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Analytical verification of scaling laws for the Ising model with external field in fractal lattices
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We use an exact recursion procedure to verify analytically, without any intermediary numerical calculation,
the validity of the hyperscalinglosephsonlaw extended to fractals, the Rushbrooke and Griffiths scaling laws
for the Ising ferromagnet with external magnetic field in the whole family of Migdal-Kadanoff-like hierarchical
lattices.[S1063-651X99)05809-3

PACS numbegs): 05.50+q, 05.70--a

Many classical spin systems, such as the Ising and Pot{sinski gasket family using numerical values for the expo-
models, defined on hierarchical latticdLs) constitute a nents derived from exact expressions of the thermal quanti-
class of exactly solvable models which attracted much atterties[12].
tion in the study of critical phenomena. The analytical solu- We consider the Ising ferromagnet with external magnetic
tions of spin models on the Bethe lattice, for example, ardield on the family of Migdal-Kadanoff-like hierarchical lat-
cited by Baxter{1] as one of the interesting exact solutionstices. These lattices are generated in an iterative manner,
for higher-dimensional spin systems. The Bethe lattice castarting from a two-point lattice joined by a single bond
be viewed as a kind of HI[.2—5] which is a relevant family  (leveln=0) which is replaced by a basic cell consisting-of
of non-Bravais lattices that can be considered, in many situbranches in parallel, each of them comprisingonds in
ations, as approximated lattices of some Bravais @qees,  series. This recursive procedure is illustrated in Fig. 1 for the
e.g., Ref.[6]). Some results are relatively simple to obtain cases P=2b=2) (the diamond HlL and P=2,=3). In
using this kind of fractal lattices, in particular, critical fron- the n—o limit one obtains a lattice, which we denote as
tiers and correlation length critical exponents. However, theHL p 1), With fractal dimension
exact calculation of other physical quantities, such as specific
heat, magnetization, and susceptibility, as well as their cor- (P,b):@ 1)
responding critical exponents, are much more complicated to f Inb -
obtain within the HL approach and we sometimes find in the ) )
literature the use of heuristic recipes to obtain these functiont the following calculations the paramatePs=2 andb
and exponents7—10). =2 are fixed.

It is well known that in fractal systems, the critical expo- The model is described by the dimensionless Hamiltonian
nents depend of other geometric parameters, such as connec-
tivity and lacunarity[5], and not only of the fractal dimen- — BH, =K, >, O'ia'j+Hn2 (oi+0)), 2
sion itself. Hence, the classification based on universality {0 ()
classes cannot work out on fractal systems in the same way )
as on translationally invariant lattices. Also the validity or Where 8=1/KkgT, T being the temperature,=pBJ,, J,
not of the scaling laws between the critical exponents for~ 0 iS the coupling constant between nearest-neighbor pairs
fractal systems, and the role played by the fractal dimensioAt then level, H,=gB,, andB, is the external magnetic
in these relations, yeld controversial results in the literature.

Concerning the hyperscaling lavd¢=2—«), it has been

numerically verified in a number of HL systenfwith the p=>
fractal dimensiond; replacingd) [11-13 and has been b=2
proved analytically for the three-state antiferromagnetic

Potts model on a diamond-type HL famil§4] and for the

Ising ferromagnet on the whole family of Migdal-Kadanoff-
like HLs [15]. Numerical results for the Ising model on Si-
erpinski carpet$16] verify the hyperscaling only through an
effective dimension which is slightly different from the lat-
tice fractal dimension. Concerning the Rushbrooke scaling =2
law (a+ 2B+ y=2), there is much less evidence in favor of b=
its validity on fractal systems. It has been verifigd] for
the Potts ferromagnet on the Wheatstone-bridge HL using
approximate methods in the derivation@findvy. It has also level n=0 =1 =2
been verified for the Ising ferromagnet in amsheet Sier-
FIG. 1. First three steps of construction of the klL;;,—,) and
HL (p-2p-3). The open circles are the root sites of the hierarchical
*Electronic address: redinz@mail.ufv.br lattices.
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field at leveln. The sum is over all the first neighbd(isj) of

the lattice. Note that this Hamiltonian provides a magnetic

field of magnitudez™H,, at the spinc;, wherez™ is the

coordination number of siteat then-level HL. The presence
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o0

m(x,h)=i];[1

1+2B®)(x; ,hi)) ©

b

which generalizes a previous reg#0] obtained for the zero

of this coordination number in the field term asserts that th‘?ield andb=2 case

Hamiltonian (2) is closed(no more couplings among the
spins are generatgdnd form-invariant under our RG trans- tib

formation[18,5].

In Ref. [15] we considered the zero field model and we
shown that the dimensionless internal energy per bond for

the n level system follows the exact recursion relation

EP) =AC) (x)EP ,+CO(x,). (3)

with the functionsA® and C® given by (we definedx

= eK)

4x?(x*—1)b1

(0)(y) =
A (X) (X2+1)2b_(X2_1)2b

and

4x%(x*—1)

cO(x)= .
( ) (X2+1)2b_1_(X2_1)2b_1

(4)

Following along this same procedu@escribed in details in

Also from Eq.(8) we can show that the zero-field suscep-
ility defined by

amn(xn !hn)
Xn(Xp)=——— (10)
n n 07hn hn:1
obeys the recursive relation
1+2B®)(x,,h,=1)
Xn(xn):rgpyb) bﬂ . )an(xnl)v
11
where we defined
ah’(x,h
r<hp'b>s% =P[1+2B®)(x,hy)], (12
h

c

andh’(x,h) is the RG transformation which we define in the
following.

