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We study the spectral statistics and dynamics of a random matrix model where matrix elements are taken
from power-law tailed distributions. Such distributions, labeled by a parametesnverge on the Ly basin,
giving the matrix model the label “Ley matrix” [P. Cizeau and J. P. Bouchaud, Phys. Re\6(E 1810
(1994)]. Such matrices are interesting because their properties go beyond the Gaussian universality class and
they model many physically relevant systems such as spin glasses with dipolar or Ruderman-Kittel-Kasuya-
Yosida interactions, electronic systems with power-law decaying interactions, and the spectral behavior at the
metal insulator transition. Regarding the density of states we extend previous work to reveal the sparse matrix
limit as u— 0. Furthermore, we find for 2 2 Levy matrices that geometrical level repulsion is not affected by
the distribution’s broadness. Nevertheless, essential singularities particulanyodistributions for small
arguments break geometrical repulsion and makedependent. Level dynamics as a function of a symmetry
breaking parameter gives new insight into the phases found by Cizeau and BoyCBaud/e map the phase
diagram drawn qualitatively by CB by using the; statistic. Finally we compute the conductance of each
phase by using the Thouless formula, and find that the mixed phase separating conducting and insulating
phases has a unique characf&1063-651X%99)00910-1

PACS numbes): 02.50~r, 05.45.Mt, 72.15.Rn

I. INTRODUCTION Recently CB studied Ly matrices, where matrix ele-
ments are distributed according R{H;;) with
Random matriceYRM) have been investigated inten-

sively in the past decade due to their wide range of applica- HY
tions to different branches of physics such as the theory of P(H;)) T D
mesoscopic fluctuations in disordered conduc{drs spin Hijﬂ°°|Hii|

glass model$2], light propagation in dense medid], and
quantum chaog4] among others. Random matrices havewhereHy is the typical order of magnitude d¢f;; and the
been useful tools in bringing out universal behavior. It isparamete ranges from 0 tee. The distribution of Eq(1)
indeed astonishing that the distributions of energy level spadias finite variance fop>2 while the variance diverges for
ings of heavy nuclei, the quantum spectra of a Sinai billiard0<u<2. u only takes positive values since the distribution
and the spacing of the zeros of the Riemanfunction all  is not normalizable fop <O (unless one redefines the range
obey very closely the Wigner surmise. These systems are iaf H;;). The distribution above serves to probe the limits of
the universality class of the Gaussian ensem@s, which  the Gaussian universality for full matrices as one changes
include the orthogonal, unitary, and symplectic symmetriesBased on studies of the distribution of level spacings and the
As pointed out by Cizeau and Bouchallid (CB), a kind of  inverse participation ratios of the eigenfunctions, CB found a
central limit theorem for matrices is at work which drives all phase diagram in thg-energy space showing three regions;
systems with the same underlying symmetries towards &r w>2 they report a regular Gaussian Orthogonal En-
common fixed point behavior. It is natural then to probe thesemble(GOE) phase(phase ), i.e., delocalized states and
limits of the basin of attraction of Gaussian ensembles. On&aussian orthogonal level spacing distribution. This phase
way to do this is by extending the matrix model to full ma- extends to the £« <2 interval for a limited range of ener-
trices with strongly fluctuating elemen{$]. By strongly gies nearE=0 (which becomes the full band fqu=2).
fluctuating elements we mean random numbers from a lon@eyond this energy one enters a mixed phgsease I,
tailed distribution whose variance and average can divergeshowing both localized and extended features, according to
This violates the premises of traditional random matrixtwo different definitions of the inverse participation rafttd.
theory [6] where the average and variance are finite. CBPhases | and Il, in the<< u<2 parameter range, appear in
named such matricdsevy matricesbecause the generaliza- analogy to a mobility edge in disordered metallic systems
tion is in the same spirit as the broader central limit theorenbut, in the “mixed” phase, the wave functions presumably
leading to the universality classes ofuye[7]. decay algebraically. BetweenQu<1, the mixed phase per-
sists up to an energi.(«) beyond which a third, strictly
localized phaséinverse participation ratio finite and Poisson

* Author to whom correspondence should be adreessed. Electrongpectra appears. CB’s focus was set on the level spacing

address: ernesto@pion.ivic.ve distribution as the main spectral signature. Nevertheless the

