ;lmp[&3], the behavior turns
configurations. So the asymptotic distande is a direct Ut 0 be much more interesting fpr>2, where an expo-
measure of the stability of thB =0 solution along all pos- nentl_ally large number of metas?a_\ble states are p_re{§®]1t
sible configurationgweighted with their corresponding sta- In this type of r_nodel, metastability plays a very Important
tistical Boltzmann weight In other words, an instability in 0/ SO, according to the arguments of the preceding section,

the solutionD, =0 and the existence of a DS transition are Ve expect to get interesting results for the DS transition.

indications of the presence of saddle points in the potentiaIlzorthcomlng subsections analyze this transition in detail. A

landscape of systemsy. If <1 the temperature of the DS good review of the main results obtained in this model has
transition will depend on the particular form &f [actually been collected and reported by Barfat].

we will see later, in the study of mode-coupling equations, o _ _

that it depends on the valu€ (D =0)]. Furthermore, due to A. Random initial configuration

the destabilizing effect of the noise, the damage spreading This section is devoted to the study of the DS problem in
transition will increase wheilC decreases, sf=1 yields  the mode-coupling equations. It describes some preliminary
the lowest damage spreading transition temperature amongork already presented if82], but here we present more
all possible cross correlatiort§(D) for which theD=0 so-  extended research on the problem, including asymmetry, a
lution is stable. In the presence of fixed points for thedifferent class of initial conditions, as well as general cross
asymptotic distance other th@=0, the stationary solution correlations of the noises. The simplest solvable model,
D..=0 may become unstable because the noisis too  whose dynamics is described by the off-equilibrium mode-
strong(similarly to what happens in the harmonic-oscillator coupling equations, is the spherigaspin-glass model intro-
example and damage spreading no longer shows the exisduced by Crisanti, Horner, and Sommé¢pg]. In this case,
tence of saddle points. In other words, saddle points may bghe configurations are described Bycontinuous spin vari-
observedonly by studying thel dependence of the basin of ables{o;;1<i<N} which satisfy the spherical global con-
attraction of theQ=0 stationary solution supposing it stable stramtzi“:lgf: N.

at very high temperaturefree casg Note that a similar The Langevin dynamics of the model is given by
argument has already been presented by Loreto, Serva, and

Vulpiani [28] for systems described by a single variak{€) do;

in a potential fieldV(x). — —Filo) —noit i, (11

We have argued above that for Langevin dynamics the
maximal cross correlatdC=1 is a special case, resulting in whereF; is the force acting on the spim, due to the inter-
a simplification of the problem. We emphasize that in otheraction with the rest of the spins,
dynamical systems it is unclear whether or not the maximal

cross correlatokC=1 plays the same role in the context of 1 Jzia in
damage spreading. This is due to the complexity of cross T (p—1)! (g . io) [ Ti,Tig iy
correlations. (12)

In the next section, we will analyze in detail the DS dy-
namics in the mode-coupling theory of glasses. As has been The termu in Eq. (12) is a Lagrange multiplier which
previously said, these equations describe the relaxation pr@nsures that the spherical constraint is satisfied at all times
cesses and dynamics in glasges the undercooled liquid and the noisey satisfies the fluctuation-dissipation relation
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(7i(t) ;(s))=2T5(t—s) 6 , where(- - -) denotes the noise random initial configuration§.e., equilibrium configurations
average. TheJ'z HETRRRE b are quenched random variables at infinite temperatujewith initial overlapQ(0). Thecase of
with zero mean and variangg/(2NP~1). The interactions Initial equilibrium configurations will be analyzed in the next
le gy b are symmetrlc under the interchange of the su- subsection. The different set of correlation functions which

per|ndlce32 i3,...,lpbutinthe most general case may not describe the dynamics of the system is given by

be symmetric under the exchange of the subind@ith a

generic  superindex. ~So, for instanced2"'@"***'p ct, s)—(l/N)Z (o) ai(S))= (1/N)2 (1) (9)),
#J;f """ '». Most of the studies undertaken in this model 16

concentrate on the symmetric case whife® "¢ is sym-
metric under the permutation of all possible indices. This
case is particularly interesting because there exists an energy R(t,s)= (1/N)2 < _(1/ )2 (i) (17)
function such that the forde; derives from a Hamiltonian or i=1 &hT

potential functionF; = — dH/do; so there exists a stationary

state described by a Boltzmann-Gibbs distribution. Due to

the mean-field character of the model, the dynamical equa- Q(t,s)= (1/N)2 (oi(t)7i(s)), (18)
tions depend on the statistical properties of the force only

through its correlations. On the other hand, the statistical

properties of the forcé; depend on the correlations of the where() denotes the average over dynamical histories and
J’s. The simplest cas[e33] corresponds to correlations of the ho h™ are fields coupled to the sping , 7, respectively. In

type what follows we take the conventidres. The previous cor-
relation functions satisfy the boundary conditio@gt,t)

J2Ts g g Tk T, p! 13 =1, R(s,1)=0, lim_,(+R(t,s)=1 while the two-replica
i Ik NP1 overlap Q(t,s) defines the equal-time overlafq(t)

=Q(t,t), which yields the Hamming distance at equal times
for everyk. So if a=1, we recover the symmetric case, or damageD(t) through the relatior(15). Following stan-
while for =0, we obtain the asymmetric case. Equationdard functional method$34,31, it is possible to write a

(13) implies the following statistical properties for the force closed set of equations for the previous correlation functions.
F; [33]: Some details of the computation are shown in Appendix A.

The final result is

FoDF (D=8, (@) + (1= 8t (@)~ cits)
(14) T+M(t)C(t,S)

wheref(q)=qP/2. In the asymmetric case=0 the forces p -1 p(p—1)
are completely uncorrelated at different sites. Hence(Et). :Efo duR(s,u)CP(tLu)+a—7
becomes uncorrelated and the problem can be partially
solved. This particular case will be analyzed later. kor t b2
<1, there does not exist an energy functigrihat drives the X foduR(t,u)C(s,u)C (tu), (19
system to thermal equilibrium and the fluctuation-dissipation
theorem is not fulfilled.
We define the overlap between two configurations of the/R(t;S) + u(DR(LS) = 8(t—5) + a p(p—1)
spins o, 7 by the relationQ= (1/N)E _,0;7; SO the Ham- at 2
ming distance between these two configurations is

_1-Q
D=— (15) 0

X ftduR(t,u)R(u,s)Cp‘z(t,u),

in such a way that identical configurations have zero distanc
and opposite configurations have maximal distabcel.

S0(t,s)

+u(H)Q(t,s)

Then we consider two copies of the systém ,7;} which ot
evolve under the same statistical noise, Ef) with cross b (s p(p—1)
correlation /C but with different initial conditions. We as- :—f duR(s,u)QP Y(t,u)+ & >

0

sume the cross correlator to be a function of the Hamming
distanceD or the overlag. As a consequence, other choices ¢
for the cross correlatdiin general this could depend on both X f duR(t,u)Q(u,s)CP 2(t,u), (22)
configurations’,C') may change our results obtained below 0

for K(Q)+#1. The major part, however, is concerned with

K=1 (we will explain why and will not be adversely af- while the Lagrange multiplief.(t) and the diagonal corre-
fected by this. In this section we restrict our attention tolation functionQy(t) obey the equations
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Q* 1 Q Q*=1
Q
FIG. 1. Flow diagrams and fixed points for a generic correlator

K at infinite temperatureQ* and 1 are stable fixed points and 0
and the fixed point betwee@* and 1 are unstable.

FIG. 2. Flow diagram forlC=1.

