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Hybrid weighted-density approximation for nonuniform fluid mixtures
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A hybrid weighted-density approximatiofHWDA), which is based on both local density and globally
averaged density, has been proposed to study the structural properties of nonuniform fluid mixtures. The
advantage is that the HWDA is computationally much simpler than the extended weighted-density approxi-
mation proposed by Davidchack and Laird. The HWDA has been applied to calculate the density profiles of
binary hard-sphere mixtures near a structureless hard wall. Comparison between the theoretical results and
simulations for the confined binary hard-sphere mixtures demonstrates the reliable accuracy of the HWDA.
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PACS numbsgps): 61.20.Gy, 61.20.Ja

The physical properties of solid-fluid interfaces are ofstudies. This paper concludes with a brief discussion of the
both fundamental theoretical interest and also considerablgtrengths and weaknesses of the HWDA in actual applica-
practical importance in connection with phenomena such agons.
adsorption, wetting, catalysis, and filteratifit. Numerous As in the case for a one-component system, the free-
studies have already addressed problems involving simpleénergy functional for the binary systef{p;,p,] can be
one-component and two-component fluids near simple wallgivided as the ideal and excess parts as follpis
The weighted-density approximations for multicomponent
systems have been proposed in various fofhs8]. The Flp1.p2]1=Fidlp1.p2]+Felp1.p2]. @
approaches of weighted-density approximations have been | L , )
reasonably successful in describing the structure of binary N€ ideal partis simply the sum of the ideal free energies of
fluid mixtures. The key to the success of weighted-densitfN€ individual components,
approximations appears to lie in the choice of weighting 9
functions. In particular, the advantage of the hybrid a1 S A3
weighted-density approximation HWDA proposed by Leidl Fillp1.p2]=B ;1 J drpi(N{In[pi(NAT]-1}, (2
and Wagnei2] is that it avoids a limitation of the modified
weighted-density approximatiotMWDA) of Denton and where p;(F) and A;=h/(27m;kgT)*? are the density and
Ashcroft [3], specifically the violation of the wall theorem thermal de Broglie wavelength of thith component, respec-
that generally holds for fluids in contact with a hard wall, tively.
without sacrificing the computational convenience of the In order to formulate the HWDA for the binary mixture,
MWDA. More recently, Davidchack and Laif@&] have pro-  we start in the spirit of the WDA of Davidchack and Laird
posed an extension to multicomponent systems of theg] by setting
weighted-density approximatiofWWDA), which can be ap-
plied to the multicomponent nonuniform fluid systems with 2 _ _
spatially varying compositions. However, the WDA pro- Felp1.p2]= 2 Jdrpi(F)f[Ffl')(F),ﬁg)(F)] 3
posed by Davidchack and Laird is computationally more =1
complex in actual applications such as the solid-fluid inter- .
faces. Thus, a version of the weighted-density approximatio?“”th
with the computational convenience of the MWDA is now
required to study the structural properties of multicomponent EJ(U(F)IJ dépj(§)wij(|*—§|;i)(1‘),ﬁg>), i,j=1,2 (4
fluid systems.

In this Brief Report, we will propose an extension of the A() Gy o R
HWDA for the multicomponent fluids that correctly pre- Wherew;;(r;p3”,p;’) is the weighting functionpj”(r) are
serves the local nature of the WDA and the advantage of ththe weighted densities, argf” are the unknown globally
MWDA. We will apply it to investigate the structural prop- averaged densities. This expression differs from those of the
erties of binary hard-sphere fluids near a structureless hal/DA proposed by Davidchack and Laird, and the HWDA
wall and compare the theoretical results with the computeproposed by Leidl and Wagné2]; in the HWDA of Leidl

and Wagner, the total densify" () and concentratiorx
=[dip(N)/[[p1(F)+ [p2(F)] have been introduced to
* Author to whom correspondence should be addressed. Electrongpecify the weighted densities. Here, we introduce a globally
address: sckim@anu.andong.ac.kr averaged densitﬁ}'), which is defined as
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NI I R L a(i) Al _ af(gri,p2)
o= | o7 [ aspiPm @0y ir-siipl) 39, -8B Ko =2 S ki o)
J
PfHpx) ,
ij=1,2 (5 +P2—apzrw22(kaP1,P2)
_ . . . é’zf(p]JpZ) 2 .