1063-651X/99/6(%)/35809)/$15.00 PRE 60 3580 © 1999 The American Physical Society



PRE 60 SPECTRAL STATISTICS AND DYNAMICS OF LEY MATRICES 3581

level spacing distribution only reveals very local spectralwe depict the level dynamical character of each of the
properties. For example, it is known that while an integrablephases, showing the reduction of sensibility to changes in the
system has a Poissonian distribution of level spacingdits boundary conditions ag decreasegdisorder increasg¢sWe
statistic shows rigidity beyond a certain energy s¢&8le A  further characterize the mentioned phases by determining the
more complete description of the Hamiltonian system in-scaling, with matrix size, of the “conductance,” as defined
volves the studies of longer ranged statistics, suchashe  through level curvature. We end with a discussion and con-
level number variance, and the two level correlation func-clusions.

tion. Also useful, in connection with the wave function struc-

ture, is to derive the evolution of the spectra with an abstract|; pensITY OF STATES AND SPARSE MATRIX LIMIT

“time” variable (or perturbatioh representing an external

field or changes in the boundary conditions. The latter study Wigner has shown that as long as the average and vari-
can reveal quantities such as the “conductance” of the sysance of the matrix elements are finite, the semicircle law for
tem[9,10] and universal features through the distribution ofthe density of states is approachedhas:< [16]. With the
level curvatures and the level velocity autocorreldtbt].  Levy matrix model one explicitly violates the above condi-
We will then explore the effects of strongly fluctuating ma- tions as matrix elements can have diverging variance and
trix elements on the universal features mentioned above. mean. CB have already shown, analytically, that the density

Lévy matrices are interesting beyond the mere generalizaef states(DOS) for Levy matrices assumes the new form
tion of Gaussian matrices as they can model electronic sys-
tems with power-law decayingvith distancg transition el- p(2)=L5DFA(z), (3)
ements[12], and spin glasses with dipolar or Ruderman-

Kittel-Kasuya-Yosida ~ (RKKY) interactions  [5].  whereL* is a centered Ly distribution[7] andC, 3 are
Furthermore, Ley matrices permit interpolation between self-consistently determined functiofs]. Such density has
Gaussian matrices and sparse matrices, showing the corrgn infinite range foz in contrast to the well known Wigner
sponding “percolation” transition[13], where the matrix semicircle. Here we are particularly interested in the behav-
disintegrates into separate uncorrelated blocks. Finally, amr of Eq. (3) when u—0. CB have argued that, in such a
interesting issue worth noting is the existence of an intermetimit, the sparse matrix limit should be achieved. The con-
diate “critical phase,” between conductingGaussian clusion is based on the fact that there is a hierarchy of matrix
orthogonal/Gaussian unitary ensembleand insulating element sizes, the largest of which dominate the spectrum.
phases. Such a phase is of particular interest in connectiogery large elements with a finite probability dominate over
with the study of spectral distributions at criticalipnetal  small onegwhich behave effectively as zerat each column
insulator transition Presumably in this critical regime the or row defining a sparse matrix. Extensive studies on sparse
wave function decays in an algebraic fashion and one woulghatrices by Evangeloil5] have shown that the DOS differs
like to see the spectral signature of such a behdidk The  from the semicircle by developing &-function-like peak
intermediate phase of CB exists over an extended range with a 1/E| energy dependence at the center of the laed
values of the parametgr, making it much simpler to study also [17]). Further singularities show up symmetrically
in principle. aroundE=0.

The outline of the paper is as follows. In Sec. Il we will  Although Eq.(3) predicts a peaked structure in the center
study the Ley matrix density of states by numerically di- of the band asu—0 it does not bear the correct energy
agonalizing Iarge\IX N matrices. Here we will discuss CB’s dependence for the sparse limit. In fact,la_s_)o+, the cen-
predictions regarding the sparse matrix limit close to theral maximum has the forma(w)+b(u)E? where a(u
band center. We will also analyze an extension of theyLe —0) diverges. The latter behavior is confirmed by our nu-
matrices to show, explicitly, the existence of structulfés  merics, showing no sign of the characteristic features of the

finite N) typical of sparse matrix ensemblgk5]. sparse matrix DOS approaching frgm=0".
In Sec. Ill we study level statistics and dynamics using = |n order to see the sparse matrix limit we have generalized
2X2 Levy matrices of the form Lévy matrices to the rangg<0 where random numbers
occur in the interval — 1,1] (for normalizability. In a sense,
H=Hst+iaH,. (2)  the distribution in this range has long tails towards zero in-

stead of infinity. Although this case conforms to the Wigner

The subscript$§ and A denote symmetric and antisymmetric theorem, its finite size effects reveal, closeute- 0, the un-
Léevy matrices, and is a symmetry breaking parameter or derlying sparse matrix limit.
fictitious time. For the X2 model we can solve analytically We generated more than 2000 matrices of up to 1000
for small level spacing limit and show that for certain valuesx 1000 and determined the corresponding DOS. Great care
of w universal geometrical repulsion is broken. We also findwas taken of the numerical precision of the code so that
nontrivial decays for the large level curvature tails for small elements were not arbitrarily set to zero. We studied
<1. the DOS for various matrix sizes to check for the asymptotic

