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We investigate dendritic sidebranching during crystal growth in an undercooled melt by simulation of a
phase-field model which incorporates thermal noise of microscopic origin. As a nontrivial quantitative test of
this model, we first show that the simulated fluctuation spectrum of a one-dimensional interface in thermal
equilibrium agrees with the exact sharp-interface spectrum up to an irrelevant short-wavelength cutoff com-
parable to the interface thickness. Simulations of dendritic growth are then carried out in two dimensions to
compute sidebranching characteristipsot-mean-square amplitude and sidebranch spaeisa function of
distance behind the tip. These quantities are compared quantitatively to the predictions of the existing linear
WKB theory of noise amplification. The extension of this study to three dimensions remains needed to
determine the origin of noise in experimentS1063-651X99)02010-3

PACS numbgs): 05.70.Ln, 81.30.Fb, 64.70.Dv

I. INTRODUCTION frequencies and is spatially distributed. Consequently, cur-
rent estimates of the sidebranching amplityd®,11 in-
Dendrites are intricate growth patterns that make up theolve some overall prefactor which is only known approxi-
microstructure of many important commercial alloyis2]. mately. Secondly, the predicted sidebranching amplitude
They develop a complex shape due to the emission of sedepends sensitively on the nonaxisymmetric tip shape which
ondary branches behind the growing tips of primaryseems to vary from system to system. Bisang and Bilgram
branche$3]. A major advance in understanding this dynami-[13] have found that the tip of xenon dendrites is well fitted
cal process came historically from the insigt5] that re- by the power lawk~z%®[14,15 (as opposed ta~z*?for a
sults of Zel'dovichet al. [6] on the stability of flame fronts paraboloid, wherez is the distance behind the tip amds
could be extended to other interfacial pattern forming systhe radial distance from the growth axis to the interface. In
tems such as dendrites, viscous fingers, etc. For dendritespntrast, LaCombet al. [16] find that the tip shape of suc-
further developments along this lifié—11] led to a physical cinonitrile dendrites is well described up todQwherep is
picture where small noisy perturbations, localized initially atthe tip radiug behind the tip by a weak fourfold deviation
the tip, become amplified to a macroscale along the sides dfom a paraboloidk~z2. Since thez®® power law should
steady-state needle crystals, thereby giving birth to sideenly strictly hold far behind the tipl14,15, the proposall1]
brancheg7-11] in qualitative agreement with some experi- that it can be used to predict the sidebranching amplitude
ments[12]. remains to be validated beyond the experiments of Bisang
This sidebranching mechanism requires some continuousnd Bilgram[13]. Lastly, analyses of sidebranching have so
source of noise at the tip. Therefore, thermal noise, originatfar been constrained to a linear regime. Therefore, there re-
ing from microscopic scale fluctuations inherent in bulk mat-mains the possibility that nonlinearities produce a noisy limit
ter, is the most natural and quantifiable candidate to considecycle where sidebranches drive tip oscillations.
Langer [10] analyzed the amplification of thermal noise At present, it appears to be difficult to make further
along the sides of an axisymmetric paraboloid of revolutionprogress on these issues without some reliable computational
and concluded from a rougistimatethat it is probably not approach to accurately simulate dendritic growth with ther-
strong enough to explain experimental observations, i.emal noise. Numerical simulations of dendritic growth using a
sidebranches form closer to the tip in experiment than prephase-field approach are consistent with a noise amplifica-
dicted on the basis of thermal noise amplification. More retion scenario in that sidebranches are absent in purely deter-
cently, Brener and TemkifiLl1] made the interesting obser- ministic simulations where the diffuse interface region is
vation that noise is amplified faster along the more gentlywell resolved[17—22. Moreover, in certain simulations
sloping sides of anisotropigmonaxisymmetric needle crys- sidebranching has been induced by randomly driving the tip
tals, leading to the conclusion that thermal noise has aboifl7,1§ in a fashion which is adequate to produce dendritic
the right magnitude to fit experimental data. microstructures, but not to investigate quantitatively the
There remain, however, several sources of uncertaintieghysical origin of sidebranching. In addition, in front-
regarding this conclusion. First, calculations of noise amplitracking simulation$23], sidebranching appears to be due to
fication have been based on a WK®Ventzel-Kramers- the amplification of numerical noise which is difficult to con-
Brillouin) approximation which has only been tested bytrol.
comparison[8] with numerical simulation$9] for a fixed The first goal of this paper is to demonstrate that the
frequency perturbation localized at the tip. Thermal noise iphase-field approadi24,25 can be successfully extended to
more difficult to analyze because it involves a wide range oftudy the effect of thermal noise quantitatively. The second
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goal is to use this approach to carry out a quantitative studyespectively. It is therefore possible to probe the relative im-
of sidebranching in order to test the predictions of the lineaportance of these two noises. In this paper, we focus on a low
WKB theory of noise amplificatiori10,11. Here, simula- velocity limit where the bulk noise should be dominant ac-
tions are restricted to two dimensions in order to carry oucording to the above estimate. We observe indeed that side-
this comparison in the simplest nontrivial test case. There arBranching is unaffected when the noise is switched off in the
two main reasons to elect a phase-field approach to studgvolution equation for the phase field, and only the con-
thermal noise. First, this approach has proven extremely su&erved noise is kept in the diffusion equation. _
cessful to simulate dendritic growfh7—21]. By reformulat- This paper is organized as follows. In Sec. Il, we review
ing the asymptotic analysis of the phase-field model, it haéh? sharp—lnterfgce equations of soI|d|f|cqt|on with thermal
recently been possible to lower the accessible range of urfl0ise a_md certain useful reSL_JIts of fluctuation theory._ In Set_:.
dercooling as well as to choose an arbitrary small interfacéll, We introduce the phase-field model and analyze its equi-
kinetic coefficient[21]. In addition, adaptive mesh refine- librium fluctuatlon properties, which allows us to relate the
ment methods, used in combination with the reformulated?@rameters of this model to the known material parameters
asymptotics, have pushed the limit of undercooling even furthat enter in the sharp-interface model. In Sec. IV we then
ther towards the experimental rang22]. Secondly, the discuss the numerical |mp_lementat|0_n of the model and
phase-field approach provides a natural framework to incorpre_sent the r_esults of a detailed n_umerlcal tgst based on com-
porate thermal noise since it is adapted from phenomenologRaring the simulated and analytically predicted fluctuation
cal continuum models of second order phase transitions usePectra of a stationary interface in thermal _eqwhk_)num. Next,
to study fluctuations near a critical poii6]. Therefore, the N Sec. V, we present the results of the simulations of den-
formalism to incorporate noise into such models already exdritic growth and a quantitative comparison of the side-
ists. The extension to the phase-field model mainly require8ranching characteristi¢amplitude and sidebranch spacing
the use of the fluctuation-dissipation theorem together witfPf @ steady-state growing dendrite to the analytical predic-
an appropriate scaling of parameters to relate the magnitudtons of the WKB theory. Finally, concluding remarks are
of the noise in the model with the noise that is present in afPresented in Sec. VL.
experiment. This straightforward exercise is carried out here.
An additional issue is the numerical resolution of a small Il. SHARP-INTERFACE MODEL
amplitude noise which could be masked by the numerical
noise and/or discretization artifacts that are present in simu- We consider the standard symmetric model with equal
lations. This problem is absent in studies of phase transitiongermal diffusivities in the solid and liquid phases. The in-
where the bare magnitude of the noise is not important. Herecorporation of fluctuations in this model, with reference to
however, this magnitude plays a crucial role. Fortunately, weearlier works, is discussed in detail in RE27] and we only
shall find that it is possible to resolve accurately a smalleview here the main results. The basic equations of the
amplitude noise, of magnitude comparable to experimentnodel are given by
provided that the spatially diffuse interface region is well
resolved. 4T=DV?T-V.], (1)