<1. A dynamical flow diagram can be constructed where the
region of stability is indicated by different arrows. Regions
where (Q)>Q satisfy dQq/dt>0 and regions where
p[1+ a(p_l)]JtduR(t W) CPL(t,u) K(Q)<Q satisfydQq/9t<0. So in this case one may depict
2 0 ' Y a diagram of all possible high-temperature dynamical phases
(220  which separate regions with different fixed-point attractors.
Damage spreading transitions will strongly depend on the
1 9Qq(t) type of cross correlator. The ca&g=1 is shown in Fig. 2,
2 ot +pr(DQu(t) where there is a unique attractor@t1 at very high tem-
peratures. This analysis of the different dynamical phases is
p(t _ valid only at very high temperatures. As soon as the tempera-
:TK(Qd(t)HELdURﬂ’U)Qp (tw ture is finite and starts to decrease, some of the stable fixed
points may become unstable and other unstable points may
become stable. The damage spreading transition corresponds
to the appearance of an instability in one of these high-
temperature fixed points. As we will see below, the damage
Note that the cross correlatidf(Qg4) only enters explic- SPreading transition temperature may be different for differ-
itly through Eq.(23), so it does not affect the evolution of a ent fixed points since it depends on the valuekd{Q*),
single replica. The whole set of equations is quite involvedWhich may vary for different fixed point@*.
For the correlationC and response functior®, Egs. (19), In what follows, most of our discussion will concentrate
(20), and (22), several results are known, in particular their On the particularly interesting ca&e= 1, which has a unique
behavior in the equilibrium regim@vhere time-translational fixed point atQ*=1. Although the analysis may be ex-
invariance is satisfied and the fluctuation-dissipation theorertended to other fixed points, this case is also the most inter-
is obeyed as well as in the nonstationary aging regifd]. esting according to our preceding discussion in Sec. Il. As
In what follows we analyze different dynamical fixed we will check below, this case also defines the lowest dam-

points of Eq.(23) and show the existence of a dynamical 2ge spreading temperatufg among all the possible cross
instability in the DS equations. correlatorskC for which the fixed poinQ* =1 is stable.

p(t)=T+

-1
+ap(pT)ftduR(t,u)Q(t,u)cp—z(t,u). (23
0

B. Fixed-point analysis for a generic cross correlationc 1. Existence of | : Lower and upper bound fora=1

Different types of dynamical regimes may be distin- A first glance at Eqs(21) and(23) reveals that the over-
guished depending on the cross correldfoOur analysis is 1ap Q(t,s) and its diagonal parQ,(t) are coupled to each
similar to that performed in Sec. Il for the simple harmonic other through the correlatio@(t,s) and response function
oscillator. Different fixed points for the dynamical equationsR(t,s). The trivial solutionQ(t,s)=C(t,s) and Q4(t)=1
can be analyzed from E@23). If the temperaturd is very corresponds to the case where the initial conditions are the
large, then Eq(23) becomes same,Qq4(0)=1, and the distanc®(t)=0 for all times.

1 504(t) This high-temperature fixed poithiereafter we will denote it
d by HT) corresponds t®..=0 and is asymptotically reached
> =T[K(Qq(1))—Qq()], (24) by the dynamics for high enough temperatures under certain
conditions of the cross correlatdt (see the preceding dis-
where we have used=T using Eq.(22). Equation(24) can  cussion. In what follows, we concentrate our attention on
be exactly solved. The stationary solutions are given bythe casew=1, where there is a stationary solution for R,
K(Q)=Q. In Fig. 1 we analyze the different solutions for a and u corresponding to the equilibrium measure. Numerical
generickC. We find that there are different stationary solu- integration of those equatioiisee laterreveals that the typi-
tions corresponding to all possible intersections of the twacal time needed to reach that solution grows if temperature
curves[ Q andK(Q)]. A linear stability analysis of Eq24)  decreases. At a given temperatyvehich we identify with
reveals that stationary solutior@@* are stable ifK'(Q*) To) there is an instability in the dynamical equatiof2y)
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and (23) and the asymptotic solution differs from the HT 1
one. We did not succeed in finding an explicit expression for os|
T, but we have been able to show its existence and find ¢ 06 | o
lower and upper bound for its valusee Appendix R B A
04} /,"—#’_ ] I
02/ T e 1
\ /p—zs To<1\/ L (25) S o /7
2[1-K'(1)] 2[1-K'(1)] & /
02} / ]
Note that for the particular cage=2 andK’(1)=0, the 04r /
inequality (25) yields To=<1. Taking into account tha25) o6}/
was derived under the assumptidpg=Ts=1 (i.e., we sup- 08 /
posed we were in the high-temperature regintkis is not /

inconsistent with the resuli,=1 derived by Stariold26]. 19 1 3 3 4 5 3 2
Note that both the lower and upper bounds Tgrdiverge t
when K’ (1)=1. This limiting value sets a condition on the FIG. 3. Qq(t) for p=3 (a=1,=1) at temperature¥=0.1,
possible cross correlatioy Q), where theQ=1 solutionis 0.5 (from bottom to top at large timgsor three different values of
stable.Only those functiongC(Q) for which £’ (1)<<1 are the initial overlapQ4(0)=—1, 0, 0.5 as a function of time. The
those for whichQ=1 is linearly stable at very high tempera- continuous lines are the numerical integrations with time stép
tures. According to our discussion in Sec. Il, the appearance 0.01.
of DS in this case is related to the presence of a divergent
number of saddle points which mark the onset of a dynami- An alternative approach to obtain the long-time behavior
cal instability. BecauséC’(1)<O0 [according to Eq(25)], of time-dependent variables with high accuracy was intro-
the limiting casek’(1)=0 [for instance, iflC(Q)=1] sets  duced by Franz, Marinari, and Parj§i5] to study the long-
the lowest value of the temperatufg where DS appears. time behavior of the energy. Here we extend their method to
This is important because it means that whatever correlatctnalyze the asymptotic behavior BX(t). In their method
K we consider(such that the solutio®=1 is stable for they first decompose the time-dependent variables in a series
high-enough temperaturgs damage spreads below expansion before extrapolating for large times with the help
=/(p—2)/2. Note that in the general cape3 the dynami-  Of Padeapproximants. For the DS prob_lem, it leads to a
cal instability temperaturd, stays well above any relevant Taylor expansion of the correlation functi@ the response
critical temperatureTs or T). functionR, and the overlaj®:
In the next section we discuss the behavior of the o w o w
asymptotic distance as a function of temperature. For sim- _ Kol . Ko
plicity, our analysis is restricted to the cae=1 for which C(t’s)_g‘o |=20 Cut’s, R(t’s)_g‘o Z‘o Fut’s,
most of the numerical work has been done. We will see that

D.., for a given specification of the correlat&l, seems in- B i i el (26)
deed to play the role of a dynamical order parameter in DS Q(t’s)_k:O & Qs
transitions.

wherecgy=rgo=1 sinceC(t,t)=1 and lim_, +R(t,s)=1
2. Numerical analysis [36]. Moreover, u(t) and the diagonal correlation function

In general it is too complicated to obtain an analytical Qa(t) can be written as
solution of the set of equationd9)—(23). We shall devote - o Kk
this section to a numerical study of Eq4.9)—(23) for the _ K _ K
DS problem. Although in some particular cases an exact so- “(t)_go s Qd(t)_g‘o |:Eo et (27)
lution can be foundsee below, this is not the general situ-
ation. whereuy=T andqqg is a parameter identical to the value of
First, one could investigate the long-time limit@f vima Qg att=0. Assuming alway$>s, the dynamical equations
numerical integration of the set of equatio%9)—(23). (199—(23) can be transformed into recurrence relations for
However, the CPU time and the memory needed to do thishe coefficients of the expansion. To this end one first sub-
grow very fast with time because of the integrals occurring institutes Eqgs.(26) and (27) into Egs. (19)—(23) under the
the equations. Thus the spreading of damage at large timesnstraintt>s, then calculates the integrals, and finally re-
can only be obtained from the dynamical equations doingarranges terms.
some extrapolations. This enlarges the error in the estimate Numerically, the coefficients of the expansion are now
of D..,, especially in cases whef@y(t) is a nonmonotonic readily obtained. In the case in whigh=3, the first 80 co-
function of time. In Fig. 3 we show how the overl&y(t) efficients of the expansions can be computed on a RISC
depends on the initial condition. Although direct extrapola-workstation in a few hours. However, for larger valuesof
tions from numerical data of the value of the asymptoticthe computational effort is larger.
damage are difficult, the figure is not incompatible with an  To ensure high accuracy of the asymptotic extrapolation,
independence ob,, on the initial condition. Another more one needs a large radius of convergence of the series expan-
powerful technique is necessary to corroborate this result. sion. A good method to enlarge the radius of convergence of
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T FIG. 5. Asymptotic distancd®.. for p=4 (a¢=1K=1) ob-