In Sec. IV we study level dynamics numerically, for large behavior. In Fig. 1 we show a phase diagram for the DOS as
matrices, using the Hamiltonian of E@). Taking advantage a function of the parameter, for both negative and positive
of the sharp changes of thk; statistic, we first map the values. In the positive. regime, we confirm CB'’s results; as
phase diagram drawn qualitatively by CB. Thg statistic  depicted in the figure, the DOS approaches the semicircle for
shows unique behavior in the mixed phase, in between logg+>2 while for 0<u<?2 it reaches a new stable form as a
rithmic (GOE) and linear(Poisson behavior. Following that, function of the matrix sizé\. For <0 (tails towards zerp
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pE)
FIG. 1. Phase diagram for the density of states
L<0 B> 0 as a function of the parametgr. On the right-
hand side we show the Gaussian phase converg-

- & ing to the semicircle and CB’s new limit DOS for
xf“\ N L fm\ g

L e s £ s 0<u<2.Onthe left,i.e.u<0, the limit DOS is
: " RN : R always the semicircle but, for finite size matrices
o I N . one observes a sharp singularity developing with
MA N ,...,.,f': A‘.M a 1/E| energy dependence characteristic of

sparse matrix ensembles. Additional subsidiary
anomalies begin to develop on both sides of the
0 2 K DOS maximum.

Always renormalizes to semicircle New Limit p(E) Renormalizes to
semicircle

if one fixes the matrix size, there are two regimes as a funcsenting the other levels. We do not pursue the latter approach
tion of w; for |u| sufficiently large the DOS follows the but refer the reader to Ref20] where it is discussed in
semicircle while foru—0~, p(E) crosses over to a new detail.
form and starts to develop a sharp singularity of the form We will be especially interested in the universal property
1/|E| when|E|— 0. Additional singularities develop around of geometrical repulsionGeometrical means that repulsion
|E|=1 as expected for sparse matrices. Obviously, for anys due to the Jacobian which relates volume elements in the
n<0 the DOS renormalizes towards the semicircle lawmatrix and eigenvalue spaces. Such behavior is obviously
whenN— . Therefore, the sparse matrix behavior is only awell reproduced by the 22 model. We will find that in
finite size effectexcept foru=0, where the sparse matrix certain ranges of the parametersuch universality is bro-
limit is asymptotic. ken. Nevertheless, we emphasize that in this section we use
In order to see the asymptotic form fp(E,x=0), one  thefull Lévy distributionsinstead of only their characteristic
has to scale out th&l dependence. As the matrix sitd¢ tails as in the preceding section. Such a choice is central to
increases, one needs to lower| in order to preserve the the geometrical breaking phenomenon because it depends on
shape of the density. Using the nontrivial scaling variableessential singularities of the i distribution for small ar-
wu/N? with y=0.83+0.02, we obtain an invariant form for guments.
the DOS reflecting the limit behavior at=0 (see Fig. 2 We study the level dynamics in response to a perturbation
The scale factor also tells us how the semicircle is apby using the model of Eq2). Dupuis and Montambayj21]
proached as\ increases. On thg>0 side, small matrices have argued that, in this model, plays a role similar to the
never exhibit sparse-matrix-like behavior, indicating that thephase in an Aharonov-Bohm ring, the mapping being
analytical form of the DOS changes discontinuouslyuat

=0. We have not found a simple explanation for the value of wE,
the exponenty. a=\a ¢ (4)
IIl. LEVEL SPACING AND CURVATURES where ¢ is defined byW (27) =W (0)exp{®) acting as a
IN' THE 2 x2 MODEL change in the “boundary conditions” to which the response

The study of <2 model matrices is useful in obtaining " the energy levels can be measuréd. is the Thouless

approximate features of the local spectral behavior of large
matrices. A prominent example is the Wigner surmise; while 10
only rigorous for 2x2 matrices, it reproduces remarkably 0®

well largeN featureqfor Gaussian disorderThe small level

spacing behavior is expected to be well reproduced by an /\
N=2 theory because a very close encounter of two levels is
weakly affected by the rest. By the same argument, the tails
of the level curvature distribution should also be well repro-
duced as close encounters involve the largest curvatures. The
previous argument is especially clear within the level dy- >
namical picture, where levels interact via an inverse square
potential of their separatiofi8].