where N=N;+ N, is the total number of particles in the +pr——F— wi(K;p1,p2),
system andN; = [dFp;(r). These globally averaged densities P2
have already been tested by Davidchack and Laird to calcu- (10)

late the binary hard-sphere crystal-melt phase diadi@m , _

Equation(5) completes the specification of the HWDA; the since p{'=p; and p{’(F)=p; for a uniform binary

globally averaged densitiea() resemble those of the ex- mixture, c3(r;py,p2)=c5(r;p1,p2), and wiAr;py,p2)

tended MWDA, but the weighting functions differ. The =wa(r;p;,p2) due to the symmetrical requirement. It is

weighting functionsw;;(r;p{" ,p%’) satisfy the normaliza- noted that in the HWDA of Leidl and Wagner

tion condition Ci(jz)(l‘;pl,pz) contains the terms proportional o that
arose from functional derivatives of the concentratQrso
that the computed weighting functions are discontinuous in

f deij(r;f)(li),ﬁg))=1, ij=1,2 (6) Fourier space ak=0 [2]. The aboye set of _equations can

generally be solved by a numerical iteration method for
known excess free enerdyp4,p») and two-particle DCFs

for all f,lii)_ Ci(jz)(k;pl,pz). At k=0, Eqs.(8)—(10) correctly reduce to the

For the binary mixture the weighting function €xact compressibility rules for a binary mixture. We can
ij(r;p1,p,) is related to the two-particle direct correlation check that the third-order and higher-order direct correlation
functions DCFE((r,py,p,) of the fluid through the second functions derived from the excess free enefgyl py,po]

derivative of the excess free energy with respect to the ders@lisfy the exact hierarchy relation as well as for the one-
sity, component system,

" FeP

@) 1e_ _ _ Fedprpl] o P10 =Cjji..m(K,0, .. .,0), (11
cif/(|[F=8[;p1,p2)=—B lim S (1) op(3) ihj=12

o Opi .
p(N=p . 7 where we have suppressed the arguments of density and con-

centrations that appeared gj.,,. Taken together, Egs.

i (1)—(5) and Eq.(7), constitute the generation to a binary
From'Eqs.(S)—(7), a system of three Foupled equations for mixtre of the HWDA. Even if we have not generalized the
@11(T;p1,p2), w1r;p1.p2), @ndwyy(r;p1,p2) can be led, wpA to the multicomponent mixture the above procedure
which reads in the Fourier space for generating to the multicomponent mixture, is straightfor-

ward. In this case, the weighted densities and the direct cor-

It (py,p2) relation functions are denoted in terms mfn+1)/2 inde-
—,8‘1c<121)(k;p1,p2)=2Tw11(k;p1,pz) pendent weighted densities and direct correlation functions
. [3].
3%f(py,p2) ) In the density-functional theorjl], the equilibrium par-
T w1y(K;p1,p2) ticle density distributionp;(f) is found by minimizing the
P1 grand potential functional)[pq,p,] with respect to varia-
ng(Plapz) 2 tions inpi(r_))v
P 01AKip1.p2),
piopz Q[ p1,p2] —0 i=12 12
ot ( Vo ) Since the grand potential form under an external potential,
_ P1:P2 P1:P2 ex i
— B B (Kipy.pa) = " uf™(f) can be written as
dp1 dp2 )
#f(p1,p2) Q[ pi,p21=Flp1.p2]— JdF-F i—u(n].
X 012K p1,p2) +pr— [pip2]=Flpy.p2l= 2, | dFpi(F)[mi—uf(F)]

Ip10p2 (13)

X 01(Kip1,p2) @1dKip1.p2) Equation(12) yields the Euler-Lagrange relation for the bi-
*f(p1,pr) nary mixture

w1(K;p1,p2)

OBF[p1.p2]

YGER i=1,2 (14)

