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Oscillatory behavior of critical amplitudes of the Gaussian model on a hierarchical structure
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We studied oscillatory behavior of critical amplitudes for the Gaussian model on a hierarchical structure
presented by a modified Sierpinski gasket lattice. This model is known to display nonstandard critical behavior
on the lattice under study. The leading singular behavior of the correlation I€ngghr the critical coupling
K=K, is modulated by a function which is periodic inli(K.—K)|. We have also shown that the common
finite-size scaling hypothesis, according to which for a finite system at critidahould be of the order of the
size of the system, is not applicable in this case. As a consequence of this, the exact form of the leading
singular behavior of¢ differs from the one described earliéwhich was based on the finite-size scaling
assumptioh [S1063-651X99)05609-3

PACS numbses): 64.60.Ak, 05.50+q, 05.40.Fb

[. INTRODUCTION here the Gaussian model on a modified SG lattice. In this
case the hierarchical structure of the lattice leads to the os-
In the near past considerable research activity has beatillations of critical amplitudes of various quantities close to

devoted to the studies of recursion relations which have ariticality. If one presents them on an appropriate scale, it
singular structure near the pertinent fixed poifits-6]. It turns out that they become regularly spaced.
was found that, under certain conditions, these singularities We have found that the above-mentioned oscillations are
can lead to an unusual critical behavior of relevant physicaliniversal, and that they can be described in terms of some
quantities. In particular, it has been shown that the measimple functions which are periodic in the variabl@n(sK)|
end-to-end distanc® of a simple ideal polymer chain on (with 6K=K.—K being the distance from the critical point

some hierarchical structures can grow more S|ow|y than ang}—his is in contrast to the critical behavior of the usual Sys-
power of its lengthN. This effect has been termed localiza- tems(displaying the power-law singularitigsn which case
tion, and it has been attributed to an entropic trapping of théhe corresponding variable has the formdKj. What is per-
polymer chain[1]: In order to maximize the entropy, it is haps even more interesting, we have found that our numeri-
advantageous for a chain to visit the lattice sites of the highcal values of the correlation length do not fit the form
est coordination number preferentially. These sites act, thereoln”(6K), with the above reported valug =In3/In2. We
fore, as entropic traps preventing the swelling of the chain.nave shown instead, using an asymptotic matching, that one
It is well known that statistics of an ideal polymer chain Nas to takeP=In(3/2)/In2 in order to have a proper agree-
on lattices can be captured by means of a suitable Gaussi&Rent between analytical and numerical results. Conse-
model. Using this connection a number of interesting resultduently, the common finite-size scaling arguments, which
for the polymer model have been derived by studying theVere used in the previous studies of this mode2, 3, are
singular structure of associated recursion relations for th&0t applicable in this case. .
Gaussian model. Let us recall here just one example: It has I”_ Sec. Il we present our.model, reca_tll some prewpusly
been argued, by using finite-size scaling arguments and talneq _results, and examine the qscﬂlatory peha_wor of
analytical study of a pertinent mapping, that the mean engSome critical amplitudes. Our conclusions are given in Sec.
to-end distance of an ideal chain on the modified Sierpinsk|”'
gasket(SG) (see Fig. 1 follows the logarithmic asymptotic
law: RN~In‘I’N, with ®=In3/In2. As it has been empha-

sized[5], however, it was very difficult to check this result

numerically, due to the oscillations in the values of the A%X#A
Gaussian correlation length In fact, these oscillations are AN AN
so pronounced that they mask even leading singular behavio A#X#AA#X#A

of &.

These types of corrections to the leading asymptotic be-
havior near criticality were studied quite eafBj, within the
framework of the renormalization-group approach. Recently, r=1 =2
they were observed in many systems displaying the power-
law singularities, and they were related to the concept of FIG. 1. First two stages in the iterative construction of the modi-
discrete scale invariang¢®]. This motivated us to reconsider fied b=3 Sierpinski gasket.
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II. MODEL AND ITS ANALYSIS 11.5
1 (a)

We consider here the usual zero-field Gaussian model o 107 < n2—;
a hierarchical structure which is presented by a modified Si. 105 _M\/\/\_/
erpinski gasketSG) lattice of baseb=3 (Fig. 1). The par- B
tition function of this model has a simple form, 1007