In the context of this study, we are naturally led to revisit
the issue of the relative importance of the noises acting in the ~ . - .
bulk and at the interface, which was previously considered in LVy==cDn- (VT =VT[9+cn-(jli—ils), (2
the context of a sharp-interface mod@2¥]. Microscopically,
the bulk noise originates from fluctuations in the heat current n
in the solid and liquid phases, whereas the interface noise T=Ty—Tk——+n (©)
originates from the exchange of atoms between the two H
phaseqi.e., the attachment and detachment of atoms at the .
interface. In Ref.[27], it was shown by a direct calculation WhereT(r,t) is the temperature field defined in terms of the
of the equilibrium fluctuation spectrum of a flat interface thatthree-dimensional position vector=xx+yy+zz T, is the
the bulk and interface noises drive, respectively, long-interface temperatureT,, is the melting temperaturel
wavelength £ >\*) and short-wavelengti\(<K\*) regions =Ty /L is the Gibbs-Thomson coefficient whegeis the
of this spectrum, where the crossover length* surface energyV, is the normal velocity of the interface,

=4mcD/ul. Here,cis the specific heat per unit volum®,  VT|, (VT|,) is the temperature gradient evaluated on the
the thermal diffusivity L the latent heat of melting per unit |iquid (solid) side of the interfacex is the interface curva-
VO|Ume, andu the interface kinetic coefficient. On this ba.SlS, ture, and other parameters were defined in Sec. |. The con-
it was roughly estimated that the bulk noise should predoml—served noise,f=jx§<+jy§/+j22, represents the fluctuating

nantly driv_e sidebranghing Whenevar*<)_\s, where )‘_S part of the heat current, where the componggfs with m
~\Ddo/V is the stability length below which perturbations _ v 5 “are random variables uncorrelated in space and time

of the interface are stabl®, is the tip velocity, andlo is the 5t obey a Gaussian distribution. The variance of this distri-
capillary length. This condition is actually satisfied for p tion

growth at low velocity where simple estimations allow one

to conclude thatg>\* for materials with reasonably fast - 0

attachment kinetics. In the phase-field model, the bulk and Gn(FO]o(F ) =2 DkgT(r,t) 5 S(T—F)S(t—t)
interface noises are represented by Langevin forces added to"™ '™’ c mn '
the evolution equations for the temperature and phase fields, (4)
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is fixed by the requirement that the diffusion equation driven . PHASE-FIELD MODEL
by this noise produces, in equilibrium, the known distribu-
tion of temperature fluctuations in the solid and liquid
phases, which is a simple application of the fluctuation-,
dissipation theorem. According to basic principles of statis-
tical physics[28], the mean-square fluctuation of the tem-
perature in a small volumaV of solid or liquid is given by

The Langevin formalism to incorporate fluctuations into
continuum models of phase transitions is well established
[26], and the same procedure can be followed for the phase-
field model. As in the sharp-interface model7], we pro-
ceed by adding stochastic forces whose magnitudes are de-
termined by making contact with equilibrium properties. For

(28] this purpose, it is convenient to express the phase-field
ko2 model in terms of the dimensionless temperature field
(AT?)= (5)
CAV’ T-Ty ©
U= e

wherekg is the Boltzmann constant, which is precisely the
result that one obtains from a simple calculation({AfT?) and the local enthalpy per unit volume defined by

using Eq.(1) with | defined by Eq(4). Note that, in a non- ()
equilibrium situation, the temperature variation in the liquid H= O( — p_) (10)
is small compared to the melting temperature, such that 2

T(r.t) can be replaced by on the right-hand side of Eq. wheree, is a constant with units of energy per unit volume,

