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Hybrid weighted-density approximation for nonuniform fluid mixtures
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A hybrid weighted-density approximation~HWDA!, which is based on both local density and globally
averaged density, has been proposed to study the structural properties of nonuniform fluid mixtures. The
advantage is that the HWDA is computationally much simpler than the extended weighted-density approxi-
mation proposed by Davidchack and Laird. The HWDA has been applied to calculate the density profiles of
binary hard-sphere mixtures near a structureless hard wall. Comparison between the theoretical results and
simulations for the confined binary hard-sphere mixtures demonstrates the reliable accuracy of the HWDA.
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The physical properties of solid-fluid interfaces are
both fundamental theoretical interest and also consider
practical importance in connection with phenomena such
adsorption, wetting, catalysis, and filteration@1#. Numerous
studies have already addressed problems involving sim
one-component and two-component fluids near simple wa
The weighted-density approximations for multicompone
systems have been proposed in various forms@2–8#. The
approaches of weighted-density approximations have b
reasonably successful in describing the structure of bin
fluid mixtures. The key to the success of weighted-den
approximations appears to lie in the choice of weight
functions. In particular, the advantage of the hyb
weighted-density approximation HWDA proposed by Le
and Wagner@2# is that it avoids a limitation of the modified
weighted-density approximation~MWDA ! of Denton and
Ashcroft @3#, specifically the violation of the wall theorem
that generally holds for fluids in contact with a hard wa
without sacrificing the computational convenience of t
MWDA. More recently, Davidchack and Laird@8# have pro-
posed an extension to multicomponent systems of
weighted-density approximation~WDA!, which can be ap-
plied to the multicomponent nonuniform fluid systems w
spatially varying compositions. However, the WDA pr
posed by Davidchack and Laird is computationally mo
complex in actual applications such as the solid-fluid int
faces. Thus, a version of the weighted-density approxima
with the computational convenience of the MWDA is no
required to study the structural properties of multicompon
fluid systems.

In this Brief Report, we will propose an extension of th
HWDA for the multicomponent fluids that correctly pre
serves the local nature of the WDA and the advantage of
MWDA. We will apply it to investigate the structural prop
erties of binary hard-sphere fluids near a structureless
wall and compare the theoretical results with the compu
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studies. This paper concludes with a brief discussion of
strengths and weaknesses of the HWDA in actual appl
tions.

As in the case for a one-component system, the fr
energy functional for the binary systemF@r1 ,r2# can be
divided as the ideal and excess parts as follows@1#:

F@r1 ,r2#5F id@r1 ,r2#1Fex@r1 ,r2#. ~1!

The ideal part is simply the sum of the ideal free energies
the individual components,

F id@r1 ,r2#5b21(
i 51

2 E drWr i~rW !$ ln@r i~rW !L i
3#21%, ~2!

where r i(rW) and L i5h/(2pmikBT)1/2 are the density and
thermal de Broglie wavelength of thei th component, respec
tively.

In order to formulate the HWDA for the binary mixture
we start in the spirit of the WDA of Davidchack and Lair
@8# by setting

Fex@r1 ,r2#5(
i 51

2 E drWr i~rW ! f @ r̄1
~ i !~rW !,r̄2

~ i !~rW !# ~3!

with

r̄ j
~ i !~rW !5E dsWr j~sW !v i j ~ urW2sWu; r̂1

~ i ! ,r̂2
~ i !!, i , j 51,2 ~4!

wherev i j (r ; r̂1
( i ) ,r̂2

( i )) is the weighting function,r̄ j
( i )(rW) are

the weighted densities, andr̂ j
( i ) are the unknown globally

averaged densities. This expression differs from those of
WDA proposed by Davidchack and Laird, and the HWD
proposed by Leidl and Wagner@2#; in the HWDA of Leidl
and Wagner, the total densityr̄ ( i )(rW) and concentrationx
5*drWr1(rW)/@*r1(rW)1*r2(rW)# have been introduced to
specify the weighted densities. Here, we introduce a glob
averaged densityr̂ j

( i ) , which is defined as
ic
3413 © 1999 The American Physical Society



e
s

lc

e
-
e

n
n

d
e

o

is
r

in
n
for

an
ion

ne-

con-
.
ry
e
re
r-

cor-

ons

tial,

i-

3414 PRE 60BRIEF REPORTS
r̂ j
~ i !5

1

Nj
E drWE dsWr i~rW !r j~sW !v i j ~ urW2sWu; r̂1

~ i ! ,r̂2
~ i !!,

i , j 51,2 ~5!

where N5N11N2 is the total number of particles in th
system andNi5*drWr i(r ). These globally averaged densitie
have already been tested by Davidchack and Laird to ca
late the binary hard-sphere crystal-melt phase diagram@8#.
Equation~5! completes the specification of the HWDA; th
globally averaged densitiesr̂ j

( i ) resemble those of the ex
tended MWDA, but the weighting functions differ. Th
weighting functionsv i j (r ; r̂1

( i ) ,r̂2
( i )) satisfy the normaliza-

tion condition

E drWv i j ~r ; r̂1
~ i ! ,r̂2

~ i !!51, i , j 51,2 ~6!

for all r̂ j
( i ) .