FIG. 4. Asymptotic distanc®., for p=3 (a=1/=1) ob- tained from the Padanalysis of the series expansions for different

tained from the Padanalysis of the series expansions for different INitial conditions Do=1 (crosses Do=0.5 (triangles, Do=0.25
initial conditions D=1 (circles, Dy=0.5 (triangles, D,=0.25  (Stars. Typical error bars are shown for the cd3g=0.5.
(stars. Typical error bars are shown for the last case.
=4, the asymptotic distance is independent of the initial dis-
a series expansion is to use Paagproximants. In this tance. This is in contrast with the case 2, where a depen-
method one introduces two polynomials,(t) andV\(t) of  dence on the initial distance is found for the low-temperature
degree at most andk, respectively. The goal is to choose region[26]. We must point out that we have obtained the
Un(t) and V,(t) for given m and k such thatQq(t) and  same results, as in cases-3,4, for a model which is a
Un(t)/V(t) are equal at=0 and have as many equal de- combination of thep=2 and p=4 spherical spin-glass
rivatives as possible @t=0. model[37]. For a certain range of parameters, this model is
The computations have been performed for the symmetrignown to have a continuous phase transition with continuous
casea=1 andK=1. Moreover, three different initial con- replica symmetry breaking and without collapse of the con-
ditions have been considere@) anticorrelated random ini- figurational entropy. So the first-order character of the spin-
tial conditions withQ4(0)=—1, (b) uncorrelated random glass transition found in our model fpr>3 is not essential
initial conditions withQ4(0)=0, and(c) partially correlated for the appearance of the DS transition. Still, that m¢a&]
random initial conditions wittQ4(0)=0.5. is also characterized by the presence of an exponentially
To check that the extrapolatior3., using the Padap-  large number of metastable states. From the point of view of
proximants are correct, the Paseries have been compared the form of the dynamical equations, the fact tiaf is
with numerical integrations of the dynamical equations. In-present forp>2 as well as in a model which combings
deed, the Padseries and the numerical integration fit closely =2 and p=4 is a consequence of the nonlinearity in the
[32]. coupling between the damag@k,(t) and the two-time corre-
The estimate forD,, is obtained by division of the lation functionQ(t,s) which occurs for allp>2. From the
highest-order coefficients oP.,(t) and Q(t), i.e.,, by physical point of view, this independencedf, on the initial
an/b,. Moreover, an asymptotic estimate can be obtainedlistance is quite appealing. In general, one would expect that
assuming a power-law decay of the equal-time overlapp=4 is quite similar top=2 due to the presence of the
Qq(t)=Qq(*) +At™?. The analysis oD., suffers in some time-reversal symmetry. The fact that the damage does not
cases from a small radius of convergefeeen with Padeas  have this symmetry fop>2 means that the separation of
well as from the presence of poles in the Padpansion. dynamic trajectories does not occur in the borders or maxima
The results are displayed fpr=3 in Fig. 4 and forp=4 in  which separate equilibrium states, but within saddle points of
Fig. 5 for casesa), (b), and(c) as a function of the tempera- the phase space which divide configurations separated by
ture. Let us remark that a lower number of coefficients in thefinite energy barriers. This is supported by the fact that the
Taylor expansion in the cage=4 with respect tgp=3 leads  transition occurs at a temperature much higher thaand,
to a less accurate estimate of the asymptotic distance. as we will see in the following section, by the fact that it
Inspection of Figs. 4 and 5 reveals that the dynamicahappens starting already from an equilibrium configuration.
transition Ty is in the predicted regime E@25). It can be  The asymptotic valu®.. can, on the basis of our computa-
estimated more accurately from the relaxation timg, as-  tions, be regarded as an order parameter for the transition at
sociated to the decay of the distaridét) to zero. Starting T,. Although D., and the transitiorT, itself do depend on
from high temperatures, we assume that the relaxation timghe specific choice of the correlatét, it is interesting that
diverges afl, according to a power lawr,=(T—To) " 7.  the asymptotic state does not depend on the initial distance.
We thus have foundly(p=3)=1.04£0.02 with y=1.1  For a better understanding of the physical origin of this tran-
+0.1 andTy(p=4)=1.13+0.02 with y=1.1+0.1. sition, we shall consider the case of equilibrium initial con-
We conclude that for all temperatures, bgtk 3 andp ditions in the next section.
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C. Equilibrium initial condition has two parts, a cost in energyq) and a cost in entropy

We have seen in the preceding section that the asymptoti@) =BLu(a) —(q)]. The cost in energy vanishes at infi-
distanceD.,. is a nontrivial function of the temperature which Nite temperature and the full cost &(q) is due to the en-
is finite belowT, and vanishes abov&,. The relevance of (FoPy. So only at infinite temperaturg.e., random initial
the existence of the metastable states has already beSAnfigurations, the case considered in the preceding sektions
pointed out in previous sections, especially when the cros§&n We impose an initial condition with initial nonzero over-
correlator is maximallC=1. The fact that the DS transition '@P: _ _ _
exists suggests that the nature of this phase transition is re- € €quivalent of the dynamical equatidd$), (20), and
lated to the corrugated properties of the free-energy land(21) can be easily obtained far>Ts in the replica symmet-
scape. To check this result it is convenient to investigate th&C @pproximation31]. The correlation functiorC(t,s) and
DS transition starting from an equilibrium configuration. In the response functioR(t,s) are time-translational invariant
this case the system starts from a stationary state and remai@d satisfy the fluctuation-dissipation theorefR(t)
there forever. At high temperatures this state is paramag= —[/C(1)/dt]O(t). The C(t) satisfies the equation
netic, so in this case the DS is a direct check of the rugged- aC(t) Bp [t aC(u)
ness of the paramagnetic state. In fact, we will find thatifwe ~ ——~ 1 T¢c(t)+ —J du CP~L(t—u) =0
start from an initial equilibrium conditioh38], then the DS 2 Jo au
transition persists and actually coincides with the previous (30
T, found for a random initial configuration. This reinforces
the idea ofD.. as a dynamical order parameter for the DS

with C(0)=1. The two-times overlap satisfies the equation

transition for a given choice of the correlatkr Again, for aQ(t,s) pB
the sake of simplicity, we restrict our analysis here to the g +| T+ > Q(t,s)
caselC=1.
The analysis of the dynamical equations for an equilib- pB (s . IC(s—u)
rium initial condition follows the same steps as for the ran- 5 du Q® (t,u)T
dom case, but now we must impose a Gibbs distribution for 0
the configurationsr and = at time 0. Nevertheless, there is a pB (t aCP~L(t—u)
point that must now be considered. Let us take T (i.e., “ 2/, duQ(s,u)———=0 (32)