Regarding the X2 model when an external flux is ap- 10° .
plied; up to the correlation fluxp, (defined below levels 10' 10°
should evolve parabolically without crossing other levels. N
Beyond such a flux, level collisions typically st4t9], and FIG. 2. Scaling ofp(E) for x<0 in order to bring about the
the N=2 model should cease to be valid. The Shortcoming%parse matrix limit asu—0~. As N increasesu is reduced to
of the 2x2 model for larger spacingsmaller curvaturecan  preserve the shape of the denditysed. The sparse matrix limit is
be in part circumvented by adding a thermal reservoir repreachieved only in the.=0 limit.

4

10° 10
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correlation energy and is the mean level spacing. Then the
correlation flux is¢.= VNA/(7E,) settinga=1 and attain-
ing the unitary limit.

First, we will look at the small level spacings in the cases
a=0 or orthogonal andvr=1 or unitary limits. Consider the

| )

wherex; are real random numbers taken from a symmetric
(or symmetrizedlLévy distributionL , ;,_,. The parameten

matrix

X1+X2 X3+iaX4

(5)

Xg—iaXy Xi—Xy

mB

P(s)
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————— o s
5

6

3 4

is the same as that defined in Edj describing the distribu-
tion tails. B8 is an asymmetry parameter which is set to zero g, 3. Level spacing distribution for thex22 model andu
=1/2. The full distribution(solid line) was obtained numerically.

throughout. We have chosen to work directly with avie
stable function instead of using CB’s function with power- The analytic expression for tre-0 limit (dashed lingis shown to
law tails. This choice has important consequences regardinf the numerical solution in the inset. Geometrical repulsion is then

16stanh 1(\4+s°/2)

the local spectral behavior because of the peculiar depemroken.
(10

dence ofL ,-; g—o(x) for small x values. We show below
that the behavior of the large value tails of the matrix ele-
ments cannot affect the universality of the small level spac-

P.(s,u=1)=R
(Sr=b e[ 4+ 275>+ 8)

ing behavior. For further details on \xg distributions, we
refer the reader to an excellent review by Bouchaud an¢he expansion for small spacings is (Inkh )5/ There-

Georgeqd7].
The spectrum of the Hamiltonian above is given by

E. =X, % VX5+ X5+ X} (6)
and the energy spacing, — E_=s(a)=2}2+x3+ a?xZ.

The distribution function ok is given by

4
Pa(s):f 5(3—2\/x§+x§+a2xi)i1:[1 P(x)dx . (7)

As can be seen from the expressions above, small values of* =~ 1/2 IS simply

will result from small simultaneous values xf.

1<u<2 range

Small x; yield small s values, so we use the following

expansion:

X2k

2kt

2k+1
®)

|

valid for smallx [7]. The radius of convergence of E@) is
infinite for 1<u<2. Performing the integrals in E¢7) we

arrived at the expressions, fer-0,

1 oo
L, o(x—0)= - kgo (—1)%

(1)
isz if a=1,
128723
P (s1l<u<2)= 9
I'(1/u)? .
———5 if a=0.

8 u?

fore, for theuw=1 case, repulsion is nontrivial. Such behav-
ior reflects on the curvature distribution.

O<p<1 range

In this range the [ey functions are generally integral
expressions and we do not know of simple asymptotic ex-
pressions for small arguments. Therefore, we have chosen to
solve for particularly simple cases which include= 1/2 and
= 1/3 within the mixed phase and outside the range of va-
lidity of the expansion of Eq(8). The Levy distribution for

exp(— C?/2x), (11)

C
Lijzo(X)= N

whereC is a normalization constant. Using Ed.1) we can
obtain, after numerical integration, the distribution depicted
in Fig. 3. The behavior of small spacings is obviously non-
linear. The universal geometrical repulsion is thus broken for
the orthogonal and unitary cases whea @<<1.

We can also expand the corresponding integral for small
energy spacings obtaining the expression,sfer0,

2/3\3/4, 2/3\3/2
P (s, u=1/2) %6(2+a ) exd — (2+ a”) /s].

