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Oscillatory behavior of critical amplitudes of the Gaussian model on a hierarchical structure
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~Received 19 February 1999!

We studied oscillatory behavior of critical amplitudes for the Gaussian model on a hierarchical structure
presented by a modified Sierpinski gasket lattice. This model is known to display nonstandard critical behavior
on the lattice under study. The leading singular behavior of the correlation lengthj near the critical coupling
K5Kc is modulated by a function which is periodic in lnuln(Kc2K)u. We have also shown that the common
finite-size scaling hypothesis, according to which for a finite system at criticalityj should be of the order of the
size of the system, is not applicable in this case. As a consequence of this, the exact form of the leading
singular behavior ofj differs from the one described earlier~which was based on the finite-size scaling
assumption!. @S1063-651X~99!05609-3#

PACS number~s!: 64.60.Ak, 05.50.1q, 05.40.Fb
e
e

itie
ica
ea
n

an
a-
th
s
gh
er
in
in
s

ul
th
th
h

n
s

-
lt
he
e
v

be

tly
e
o

r

this
os-
to
, it

are
me

s-

eri-
m

one
e-
se-
ich

sly
of

ec.

di-
I. INTRODUCTION

In the near past considerable research activity has b
devoted to the studies of recursion relations which hav
singular structure near the pertinent fixed points@1–6#. It
was found that, under certain conditions, these singular
can lead to an unusual critical behavior of relevant phys
quantities. In particular, it has been shown that the m
end-to-end distanceR

N
of a simple ideal polymer chain o

some hierarchical structures can grow more slowly than
power of its lengthN. This effect has been termed localiz
tion, and it has been attributed to an entropic trapping of
polymer chain@1#: In order to maximize the entropy, it i
advantageous for a chain to visit the lattice sites of the hi
est coordination number preferentially. These sites act, th
fore, as entropic traps preventing the swelling of the cha

It is well known that statistics of an ideal polymer cha
on lattices can be captured by means of a suitable Gaus
model. Using this connection a number of interesting res
for the polymer model have been derived by studying
singular structure of associated recursion relations for
Gaussian model. Let us recall here just one example: It
been argued, by using finite-size scaling arguments and
analytical study of a pertinent mapping, that the mean e
to-end distance of an ideal chain on the modified Sierpin
gasket~SG! ~see Fig. 1! follows the logarithmic asymptotic
law: R

N
; lnFN, with F5 ln 3/ln 2. As it has been empha

sized@5#, however, it was very difficult to check this resu
numerically, due to the oscillations in the values of t
Gaussian correlation lengthj. In fact, these oscillations ar
so pronounced that they mask even leading singular beha
of j.

These types of corrections to the leading asymptotic
havior near criticality were studied quite early@8#, within the
framework of the renormalization-group approach. Recen
they were observed in many systems displaying the pow
law singularities, and they were related to the concept
discrete scale invariance@9#. This motivated us to reconside
PRE 601063-651X/99/60~3!/3396~3!/$15.00
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here the Gaussian model on a modified SG lattice. In
case the hierarchical structure of the lattice leads to the
cillations of critical amplitudes of various quantities close
criticality. If one presents them on an appropriate scale
turns out that they become regularly spaced.

We have found that the above-mentioned oscillations
universal, and that they can be described in terms of so
simple functions which are periodic in the variable lnuln(dK)u
~with dK5Kc2K being the distance from the critical point!.
This is in contrast to the critical behavior of the usual sy
tems~displaying the power-law singularities!, in which case
the corresponding variable has the form ln(dK). What is per-
haps even more interesting, we have found that our num
cal values of the correlation length do not fit the for
j0lnF(dK), with the above reported valueF5 ln 3/ln 2. We
have shown instead, using an asymptotic matching, that
has to takeF5 ln(3/2)/ln 2 in order to have a proper agre
ment between analytical and numerical results. Con
quently, the common finite-size scaling arguments, wh
were used in the previous studies of this model@1,2,5#, are
not applicable in this case.

In Sec. II we present our model, recall some previou
obtained results, and examine the oscillatory behavior
some critical amplitudes. Our conclusions are given in S
III.