we will suppose equilibrium configurations in the paramag-
netic phasg Suppose thap is odd and we take an equilib- ith the initial conditionQ(t,0)=Q(0)=0. The diagonal
rium configuration at temperatuiie To imposeQy,=—1 or part Q4(t)=Q(t,t) is given by
Dy=1, we must taker;=— 7; for all i. Because the energy
is an odd function of the spin variables, we hawg{o}) 1 9Qq(t)
=—E({7}). If the equilibrium energy is not zerthis hap- 2 a
pens everywhere except gt=0) we cannot put both con-
figurations at equilibrium at the same temperat(recause pB (t -1 dC(t—u)
the temperature uniquely determines the value of the equilib- B TL du Q™ *(t,u) T ou
rium energy. Then, if both initial conditionss and 7 are
equilibrium initial configurations, their overla@(0) must pa (t dCP~Y(t—u)
vanish. Actually, forT>Tg two equilibrium configurations - 7[0 du Q(t’u)T:
do have overlap zero with probability 1 and overlap different
from zero with probability exponentially small witN. So if  with the initial conditionQ4(0)=0. Now we are in equilib-
we take the thermodynamic limit before the infinite time rium so w(t)=T+ pB/2 [31]. We have looked for a time-
limit, it is clear that we must start with zero initial overlap. translational invariant solution fa@(t,s) [i.e., a solution of
To be more precise, the probability that two equilibrium con-¢,o typeQ(t,s) = Qq4(s)O(t—s) for t>s] but we have not
figurations{a},’\]{r} in the paramagnetic phase do have over,,nq it (even forp=2). Our numerical results suggest that
lap g=(1/N) 2=, 0i7; is given by such an asymptotic solution does not exist.
Using as before a series expansion in the time-dependent

P(a)~exp(=Npt(a), (28 variablegs and Pédapproximanas, we have estimate%l the
where f(q) is the free-energy cost to find a correlatign asymptotic distance for equil!brium ini'tial.condition.s, ie.,
between the configurations. Clearly, because0 corre- for Q(0)=0. The results are displayed in Fig. 6 for different
sponds to the equilibrium value in the paramagnetic phas

demperatures. The divergence of the relaxation time leads to
f(q) has a minimum aj=0 so we can writdf (q)=const  0(P=3)=1.010.04 with y=1.4+0.3, which indicates
+q%(2Bxsa), that Tq commdgs with the resglt obtained for ranp!om |.n|t|al
conditions. This supports the idea that the transitiom gis
Ng? of a dynamical nature and unrelated to the existence of a
P(Q)~6XF{ - 2Xse>' (29  thermodynamic phase transition.

where xsg=N(g?) is the spin-glass susceptibility. Above
Ts, the xsg is finite and the probability to havg#0 is As we saw in the preceding section, one of the most in-
exponentially small witiN. Now the cost in free enerdy(q) teresting results concerning the DS transition is the fact that

P8
+ T+7

Qq(t)—T

0 (32

D. The nonsymmetric# 1 case
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06 . T T T T value of a<1. They also derived the resulj(x)
=1+T? for a=0.
i In the next paragraphs we study the caaes0, —1/(p
L —1) starting from a random initial configuration in some
§ 04 | ] i detail. Unless stated, we will consider the c&se 1.
g :
? 5 1. The asymmetric case=0
g The casex=0 is quite interesting. The equation for the
£ % response functiof20) simplifies considerably,
? 0.2t .
JR(t,s)
3 pm +u(t)R(t,s)=8(t—s), (33
0 . : X . § which can be readily written usinB(t,s)=2z(s)/z(t) with

0 02 04 06 08 1 12 z(t)=exp(fHu(t’)dt’). The equation for the correlation
T function becomes
FIG. 6. Asymptotic distanc®., as a function of temperature,
starting from an equilibrium configuration, fop=3 (a=1,
=1).

c?C(t S)

+ u(t)C(t,s)= pf Z(S)Cp Ytu). (34

Define the new functionA(t,s)=z(t)C(t,s)z(s).

D (=) is a nontrivial quantity which does not depend on theterms of this new function, Eq34) is

initial condition (and depends only on the cross correlation
K). In equilibrium thermodynamics, this is one of the fe.q- JA(tS) P (s AP~1(t,u)
tures of order parameters which separate different equilib- - f

rium phases. In the stationary state, when fluctuation-
dissipation theorem is obeyed, the order parameter is a
quantity which characterizes the equilibrium state éndhe

rwr P

From Eq.(22) it is easy to derive an equation faft),

absence of ergodicity breakihngoes not depend on the ini- 2 p—1
tial condition. 1oz (t) pf A (t u (36)
In order to present convincing proof of this result, we 2 P 2(u)z'° 2(t)

have investigated the general nonsymmetric casel. A
difficulty inherent in the extrapolations made from Figs. 1
and 2 is the fact that, below,, the convergence of the
distanceD (t) towards its asymptotic valuB., is very slow

(a power law in timg Consequently, both numerically or
using the Padenethod, it is very difficult to extrapolate to
the asymptotic value. As the asymmetry of the interaction

Equations(35) and (36) form a closed set of equations
which can be solved with the initial conditionA(t,t)
=7%(t), z(0)=1. Once this set of equations is solved, one
can also find a solution for the overl&(t,s) in Eq. (21).
Again, we defineB(t,s)=2z(t)Q(t,s)z(s), which satisfies
éhe equation

Eqg. (13) is turned on(i.e., if «<1), the relaxation of the aB(t s) BP1(t,u)
system to the stationary state turns out to be faster. Actually p = (37)
for the asymmetric casea=0) or the antisymmetric case Zp 2(wzP 2t

[e=—1/(p—1), see latg the relaxation of the distance

D(t) is nearly exponential. We have no reasons to suppos@"d the equal-time overlap E(3), b(t)=B(t,t), satisfies

that the independence of the asymptotic value on the initial"® eguation

distance isx dependent. Our analysis far<1 suggests that 1 ab(t) o B L(t,u)

the independence @ (t) on the initial distanc® ; holds for —— =TA(t)+ J' do——M— (38)
all generic values ofy. 2 zp*Z(u)zp*Z(t)

It is important to note that, fore<<1, there is no equilib-
rium stationary state and the fluctuation-dissipation theorentith b(0)=Qq(0). Note that this set of equations is quite
is not satisfied. Still we expect, fgr>2, the DS transition to  involved forp>2. Only for p=2 do they simplify dramati-
survive for any quantity of finite asymmetry. The reason iscally (the case considered by Crisanti and Sompolinskyd
that the DS transitiofeven fora=1) is inherently a non- become linear. For generalthe previous equations are non-
equilibrium transition, so the effect of the asymmetry maylinear. We have not succeeded in finding the asymptotic so-
not change the character of that transition. lution of these equations, although we have guessed the re-

The nonsymmetric case far=2 was already considered Sults from the numerical results. We find that the DS
by Crisanti and Sompolinsky ten years d4§@]. By assum- transition is still present at finite temperature for2. The
ing that, in the stationary state, the correlation and respons@halytical expression foF is given by
functions are time-translational invariant, they succeeded in
showing that the thermodynamic transitiogg=1 for a=1 T=~/P_% (39)
turned out to be unstable against the asymmetry for any ¢ '
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distance does not depend on the value of the initial overlap
Qq4(0). In Fig. 8 we showu(t) for p=3,4 compared with
the theoretical predictiop ()= \1+TZ.

2. The antisymmetric case=—1/p—1

This is an extremal case where

Qd@®

4 R 6 10
FIG. 7. Qq4(t) (p=3, a=0, K=1) with Q4(0)=0, 0.5,—1 as

a function of time for temperaturds=0.1, 0.3, 0.5from bottom to

top at large times The horizontal dotted lines are the theoretical

guesses.