32,
(12)

Note that the small spacing behavithhe power ofs) is not
sensitive to the change of symmetigiven by «). Further-
more, Eq.(12) shows the same behavior for small arguments
as Eq.(12), with w=1/2 andC=\2(2+ a?3%* This says

the form of the distribution remains unchanged. Using the

We thus confirm the universal level spacing behavior giverthat the initial Lery distribution gets its paramet€ renor-

by the first power of the spacing in the orthogonal case, malized under the variable combinatia&22+x32+x4z, but

and a second power in the unitary caBke level repulsion is

geometrical The borderline casgp=1, i.e., the Cauchy dis- hypothesis that in the range<Qu<1 the form of the Ley

tribution for matrix elements, can be computed exactly obeydistribution governs the small level spacing behavior, we
conjecture that the function qgf is of the form, fors—0,

ing the expression
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a relation analogous to E¢7) we were only able to obtain

the level curvature tail behavior, in the limit—0. Fortu-

nately, this is the limit where the>22 model emulates well
13  the largeN results[19] relevant to physical systems. Our

where the general forms 6&ndg have not been determined. results are summarized as follows:
We have checked this general conjecture for the vatue 5/3 _

= 1/3; L y5(X) = (u/ 7) sin(m/3)K 5 u/x 1) /x32 whereK 14 is U™ for p=1/3,

the modified Bessel function of order 1/3 amé a constant. Plr)~{ Uk for u=1/2, (15)
In the limit ©«—0 Eg. (13) implies P(s)— 1/s and level re- Uk®? for p=1.

pulsion turns to a nontrivial level clustering with a diver-
gence at zero spacing. EquatitiB) is undetermined foj
=1. It is apparent that, at least within thex2 matrix
model, the repulsioeases to be geometricahd a newu

P,(s,0<u<l)=

f(u,a) p(_ g(u,a)

s(2=m)2(1-p) s/ (1-w)

As with the level spacing, the power of the curvature tail
varies continuously withe in the mixed phase in a nontrivial
fashion. The first two results can be derived analytically ex-

dependent level statistical phase takes over. Such beha"iorb%\nding for largec values. On the other hand, for=1 we
due to the essential singularity &f, <1(x) for small argu-  oained the joint probability distribution for(s),

ments. If one uses a reasonably beha®da) at smallx

preserving power-law tailgappropriately normalized geo- a2 1,

metrical repulsion is the rule. From this analysis, it is appar- P(k,s)=R 8257 tanh (y4+s7/2) . (16
ent that the tails of the distribution do not induce any special 772\/;\/4+sz(4+ kS)(8+5?)

local spectral behavior. Notwithstanding, the long ranged

spectral rigidity is influenced by the long tails, giving a new We were not able to obtain a closed expression integrating
A5 signature discussed in Sec. IV. We will discuss in the lasbvers. Nevertheless, if one takes tkes0 first and then the
section similar nongeometrical repulsion in the context of thaimit x—o we obtain the result predicted by E@.5). An

Dyson plasma picture in a weak power-law potential. alternative procedure is to obtain the distribution by intro-
ducing Cauchy random variables into Etj4) and sampling
Level curvatures the « values. This procedure showed a clear asymptotic de-

The tails of the probability distribution of level curvatures pendence as & in consistency with the previous order of
have been shown to be univer$aP]. Therefore, changes in limits.
their behavior should signal changes in the universality class. As pointed out in the beginning of this section, if we use
The universality of curvature tails is known to be closelyan only tails version of the by distributions, geometrical
related to that of small level spacing distribution. This isrepulsion and curvature tail universality are preserved. We
intuitive by the argument that largest curvatures occur on th@ave tested this explicitly with the distributione/(x
closest encounters between energy levels. +1)#*1, which has regular behavior at small values for all

For the 2<x2 model the level curvature is defined as M.

IV. LEVEL STATISTICS AND DYNAMICS
OF LARGE MATRICES

7*s(a) (2x31 8a2xj)’ "

A== |5 S

Ja

We will now concentrate on the level statistics and dy-
namics of large matrices whose matrix elements come from
E‘q. (1). CB probed the level spacing distribution, the DOS,
and the wave function, the latter through two definitions of
the inverse participation ratio. Useful information can be re-
._trieved from level dynamics regarding the “conductance” of
the matrix model. This is possible due to the very general
definition of conductance in terms of level sensibility to
hanges in the boundary conditiof4]. Such sensibility is
uantified through the computation of level curvatures with
respect to the parameterin Eq. (4). Furthermore, we will
'}:malyze the\ ; statistic which is suited to the study of inho-
mogeneous spectra, probing longer ranged behavior than
level spacing distributions.