). te d h lati ¢ th dqﬁ is the phase field chosen to vary betweef in the liquid
Next, to write down the correlation of the nonconserved, 4 1 1 in the solid, and)(¢) is some monotonously in-

noise that enters in the interface consti(B), it is conve- creasing function of¢ with the limiting valuesp(*1)=
nient to define the interface positiod(r, ,t)=zin(r.,t),  +1. The phase-field model expressed in terms of these vari-
wherer | =xX-+yy is the two-dimensional position vector in ables takes the form
the plane perpendicular to tlzeaxis. The interface tempera-
ture is then simply given by’,:T(ﬂm,t), where Fim: rl ﬁ: —F¢5—]:+ o(r 1), (12)
+ {(rl ,t)z. We can assume, without loss of generality, that at o
the interface is locally single valugde., no overhangwith JH SF
respect to this set of coordinateg(r , ,t) is then Gaussianly — =Ty V&—=-V-q(r,t), (12)
distributed with a variance defined by at oH

5 -, ) which is a form similar to Model C of Halperin, Hohenberg,
kg TP o(rp —rp) o(t—t’) and Ma[26], i.e., with coupled nonconserved) and con-
ul \/ﬁ ’ served(H) order parameters, which is most naturally suited

1+[Vi(ry ) to add fluctuations. The fact thét is conserved, which fol-
(6) lows from Eg.(12), simply reflects the fact that the total

energy in a given volume is conserved in the absence of

energy fluxes through the surfaces bounding this volume.
(?\Iext the free energy is defined by

(n(r, ) n(r t))=2

where the square root in the denominator of ). is a
simple geometrical factor introduced such that the net forc
on a small ared S of the interface is independent of its local
orientation [27], and V, =Xd,+yd, denotes the two- ;
dimensional gradient vector in the plane of the interface. The f d
application of the fluctuation-dissipation theorem for this

noise requires that its variance be chosen such that the shafghereh, andK are constants with units of energy per unit
interface model reproduces the known fluctuation spectrumyolume and per unit length, respectively, ah(p) is a

of a stationary interface in thermal equilibrium, derived ana-double well potential with minima akp=+1. Specific
lytically in the next sectior(see alsd27]): choices forp(¢) andf(¢) will be given in the next section

to carry out the computations. Finally, the noises are Gauss-
ianly distributed with variances

K u?
r E|V¢| +h0f(¢)+eo7 , (13

kBTM
S=(0d ="
Y (O(r,1)6(r" 1)) =2T 4k Ty S(r—r")8(t—t"), (14

where(, is the Fourier coefficient of the interface displace-

ment. i.6 (Am(F, (1)) =2T ke Ty Smnd(F —1") S(t—t").
T (15
- d%k or Let us now briefly analyze the equilibrium bulk and inter-
(ry) (277)29 k- (8) face fluctuations in this diffuse interface model in order to

make contact with the sharp-interface model of the preceding

A straightforward but lengthy calculation described in Ref, S€Ction- As is well known, the probabilify[ ¢, u;t] of find-
[27] shows that Eqs(1)—(3), with the noises defined by Eqgs. iNg the system in a given configuratiomy(r,t) and u
(4) and (6), yields this spectrum in equilibrium. —u(r t), at timet is governed by a generalized Fokker-
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Planck equatiof26] associated with the Langevin equations 2¢0( 2)

(11) and (12). For a general nonequilibrium situation, this ——— +hofu(éo(2))=0, (23
Fokker-Planck equation has no known analytical solution. In z

equilibrium, however, it has a time-independent stationary

solution where we have definetl,=df/d¢. We can then evaluate

the gradient term in Eq.13) using Eq.(22), which yields
(16)

f’
Ped &,u]= —exp{ kT

which allows us to calculate analytically the equilibrium

¢<r>~ﬁ[z V. L)) (24)

Next, we substitute Eq$22) and(24) into Eq. (13), which
) allows us to express the probability distributici6) directly

Gaussian fluctuations. Here,
f - -
Z= | DpDuexp — (A7 in terms ofZ(r,) instead of$(r). One immediate simplifi-
I(BTM . . . A
cation is that the one-dimensional pdidz of the volume
is the equilibrium partition function wher®¢ andDu de-  integral [d°r = [d?r fdz in Eq. (13), whered’r=dxdy, can
note functional integration over the fields andu, respec- be carried out exE)I|C|tIy. The resulting integrals proportional
tively. Let us first calculate the temperature fluctuations into [dzf($o(z—£(r,))) and fdz(d¢,/dz)?, where the sec-
the bulk phases.zs_inc¢ is constant in the solid or liquid, ond integral originates from the termi¢,/dz) z on the
only the term~u< in the integrand ofF needs to be kept. right-hand side of Eq(24) give only constant contributions
Consequently, Eq(16) implies that the fluctuation ofi in- i, 4anendent of¢(F,). They do not affect the fluctuation

side a small volum&V is given by probability since they can be factored out of both the nu-

AVe, U2 to merator exp{ F/kgT),) and the denominataf of Eq. (16).
(u2)= f du u exp{ T3 / f du Only the gradient term on the right-hand side of E24)
B'M
AVey u?
xex;{— thall

gives a nontriviall-dependent contribution and leads to the
expression for the probability distribution of interface fluc-
(18)  tuations

kgTy 2|
which yields at once the result PLL(r)]= %ex;{ - %f d2r%|VZ§(r1)|2>, (25)
B'M
kgT
2y _ "B'M
<U >_ eOAV' (19) where
Now comparing Eq(19) with Eq. (5) allows us to determine Y T
JDgex —Wf d r§|VL§(I’i)| y (26)
L2 M
eO:T—MC. (20)

and

This result can be obtained, alternatively, by comparing the

2
hase-field equationd?2) and (15), in a region wherep is +oo d
p quationd ) and (15) g ap S Thoj d;{& — JRF) -

constant, with the sharp-interface equatiofdis and (4),
which yields, in addition, the expression for the diffusion

constant . . ) .
is the surface energy;_the integiatiefined in terms of the
Iy dimensionless variable=z\h,/K is a numerical constant
D= o (21)  that depends on the form 6¢#). The result of Eq(7) stated

earlier is now simply obtained by changing variables from

Next, the equilibrium fluctuations of a stationary interface g(ﬂ) to ¢ in the probability distribution above, and by us-
can be calculated provided that we restrict our attention tang this distribution to calculaté{, ¢ ), which only in-
wavelengths that are large compared to the width of the sparolves a Gaussian integral. This simple exercise shows that
tially diffuse interface region. Let us consider the fluctua-the interface fluctuations in the phase-field model are identi-
tions about a flat interface in the plame=0. For a small cal to those of the sharp-interface model on scales larger than

amplitude deformation(r, ), which varies slowly on the the interface thickness, i.&, '>\K/h, as one would na-

scale of the interface thickness, the phase field can be ajiely expect. Finally, Eqs20) and(27) can be used to relate
proximated in the form the parameters of the phase-field model to the capillary

length,dy= yTy,c/L2, which yields
¢(1) = o(z—¢(r 1)), (22

where ¢o(2) is the solution of the one-dimensional station- do=1\/— (28
ary interface problem €o
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IV. NUMERICAL IMPLEMENTATION ;o
q—q. (40)