Xty
szz(k;Pl,Pz), (9) Bui :Bul (I')
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ture confined in a spherical cage whétgis finite, the con-

tribution of 5ﬁ§')/6pj(r) cannot be neglected even if this
contribution is relatively small.
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Because of the planar symmetry of the problem, the spatial
(@) dependence of all quantities is only @ p;=pi(2), p;
=pi(2), etc. In the case of adsorption at a wdﬁ,}')/&pj(z)

is the order of IN;, whereN=N;+ N, is the total number

of particles in the system. Thus, it is easy to show that for the
binary hard-sphere mixture near a structureless hard wall
op

1/ 8p;(z) goes to zero as well as for the uniform state

i

b)/ﬁpj(z)=0. However, for the binary hard-sphere mix-

We now define the parameters for the binary hard-sphere

mixture: the hard-sphere diameter ratw=oq,/0, (o4

z/o, <o,) and the total bulk density,=pq,+po,. Then, the
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FIG. 1. (a) Density profiles of binary hard-sphere mixture near a
hard structure wall L(z=§, x=0.642, andn=0.2911). The open
[p1(2) af] and solid[ p,(2) of] circles are from the computer simu-
lation [5]. (b) Concentration profile of the smaller spherg$z).

The solid circles are from the computer simulat{&.

wherey; is the chemical potential of the componénErom
Egs. (1) and(14), we can obtain the coupled density profile
equations for the binary mixture,

pi(7) = pip exp{ — BuP(1) +c{V(Fi[ p1,p2])

—cY(p1p,pap)}, =12 (15)

wherec)(r;[ p1.p>]) andc!M(p1p,p2p) are the one-particle
DCFs for the nonuniform and uniform fluid mixture, and
pi is the bulk density of the componentcY(F;[py,p2])
that appeared in Eq(15 which can easily be obtained
from c{(Fi[p1.p2]) by interchanging p(F).ps (7).
w11(r;p1,p2) With p8(F),pa(F), w213 p1,p2). The density
profiles p; () were obtained by numerical iteration between
the old density profiles on the right-hand side and the new
one on the left-hand side of E(L5).

As an application, we have considered the structural prop-
erties of a binary hard-sphere mixture near a structureless
hard wall, where the external potential${(z) are given by

oo, Z<0'i/2

u(z)= (16)

0, Z>0'i/2. 77:030)

total packing fraction » is given as 5= Tr(plbaf

) +p2ba§)/6. To obtain the weighting functiow;;(r;p1,p>),

we have used the expression fdi(py,p,) and c{?
X(r;py,po) that follows from Lebowitz's analytic solution
of the Percus-Yevick approximation for a hard-sphere mix-
ture[9,10], and which also implies an approximation for the
excess free energ¥(p,,p,) via the compressibility equa-
tion.

In Fig. 1, we show the density profilgg(z) of a binary
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hard-sphere mixture against a hard wall at a diameter ratio
a=3, concentration of smaller hard spheres p,,/(p1p
+pop) =0.642, and packing fractiong=0.2911. In Fig. 2,

we present the density profiles for a binary hard-sphere mix-
ture with a=3 for x=0.4902 andz=0.30, and the corre-

FIG. 2. (a) Same as Fig. (&) except that &= % x=0.4902, and

(b) Same as Fig. (b).
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sponding concentration profilesx,(z), where x;(2) sphere mixture near a hard wall. Another point to be men-

=p1(2)/[p1(2) + p2(2)]. The calculated results presented in- tioned is that for the binary hard-sphere mixtures confined in

dicate that the present HWDA is in good agreement with thea spherical cage, the structural properties have not been in-
computer simulation datgb], although the density profiles vestigated until now. In this case, the minor correction for

for the smaller spherg, (z) are slightly overestimated near a the HWDA is required, since the contribution of

hard wall. Even though the HWDA results of Leidl and 55/ 5p,(r) cannot be neglected. We will investigate these
Wagner have not been displayed in the figures for clarity, th%

roblems in the near future.
calculated results show that the present HWDA compares
well with the HWDA of Leidl and Wagner.

In summary, we have proposed the HWDA to multicom-  This work was supported by the Korea Research Founda-
ponent systems with the computational convenience of théon made in the program year of 199Broject No. 1998-
MWDA. The calculated results show that the present HWDAO015-D00132 and by the Korea Atomic Energy Research In-
describes well the structural behaviors of a binary hardstitute (1999.
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