95 T T T T T T T T N T T 1
oo 6.0 6.5 7.0 75 8.0 8.5 9.0
Z(K)=f f ds,...dSy 05+ In{In(sK)|
- 0.4—- ®)
1 0.3
Xexpg — = > SP+K S|, 1 ]
[{ 2 2. ! (.EJ) S @ B, 02+
0.1 -
where S is the continuous spin variable at siig¢ K Y
=J/kgT whereT is temperature, and represents the inter- 6.0 6.5 7.0 75 8.0 8.5 9.0
action between each nearest-neighbor pair of Gaussian spir..,, In|in(sK)]

while (ij) denOteS the 'summatlon over all such pairs. ,AS W€ piG. 2. (@ Correlation length critical amplitudé,, in units of
have_shown in a previous papEB], therth order partition | ice constant, as a function of In(3K)| (&= In(SK)|~®,d
function can be expressed in terms of three paramé€ts  _jn(3/2)/1n 2). (b) The energy critical amplitudEo, in units of the
B, and D" which obey a set of recursion relations and interaction strengthl, as a function of the same variabl&(
suitable initial conditions. These relations are somewhat sk [In(sK)|YE,¥=In 6/In 2). These functions are computed from
cumbersomgsee Eqs(34) and(35) of [5]], and we will not  exact representations of related quantities by using a huge numeri-
repeat them here. Let us note, nevertheless, that they havecal precisior{10]. Note that the amplitudes of these oscillations are
singular structure near the relevant fixed point, which doeso large that they, in fact, mask the leading asymptotic behavior of
not allow us to make a common fixed-point analysis. As¢ andE.
detailed in[5], for the critical valueK.=0.227148 ... of
the interaction strengtl, all successive iterations do&(" where ¢(6K)=—1/In[u(5K)] stands for the correlation
and B(" lie on an invariant line, which starts at the point length of the mode[7]. This finding is in contrast to the
(A®=0B®=K_) and ends at the fixed pointAf usual finite-size scaling expectation, according to which the
=1/6B* =0). An asymptotic equation of this line, which is correlation length of a finite system at criticality should be of
valid near the fixed point, has been found perturbatiyly  the order of the system’s siz&{ 3'0).
One can show that along this lineSK=0) parameterB The number of iteratiom, along the invariant line de-
renormalizes according to the law pends on the value oK and can be estimated from the
obvious relationB("0(sK)~B((0)+dB/dK| s —odK.

21 Indeed, taking into account Eq(3) and the relation
r_ 2 3_ " 44 ... !
B'=2\3B%+(18+12)3)B*~ 2-V3B+ -+, (2 ypraydk~ 20 (see[s), we find
while away from it ((K>0) this parameter follows the law: k2°~2M05K, or 2"0In( k)~ In(5K). (6)

B’'~B3. It is evident that the solutio®,~u3 [where u _ _ o
— u(8K)<1] well fits in with the latter condition. On the This, together with Eq(6), leads to a logarithmic singular

other hand, an asymptotic solution of E@) can be ex- Pehavior of¢

pressed as a power series«fl, In(3/2)
E~[In(6K)|®,  with d=—F—. (7
3 ., 2+\3 .., 312+1933 ., In2
BN=_"",2"_ 22 4 K32+
6 8 384 This differs(in the value of®) from the earlier reported

(€) results which have been derived by using the finite-size scal-

where 0< k<1 is a constant that can be determined numeri-"9 assumption¢~3'o. This difference is caused by the pe-

cally. Although this solution has been derived & =0, it culiar behavior of the parametBrand correlation function—
holdé also for a finite but very small value 6K(0<5,K in our case they decrease exponentially to zero even at the

: . . criticality [see Eq.(3) and notg 7]].
< < > -
ITO]I:I)S, SL%V'S:?;;'% v;?gr:er{); 1inl\s/atrri]:ntnTirr?:et:e?grger%in In order to provide some further insight into the critical
: gt 90INY, o havior of the model, we will also examine it numerically.
away from it. These two regimes are separated by a rathelrh