In order to complete our recursive equations we need the
renormalization of the coupling(,,_;=K" (or x,_1=x")
and fieldH,,_;=H"' (or h,_;=h") in terms of the coupling

Refs.[19,15), we obtain here a recurrence for the local mag-K —K (or x,=x) and fieldH,=H (or h,=h). This is es-

netizations at different levels given by

b-1
2, (e)O=BO0 h){(u) O+ ()}, (6)
with (in the particular casél =0)
X*—1 [ (x?+1)P71—(x2—1)b1
B®)(x,h=1)= S il S S PN

2 (X*+1)P+(x2—1)°

where we defined the variabe=e". We shall omit here the
expression oB®)(x,h) for the general case # 0 since it is
quite long. In Eq.(5), the spinsu, and u, were joined by
one bond at then(—1) level HL, which, at leveln, was
replaced by the basic cell which has in one ofRt$onds
(note that thes® bonds are equivalenthe (b—1) spinso.

From Eq.(5) we can show that the magnetizatidper
site) of the entire lattice, defined by

1
- (N 5.
mn(X,h)— N(P’b) ZI Zi O-II (7)
cn
where N(PP) =3,2W=2(hP)" was introduced in order to
normalize the magnetization @t=0, obeys the relation

1+2B®)(x,,h,)
%) Mp—1(Xp—1,Nn-1).

8

My (Xn,hy) =

From Eg.(8) we can show that the magnetization of the x., the magnetizatiom, can be written asn,=\|e,

system in the limitn— o is given by

tablished in a standard way by preserving the correlation
function between the roots of the Hisee, e.g., Ref15]).
We shall omit here the expressions>dix,h) andh’(x,h)
since they are quite long. The RG equations, forRu2
andb=2, admit two trivial stable fixed pointgote that for
the general case these points are over the &xisl),
namely,x=1 (T—®) (paramagnetic phasandx—~ (T
=0) (ferromagnetic phageas well as a criticalunstable
fixed pointxp ) (0<X{p ,)<=). Hereafter we will use the
abbreviated notationx( ,h.) for the critical point Q(?P'b) ,h
=1) of the HlLp ) system. Linearization ok’(x) in the
neighborhood of the critical point. leads to the thermal
(correlation lengthcritical exponent(":P):

J(Pb) =

=PbA®)(x,).

Xc

Inb dx’(x)
(P =" "7
inrPB where r; V= "

(13

In Ref. [15] we verified analytically the hyperscaling law
extended to fractal systems, namely,

ng,b)V(P,b)zz_a(P,b)’ (14)
with
In A®)(x,)
=14 ) (15)
Inr (PP

and using the expressions of Eq$) and(13) also.
Following along the same lines, assuming that close to
B we

obtain, from Eq.(8),
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In[r{"/(Pb)]
Inr (PP

(P.b) = _ (16)

Analogously, from Eq(11), we can show that the expo-
nent of the zero-field susceptibilifyy,=\(e,) ~?] is given
by

(P2)2/(Pp)]

Inr{PP) ’

(P.b) In[(r

(17)
which, taking into account Eq$15) and (16) verifies ana-
lytically the Rushbrooke scaling law

aPP) 4 25(P0) 4 (P =3, (18)
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(2 P pPD) = (D) (21)
which relates then exponent of the two-point correlation
function [ G(x ,h)~r @27 7] with the exponents and
v, we obtain, using Eqg13) and(17),

1 InPb®

(P —_
2 |nr{Ph)

n (22

In summary, we used a method that allowed us to calculate
exact recurrence relations for several thermal quantities of
the Ising ferromagnet with external field in the whole family
of Migdal-Kadanoff-like hierarchical lattices and to obtain
the critical exponents), «, B, y, and 6. With the exact
expressions of these exponents we proved analytically, with-

Assuming that atx. the system magnetization behaves asPut any intermediary numerical calculation, the validity of

m,=\(h,—1)*'?, we obtain, from Eq(8),

P,b
Inr{P®

SPP=— N
In[r{PP/(bP)]

(19
from which we can verifjfusing Eqs(15) and(16) alsq| the
Griffiths scaling law

aPP 4 PO (5B 4 7)=2, (20

If we also assume the validity of the Fisher scaling law

the hyperscaling, Rushbrooke and Griffiths scaling laws for
this large class of fractal systems. Assuming also the validity
of the Fisher scaling laW(2— n)v=vy] we obtained the
exponenty of the correlation function for these systems.

As it is well known, the scaling laws are an immediate
outcome of the renormalization group in the absence of dan-
gerous irrelevant variables. However, the point of this paper
was to provide an explicit, analytical verification of these
laws, something that has not been done explicitly earlier for
this large class of systems and, mainly, for this complete set
of scaling laws.
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