Note thatT. coincides precisely with the lower bound
previously derived in Eq.25). The asymptotic value gf(t)

is given by wu(»)=1+T2 and is p-independent. The
asymptotic distance fgp=3,4 is given by{40]

i

A full theoretical derivation of this result remains an in-

T
1—T—(1—TC)(T—

D.=

5 (40)

teresting open problem. In what follows, we compare our
results obtained by numerical integrations with time step

..... 'Ik*l’|k+l’ PR

'PJ:l’ .

k
Physically this means that the force experienced by aispin
due to a multipletM of p—1 spins is as contrary as possible
to the force which experiences another spin contained in that
multiplet due to the action of another multiplgt’ of p
—1 spins constructed from the rest of the-2 spins in the
previous multipletM plus the spini. In the particular case
p=2, this can be easily achieved makidf= —J!, which
corresponds, according to E(L3), to a=—1. But in gen-
eral, o can never be equal te 1 for p>2. Takep=3 and
three couplmgs]lk J'k JU . Itis clear that ifJ/X= J}" and
thenJ'ka& J” It can be easily shown that the
mlnlmum value fora is given bya=—1/(p—1).

Interestingly, this case can be exactly solved for the cor-
relation and response function. Although it turns out to be
quite difficult to solve for the overlap function, we will ana-
lyze here a general correlatdt. For «=—1/(p—1), Egs.
(19—(23) considerably simplify because(t) in Eq. (22) is
time independent. Because the initial configuration was
taken random at time 0, this means that the stationary state
follows completely random configurations.

To solve the equations, define the following correlators:

P is maximally negative.

C(t,s)=c(t,s)exp(—T(|t—s|))
R(t,s)=r(t,s)exp(—T(t—s))

(41)

=

=

t=s.

At=0.01 with these theoretical guesses. In Fig. 7 we show

the overlapQg(t) as a function of time for different tempera-
tures belowT, for p=3. Note that the asymptotic value
clearly does not depend on the initial condition. The horizon-
tal dotted lines correspond to the asymptotic value ().
This figure unambiguously demonstrates that the asymptoti

1.6

mu(t)

2 ' 4 5
FIG. 8. u(t) for a=0,K=1 (p=3 solid, p=4 dasheg with

Q4(0)=—1 as a function of time for temperature§

=0.1,0.3,0.5,0.7from bottom to top. The horizontal line is the

theoretical prediction. Note that(0)=T.

In this case the dynamical equations @andR simplify.
A particular solution forc(t,s) andr(t,s) can be found
which simplifies dramatically the dynamical equations. This
Eolutlon is given byc(t,s)=r(t,s)=f(t—s). This time-
translational invariant solution is consistent wéth dynami-
cal equations foall times. The final closed equation foft)
is given by

af(t)

b T ZtJtd Pt f
n —EeXp(— (p—2)t) ,du (t—u)f(u)

X exp(—T(p—2)u) (42)

with the initial conditionf(0)=1. But the equation for the
overlapQ(t,s) is more complicated and cannot be reduced
to a time-translational invariant solution. Writin@(t,s)
=q(t,s)exp(—TJt—s|) [with g(t,t)=Qq(t)], we obtain the
following equations:

&q(t S)

pf duexp(—2T(s—u))

X[f(s—u)gP(t,u)— P~ L(t—u)q(s,u)]
(43
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FIG. 9. Qq4(t) (p=3, a=—1/2, K=1) with Q4(0)=0, 0.5,
—1 as a function of time for temperaturds=0.1, 0.3, 0.5(from
bottom to top.

FIG. 10. T-a phase diagram fgp=3, X=1. The line is a guide
to the eye.

bt overlapQq(t) as a function of time for different tempera-
p—14_ _ _ _ tures forp=3, K=1. In this case the transition is located at
duff (- wg(u,s)exp—=T(p=2)(t-u) To=0.595+0.005. Note that again relaxation to the station-
(44) ary state is faster than in the cage=1 andD,, is again
independent oD(0).
dQq(t) These results are quite appealing. Here we find a DS tran-
5 o T TIQu(H)—K(Qu)] sition in the presence of a time-translational invariant solu-
tion for C andR, i.e., when the system starts already in the
_ ft duexp(—2T(t— stationary state. This is in agreement with the results of Sec.
“2)o (t=u)) Il B for =1, where a DS transition was fourat the same
temperature as that starting from random initial conditions
X[f(t=u)gP~*(t,u)— P~ Ht—u)q(t,u)]. (45  when the system already started in the stationary state. Fig-

. ) . . . ure 10 summarizes our results. We show The phase dia-
A time-translational invariant solution fay(t,s) does not  gram of the DS transition fop=3.

S

exist for all times(contrary to what happens f& andR) Let us remark on our final conclusion for this section. A
because the first integral in the right-hand side of B#)  ps transition is present for all models wifit>2 above the
does not vanish. TAP temperature where an exponentially large number of
_Previous equations are solvable for=2 andK=1. In  giates appears. For a given choicekdfsuch thatQ=1 is
this case we get stable at infinite temperature, this transition has the following
of . interesting properties: The asymptotic distariagis inde-
£= —J duf(t—u)f(u) (46) pendent of the initial distancéh) is also independent of the
at 0 ’ type of initial configuration; andc) is stable in the presence

of asymmetry(but is unstable fop=2, in agreement with
Qq(t)=1—-[1-Qq4(0)]exp( —2Tt), (47) results derived by Crisanti and Sompolingkyhis suggests

that D., has some of the crucial properties to being a good
and there is no DS transition f@r=2 as expectedi.e., T dynamical order parameter. The correlat(t,s) is not
=0). For a generic cross correlatidty let us note that Eq. time-translational invariant in the time scale in which the
(45) reduces to Eq.24) so there will be different asymptotic correlation and the response are.
values depending on the value/6f(Q*) at the different set As we said previously, we expect the properties of this
of fixed pointsQ* =K(Q*). It is notorious that the case  transition to depend strongly on the type of dynamics
=2, a=—1 at finite temperature reduces to the infinite tem-through the cross correlatdt. In the next section, we will
perature case for any. This is closely related to the fact that discuss discretéMonte Carlo dynamics, the case in which

the stationary solution in this case coincides with the randongifferent algorithms correspond to different cross correlators.
initial configuration, although this is not true anymore for
p>2. Forp>2 the lowesfl, temperature for maximal cross
correlationC=1 becomes finite and this is due to the rugged
structure of thdorce landscape.

Equations for the damage fer>3 are difficult to solve. Up to now we have considered the DS problem in the
We have not succeeded in obtaining an analytical expressiozase of a dynamics continuous in time, such as Langevin
for the asymptotic values as well as fby andD.,. Numeri-  dynamics. Here we want to investigate damage spreading
cal integrations of the equations reveal that the transitiorand in particular the existence a@f, for discrete dynamics
persists at finite temperatures fpr>2. Figure 9 shows the such as Monte Carlo algorithms.

IV. DAMAGE SPREADING IN DISCRETE GLASSY
MODELS
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The analog of the function§ for continuous dynamics is L Nt
the different algorithms used in Monte Carlo dynamics for H= N E Cﬁ (48)
discrete dynamics. So different Monte Carlo algorithms de- k=1
termine different types of correlations between the noises. As
for the cross correlatoiC, this implies that the algorithms with CkZEJN:lo'jo'j+k and where we take periodic boundary
determine the structure of the high-temperature fixed pointszonditionso;= o \ .
Their instabilities determine the subsequent low-temperature In this model there are particular values Mffor which
behavior. As we have already commented on in the Introducthe ground state is exactly knoy/8]. The interesting aspect
tion, we therefore do not expect the DS transition to be uni-of this model is that it behaves like a disordered spin glass in
versal, and the results of this section aim to be comparethe absence of explicit quenched disorder in the Hamiltonian.
with the results already obtained for the Langevin dynamicé\pparently, disorder is self-induced by the dynanji43,8—
in a continuous system. 10]. This means that dynamics itself generates slow evolving
One of the essential ingredients for the DS transition isvariables which effectively act as quenched disordered fields.

the presence of two competing effects: a synchronizing forcd his model is characterized by three temperatures: a melting
(the stochastic noise in the Langevin dynamigsand a crystal-llqmd f|r§t_-0rder transformation temperaturg, a
landscape-dependent force which pulls configurations apafynamical transition temperatuiig=0.5[44], where the re-
into different directions. In the case of a discréMonte laxation time diverges and ergodicity breaks, and, finally, a

