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Transport on an annealed disordered lattice
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We study the diffusion on an annealed disordered lattice with a local dynamical reorganization of bonds. We
show that the typical rearrangement time depends on the renewal rate-ik€ with a# 1. This implies that
the crossover time to normal diffusion in a slow rearrangement regime shows a critical behavior at the
percolation threshold. Additional scaling relations for the dependence of the diffusion coefficient on the
renewal rate are obtained. The derivation of scaling exponents confirms the crucial role of singly connected
bonds in transport properties. These results are checked by numerical simulations in two and three dimensions.
[S1063-651%9911107-3

PACS numbes): 05.70.Jk, 72.60kg, 82.70.Kj

“Dynamic percolation” (“stirred percolation”) [1,2] was  quenched network. Several different scaling formulas for
introduced as a model of transport in environments thab(p—p.,7) were proposed in the literature. They were de-
evolve in time, e.g., microemulsions or polyméisr further  rived for models with slightly different local evolution rules,
applications, se3]). The simplest version of the model is but the details in the local rules are not relevant for the criti-
defined on al-dimensional regular lattice. Each pair of near- cal behavior aroung, [6]. As discussed below, our simula-
est neighbor sites is connected by a bond, which can b#on results donot support current predictions. We derive a
either conducting or insulating. We nopethe proportion of scaling formula for the diffusion coefficient, which we con-
conducting bonds. Time evolution of the environment isfirm by extensive numerical simulations. The behavior at the

achieved by a reorganization of bonds, defined below. pifPercolation threshold is studied first, before we treat the gen-

fusion of a tracer particle in such a network is convenientlyera! case of the behavior aroupd. o
The mean square displacement in the vicinitypgfon a

described by the ant-in-the-labyrinth paradif#. Two ba- hed lati Kis ai
sic algorithms are available. The “blind” ant chooses its quenched percolation network is given B

direction randomly at each time step and moves only if the N (2wt
corresponding bond is conducting. The “Myopic” ant (R%)=t* W[ (p—pyt @A), @
chooses among the conducting bonds. Both algorithms leaghere d!, is the anomalous-diffusion exponerd!,= (2
to the same scaling behavior of the diffusion CoeffiCie”t'+,u—ﬁ)/(v—,B/Z), and

Two qualitatively different dynamic percolation models ap-

peared in the literature. The global reorganization model is xXH as x— o

the simplest. After some renewal tinig, the assignment of
conducting bonds is updated throughout the lattice. The be-
havior of this model is well understod@], as it is closely const asx—0.

related to the ordinary percolation. {f2); is the mean . e
. r . . At early times, anomalous diffusion is observed. The cross-
square distance traveled on the quenched lattice during trlﬁ/er to a normal diffusior(if p>p,) or to a localization

ttl)m_eTé, t?Zequ'lffu'Sl'll’?n coeff|C|feInt 0r|1 the snrrgd lgttlce \r/]\{lllhbfe regime (if p<p.) appears at a time of the order tf~|p
=(r >Tr r- 1€ Case ot local reorganization, which 1S —p|#72""#, which is the only relevant time scale of the

studied in this article, is more realistic, because the evolutiorbromem In the case of dynamically disordered lattices, an-
of the network is continuous. The state of a bond evolvegther time scale, related to the cluster rearrangement process,
through a Poissonian process with a characteristic #m&  has to be taken into account. We define this typical “rear-
each iteration a conducting bond is cut with a probabilityrangement” timet, as crossover time from anomalous to
1/(p7), and a randomly chosen nonconducting bond benormal diffusion at the percolation threshold. It is only a
comes conducting, to insure that the proporgoof conduct-  function of the evolution rate-, and we assume a depen-
ing bonds is conserved. No exact result is available for thgjence in the fornt,~ 7*. The mean square displacement in
dependence of the diffusion coefficidbton p and 7, except  the presence of dynamical disorder is thus described by a

in some particular one-dimensional situatidsg. Approxi-  scaling formula depending on two parametéfs, andt/t,
mative solutions of the problem in any dimension can bgj:

obtained by means of a time-dependent version of the
effective-medium approximation developed[Rl. <R2>:t2/dgvg[(p_ Pt a=B) ¢ e, 2)
Here, we study the scaling of the diffusion coefficiént
in the vicinity of the percolation thresholg, of the At the percolation threshold, diverges, and the preceding
expression reads

f(x)~{ (=x)"2"*F asx——=

*Electronic address: radim@spec.saclay.cea.fr (R%) = t2’dv,vX(t/ 7Y, 3)
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FIG. 2. Scaling functiory [Eqg. (3)] in three dimensions. Results
obtained forr=5.12x 10° (solid line), r=1.28x 10° (dotted lineg,
r=3.12x 10* (dashed ling r=7.8x10° (long dashed linewith

the myopic ant algorithm. Asymptotic behavigr-x*~2% (bold
long dashed ling

FIG. 1. Scaling functiory [Eq. (3)] in two dimensions. Results
obtained forr=1.62x 1(P (solid line), 7=4.05x 10° (dotted ling,
7=1.8x10° (dashed ling 7=4.5x10* (long dashed ling 7=
5.0x10° (dotted dashed lije with the blind ant algorithm.