In order to corroborate the phase boundaries proposed by
CB we have calculated thA; statistic which gives very
sharp changes in behavior as a function of the energy interval
around the band center. The; statistic is computed using
the following expression:

wheres(a) is the level spacing. The distribution of curva-
tures is then computed by using an equation analogous to E
(7). For large curvatures it is expected that the many leve
interaction becomes negligible and th& 2 approximation

involved, so the X2 matrix is again justified.

For u=2 the Levy distribution corresponds to a Gauss-
ian. This case was studied extensively by Kamenev ané
Braun[19]. For =0 the largex behavior corresponds to
P_(k)~ 3. On the other hand, the behavior changes whe
a=1 (unitary casewhereP ,(«)~c exp(—8«%2). Such de-
viation from universal behaviofas %) is related to the
breakdown of the X2 model asae— 1. For further discus-
sion on this point see Ref19]. 2 behavior is also ob-
tained if one uses a distribution with a well behaved Huik
essential singularities for small matrix elemerand a tail
decaying as ¥**! with u>1. Gaussian universality in the
regime 1< u<?2 for the level spacing, found previously, also
suggests a well behaved curvature distribution in this range. 1 L

In the range &<u<1 we have studied three cases, i.e., A3(L)=<—minf [N(e)—Ae—B]%de ), (17)
pn=1/3,1/2, 1 as with the level spacing distribution. Using Lag/-L
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FIG. 4. Phase boundaries using thg statistic between the ) A )
Gaussian, mixed, and Poisson phases as a function of the ener§f Ed. (2) and matrix element distribution given by Ed).
(dimensionlessand w. For 1<u<2, the inset shows the rapid We have diagonalized matrices of up to 1600000 and
crossover between logarithmi&Gaussiap and quadratiqmixed)
behavior. For < 4 <1, the inset shows the crossover between quatameter«. Figure 5 shows typical “spaghetti” for each of
dratic (mixed and linear (Poisson behavior. Fits are shown to the phases found by CB. The Gaussian of the spectrum is
logarithmic and quadratic behaviors. The mapping of the phasgeen to expand due to increased repulsion of the energy lev-
boundaries as a function @f is possible due to the sharp changes els[as we go to the Gaussian unitary ensenf@&E) limit ]
of the A; statistic.
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whereN(E) is the number of levels with energies between 0
andE. The energy interval varies between L,L]. It is well
known that Gaussian statistics imply a logarithmig func-
tion for both orthogonal and unitary ensembles. On the other
hand, Poisson statistics imply a linear behavior. Figure 4
(insetg shows both the transition from Gaussian to mixed
phase statistics, and from the latter to Poisson. We find that
A5 behaves quadratically with energy for the mixed phase,
giving it a characteristic signature. Departure from logarith-
mic behavior indicates a relaxation of the long ranged spec-
tral rigidity of the Gaussian ensembles. The change&dn
from one range to another are so sharp that one can use it to
map the range boundaries as a functiopofigure 4 shows
the approximate phase diagram obtained from this exercise,
confirming the qualitative behavior proposed by CB.

We now study the level dynamics using the Hamiltonian

drawn the eigenvalues as a function of the abstract time pa-

as a function ofw. Sufficiently large values oft eventually
give all eigenvalues a linear dependei26].

As one goes from the Gaussian phdsenter of bang
into the mixed phasfFig. 5@)], one sees “solitons” devel-
oping at the edge of the spectrum. The soliton, propagating

=15 i
0sfg; . 4h A
/.‘ =% oqa=0
; H st Aq=1
1 :' ‘:a‘..
’ o \52 =‘..“
Ml
0 1
0 52 3 4
. B
1 v B FIG. 5. In the figure we show the character of
3 Y 'Z g;l level dynamicgenergy versusy) in each of the
g2 b CB phases as discussed in the main textThe
\ left shows the mixed and Gaussian energy ranges
, S labeled A and B, respectively. On the right we
L 3 4 show the corresponding level spacing distribu-
tions. (b) The left shows the mixed and Poisson
b) _0.75 energy ranges. On the right, the exponential level
un=0. spacing distribution for the Poisson regime. The
energyE is dimensionless.
[ ]/ -
[ 7] © 3
’ /4 = IE| > 10
°
0 o _
0
5 3
IR\
1\
R\
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
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without change in form in the abstract time parameter, con- 10
sists of a set of levels with persistent slogksown as per-

sistent level crossingSuch a behavior is not seen in regular E;EEZEEE CAUSSIAN
1

random matrix ensembles. Nevertheless, simple matrix mod- 3 mn
els have been suggested in the gds] that show similar b
behavior. This persistent behavior is reminiscent, as pointed, A

out by Nakamur418], of scarred states occurring very com- Z 01 ¢ s
monly in the spectra of a quantum stadium billigi2b]. © <405
Scarred states are due to unstable periodic orbits because o

for example, bouncing between plane parallel walls of the 0.01 }
stadium. In a similar fashion, the persistent level velocities in

the mixed phase occur due to large off diagonal elements

MIXED

connecting two states, producing a periodic “bouncing.” 0-00110 100 1000 10000
This agrees with CB reasoning that a quasieigenvector at N

these energies has the form/2{]i)+|j)) because of a very

large matrix elementi;; . FIG. 6. The conductance scaled k\ as computed from Eq.