Carlo dynamics, the equivalent role of the stochastic nois tatic (or glass transition temperatur&;=0.25, where rep-

: : jca symmetry breaks and the configurational entropy col-
is played by the set of random numbers generated during t g L : o ) )
Monte Carlo updates. Now, the random number in the Mont apsedthis is the ideal glass transition predicted in the AGM

Carlo algorithm(uniformly chosen between 0 and deter- ?heizr%he heat-bath algorithm. to do from a confiquration
mines the probability of a move depending also on the con /() at a given timegtj to a éonfigguration{a»(t+At§J} at
figuration of the system. This last dependence corresponds iﬂel next time step+ At with At=1/N, a spimlrk is chosen
g;ier?/l/ieﬁ?t/ﬁg t\b/\?/ot:ce)iscer;s)fy? ;(:;egzt%rif'% rt:net 5223%:29 at random among thisl spins to bg updated. The probapility
on the value ofc(C,C'). Roughly speaking, the Metropolis to put the spin up or dovyn is decided Qccordmg to the inten-

Igorithm for Monte Carlo dynamics corresponds to the casSIty of_the local f|gld a_ctlng on that spin. More prec_:lsely, i
;aC?Q)=Q for Langevin. It is easy to check that, at infinite e ere] the Hﬁmlltﬁnlar(48) |r.1|_terr?s of_the Local f|e|d-|
temperature, the fixed points in both dynamics are the sam?_b :2'1‘) I:)(rrlzj,o\t/vr? rzot ffrlo)b:tb Itilrt%/ ec; +p£1;ttlir;g tivgnsf)mk up

For continuougLangevin dynamics we had the freedom ‘¥ K 9 y

to choose the maximal cross correlatitis=1. For discrete
dynamics, however, this is not the case. There are several 1 1
well known algorithms in the Monte Carlo approach accord- Plowt+At)=o]= 5T Etanl’(,Bhk(t)o-) (49
ing to which updating rule they use, for instance Metropolis,
Glauber, or heat bath. Among these, the last one is the only
one which has a unique fixed poi@* =1 at infinite tem- Whereo==1 andh,(t) is the local field acting on the spin
perature. So, heat-bath dynamics is the closest @agedif- K at timet. Note that the probability49) only depends on the
feren'b to theX=1 of Langevin dynamics_ Here, our numeri- local field aCting on the Sp|h and not on the actual value of
cal investigation will focus on this type of discrete dynamics.that spin at time. Then, a random numbext) with a uni-
Let us note that the other a|gorithms may show differenfform distribution between 0 and 1 can be introduced and
behavior (due to the presence of other infinite-temperatureSPins are sequentially updated according to the dynamical
fixed pointg and consequently also different DS transitions.rule
This nonuniversality of the DS transitiqas in our previous
analysis of the Langevin casleas received some attention in 1 1
the literature]41]. ak(t+At)=sgr{§+ stanh(Bhy(t)=z(t)|.  (50)

Damage spreading in the Bernasconi model With this rule(50), we have studied numerically the dam-

Here we will analyze the Monte Carlo dynamics with the age spreading of three different initial conditions, as in the
heat-bath algorithm for the Bernasconi mof#2]. Thisisa  p-spin model:(a) anticorrelated random initial conditions
long-range interaction model without disorder which iswith D(0)=1, (b) uncorrelated random initial conditions
known to have a glassy behavior being in the universalitywith D(0)=0.5, and(c) partially correlated random initial
class of spin-glass models with one step of replica symmetrgonditions withD (0)=0.1. For each of these cases, the dis-
breaking[8]. Consequently, its dynamical behavior is thetanceD(t) is computed up to 100000 and 10000 Monte
same as predicted by the mode-coupling theory. Carlo time steps foN=1000 and\N=5000, respectively. To

The Bernasconi modeéfor simplicity we will consider the analyze the data, the logarithmic time with base 1.1 is
closed model, sef8] for more details consists ofN Ising  considered. Moreover, the data are averaged in intervals of
spinso;=* 1 in a one-dimensional chain interacting throughthe form @%,a***—1) with k a positive integer. FoiT
a long-range four-spin interaction. It is defined by the fol-=0.3, the evolution oD(t) is plotted in Fig. 11.
lowing Hamiltonian: To obtain the asymptotic valuB,, from figures such as



3660 M. HEEREMA AND F. RITORT PRE 60

1 T T T T A
08| a
S
&
06
=2 o
04
a 1 >
02} ] Q
FIG. 13. Possible flow diagram at different temperatures for
0 ) . ) ) heat-bath dynamics.
0 20 40 0 80 100
log(t)/log(1.1) agreement with the transitiofy where ergodicity breaks

FIG. 11. The distanc® averaged per intervah{,a*"*—1) as (8,44). , , ,
a function of logarithmic time with base=1.1 for temperaturd The behavior we find here, when compared to the previ-

=0.3. The upper two curves are the result of the initial conditionOUsS Langevin analysis for thp-spin model, may appear
D(0)=1 for N=1000 (boxes and N=5000 (diamonds. In the  quite different. But a careful analysis reveals that this is not
same manner, the middigower curves are the result dd(0) the case. If we consider th#t, for the Langevin case, is a
=0.5 [D(0)=0.1]. generic function which may depend on the overlap as well as
on the temperatur&=1/8, we may then imagine a situation

Fig. 11, a power-law fit for low temperatures is used. Forsuch as that depicted in Fig. 13, where the infinite-
high temperatures an exponential fit up to 2000 Monte Carléemperature fixed-poir@=1 becomes unstable as soornas
steps in real time is used. The results are displayed in Figs finite. In this case the asymptotic distance would be a
12. nontrivial function of 3 and the damage spreading transition
One observes that the distance does not vanish for angould well happen at the usual dynamical transifigrwhere
finite temperature. Moreover, Fig. 12 indicates the existencergodicity is broken. The dependence of the asymptotic over-
of a temperaturd ; above which the asymptotic distance is lap on the initial value could be a consequence of the pres-
independent of the initial distance. Below this temperatureznce of different fixed points at low temperatures.
T,, D.. does seem to be dependent on the initial distance. In the most general case, one could imagine a scenario
This dependence is supported by a numerical extrapolatiofith three possible different regimes: A high-temperature re-
which could well fail when going to enormously large time gime T>T,, whereD..=0 independently of the initial dis-
scales. Still, what we certainly find is the appearance of aance D; an intermediate regim&;<T<T,, whereD..

dynamical transition temperaturg;=~0.5 in very good =p_(T), is not zero but is independent of the initial dis-
tance(this regime would correspond to the appearance of a
0.8 . . . temperature-dependent fixed point f@ffinite as depicted in

Fig. 13; and finally, a low-temperature reginie<T,, where
D.,.=D.(T,D,) depends on both temperature and initial dis-
tance. The results we find for the Bernasconi model are the
A same as those found by Derrida and WeisblUH for the
06 A 1 Sherrington-Kirkpatrick model. In this modély— is re-
lated to the infinite-range character of the interaction. Actu-
ally, Derrida [18] has found numerical evidence that for
finite-dimensional spin glasses there exists a range of tem-
o A A peratures where the asymptotic distance vanishesTgrid
04 'S 1 finite. The dependence of the asymptotic overlap on the ini-
* tial condition found here and i8] below T, could well be
an artifact of the large-time extrapolation where the simu-
lated time window and the size are not sufficiently large.
Unfortunately, it is not easy to simulate very large times and
0.2 . . . sizes in infinite-ranged models such as the present one.