: ) . . us, using a huge precision, we have been able to come
narrow crossover region, which makes it possible to appIX/ew close to the critical pointdk/K <1039 This al-
the asymptotic matching: ¢ :

lows us to calculate the correlation function and the associ-
30_ o7 .2"0_ o ated correlation length in a wide regigon a logarithmic
® exiin(w)3]~ « exiLin(x)27e], @ scale around the critical poinftL0]. Our results are presented
ie. in Fig. 2@), where the scaled correlation lendtritical am-
plitude &) &,=¢|In(sK)|"® is displayed as a function of
; (3)‘0 5 In|In(sK)|. The overall behavior o, is highly sensitive to

2 the precise value ofb. For example, the average va@@
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= (&o,maxt Eo.min/2 Of &, appears to be a constant for suffi- energy numerically. Our results are displayed in Fith) 2
ciently small values 08K, with the above quoted value ¢f ~ Where we presented the scaled endiigy, critical amplitude
[see Fig. 22)], while & becomes unstable under a small Eo) Eo= dK|In(aK)|"E as a function of Ifin(sK)|. It is evi-
change ofd. This provides a good criterion for a numerical d€nt that Eo represents a simple periodic function of
calculation of®. Indeed, in this way we have been able to NIN(3K)], while its period is in agreement with the above
determined with four correct digits, and a further improve- duoted theoretical valuerEIn2). At the same time this
ment depends on the possibility of approaching the fixedN@lysis provides a good numerical check of the f¢8nof
point still more closely. This should be contrasted with thet"® €nergy leading singularity.

straightforward proceduié]: A plot of In & versus Ifin(sK)|

leads to numerical estimates ®f which oscillate with large IIl. CONCLUSION
amplitudes around the exact value, independent of the dis- _ ) " )
tance K from the critical point. In this paper we have studied the critical behavior of the

It seems that, represents a simple periodic function of Gaussian model on a modified SG. We have shown that both
Inin(sK)|. The period of this function, estimated numeri- correlation Iengt_h ar_ld energy crltlcql_amplltudes exhibit very
cally, is found to be in excellent agreement with the theoretiPronounced oscillations near the critical couplitg. These
ical value 7=In 2. Perhaps the simplest way to understand®scillations can be described in terms of some simple func-

this is to adopt the following point of view: One can regard tions which are periodic in In(5K)|. Periodr of these func-
Eq. (7) as a “pure” power law, with the scaling variable tions is found to be determined by a universal quantity which

|In(5K)| (rather thansK) and a “critical exponent'®. In the governs critical behavior of the m_odel. Knowledge of the;e
same spirit, one can interpret the relatidf) as Ao functions is very useful because it provides a more precise

~|In(8K)|, with A =2 playing the role of a “thermal” eigen- description of the critical behavior of quantities under con-

value, while relation(5) provides an “effective” spacial Sideration.

scaling ratio 3/2. It is clear then, from the standard theory of Having determined the basic properties of Fhese functions,
log-periodic corrections to the power-law scalif@], that we have been able to make a precise numerical check of the

critical amplitude & should be a periodic function in €X@ct form of the leading singular behavior §fandE. In
In[In(8K)|, with period 7=In A=In 2. p_arncular, th|§ alloweql us to nohcg an inaccuracy in a pre-
We have also analyzed the critical behavior of the firstVI0USly described leading asymptotic forméhear the criti-
derivative of the free energy density with respecktéinter- cality [1,2,5]. It seems that this discrepancy stems from the
nal energyE). Using the approach described[Bl, we have inapplicability of the standard finite-size scaling assumption

found that this quantity exhibits an interesting confluent sin" this model. Indeed, using a simple technique, not relying
on this assumptiorfan asymptotic matchingwe derive a

ularity, . . :
g ¥ somewhat different singular behavior &f [see Eq.(7)],
1 . ) In6 which turns out to be in excellent agreement with the ac-
ENRHV‘( SK)[7F,  with W= 2 (8 quired numerical finding$Fig. 2). This example points out

that anad hocuse of finite-size scaling assumptions could be
which corresponds to a first-order phase transition. As in theuestionable sometimes, and that one has to use them with
case of the correlation length, we have studied the internataution in the general case.
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