Asymptotic behavioly~x~24w (bold long dashed line

sponds to the average time for the firsiNyf, red bonds to be

where y(y)~ const asy—0 and y(y)=Dy' %% asy _ ORI
—o, The diffusion coefficienD is obtained in the limitt cut. Hencet,~7/Ngp~ 7 » giving
— 0 by ,
R (5)
D~ T—a,u./(Zv+p,—B)_ (4) d\:v+ 1/v .

Equation(4) contains an unknown parameter Several val-
ues ofa were proposed in the literature. [6], the problem

In two dimensions, wherer=4/3, f=5/36 [10], and u
=1.303[11] we obtain «=0.802. In three dimensiona

was mapped on the continuous random walk, and the lower 0.81+0.06 is obtained, using/=0.88+0.02, x=2.003

and upper bounds far were predicted. Ifl] =1 is con- +0.047[12], and 8=0.4050.025[13]. These values of
sidered. The only justification for this value is the assump-are in excellent agreement with numerical results. Relation
tion that the global and local rearrangement models have thé) predicts thatv=1 for d=6, so in this limit the local and
same behavior. We have performed Monte Carlo simulationthe global reorganization rules lead to the same scaling.

to evaluate numerically. The diffusion coefficient can only Knowing the value ofa, the complete scaling law fdD

be measured for small values sf where the crossover time in the vicinity of the percolation threshold can be deduced
t, is small. In order to explore a broader range of values, wdrom Eg.(2). The ratiot./t, separates two different regimes.
have determinedr from the finite size scaling relatio(8). In the fast rearrangement regime {t,>1) a tracer particle

We measuredR?) for 7 between 5 10° and 1.6 10° in  does not see the finiteness of cluster sizes, hence the scaling
two dimensions, and between ¥X80° and 5.1 10° in  of D is given by Eq.(4). In the slow rearrangement regime
three dimensions. In two dimensions the best data collapsg./t;<1) two cases have to be considered. porp, and

with parameter is obtained fore=0.80+0.02(Fig. 1), and  7—0, known results for the diffusion on the quenched net-
in three dimensions foir=0.79+0.03(Fig. 2). Identical re-  work [7] should be recovered; hence,

sults were obtained with both the myopic and the blind ant
algorithms.

As a matter of fact, the value af can be evaluated as a
function of known critical exponents using simple assump-For p<p, the situation is more complicated. A&t <t,,
tions about the geometry of clusters. Clusters are composetle network is not yet reorganized and anomalous diffusion
of well connected blobs, interconnected by singly connecte@rossovers to a localization regime on a finite cluster exactly
bonds(“red bonds”) [8]. If a red bond is cut, the cluster in the same way as for the quenched network. The mean
breaks into two parts. We argue that the crossover time cosquare displacement is thiB?)~|p— p¢|?~2". Fort>t. it
responds to a removdbr addition of a red bond in the grows as
region visited by the tracer particle. The red bonds are the
only possible paths where a particle can escape from a blob;
hence, they control the diffusion. Foxt, a particle visits
on average a hypersphere of a diam@ert*®. The “net-  Fort— a diffusive regime is reached, and it is evident that
work” of red bonds is fractal, and their number inside the D~ 1/ in this case. Thus the scaling functigh behaves as
hypersphere grows alN,~RY [9]. The crossover corre- g'[x,y]~x 2y« for x,y—o, where the coefficiera reads

D~|p—pcl*“ (6)

(R~ |p—pc|f~2"g'[|p— petVE 4Bt/ 7]
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FIG. 3. Calculation oD for different values ofp—p.| andr.
Results for p=0.47 (O), p=0.43 1), p=0.42 (¢), p
=0.41 (A), p=0.40 (V), p=053 (+), p=056 (X), p
=0.60 (*), and p=0.70 (). Function(4) (solid line).

B

a=(la—1)(2v+p-pB)=1-5 .