0.0 0.5 1.0 15 The results of this section show that the DS transition is

T very close to(and probably coincides wijhthe dynamical

FIG. 12. The asymptotic distan@, as a function of tempera- transition temperatur&, (below which the system never at-
ture for three different initial conditionsd(0)=1 with N=5000  tains equilibrium and ergodicity is brokerNevertheless, in
(1000 as closedopen triangles,D(0)=0.5 with N=5000(1000  this case the asymptotic damage beldy apparently de-
as closedopen circles, andD(0)=0.1 with N=5000 (1000 as  pends on the initial conditiofand probably on the type of
closed(open diamonds. initial condition as wel, although such a firm conclusion

Asymptotic distance
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needs more understanding of damage spreading transitiotisns, (b) D.., does not depend also on the class of initial

for generic updating rules. condition (whether they are random or thermalize(t) the
DS transition is stable against the inclusion of asymmetry in
V. CONCLUSIONS the interactiongi.e., against the violation of detailed balance

in the dynamics Furthermore, regarding the mode-coupling

In this paper we have studied the problem of damagequations with asymmetry, we have obtained some exact re-
spreading in the mode-coupling theory of glasses. Modesults for the asymmetric case=0 and exactly solved the
coupling theory is well known to describe relaxation pro-correlation and the response function for the antisymmetric
cesses in glasses in the mean-field approximation. A simplease a=—1/(p—1), which interestingly turns out to be
way to obtain the mode-coupling equations is by analyticallytime-translational invariant. The existence of DS transition in
solving the dynamics of multipsin interaction spherical spin-this case reveals that this transition already appears when the
glass models. These models are characterized by the presystem is time-translational invariant.
ence of a huge number of metastable stéegponential with We stress the fact that the precise value of the damage
the system siZewhich appear at a temperatufgsp higher  spreading temperatui®, as well as the asymptotic distance
than T4 (where ergodicity breaksand T (where replica D, both depend on the correlatd considered. This fact
symmetry breaks Because the phase space in this class oéxpresses the nonuniversal character of this transition where
models is characterized by an extremely rugged and compleke cross correlato plays the equivalent role of a stochas-
free-energy landscape, they are good candidates to study tkie noise for the dynamical order parame@y(t). Different
landscape properties using techniques taken from dynamicginctions K imply different dynamical phase transitions so
systems. their physical significance must be appropriately interpreted.

A very interesting technique which is able to probe thein this direction we have tried to interpret our results in terms
topological features of the phase-space landscape is damagesaddle points in phase space for those cases wQére
spreading. This consists in the study of the distance betweea 1 is an asymptotically stable solution at high temperatures.
the configurations of two stochastic systems submitted to th§he essential aspects of the argument were given in Sec. II,
same realization of the stochastic noise but differing in theyhere it was shown that for close enough initial conditions
initial conditions. By the same realization of the stochastican instability in theQ=1 high-temperature solution is due to
noise, we mean noises that are statistically identical althougthe presence of vanishing modes in the Hessian of the poten-
generally correlated through a functid®(Q), which satis-  tial function. This signals the presence of saddle points in the
fies the conditionC(Q)<K(Q=1)=1. In general, any free-energy landscape, of which an infinite amount yields a
choice for the correlatok’ alters the results. For Langevin DS transition. This certainly happens Bfsp, but we have
dynamics, we have shown that interesting results appear fgound that the transition occurs already at a temperafyre
the caseC=1. In that case, both noises are identical for themuch above that temperature. How can we reconcile our
two copies independent of their configurations. This yieldsresults with that? Aff,p the number of metastable states is
the lowest damage spreading transition for which @&  exponentially large withN. It is probable that for the DS
=1 fixed point is stable at high temperatures. Depending ofransition to occur it is only necessary that this number be
the value of’(Q=1), one finds a different damage spread-big (for instance a power dfl) but not exponentially large.
ing transition temperature up to the limiting ca&8(Q  Consequently, a divergent number of metastable states and
=1)=1 [see Eq.(25)], whereTo== and the fixed point saddle pointgbut not exponentially large witN) should be
Q* =1 becomes unstable. Whether this holds for other typesnough to make the DS transition appear. Unfortunately, the
of dynamics is not studied and remains unclear. analytical computation of the temperatdigby counting the

An exhaustive study has been done for the cisel, number of metastable states is not so direct because such a
although similar results are obtained for afGyfor which the  calculation involves the estimate of finite-size corrections to
solutionQ=1 is asymptotically stable. In this case, throughthe dominant saddle-point calculatigd5]. Actually, the
functional methods and using the Paderies expansion evaluation of finite-size corrections in spin glassegen in
method(to make safe extrapolations in the asymptotic long-mean field is known to be quite difficult. Concerning the
time limit), we have shown the existence of a damagerole of the cross correlations between the noises, we remind
spreading transitioff, in general mode-coupling equations the reader that the appearance of vanishing modes tends to be
with any degree of asymmetry in the interactions. In particusuppressed by cross correlatiods< 1, which play the role
lar, in the case of symmetric interactioiwhere detailed [according to Eq.(10)] of a thermal noise on the system
balance holdswe have found evidence for a damage spreaddescribed by the effective distance variakdgsx; —y; . This
ing transition at a finite temperature. This transition occurs aexplains why/C=1 yields the lowest damage spreading tem-
temperaturesT, higher thanTr,p, this last one being the perature. We must stress that this transition should persist
temperature where an exponentially large number of metageyond mean field. Actually, the presence of a huge number
stable states start to appear. The transition is characterized by saddle points in phase space is not an exclusive mean-field
a dynamical order parametér.,, which is the asymptotic feature but should persist in the presence of short-range cor-
distance between the two evolving replicas. Interestifgly, rections. Short-range corrections dramatically modify the
has the good properties of order parameters being able feeight of the barriers but not their number, which still could
distinguish different dynamical phasés our case, there are remain as large as in the mean-field approximation.
two possible phases depending on whetber vanishes or To remark on the advantage of considering Langevin dy-
not). These properties are as follows) D., is independent namics for DS, we have also investigated the DS in discrete
of the initial distanceD, for a given class of initial condi- glassy models without disorder such as the Bernasconi
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model with heat-bath dynamics. The difference between anwhereF; is the force acting on the spim; due to the inter-
discrete dynamics and Langevin dynamics is that the type ddction with the rest of the spins E(L2). The noisesyp, 7’
correlatorC in the last case may be chosen at will. So theare generically correlated;(t) 7]].’(5)>=2T]C({0'}'{7'})6(t
case=1 which has been studied for Langevin dynamics_g) 8. Following Domany and Hinrichsef41], we will
cannot be implemented for Monte Carlo dynamics. Each alg;npose that the correlatdt is a generic function of the
gorithm for Monte Carlo dynamics defines a givenso the  oyerlap due to the infinite-ranged nature of the model. So we

study of damage spreading in those cases remains Mogy| take o({s},{7}) as a generic function of the equal-time
speculative becausk is essentially unknown. For the par- gverlapIC(Qd), whereQq=(1N)EN ,o;7, . Following the

ticular case of the heat bath in the Bernasconi model, we ﬁnsame steps as are usually taken in the study of the dvnamics
a DS transition which separates two regions: a region step ) y . y ° dy
of a single replica(see[31] for detaily, we may write the

