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The singular value decomposition is a matrix decomposition technique widely used in the analysis of
multivariate data, such as complex space-time images obtained in both physical and biological systems. In this
paper, we examine the distribution of singular values of low-rank matrices corrupted by additive noise. Past
studies have been limited to uniform uncorrelated noise. Using diagrammatic and saddle point integration
techniques, we extend these results to heterogeneous and correlated noise sources. We also provide perturba-
tive estimates of error bars on the reconstructed low-rank matrix obtained by truncating a singular value
decomposition.@S1063-651X~99!09008-X#
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In analyzing large, multivariate data, certain quantit
naturally arise that are in some sense ‘‘self averagin
Namely, in the large size limit, a single data set can comp
a statistical ensemble for the quantity in question. One s
quantity, the singular value distribution of a data matrix,
the subject of this paper. The singular value decomposi
~SVD! is a representation of a general matrix of fundamen
importance in linear algebra that is widely used to gene
canonical representations of multivariate data. It is equi
lent to principal component analysis in multivariate statisti
but, in addition, is used to generate low dimensional rep
sentations for complex multidimensional time series. O
example is to generate effective low dimensional represe
tions of high dimensional dynamical systems. Another
ample of current interest is to denoise and compress dyna
imaging data, in particular in the case of direct or indire
images of neuronal activity.

In this paper, we use diagrammatic and saddle point in
gration techniques to obtain the densities of singular val
of matrices whose entries have varying degrees of rand
ness. In particular, we study the problem in the asympt
limit of large matrix size; this limit is well justified in real
istic cases as will be described below. The density of S
has been obtained before, with other techniques, for matr
with each entry independently distributed normally w
identical variances@1,2#. We are able to obtain distribution
for some more general cases where the variances are
equal and/or correlations are present between matrix ent
Our results have implications towards isolating random co
ponents from image time series. Also, these results hel
understanding the effects of truncating the SV spectrum
given point, a technique that is widely applied to remo
noise from data.

The SVD of an arbitrary~in general complex! p3q ma-
trix ( p>q)M is given byM5ULV†, where thep3q ma-
trix U has orthonormal rows, theq3q matrix L is diagonal
PRE 601063-651X/99/60~3!/3389~4!/$15.00
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with real, non-negative entries, and theq3q matrix V is
unitary. Note that the matricesMM†5UL2U† and M†M
5V†L2V are Hermitian, with eigenvalues corresponding
the diagonal entries ofL2 and U and V the corresponding
matrices of eigenvectors. Consider the special case of sp
time dataI (x,t). The SVD of such data is given by

I ~x,t !5(
n

lnI n~x!an~ t !, ~1!

whereI n(x) are the eigenmodes of the spatial ‘‘correlation
matrix C(x,x8)5( tI (x,t)I (x8,t), and similarlyan(t) are the
eigenmodes of the ‘‘temporal correlation function’’C(t,t8)
5(xI (x,t)I (x,t8). If one considered the sequence of imag
as randomly chosen from an ensemble of spatial imag
thenC(x,x8) would converge to the ensemble spatial cor
lation function in the limit of long times. If in addition the
ensemble had space translational invariance, then the ei
modesI n(x) would be plane waveseik•x, the mode numbern
would correspond to wave vectors, and the singular val
would correspond to the spatial structure factorS(k). In gen-
eral, the image ensemble in question will not have trans
tional invariance; however, the SVD will then provide a b
sis set analogous to wave vectors. In physics one norm
encounters the structure factorsS(k) that decay with wave
vectors, and in the more general case, the singular v
spectrum, organized in descending order, will show a de
indicating the structure in the data.

We consider the case of ap3q matrix M5M01N,
whereM0 is fixed and the entries ofN are normally distrib-
uted with zero mean. We consider below several case
normal distributions for entries ofN, including cases where
there are correlations between entries ofN. ~It turns out that
in the limit of largeq, the results are not restricted norm
distributions only.! M0 may be thought of as the desired
underlying signal. For SVD to be useful,M0 should effec-
tively have a low-rank structure.
3389 © 1999 The American Physical Society
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It is convenient to work in terms of the resolvent

G~z!5Tr@~z2M†M !21#5(
n

1

z2ln
2 , ~2!

whereG(z) is a complex function. The density of SV’s i
given by

r~l!5(
n

d~l2ln!5
2l

p
lim
e→0

Im@G~l22 i e!#. ~3!