A. Choice of functions and scalings egW

To carry out numerical simulations, it is convenient to

choose the functions Transforming the phase-field equatiofisl) and (12) with

the help of these substitutions, and using the fact ﬁ(ﬁt

f(¢)=— 22+ 414, (29) —r’) and 8(t—t’) on the right-hand side of Eq$14) and
3 5 (15) have dimensions of (lengthf, whered is the dimen-
P(¢)=15(¢—2¢°13+ ¢°/5)/8, (30 sion, and inverse time, respectively, we obtain the dimen-

. . sionless form
where Eq.(29) is the standard quartic form of the double

well potential and the forr{30) has the advantage that it i
preserves the minima a@f at =1 independently of the local —=V2p+d— P>~ Au(1— 32+ 06(r,t), (41
value ofu [29]. The one-dimensional stationary profile solu- Jt
tion of Eq.(23) is then given by
au lop(¢) - - .
—_— 2 —_— —_ .
P . ) P DV u+2 P V-q(r,t), (42
’ Vaw)’ .
with
where
(O(r,06(r" 1)=2F, 5(r—r")s(t—t'), (43
W= < (32
ho (Qm(1,0qn(r",1))=2D Fy 8mnd(r—r") 8(t—t"), w
44
is the interface thickness. Evaluating the integral in €7)
with the above form ofp,(z) yields | =22/3. and the definitions
It is useful to express the phase-field equations in a di-
mensionless form that minimizes the number of computa- KaT2 C
tional parameters and that renders the interpretation of the expt B M , (45)
noise magnitude in the phase-field model more transparent. deg
For this purpose, it is useful to define, in additionvif the
time 2
keTmC —
! (33) Fu= gy ~doFem 49
=
r'yhy'
¢ No
Fo=AJFy,. (47)

which characterizes the relaxation @fto one of its local

minima, and the coupling constaj&0] The above definitions allow us to relate the magnitude of the
noise which enters into the phase-field modg|, with the
magnitude of the noise in experimenks,,,;. Comparing the
right-hand side of Eq(45), for d=3, with the right-hand
side of Eq.(19), we can readily see th&&t,,is simply equal
expressed in terms of the scaled capillary length to the mean-square fluctuation winside a microscopic vol-
umed?, and is a fixed quantity for a given materiéNote
— dy that F,p,; can also be written in the forrkg Ty /ydg, which
dO:W- (39 is the square of the ratio of two microscopic lengths,
VkgTy /v anddg.) The first equality in Eq(46) implies that
Here, J=16/15 is a constant whose value is fixed by theF, is the mean-square fluctuation ofinside a microscopic
choice ofp(¢) [21]. We then measure all lengths in units of volumeW?. The second equality dictates how to cho&ge
W and time in units ofr, and define accordingly new dimen- in a simulation for a given systenf-(,,) and a given choice
sionless coordinates, diffusivity, and noise variables, via thef computational parametet,. The dependence on the latter
substitutions quantity has a simple physical interpretation. Namely, if one

. R chooses, to be small compared to unity, which is the main
rIW—r, (36)  gain in computational efficiency resulting from the reformu-
lated asymptotics of Ref21], then one must scale down the
t/T—t, (37 magnitude of the noise in the phase-field model to keep the
fluctuation strength in a physical vqunt% constant. The
D7/W?—=D, (38)  main practical conclusion here is that one still has the com-
putational freedom to choose the interface thickness if one
T0— 6, (39 rescales appropriately the noise strength.

g |1

ZJ—hO—J—aO, (34)
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B. Discretization

The phase-field equatioti41) and(42) are discretized on 10 ¢ O - gg&sﬁ;‘;segs"mse only
an N XN square lattice of spacingx=Az using centered . —— Theoretical
finite difference formulas, as described in Refl], and the 10° ¢

equations are time stepped using a first order Euler schem
with a time stepAt. The only new elements here are the
noises. To see how to discretize them,ilék andjAz de- ';J
note the position on the lattice alongand z, respectively.

For the nonconserved noise, we generate one random nun 107
ber per lattice siteg;; , chosen from a Gaussian distribution

with a variance 10°

2F,
<0ij0i’j’>:m5ii’5ﬂ'l (48) 10_4

107" 10

10

where the factors Mt and ;LAXZ on 'the rlght-hand side of FIG. 1. Simulated spectra of a one-dimensional interface in ther-
Eqg. (48) are related to the inverse time and the inverse areg| equilibrium with both nonconserved and conserved natbirs
(inversia \iolume in three dimensignscalings of §(t—t") solid line) and only the conserved noiggashed ling compared to
and 8(r —r'), respectively, in the correlation of the noises. the theoretical prediction of Ed51) (thick solid ling. Length is
6;; is then added to the deterministic part of the right-handneasured in units o/V. Parameters used in simulations are-1,
side of Eq.(41) discretized at sitei(j). D=1, andF,=0.005.