>T,, whereD., is independent of the initial distance but . : o .
finite, and a regiorT <T,, whereD.. depends on the initial generatlng functional for the dynamics in the Ito prescrip-

distance.T; coincides(within numerical precisionwith the tion,
mode-coupling transitioiy. Although for heat-bath dynam-
ics D, depends on the initial distance, we must not ignore

the fact that convergence to the asymptotic limit is extremely .
slow and convergence poor. Zoyn= f [dod7]d[oi—Fi(o)+unoi— 7]
We end our discussion by describing some opening prob-
lems. Much work on the DS has been devoted to the study of X & i —Fi(7) +pri— 5. (A2)

discrete dynamics in discrete systems, the situation being the

opposite for continuous-time dynamics. In this work we have

shown that for Langevin dynamics we may choose specific

noise correlations so that it is easier to interpret what physi- Introducing a new set of fields; , 7 and averaging over
cal properties of the system we are looking at. It is difficult o noise, we get

to ascribe any physical significance to the properties mea-

sured for arbitrary discrete algorithms, and this has been one

of the major problems to interpret the large amount of nu-

merical results obtained in the study of damage spreading in . . A

Monte Carlo simulations. Here we have seen that for Lange- Zdyn:f [dododrdr]exp(L(a,0,7,7)),  (A3)
vin dynamics such a task turns out to be easier. Still one of

the major tasks which remains open is to understand better

under which conditions there is a unique absorbing state for

the damage. In another direction, one would like to get anawhere

lytical proof and equilibrium-based analytical methods to in-

vestigate the connection between the DS transition and the

topological properties of the phase spdsach as the pres- .. .

ence of saddle points in phase spaéénally, we would like L(o,0,7,7)=—i f dt> offo{—Fi(a") + o]

to extend our research to real structural glasses, where it '

might be interesting to study DS and investigate under which _ A . .
conditions such a transition would be a precursor to the glass —I f dtZ milmi—Fi(7)+pri]
transition. !
1+ .. .
t 2
ACKNOWLEDGMENTS _Tf thi (_2 (oi+ 1)
We acknowledge stimulating discussions with M. 1—K

Campellone, S. Franz, W. A. Van Leeuwen, Th. M. Nieu- + —((}}—}})2), (A4)
wenhuizen, and M. Sellito. We are grateful to T. Alarcon for 2

a careful reading of the manuscript and lan Campbell for
pointing out to us some mistakes in the original version. F.R. _ N
acknowledges funding from the Spanish government through Becaus&qy,=1, we may average the dynamical partition

Project No. PB97-0971. function over the disorder. We use the cumulant expansion
and retain only the first- and second-order terexg(V)
APPENDIX A ~expV+3[V2—(V)2]}, where ()stands for disorder average.

In this appendix we describe some of the main steps nec'“—JSIng Eq.(14), we obtain the final result,

essary to deriving Eqs(19)—(23). Consider two replicas
{o},{7} submitted to the dynamiad 1),

Zgyn= f [dododrd7]expS(o,0,7,7)),  (A5)

(90'i_ ﬁri_ ,
—r “FilloD —wpoitm, ——=Fi{m)-untn,

(A1) where
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A o .~ 1+K ., . 1-K .. .
S(a',(r,T,T)=—if dt>, o}(a}w,a})—if dt, T}(T}+W})—TJ dt, (T(a}+7})2+7(a}—7})2
I 1 |
——J dt ds(}) olodt! (C(t s))+2 77 (D(t, s))+§) ol (Q(t,9))

+2 oSt (Q(s, t)))—mf dt dsz (o 0'3050'} f"(C(t,s))

+rznTr 7O +airre) Q)+ 7ojotr 7(Q(s1). (A6)
|
The correlation function€,D,Q are defined by 1 9Qyq(t)
5 T (BQq() ~TK(Qu)
tS)— 2 <0’t0'> D ts)— E (T}Tf}, CP(t—
i _g tduqu 1(u)
2 t (A7) 0

Qt,s)=y 2 (oim). —1) [t 9CP(t—u)

— ,8(p2 J du ¢(9u Qq(u)=<0. (B3)

After introducing the necessary response functions, for
instanceR(t, 5)_|<U *al), we may solve the saddle-point Doing an integration by parts for the two integrals appearing
equations. Introducing also appropriate causality relationd" Eq. (B3), we may write
(for instance( 750ty =0), we obtain the desired set of equa- 1 504(t
tions. Note that only the dynamical equation for the equal - Qul )+,u(t)Q (1) —TK(Q )_E P=1(t)
. _ 2 ot d d 2 d
time overlapQy(t) = Q(t,t) depends on the correlatds.

IQ8 (u)

t dQ
APPENDIX B —Qg‘l(O)Cp(t)—f du—— Cp(t—u))
0

In this appendix we prove the existence of the lower and

upper bounds Eq25) for Ty in the casex=1, K=1. B(p— )
To obtain the lower bo(l)md, we start from E@3) and Qu(t) ~Qq(0)C(t)
write
—ftdu&Qd(u)Cp(t—u) <0. (B4)
1 9Qq(t) ) 4T
5 TROQ(D - T/C(Qd)——f duR(t,u)QP ! (t,u)

Noting thatQy(t) is a monotonous increasing function of

t _ time (again, this is true only above the DS transiliowe
p—2 y
foduR(t,u)Q(t,u)C (t,u)=0. (B1) Y Wit

~p(p-1)
2

-1
Let us assume now that we are in the high-temperature(* ang (U)Cp(t—u)>0 tdand(u)Cp(t—u)>O
phase where thR andC are time-translational invariant and J, Ju e au -

the fluctuation-dissipation theorem is satisfied, (B5)
dC(t—s) S0, in the long-time limit— o where theC(t) vanishes, we
TR(I—S)I T (BZ) get

At first glance, this condition may seem too strong. Nev- 1 9Qq(t) _ _E P—Lrty _
ertheless, we assume FDT is allowed if we are in the high-2  at FTLQu(D = K(Qa)]=751Qu (1)~ Qu(1]=0,
temperature phase. At the DS temperatuvhich is deep in (B6)
the high-temperature phase, as we show in detail in Secs.
lIlA and 11l B), the typical relaxation time for the quantities Where we have replacegd(t) by its equilibrium valueT
C andRis finite, so we may introduce FDT with no adverse +p//2. Finally, due to the monotonicity @,(t), we reach
effect. On the other hand, Sec. Ill B shows that the DS tranthe desired inequality,
sition is already present if we start from an equilibrium con- Q ( ) Q ®
d|t|8rslixvhere gondltlo_r(BZ) is iatlsfled for all times. _ g d <TIK(Qg) — Qu(t)] + BQq [Q22(t)—1].

g the inequalityQ(t,s)<Qq(s), wheret>s we ob 2

tain (B7)




3664 M. HEEREMA AND F. RITORT PRE 60
If we approach the DS transitiof, from above, we ex- As a curiosity (for which we have no analytical deriva-
pect Qq4(t) to relax very slowly to its asymptotic value tion) we note that this lower boun¢for the caseK=1)
Qu(=*)=1. So, we expectd®Qq(t)/dt?|<|dQq(t)/dt|<[1  seems to coincide with the exact DS transition temperature
—Qq(t)] for large times. We may differentiate the inequality for the fully asymmetric case=0 (see Sec. lll ¢
(B7) and setQy=1, which yields On the other hand, the upper bound can be obtained via a
5 linear stability analysis of Eq$21) and(23) around the HT
0= E *Qq(t) 2z9Qd(t) (K (1)— 11T+ B(p—2) solution. Writing Qq4(t)=1—€f(t) and Q(t,s)=C(t—s)
2 42 at 2 ' —eg(t,s) with f(0)=1 andg(t,t)=f(t) yields for Eq.(23)
(B8) in the larget limit

At the DS transition, the inequality is satisfied only if

To=\(p—2)/Z1—-K'(1)]. For the casgp=2, the second 1 of pB

member in the final expression of the inequaliB8) van- 25t —(T[l—’C'(l)]— - |f=hp

ishes, so the inequalities are never violated as soo®as

<1. This means that there is no DS transition in the high- t _1 ag(t,u)
temperature phase f@r=2. The only possible transition oc- X fo duC X(t-u) ou (B9)

curs whenC(t,s) and R(t,s) are not time-translational in-
variant anymore, and this may happen onlygt Actually,
the calculations of Stariolf26] show that the DS transition

is present at the static transition temperatiige(which is
equal toTy).

Finally, the inequalitydg(t,u)/du=0 vyields the upper
bound.
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