Regarding the level spacing distributifsee Fig. 5a)] for ~ (18) for each of the three phases. While conductance in the Gauss-
1<u<2 we see geometrical repulsion, i.eands? depen-  ian region grows ag/N, in the mixed phase the conductance has an
dences for smak. Nevertheless, the large spacing behaviorddditional, presumably logarithmic decrease, indicating very weak
varies with energy from a Gaussian dedag in GOBH, to localization. The averages indicated in E{.8) are performed
closer to an exponential decay in CB's mixed phase. TheVithin the corresponding energy ranges.

mixed phase retains geometrical level repulsion, as shown in
Fig. 5a), but the distribution departs from a finite value at €@n Produce the spectrum and the effects of a coupled exter-

spacing zero. This could indicate that we have a mixture off@l Parameter. In our case, the spectrum is inhomogeneous
Gaussian- and Poisson-like behavior, i.e., a set of localize§C_the Thouless conductance must be computed within re-

states in coexistence with extended states. Mixture of statiStricted energy ranges. The Thouless formi#d] for the
tics has been observed for critical disorder in tight bindingconductance used here is
random matrice$26] (see also Ref.14]).

Reducing the parameter below 1[Fig. 5b)], we enter 1/({dE\? v
the new regime of CB’s diagram where, depending on en- G= A df& ' (18)
ergy, one is within the mixed phaseenter of the bandr in $=0

the strictly localized regiméedges of the bandThe mixed

phase(center of the bandin Fig. 5b) is very compressed, whereA is the average level spacing computed within each
nevertheless it shows the same character of the edge of tfase. Different conduction regimes are usually distin-
band in Fig. %a). In the Poisson phase, the spectrum literally9uished by their scaling properties with system size. Previ-
explodes in solitonic or persistent level behavior. As can b@us studies with banded random matrif28], where a scal-

seen in Fig. ), the spectrum at the edge of the band isiNg parameter associated with “length” can be defined, have
made from horizontal levels direcﬂy reﬂecting |arge e|e_ShOWn both the metallic and localized regimes. In the latter

ments from the symmetric part of the Hamiltonian. The lin-case, banded matrices show Ohmic conductance behavior of

early increasing levels reflect large dominant elements fronne-dimensional systems scaling als ahd localized behav-

the antisymmetric contribution. Horizontal levels show theior scaling as exptL), wherel is identified with N the

insensibility to changes in the boundary conditiond @nd  matrix size.

thus localization. In the mixed phase there is a remnant cur- In our case there is no clear length parameter and the

vature, seen in the border of the band in Fi¢a)5possibly ~ System size is governed by the matrix dimensNnThe

signaling what CB identified as algebraic decay of the wavdnetallic regime should show an increasing conductance with

functions. Such features are not seen in the center of the bargatrix size going as/N. Such a behavior is expected in the

in Fig. 5(b) (same phagebecause of the scales. Gaussian regime, as found analytically by Simons and Alt-
Finally, for 0< <1 higher in energy, the spacing distri- shuler[11,29 and shown numerically by Sai80] for the

bution becomes Poisson as seen in the right-hand panel gfantum kicked rotator in the chaotic regime. We take the

Fig. 5(b). With the exception of the very center of the band, latter N dependence as reference to contrast with the behav-

all levels are either horizontal or lines of a fixed sldpég.  ior of the mixed phase.