To discretize the conserved noise, we defineghy the ) _ _
current on the bond that links sité,|) with site (+1,), €ach time step. The complex amplitudg, is then calcu-
and byq,;; the current on the bond that links sitgj) and lated by a one-dimensional fast Fourier transform whgre
(i,j+1). We then generate at each time step two indepen@nd{(X) are related by
dent random numbers per sitg,;; andq,;; , chosen from a

Gaussian distribution with a variance {(x)= f %eikx Lis (52)
2DF, . o . .
<qm,ian,i/j'>:—2 SmnSii 1 8jj 1 - (49 Finally, S(k) =(| £,|*) is calculated by taking a time average
At Ax of |£/?. Long simulations with typically 10to 1¢f time

steps were necessary to obtain good statistics. These calcu-
The divergence of the current on the right-hand side of Eglations were carried out by using E2) with both p(¢)
(42) at site (,]) is then discretized in the form defined by Eq(30) and p(¢)= ¢. Note that the constar
=16/15 is the same for both choicgzl] since the form of
V-0) =0 — 0o 1 . the phase-field equatiodl) is unchanged, and thus derived
(V@i =i = Ui -1+ Gy ~ G-/ A (50) from p(¢) defined by Eq(30) in both cases. Of course, with
Eg. (41) unchanged and the choipé$) = ¢ in Eq. (42), the
C. Planar interface fluctuation spectrum phase-field equations are no longer variatidhal, derivable
As a nontrivial test of the numerical implementation of from a Lyapounov functional but the sharp-interface limit
the phase-field model, we first calculate the fluctuation specemains identical and the interface can be resolved with a
trum of a one-dimensional stationary interface in thermalargerAx, as shown previouslj21]. The spectra for the two
equilibrium and compare this spectrum to the analytical prechoices ofp(¢) were found to be virtually indistinguishable
diction (7). With length measured in units oV, Eq. (7)  such that only the results f@(¢) = ¢ are reported here. In

becomes the dendritic growth simulations presented below, we will
restrict our attention solely to the case whexgp)=¢ is
Fu used as the source of latent heat in the heat equation.
S(k) = R (51) Spectra obtained for a typical set of computational param-
0

eters are compared in Fig. 1 with the analytical prediction
_ (51), represented by a thick solid line, both for the case
where do=1/(JA)=52/8A for the present choice of where the nonconserved and conserved noises are added to
phase-field model. the phase-field equationghin solid line with F,#0 and

To calculateS(k), phase-field simulations were carried F ,+0) and for the case where the nonconserved noise is
out with periodic boundary conditions ¥on a lattice of size  switched off in the¢ equation(dashed line withF,#0 but
512x50 with Ax=0.8. We used initial conditions that cor- F,=0). With both noises present, the calculated spectrum
respond to a flat interface inside a system uniformly at theagrees well with the theoretical prediction up to a cutofkin
melting temperature, which corresponds to choosiig of order unity(corresponding to a wavelength comparable to
= ¢o(z)=—tanh@\2) and u=0. The interface profile, the interface thickness in physical unitsvith only the con-
{(x), is defined bys(x,{(x))=0, and is calculated by find- served noise presenf(,=0), the simulated spectrum fol-
ing the =0 contour of the phase field by interpolation at lows initially well the predicted ¥? law with increasingk,
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but then drops off rapidly to a very small amplitude at large TABLE I. List of the phase-field computational parameters used
k. This dropoff is consistent with the analytical prediction of in dendritic growth simulations. These parameters yield an effective
Ref.[27] and is due to the extra dissipation at the interface3% anisotropy in surface energy and a diverging interface kinetic

that damps out short scale fluctuations. coefficientu as defined here in Eq3).
. . Ax 0.8
D. | t f t
ncorporation of anisotropy At 0.06

In order to investigate dendritic sidebranching in the next D 2
section, we incorporate anisotropy as other authors have A 3.268
[31,32 by letting the coefficient of the gradient energy term - 0.27
in the free energy depend on the normal to the solid-liquid 0 0.03266
interface,n=V ¢/|V ¢|. Following this change, Eq42) re- 64 0.03
mains unchanged and E@1) becomes ; 0.046

fi(n) dip=p— P>~ A u(1—p*)?+V-[f4(n)*V¢]
(R where the value of5 is computed, together with an order
s + H(F,t), Ax? correction toA, in order to make ¥ vanish in Eq.(3),
I Ime) as described ifi21]. The resulting computational parameters
(53) are summarized in Table I.
Lastly, in terms of our dimensionless units, where length,
where we have defined the anisotropy function for a crystalime, and velocity, are scaled in units @, 7, and W/,
with an underlying cubic symmetry respectively, and without interface kinetics, the thin-interface
limit of the phase-field model is the standard free-boundary

f(N)=1—3e,+4e,( p+3*d)I|[Vp*. (54  problem:

+ 2 | IV|?4(N)
m=x,z

We neglect the orientation dependence of the noise strength, du=D Vau-v-.q, (57)
which is in principle simple to include, and therefore define

the variance of9(r,t) by Eq.(43). This turns out to be un- V,=-Dn-(Vul,—Vu|g)+n-(ql,—qls), (58)
important here since this noise does not affect sidebranching

in the simulations presented in the next section. As in our U= — do(1— 15€, COS 4a) «, (59

previous study of dendritic growth without noi$21], we
use the result of a reformulated asymptotic analysis of thgyhereq is the same noise as in the phase-field model and
phase-ﬁeld model together with a methodi to compute latt.'cea=cos*1(2~ﬁ) is the angle of the normal measured from the
corrections to the surface energy and kinetic anisotropie axis

Moreover, we focus on a choice of computational parameters '
that makes 14 vanish in the interface conditiof8). The

effective anisotropy of the phase-field model, which includes

lattice corrections, is given at ordéix” by In this section, we simulate the phase-field model defined
by Egs.(42) and(53) to investigate sidebranching character-
— . 2
€e= €4~ AX7/240. (59 istics for different noise levels and a fixed dimensionless
Here, we usé\x=0.8, and input the value,=0.032 66 into gndercoohngAE(TM—Tm)/(L/c)=0.55, whereT,, is the
initial temperature of the melt. We then compare these re-