(7
The final expression was obtained replaciiagoy Eq. (5).
Then a=0.948 in two dimensions and=0.77+0.017 in

three dimensions. The scaling relation fort. can thus be
written as a function of a unique parameter

(R%)~[p—pc|f2"g" : (8)

Ip—pel®7

with f(y)~const fory—0, f(y)~y for y—o. It is readily
seen that the crossover tinjg=|p—p.|?r has itself a criti-
cal behavior neap. with an exponeng. This fact has been
already predicted if14] but a different exponera=1 was

is simply deduced from Eq8),

_Ip—pgfEe
—

D 9)

The complete scaling law fdd consistent with Eqs4), (6),
and(9) reads

_ [p—p# 22 1(2v+ p+a—p)
D=————¢l(p—po)7 1, (10
with
const asz— —
P(2)~{ 12>"*F  asz-0

22v+p,+a—ﬁ as z—o.

To verify this relation, we have calculated the diffusion

coefficient in two dimensions for different values afand
for p in the rangg 0.4;0.47 and[0.53;0.7, using the algo-

They are well rescaled by the relati¢h0) (Fig. 4). The best

FIG. 4. Results of calculation db for different values oflp
—p.| and 7 rescaled by Eq(10). Results forp=0.47 ©), p
=043 ), p=0.42 (¢), p=041 (1), p=040 V), p
=0.53 (+), p=0.56(x), p=0.60 (*), p=0.70 (). Function
f(z)~z?"*2"# (dashed ling

collapse seems to be reached for a slightly smaller value of

a(a=0.9) than predicted by Eq7) (a=0.948). However,
the collapse is not very sensitive on the precise valua, of

because the slow rearrangement regime is not explored in

our range of ¢,p). It is difficult to attain this regime using a
simple random walk, since the crossover time to the diffu-
sive behavior becomes too important for large values.of
This is the reason why we used the following algorithm to
verify Eq. (9).

We start from a given site belonging to a clustesaites.

We suppose that the evolution of the network is quasistatic:
before the network is rearranged, the particle is thermalized,
so that the probability to find it on a given cluster site equals
1/s. Thus we assign at first the probabilitys1b each cluster
site. We then exchange one conducting bond with an insu-
proposed. The scaling @f in the slow rearrangement regime lating bond, find a new cluster distribution, and thermalize

I 2v—P

2
<R >|p-p,
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FIG. 5. Scaling functiog” (8) in two dimensions. The data for
p=0.4 (solid line), p=0.41 (dotted ling, p=0.42 (dashed ling
p=0.43 (long dashed ling p=0.44 (dotted-dashed lineand p
rithm of the myopic ant. Results are presented in Fig. 3=0.46 (solid line). Asymptotic behaviory~x (bold long dashed

line).
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the probability distribution on each cluster. We iterate this In conclusion, we have derived a scaling law for the dif-
procedure and measure the mean square displacement. Thusion coefficient in the case of a simple model of stirred
Hoshen-Kopelman algorithiri 5] was used to obtain the dis- percolation. The dependence of the scaling exponents on the
tribution of clusters. To get good statistics, an average ovepasic exponents of the percolation theory was found. We
more than 2000 realizations was perforrned7 SO we were limshowed that the distribution of red bonds controls the trans-
ited to networks of relatively small siz@ip to 400<400  Port in the network. Results are supported by extensive nu-
site3. Since the diffusive regime is not attained on such americal simulations. In the slow rearrangement regime for
small network, we used the finite size scaling form(8  P<p. the diffusion coefficient scales aB~|p—p¢/*®,

We measuredR2> for p ranging from 0.4 to 0.46. For higher wheres'=—2.1 in three dimensions. The value of the scal-
values ofp, clusters are too large, and much bigger networkdnd exponent in microemulsions'(=1.2) [17-19 thus can-
have to be used. The data collapse is obtainecafep.87  Not be explained by this simple model, as suggested earlier
+0.05(Fig. 5); that is, for a value slightly smaller than pre- _[16]. It is plausible that the d_lffer_ence is du_e to interparticle
dicted by Eq.(7). The same effect as in the case of the datdnteractions tha; are present in microemulsions. They play an
collapse ofD(p—pe,7) is thus encountered. The discrep- mPortant role in the formation of clustef20] and they
ancy is due to fact that we are already out of the Criticalm|ght also influence the dynamics of the reorganization of

region, so corrections to the exponeatsandd,, should be the environment.

taken into account. For values pffar from p., the prob- | would like to thank Jeome Chave for many fruitful
ability of having a large cluster, corresponding to a longconversations, and Hugues Chédea careful reading of the
jump, grows more slowly than near,, and the growth of manuscript. | also thank Roger Bidaux and Marc A. Dubois

the diffusion coefficient wittp is thus also slower. for useful discussions.
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