FIG. 1. First two stages in the iterative construction of the mo
fied b53 Sierpinski gasket.
3396 © 1999 The American Physical Society
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II. MODEL AND ITS ANALYSIS

We consider here the usual zero-field Gaussian mode
a hierarchical structure which is presented by a modified
erpinski gasket~SG! lattice of baseb53 ~Fig. 1!. The par-
tition function of this model has a simple form,

Z~K !5E
2`

`

•••E dS1 . . . dSN

3expF2
1

2 (
i

Si
21K(̂

i j &
SiSj G , ~1!

where Si is the continuous spin variable at sitei , K
5J/kBT whereT is temperature, andJ represents the inter
action between each nearest-neighbor pair of Gaussian s
while ^ i j & denotes the summation over all such pairs. As
have shown in a previous paper@5#, the r th order partition
function can be expressed in terms of three parametersA(r ),
B(r ), and D (r ) which obey a set of recursion relations a
suitable initial conditions. These relations are somew
cumbersome@see Eqs.~34! and~35! of @5##, and we will not
repeat them here. Let us note, nevertheless, that they ha
singular structure near the relevant fixed point, which d
not allow us to make a common fixed-point analysis.
detailed in@5#, for the critical valueKc50.227 148 . . . of
the interaction strengthK, all successive iterations ofA(r )

and B(r ) lie on an invariant line, which starts at the poi
(A(0)50,B(0)5Kc) and ends at the fixed point (A*
51/6,B* 50). An asymptotic equation of this line, which
valid near the fixed point, has been found perturbatively@5#.
One can show that along this line (dK50) parameterB
renormalizes according to the law

B852A3B21~18112A3!B32
21

4
A3B41•••, ~2!

while away from it (dK.0) this parameter follows the law
B8;B3. It is evident that the solutionBr;m3r

@where m
5m(dK),1# well fits in with the latter condition. On the
other hand, an asymptotic solution of Eq.~2! can be ex-
pressed as a power series ink2r

,

B(r )5
A3

6
k2r

2
21A3

8
k2•2r

1
3121193A3

384
k3•2r

1•••,

~3!

where 0,k,1 is a constant that can be determined num
cally. Although this solution has been derived fordK50, it
holds also for a finite but very small value ofdK(0,dK
!1), providedr &r 0, where r 0@1 is the number of itera-
tions one can make along the invariant line before go
away from it. These two regimes are separated by a ra
narrow crossover region, which makes it possible to ap
the asymptotic matching:

m3r 05exp@ ln~m!3r 0#;k2r 05exp@ ln~k!2r 0#, ~4!

i.e.,

j;S 3

2D r 0

, ~5!
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where j(dK)521/ln@m(dK)# stands for the correlation
length of the model@7#. This finding is in contrast to the
usual finite-size scaling expectation, according to which
correlation length of a finite system at criticality should be
the order of the system’s size (j;3r 0).

The number of iterationr 0 along the invariant line de-
pends on the value ofdK and can be estimated from th
obvious relation:B(r 0)(dK)'B(r 0)(0)1dB(r 0)/dKudK50dK.
Indeed, taking into account Eq.~3! and the relation
dB(r 0)/dK;2r 0 ~see@5#!, we find

k2r 0;2r 0dK, or 2r 0ln~k!; ln~dK !. ~6!

This, together with Eq.~6!, leads to a logarithmic singula
behavior ofj

j;u ln~dK !uF, with F5
ln~3/2!

ln 2
. ~7!

This differs ~in the value ofF) from the earlier reported
results which have been derived by using the finite-size s
ing assumption:j;3r 0. This difference is caused by the pe
culiar behavior of the parameterB and correlation function—
in our case they decrease exponentially to zero even at
criticality @see Eq.~3! and note@7##.