5(b)]. The matrix can be thought to break up into weakly Using the spectra as a function afwe have computed

coupled 2< 2 blocks. Different levels only “see” each other the conductance according to E@8), averaged within each

on very close encounterdarely visible in the figure at  of the phases described in Fig. 4. The scaled conductance as

which point they avoid crossing. a function of matrix size is depicted in Fig. 6. Within the
As mentioned in the Introduction, there is a very generalGaussian regime we see thaf /N is relatively constant,

definition of “conductance” of a physical system based onconfirming the theoretical result. The magnitude of the con-

the sensitivity of a block of material to changes in the bound-ductance also gets reduced as disorder increagesle-

ary conditions. In our case, boundary conditions are changecreasesas expected.

by the parametew. The Thouless definition for the conduc-  For the mixed phase we see an appreciable decrease in

tance is abstract enough to encompass any model where o%/N as N increases. Nevertheless, the decrease is slower
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than algebraic, as can be seen from Fig. 6. The mixed phad&ecreasinge below 2 begins to develop solitoniclike struc-
then has an additional weakly localized contribution as comtures at the band edges. The interpretation of this is that
pared to the Gaussian phase. Such behavior is in accord witllusters of states become localized, and we have periodic
the algebraic decay of the wave functions where electronbouncing between such states in the same way scars appear
have no length scale for localization. Finally, for the Poissoron the stadium billiard. Belowu=1 solitonic structures
phase we found extremely small conductances, zero withidominate the spectrum with the exception of the center of the
the numerical error. As expected, levels do not respond to band. Away from the center, in this regime, one starts to see

in this («,E) range. levels completely insensible to the fictitious time parameter
a. The only curvature they exhibit is on very short ranged
V. DISCUSSION AND CONCLUSIONS encounters with a radiating level.

, _ Motivated by the work of Casatéit al.[28] we studied the
We have presented a spectral study olvyematrices  scaling properties of the “conductance” as a function of
which significantly extends results found by Cizeau andmgatrix size. While the Gaussian regime exhibits a conduc-

Bouchaud[S]. We have shown, by generalizing thewe 5nce proportional ta/N as expected from theory, we found
matrix model tox <0, how the sparse matrix limit is reached ¢ the mixed phase has an additional, slower than algebraic,
asp—0. u=0is an unstable fixed point in the renormaliza- yecrease. CB had found power-law decaying eigenfunctions
tion group sense=0" leading to the Wigner semicircle jngjicating a special kind of broad metal insulator transition
fixed point andu=0" to a new CB fixed point as the matrix region.
sizeN increases. , , Finally, we note an interesting connection to a recent
We solved 2 matrix models analytically to check mggel involving Dyson’s plasma picture of eigenvalues con-
whether geo_metrlcal rgpylsmn, a trademark of the Gal_JSS|aﬁ1ned by a potential. CanalB1] proposed the latter potential
ensembles, is broken in kg matrices. The X2 model is g pe extremely weak, considering eithéfre) = A/2| e|” with
justified especially foru<<1 where the close encounter of g—-,,<1 or A/21n?|e|, both ase—. Such a potential pre-
two levels is weakly affected by the rest of the spectrum. Wesymaply produces critical level statistics, as in the metal in-
found that, unexpectedly, the long tails of the distributiongator transition, for a certain valu&, . Curiously he finds
(for u>0) do not affect geometrical repulsion. Nevertheless 4 peaked DOS with a [i¥|*~* near the band center. Such
essential singularities df,-,(x—0) break geometrical re- pehavior is reminiscent of the findings of CB. Furthermore,
pulsion, making itw dependent, i.e., nonuniversal. A strong for the power-law potential thgeometrical repulsion is bro-
nonlinear repulsion remains for which we have found a genyenas in our 2<2 model for Lery matrices.
eral form. Only for =0 is repulsion replaced by strong |t s intuitive that a sufficiently weak confinement poten-
level clustering a®(s—0)~1/s. _ tial could yield a very broad band of eigenvalues as we find
Our study of largeN XN Levy matrices focused on both for the mixed phase. Such a phase is also some kind of wide
spectral statistics and dynamics. We found thatAhestatis-  critical region separating a metallic and a localized phase as
tic exhibits very sharp crossovers between the surmise@anali's model attempts to describe. A possible relation be-
phases of CB. We used this characteristic to map the phasgeen the gy matrix model and Canali’s weakly confined

boundaries as a function of and energy as discussed in plasma would be illuminating, especially in connection with
Sec. IV. TheAj statistic, measuring longer ranged statisticSthe |evel statistics at the Anderson transition.

than the level spacing, has a new quadratic dependence for
the mixed phase. Notwithstanding, level repulsion is geo-
metrical except for the fact that it departs from a finite value
at spacing zero. Regarding level dynamics, we have obtained This project was funded by CONICIT under Grant No.
a clear picture of how the system goes from the eigenstat81-97000368 and the POLAR foundation. E.M. thanks E.
extended Gaussian phase to the localized Poisson phase. Rducciolo for a useful discussion. M.A. thanks PDVSA In-
w>2 the whole band obeys 47 curvature tails as expected. tevep for permission to publish this paper.
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