Eqg. (54) to obtain an effective anisotropy.,=0.03 when o . o )
comparing our results to the sharp-interface 50|Vabi|itySU|tS quantitatively with the predictions of the linear WKB

theory. This 3% anisotropy leads to a relatively large Stiff_theory that corresponds to the sharp-interface model defined
ness anisotropy X=0.45. This choice was made to allow by Eqs.(57)~(59).

us to carry out long simulation runs that are necessary to _

calculate accurately noise-averaged quantities such as the A. Numerical results

sidebranching amplitude and spacing on a uniform grid. De- Test simulations were first carried out with both noisgs,
creasing the _ani_sotropy at fixed_undercooling reduces.the irb'md a and with only the conserved noi€|e We found that
terface velocny(ln(_:reases the dlffusm’n lengtiland .thus. n- e-averaged sidebranching characteristics were identical
creases substantially the computational domain size angl, ye o cases within our numerical resolution. This find-
simulation time. In addition, this stiffness is comparable toing shows that fluctuations which become amplified to pro-

that of Pivalic acid(PVA) used in dendritic growth experi- 06 sigebranches are on length scales much larger than the
ments[33]. (The most recent anisotropy measuremi@d] o rface thickness, and thus driven solely by the bulk noise

yields a_2.5% surface energy anisotro.py equivalgnt toa stiffy, agreement with expectatidsee Sec. | anf27]). Conse-
ness anisotropy of0.37)5l'c2) make the interface kinetic con- 4 ently all the results presented in this section were ob-
tribution vanish at ordeAx” we choose tained with simulations where noise is added only to the heat
1= 354 48(3* b+ )/ 1T bl transport. equatior_(42). This represents a non-negli'gible
f(P)= (dxp+d;¢)/|V ¢l (56) computational saving for long simulation rufise., two in-
1+6 ' stead of three random numbers per site at each time. step

V. DENDRITIC SIDEBRANCHING
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150 T T 0 0
-20 -20
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100 K : —40 | 1 —0
N §
% -80 -60
50 1 ~80 80
F=2.5x10" F,=25x10™
-100 L— - . . ——1 _100
20 0 20 20 0 20
k x/p xp
0 L
0 50 100 150 FIG. 3. Snapshots of the time-dependent dendrite shEods
xlp lines) in long simulation runs that focus on the growth of one tip for

A=0.55 and the parameters of Table I. The noiseless stugshed
line) is superimposed for comparison. The noise levels Bge
=2.5x107% in (a) and F,=2.5x10"* in (b). Note that side-
branches form further behind the tip for the smaller noise level.

150

(b)
100 | 1 condition is used as in Fig. 2. As in RdgR21], we periodi-

cally translate the entire structure in the opposite direction of
growth to allow long simulation runs to be carried out in the
smallest lattice size possible. Of course, we make sure that
the sidebranching activity is not affected by this procedure
by choosing a reasonable buffer larger than the diffusion
length, and by carrying out test runs with larger lattice sizes.
The constraint of symmetric growth prevents us from inves-
k tigating the correlation of the sidebranching activity on op-

posite sides of the growth axis, which has been examined
0 experimentally. However, it permits a more efficient investi-
gation of the sidebranching amplitude and wavelength which
FIG. 2. Morphological development of a solid seed for ~ Can be compared to analytical predictions.

=0.55 and two different conserved noise amplitudésy: F, To calculate these two quantities, we proceed in two
=10"*, and (b) F,=10 3. Other computational parameters are Steps. First, we carry out a simulation without noise to obtain

listed in Table I. The interfaces are plotted every 16 000 iterations@ ‘‘reference” steady-staténeedle crystal shape, without
sidebranching. It is useful to measure this shape by the hori-
zontal distance(z) of the interface measured from the ver-
Meal growth axis as a function of the distanzédehind the
tip. This distance is calculated by numerical interpolation of
e ¢=0 contour. The steady-state operating state of the
dendrite is defined in terms of the dimensionless tip velocity
and radius

zlp

50

0 1 1
50 100 150

x/p

a small initial seed is illustrated in Figs(& and Zb) for two
different noise levels. These simulations were carried out o
a large 120& 1200 lattice with no-flux boundary conditions
and, as initial conditiony=0 and¢=1 inside a small circle
in the lower left-hand corner of the quadrant and — A and
¢=—1 outside this circle. Note that in Fig(l® the noise is V/zVEO/D, (60)
sufficiently large to disturb the steady-state growth of the tip,
which can be deduced from the fact that the vertical branch
has outgrown the horizontal branch in this case. Since the
tips do not interact via the diffusion field at this undercool-
ing, i.e., the separation between the tips is much larger thahior the present choice of undercooling and anisotropy, we
the diffusion length, this difference can only be due to noisefind thatV=Vd,/D~0.011 andp=p/dy~21.8. These re-
This effect is negligible for the smaller noise leyEig. 2(@)]  sults are in excellent quantitative agreement with the exact
where the two tips grew at nearly the same rate. benchmark predictions of solvability theofyalid for an ar-

To investigate sidebranching, we restrict our attention tdbitrary anisotropy obtained by solving numerically the two-
small noise levelsk ,=2.5x 10 ° andF,=2.5X 10 %) with ~ dimensional(2D) steady-state growth sharp-interface equa-
a well-defined steady-state tip structure. The symmetrid¢ions by boundary integral methd@1,35—-38. Second, we
growth of one tip about the axis (i.e., half the dendrite with add the conserved noise to the heat equation and calculate
reflection symmetry is simulated on lattices of size 300 the time-dependent shapex(zt), with sidebranching
X400 and 30& 600 with no-flux boundary conditions for, present. Snapshots of noisy shapes superimposed on the
respectively, the larger and smaller noise amplitGabere  noiseless shape are illustrated in Fig. 3. Examples of time
sidebranches form further behind the)tifhe same initial traces ofx(z,t) for two different distances behind the tip are

p=pldy. (62)
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14 ; : 3
—— Numerical results
—--- WKB prediction
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FIG. 6. Root-mean-square amplitude of sidebranches as a func-
FIG. 4. Horizontal position of the interface measured from thetion of distance behind the tip for two different noise levels in the
vertical growth axis as a function of dimensionless time at 20 and agimulations (solid lines. Superimposed are dashed lines corre-
40 tip radii behind the tip. The parameters are the same as in Figponding to the analytical predictions of H§5).
3(a).