In order to provide some further insight into the critic
behavior of the model, we will also examine it numerical
Thus, using a huge precision, we have been able to c
very close to the critical point (dK/Kc,1023000). This al-
lows us to calculate the correlation function and the ass
ated correlation length in a wide region~on a logarithmic
scale! around the critical point@10#. Our results are presente
in Fig. 2~a!, where the scaled correlation length~critical am-
plitude j0) j05ju ln(dK)u2F is displayed as a function o
lnuln(dK)u. The overall behavior ofj0 is highly sensitive to
the precise value ofF. For example, the average valuej̄0

FIG. 2. ~a! Correlation length critical amplitudej0, in units of
lattice constant, as a function of lnuln(dK)u (j05juln(dK)u2F,F
5ln(3/2)/ln 2).~b! The energy critical amplitudeE0, in units of the
interaction strengthJ, as a function of the same variable (E0

5dKu ln(dK)uCE,C5ln 6/ln 2). These functions are computed fro
exact representations of related quantities by using a huge num
cal precision@10#. Note that the amplitudes of these oscillations a
so large that they, in fact, mask the leading asymptotic behavio
j andE.
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5(j0,max1j0,min)/2 of j0 appears to be a constant for suf
ciently small values ofdK, with the above quoted value ofF

@see Fig. 2~a!#, while j̄0 becomes unstable under a sm
change ofF. This provides a good criterion for a numeric
calculation ofF. Indeed, in this way we have been able
determineF with four correct digits, and a further improve
ment depends on the possibility of approaching the fix
point still more closely. This should be contrasted with t
straightforward procedure@5#: A plot of ln j versus lnuln(dK)u
leads to numerical estimates ofF which oscillate with large
amplitudes around the exact value, independent of the
tancedK from the critical point.

It seems thatj0 represents a simple periodic function
lnuln(dK)u. The period of this function, estimated nume
cally, is found to be in excellent agreement with the theor
ical valuet5 ln 2. Perhaps the simplest way to understa
this is to adopt the following point of view: One can rega
Eq. ~7! as a ‘‘pure’’ power law, with the scaling variabl
u ln(dK)u ~rather thandK) and a ‘‘critical exponent’’F. In the
same spirit, one can interpret the relation~6! as l r 0

;u ln(dK)u, with l52 playing the role of a ‘‘thermal’’ eigen-
value, while relation~5! provides an ‘‘effective’’ spacial
scaling ratio 3/2. It is clear then, from the standard theory
log-periodic corrections to the power-law scaling@9#, that
critical amplitude j0 should be a periodic function in
lnuln(dK)u, with periodt5 ln l5ln 2.

We have also analyzed the critical behavior of the fi
derivative of the free energy density with respect toK ~inter-
nal energyE). Using the approach described in@5#, we have
found that this quantity exhibits an interesting confluent s
gularity,

E;
1

dK
u ln~dK !u2C, with C5

ln 6

ln 2
, ~8!

which corresponds to a first-order phase transition. As in
case of the correlation length, we have studied the inte
.
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energy numerically. Our results are displayed in Fig. 2~b!,
where we presented the scaled energy~i.e., critical amplitude
E0) E05dKu ln(dK)uCE as a function of lnuln(dK)u. It is evi-
dent that E0 represents a simple periodic function
lnuln(dK)u, while its period is in agreement with the abov
quoted theoretical value (t5 ln 2). At the same time this
analysis provides a good numerical check of the form~8! of
the energy leading singularity.

III. CONCLUSION

In this paper we have studied the critical behavior of t
Gaussian model on a modified SG. We have shown that b
correlation length and energy critical amplitudes exhibit ve
pronounced oscillations near the critical couplingKc . These
oscillations can be described in terms of some simple fu
tions which are periodic in lnuln(dK)u. Periodt of these func-
tions is found to be determined by a universal quantity wh
governs critical behavior of the model. Knowledge of the
functions is very useful because it provides a more prec
description of the critical behavior of quantities under co
sideration.

Having determined the basic properties of these functio
we have been able to make a precise numerical check o
exact form of the leading singular behavior ofj and E. In
particular, this allowed us to notice an inaccuracy in a p
viously described leading asymptotic form ofj near the criti-
cality @1,2,5#. It seems that this discrepancy stems from t
inapplicability of the standard finite-size scaling assumpt
in this model. Indeed, using a simple technique, not rely
on this assumption~an asymptotic matching!, we derive a
somewhat different singular behavior ofj @see Eq.~7!#,
which turns out to be in excellent agreement with the
quired numerical findings~Fig. 2!. This example points ou
that anad hocuse of finite-size scaling assumptions could
questionable sometimes, and that one has to use them
caution in the general case.
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