For the binary mixture the weighting functio
v i j (r ;r1 ,r2) is related to the two-particle direct correlatio
functions DCFsci j

(2)(r ,r1 ,r2) of the fluid through the secon
derivative of the excess free energy with respect to the d
sity,

ci j
~2!~ urW2sWu;r1 ,r2!52b lim

r~rW !→r

d2Fex@r1 ,r2#

dr i~rW !dr j~sW !
, i , j 51,2

~7!

From Eqs.~3!–~7!, a system of three coupled equations f
v11(r ;r1 ,r2), v12(r ;r1 ,r2), andv22(r ;r1 ,r2) can be led,
which reads in the Fourier space

2b21c11
~2!~k;r1 ,r2!52

] f ~r1 ,r2!

]r1
v11~k;r1 ,r2!

1r1

] 2f ~r1 ,r2!

]r1
2 v11

2 ~k;r1 ,r2!

1r2

] 2f ~r1 ,r2!

]r1]r2
v12

2 ~k;r1 ,r2!,

~8!

2b21c12
~2!~k;r1 ,r2!5S ] f ~r1 ,r2!

]r1
1

] f ~r1 ,r2!

]r2
D

3v12~k;r1 ,r2!1r1

]2f ~r1 ,r2!

]r1]r2

3v11~k;r1 ,r2!v12~k;r1 ,r2!

1r2

]2f ~r1 ,r2!

]r1]r2
v12~k;r1 ,r2!

3v22~k;r1 ,r2!, ~9!
u-

n-

r

2b21c22
~2!~k;r1 ,r2!52

] f ~gr1 ,r2!

]r2
v22~k;r1 ,r2!

1r2

]2f ~r,x!

]r2
2 v22

2 ~k;r1 ,r2!

1r1

]2f ~r1 ,r2!

]r2
2 v12

2 ~k;r1 ,r2!,

~10!

since r̂ j
( i )5r j and r̄ j

( i )(rW)5r j for a uniform binary
mixture, c12

(2)(r ;r1 ,r2)5c21
(2)(r ;r1 ,r2), and v12(r ;r1 ,r2)

5w21(r ;r1 ,r2) due to the symmetrical requirement. It
noted that in the HWDA of Leidl and Wagne
ci j

(2)(r ;r1 ,r2) contains the terms proportional todk,0 that
arose from functional derivatives of the concentrationx, so
that the computed weighting functions are discontinuous
Fourier space atk50 @2#. The above set of equations ca
generally be solved by a numerical iteration method
known excess free energyf (r1 ,r2) and two-particle DCFs
ci j

(2)(k;r1 ,r2). At kW50, Eqs.~8!–~10! correctly reduce to the
exact compressibility rules for a binary mixture. We c
check that the third-order and higher-order direct correlat
functions derived from the excess free energyFex@r1 ,r2#
satisfy the exact hierarchy relation as well as for the o
component system,

] n22ci j
~2!~k!

]r l ,...,]rm
5ci j l ¯m

~n! ~k,0, . . . ,0!, ~11!

where we have suppressed the arguments of density and
centrations that appeared inci j ¯m

(n) . Taken together, Eqs
~1!–~5! and Eq. ~7!, constitute the generation to a bina
mixture of the HWDA. Even if we have not generalized th
HWDA to the multicomponent mixture the above procedu
for generating to the multicomponent mixture, is straightfo
ward. In this case, the weighted densities and the direct
relation functions are denoted in terms ofn(n11)/2 inde-
pendent weighted densities and direct correlation functi
@3#.

In the density-functional theory@1#, the equilibrium par-
ticle density distributionr i(rW) is found by minimizing the
grand potential functionalV@r1 ,r2# with respect to varia-
tions in r i(rW),

dV@r1 ,r2#

dr i~rW !
50, i 51,2. ~12!

Since the grand potential form under an external poten
ui

ext(rW) can be written as

V@r i ,r2#5F@r1 ,r2#2(
i 51

2 E drWr i~rW !@m i2ui
ext~rW !#.

~13!