2wV
shown in Fig. 4. In addition, an example of the noise- (\M2))= (2)’ (63)
averaged power spectrum of a long time trace is shown in

Fig. 5. Th?s spectrum was calculated by su_bdividing theyhere w, is the peak frequency of the power spectrum of
complete time interval into several equal subintervals, ther)l((z t), averaged over sufficiently long time. An alternate
calculating the power spectrum for each subinterval, and fiz 4 f4ster way, which avoids calculating the power spec-

nally taking the average of these_ power specira. trum, is to count the numbeM(z) of extrema ofx(z,t) in a
In.terms Of. the above quantities, .the root-mean-squarﬁ)ng time intervalt;<t<t,. Simple node counting then
amplitude of sidebranches is simply given by leads to the relation

w

A(2)=([x(z,) = xo(2) %), (62 2V(t—ty)

ND)= 5 (64)

where the average is over time. This quantity is plotted vs

in Fig. 6 for two different noise levels. To obtain good sta- For the spectrum of Fig. 5, these two methods yield similar
tistics, we typically simulated a total time of 20@(p which  values:(\(z))/p~15 as calculated from Ed63) with w,
took 200-350 CPU hours on a high end workstation. The=0.42 extracted from Fig. 5 and(z)/p=13.5 as calculated
mean spacing between sidebrancligislebranching wave- numerically from Eq.(64). Consequently, we have used Eg.
length (\(z)) can be calculated in two ways. One way, (64) to calculate(\(z)) vs z and the result for the lowest
which corresponds more directly to the way in which thisnoise level is shown in Fig. 7.

guantity is calculated in the WKB theory discussed below, is

to define 15
°w——————————————————— | o T
08 |
_ 06 / ——  Numerical
6 5 _l/ ———- WKB prediction
n —-—-- Stretching prediction
04
02t
0 . ‘ .
0 20 40 60 80
z|/
0.0 . . . e
0.0 0.2 0.4 0.6 08 1.0 ) . ) .
wp/V FIG. 7. Mean spacing of sidebranches as a function of distance

behind the tip in the simulation foF,=2.5x10"° (solid line),
FIG. 5. Noise-averaged power spectrumx¢z,t) at |z|/p=40 analytically predicted by Eq66) (dashed lingand predicted on the
for F,=2.5x107°, basis of stretchingdash-dotted ling
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B. Comparison with linear WKB theory good overall quantitative agreement with the analytical pre-

Langer[10] and Brener and Temkifl1] have analyzed dictions even thouglr* is not much smaller than one. The
noise-induced sidebranching in three dimensions for specifi@mP“tUde in the simulations is relatively well predicted by
needle crystal shapéie., x~zY2 andx~z%9). It is straight- Eq. (65), up to a certain distance behind the tip after which
forward to extend their analyses, based on a WKB approacilé tWo curves depart from each other. This departure may
to an arbitrary needle crystal shapg(z), in d dimension be due to nonlinear effects WhI.C'h bepome important Men
[39]. We shall only state here the final results necessary t9ecomes of order unity. In addition, it should be emphasized
interpret our simulations. The expressions for the sidethat the prefactor of Eq(65) is only known up to some
branching amplitude and wavelength are given, respectivelynultiplicative factor of order unity. Consequently, what is

by [39] more relevant here is that the amplitudes in simulation and
theory are of comparable magnitude, rather than the fact that
__ 2 Yg 12 the numerical and theoretical curves in Fig. 6 seem to almost

A(z)=Sex 3 3%z ' (69 perfectly overlap up t@=20, which may be coincidental.

The wavelength in the simulations is only about 30%

o 12g% 7] Y2 larger than predicted by E@66) in the region(20 to 40 tip
N2Z)y===m7 ? ,
w

c

(66)  radii behind the tip where sidebranches become visible.
However, this wavelength increases initially faster with dis-
. . tance behind the tip than predicted. One possible explanation
where we have defined the scaled quantikigs Xq/p, z= for this faster rate of increase is that perturbations generally
—2lp, A=Alp, \=\p, w.=wplV, the dimensionless 9et stretched as they travel along the sides of curved fronts
=y [4-6]. To test this possibility, let us calculate the purely
deterministic change of wavelength of a perturbation initially
at the tip due to stretching. The rate of stretching is given by

Xo

noise amplitudeS, given by

— 2F,D 2F
2_“Tur u _ _
S _p1+dv_ag"bl+d'v (d_213)1 (67) [4 6]
) NAVA o
and N TS (70)
* _ ZDEO _ 2 whereV,=V sin« is the tangential velocity of advection of
0= TRy (68) the perturbation and measures the arc length along the in-
pV  pV p g g

terface. Equation70) is strictly valid in the WKB limit
It is easy to check that Eq$65) and (66) reduce to the Wwhere\ is small compared to the local radius of curvature
earlier results of Refd10,11 if specific shapegparabola (1/x) of the interface. We can solve E{Z0) by using the
and 3/5 law are substituted into them. Note that if we con- change of variablelt=dz/V. Equation(70) becomes then
vert back to dimensional units by letting— p/W, V d(In\)=sin 2ada/2, which can be easily integrated. Further-
—V7/W, andD—D 7/W?, in Eq.(67), we obtain the expres- more, using the geometrical relation, eosl/1
sion +(dxo/d2z)?]*? we obtain
—, 2kgTycD
L2p1+dV !

. 1 (dxo/dz)?
69 = _——_
(69 \(Z) xwexp[ > 1+(dx0/dz)zl’ (72)

which is dimensionless if one interprdtsandcT,, to have
dimension of energy/(length) Of course, this interpretation
is only physically meaningful in three dimensions where Eq.
(69) becomes identical to the definition & in Ref. [10].