Equation~12! yields the Euler-Lagrange relation for the b
nary mixture

bm i2bui
ext~rW !5

dbF@r1 ,r2#

dr i~rW !
, i 51,2 ~14!
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wherem i is the chemical potential of the componenti. From
Eqs.~1! and ~14!, we can obtain the coupled density profi
equations for the binary mixture,

r i~rW !5r ib exp$2bui
ext~rW !1ci

~1!~rW;@r1 ,r2# !

2ci
~1!~r1b ,r2b!%, i 51,2 ~15!

whereci
(1)(r ;@r1 ,r2#) andci

(1)(r1b ,r2b) are the one-particle
DCFs for the nonuniform and uniform fluid mixture, an
r ib is the bulk density of the componenti; c2

(1)(rW;@r1 ,r2#)
that appeared in Eq.~15! which can easily be obtaine
from c1

(1)(rW;@r1 ,r2#) by interchanging r̄1
( i )(rW),r1(rW),

v11(r ;r1 ,r2) with r̄2
( i )(rW),r2(rW),v22(r ;r1 ,r2). The density

profilesr i(rW) were obtained by numerical iteration betwe
the old density profiles on the right-hand side and the n
one on the left-hand side of Eq.~15!.

As an application, we have considered the structural pr
erties of a binary hard-sphere mixture near a structure
hard wall, where the external potentialsui

ext(z) are given by

ui
ext~z!5H `, z,s i /2

0, z.s i /2.
~16!

FIG. 1. ~a! Density profiles of binary hard-sphere mixture nea
hard structure wall (a5

2
3 , x50.642, andh50.2911). The open

@r1(z)s1
3# and solid@r2(z)s1

3# circles are from the computer simu
lation @5#. ~b! Concentration profile of the smaller spheresx1(z).
The solid circles are from the computer simulation@5#.
w

p-
ss

Because of the planar symmetry of the problem, the spa
dependence of all quantities is only onz; r i5r i(z), r̄ i

5 r̄ i(z), etc. In the case of adsorption at a wall,dr̂ j
( i )/dr j (z)

is the order of 1/Nj , whereN5N11N2 is the total number
of particles in the system. Thus, it is easy to show that for
binary hard-sphere mixture near a structureless hard
dr̂ j

( i )/dr j (z) goes to zero as well as for the uniform sta
dr̂ j

( i )/dr j (z)50. However, for the binary hard-sphere mi
ture confined in a spherical cage whereNj is finite, the con-
tribution of dr̂ j

( i )/dr j (r ) cannot be neglected even if th
contribution is relatively small.

We now define the parameters for the binary hard-sph
mixture: the hard-sphere diameter ratioa5s1 /s2 (s1
,s2) and the total bulk densityrb5r1b1r2b . Then, the
total packing fraction h is given as h5p(r1bs1

3

1r2bs2
3)/6. To obtain the weighting functionv i j (r ;r1 ,r2),

we have used the expression forf (r1 ,r2) and ci j
(2)

3(r ;r1 ,r2) that follows from Lebowitz’s analytic solution
of the Percus-Yevick approximation for a hard-sphere m
ture @9,10#, and which also implies an approximation for th
excess free energyf (r1 ,r2) via the compressibility equa
tion.

In Fig. 1, we show the density profilesr i(z) of a binary
hard-sphere mixture against a hard wall at a diameter r
a5 2

3 , concentration of smaller hard spheresx5r1b /(r1b
1r2b)50.642, and packing fractionsh50.2911. In Fig. 2,
we present the density profiles for a binary hard-sphere m
ture with a5 1

2 for x50.4902 andh50.30, and the corre-

FIG. 2. ~a! Same as Fig. 1~a! except that (a5
1
2 , x50.4902, and

h50.30). ~b! Same as Fig. 1~b!.
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sponding concentration profilesx1(z), where x1(z)
5r1(z)/@r1(z)1r2(z)#. The calculated results presented i
dicate that the present HWDA is in good agreement with
computer simulation data@5#, although the density profile
for the smaller spherer1(z) are slightly overestimated near
hard wall. Even though the HWDA results of Leidl an
Wagner have not been displayed in the figures for clarity,
calculated results show that the present HWDA compa
well with the HWDA of Leidl and Wagner.

In summary, we have proposed the HWDA to multicom
ponent systems with the computational convenience of
MWDA. The calculated results show that the present HWD
describes well the structural behaviors of a binary ha
e

e
s

-
e

-

sphere mixture near a hard wall. Another point to be m
tioned is that for the binary hard-sphere mixtures confined
a spherical cage, the structural properties have not been
vestigated until now. In this case, the minor correction
the HWDA is required, since the contribution o
dr̂ j

( i )/dr j (r ) cannot be neglected. We will investigate the
problems in the near future.
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