Therefore, in the present study we evalugtelirectly from

where we have definexd, to be the saturation value affar
behind the tip(i.e., z— ). It should be emphasized that the

value of\.. cannot be predicted alone by E@J) since this
equation does not describe the selective amplification of
) i noise at the tip. The prediction ¢h) at a given distance
Eq. (67) to compare simulations and theory. Ft§=0.27 oy the tip still requires the WKB analysis. Equati6r),
(Table ) and the aforementioned selected valués;0.011  however, can be used to estimate the relative change of
and p~21.8, we obtaingwo_zmzu and ¢* ~0.383. (Note ~ Wavelength due to stretching. Thus it is reasonable to use the

that o* is larger here than in experiment due to both thevalue of\. observed in simulatiofi.e., the saturation value
large value of anisotropy which produces a pointy tip, andof the solid line at largez| in Fig. 7) as input into Eq(71)

the fact thato™ is larger in 2D than 3D for the same anisot- in order to test whether the faster increase in spacing in the
ropy) The analytical predictions for the sidebranching am-tip region observed in simulation, as compared to the WKB
plitude and wavelength are then simply obtained by puttingorediction, may be due to stretching. For this purpose, we
these values into Eq&65) and(66) together with the steady- have plotted in Fig. 7 the prediction of EG/1) with the

state interface shapry(z), measured in the noiseless phase-value of\..~13.5 that corresponds to the larige plateau of

field simulation(dashed lines in Fig.)3 the solid line. We can see that this prediction gives indeed a
Figures 6 and 7 show that the amplitude and wavelengthetter agreement with simulation near the tip for the mean

measured in the phase-field simulations with noise are ispacing, which indicates that stretching is likely to be the
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origin of the disagreement between simulation and the WKBng dendritic growth. We conclude that the root-mean-square
theory in this region. Indeed, this stretching effect has beesidebranching amplitude is reasonably well predicted by the
neglected in the WKB calculations to date that are onlyexisting linear WKB theory of noise amplification, even
strictly valid in the far tip region£>1), where this effectis though the value ot™ in our simulations is not small. In
negligibly small. It should, however, be possible in the future@ddition, the WKB theory gives a reasonable estimate of the

to carry out a more elaborate noise amplification calculatiorsP2¢iNg between sidebranches at the distance behind the tip

that incorporates this effect and that should in principle yieIdW_here they become of amplitude comparable to the tip ra-

an improved prediction of the sidebranch spacing near th lus. It does not, hOWGV‘?f’ accgrately pr(-_zdict the fuqctional
tip orm of the variation of this spacing with distance behind the

Finally, we note that the sidebranching wavelength iStip for the present phase-field simulations. This leaves open

about an order of magnitude larger than the tip radius in othe questi.on as .to Why the sidebrgnch amplitude' is better
simulations, whereas it is only a factor of 2 or 3 in the eX_predlcted in the tip region than the sidebranch spacing by the

periments of Huang and Glicksman in succinonitii@. ;aﬁqstl_ng \INFB thetffy’ at least for the pre?entt S'g'“r']?t'é”:ﬁ- I?.
This difference is due to the fact that is much larger here € simuiations, thiS spacing Increases faster benin eup

than in these experiments because of the larger value of aﬁha_n predicted by this theory. We haye argued on thg basis of
isotropy used in simulations a simple analytical estimate that this faster rate of increase

may be due to stretching but a more elaborate noise ampli-
fication calculation that incorporates this effect is needed to
validate this conjecture. Nonetheless, the overall quantitative
We have presented a phase-field model of the solidifica@greement between theory and simulation can be viewed to
tion of a pure melt that incorporates thermal noise quantitabe reasonably satisfactory given the lack of any adjustable
tively. From a computational standpoint, there are two mairParameters and the intrinsic limitations of the WKB approxi-
conclusions regarding the incorporation of this noise. Firstmation.
one can retain the freedom to choose the interface thickness A more stringent test of this theory would require us to
at will as long as the noise magnitude,) that enters in the extend the present study to a range of smaller anisotropy, and
phase-field model is scaled appropriatgg. (46)]. There- hence smalleo™, where a comparison between this theory
fore, it remains possible to carry out dramatically more effi-and simulations is more justified. Another interesting prob-
cient computations without interface kinetics by choosTrag Ie_m that was hot investigated here is the evonUon of the
substantially smaller than unity, as in our earlier studiess'dEbr"j“"Ch spacing even furthgr away from the tlp_due to the
without noise[21]. Secondly, for typical growth conditions growth (;ompetlt|on between S"?'ebfanc*féﬂ"‘q- Flnglly,
at low undercoolingland, more generally, below a critical SIC€ this study has been restricted to two dimensions, we

velocity that depends on the attachment kinetic coefficienf2NNOt yet answer the important question of whether thermal
), the conserved noise in the heat current is the most refioise alone is responsible for the sidebranching activity ob-

evant one. This noise drives long-wavelength interface flucS€TVed in experiment. Simulations in three dimensions
tuations that become amplified to a macroscopic scale by thehould provide a clearcut answer to this question.
morphological instability on the sides of dendrites. In con-
trast, the nonconserved noise in the evolution equatiorfor
drives short-wavelength fluctuations that are damped and do We thank Mathis Plapp for valuable suggestions concern-
not affect sidebranching, as predicted by a sharp-interfacing the numerical treatment of the conserved noise. This
analysis[27] and confirmed by our simulations. Conse-work was supported by DOE Grant No. DE-FGO02-
quently, this noise can be left out in computations below thi92ER45471 and benefited from Cray T3E time at the Na-
critical velocity. tional Energy Resources Supercomputer CerliMERSQ

We have applied this model to carry out a detailed quanand time allocation at the Northeastern University Advanced
titative study of the initial stage of sidebranch formation dur-Scientific Computation CentéNU-ASCQO).

VI. CONCLUSIONS
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