Let the variance of a matrix entry bes2. We proceed by
taking the limitp,q→`, p/q fixed, with the variances of the
matrix entries tending to zero as 1/q. s̃25qs2 is kept finite.
The density of states being a self-averaging quantity, we
able to apply our results, obtained by averaging over
ensemble, to the SVD of individual data matrices.

To illustrate the method, consider the simplest ca
where each element of the matrix is independently and id
tically normally distributed with mean 0 and variances2.
Since

G~z!5]z ln det~z2M†M !, ~4!

the average of the resolvent over the probability distribut
of the matrix M can be obtained from̂ln det(z2M† M)&,
which in turn may be computed using replicas. We introdu
n replicas of q-dimensional real vectorsXa5(xa1 ,..,xaq)
3(a51,...,n). Consider the following identity:

Zn5E F )
a51

n

)
a51

q

dxaaG K expS 2
q

2 (
a51

n

Xa
T~z2M†M !XaD L

5S 2p

q D nq/2

^@det~z2M†M !#2~n/2!&. ~5!

One obtains the desired quantity from the above by tak
n→0. After some amount of algebraic manipulations,Zn can
be written as an integral over twon3n matricesQ andR,

Zn522n2S q

2p D 2~nq/2!1n2

E F) dRdQGexpS 2
q

2 F ln det~z

2s̃2Q!1
p

q
ln det~12 iR!1 i Tr~QR!G D . ~6!

Ideally one should take then→0 limit first and then let
q→`. In order to be able to perform analytical comput
tions, we have to take the limit in the reverse order. That
gives the correct answer is verified later by a direct diagra
matic method.

Whenp,q→`, with p/q fixed, the integral is dominated
by some saddle point. We take the replica diagonal ans
consistent with all the symmetries, namely,Qab5Q(z)dab
andRab52 iR(z)dab .

Then we have to minimize

S„Q~z!,R~z!…5 ln@z2s̃2Q~z!#1
p

q
ln„12R~z!…

1Q~z!R~z! ~7!

with respect toQ(z) andR(z). Hence the equations,
re
e

,
n-

n

e

g

-
is
-

tz,

1

z2s̃2Q~z!
5

1

s̃2 R~z!, ~8!

p/q

12R~z!
5Q~z!. ~9!

Using the fact thatZn;exp@2nqS„Q(z),R(z)…# and 4,
we get

G~z!5^G~z!&5
q

z2s̃2Q~z!
~10!

so thatG(z) satisfies

G~z!5
q

z2
ps̃2

q2s̃2G~z!

. ~11!

This equation can also be obtained from a direct diagra
matic resummation of̂Tr 1/(z2M†M )& expanded in powers
of 1/z. We average overM with ^MiaM jb* &5s2d i j dab . The
diagrammatic representation of these terms is shown in
1. In the largep,q limit, we have to consider only plana
diagrams@3#. The diagrams contributing to self-energy a
shown schematically in the Fig. 2. Summing the geome
series in this limit, we obtain

( ~z!5
ps̃2/q

12s̃2G~z!/q
, ~12!

G~z!5
q

z2(~z!
5

q

z2
ps̃2

q2s̃2G~z!

. ~13!

The solution of this equation is

G~z!5
q

2s̃2z
$2s̃2~p/q21!1z

6A@z2s̃2~p/q11!#224ps̃4/q% ~14!

and

r~l!5
q

pls̃2 A~lmax
2 2l2!~l22lmin

2 ! ~15!

FIG. 1. Diagrammatic representation of successive terms in
resolvent.

FIG. 2. Diagrams that contribute to the self-energy in the lar
~p,q! limit.
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for lmin,l,lmax and zero elsewhere, withlmax,min

5s̃A(p/q11)62Ap/q5&sA(p1q)/26Apq. Equation
15 has been derived before using different techniques@2#.

Generalizing our methods, both the saddle point techni
and the perturbative method, to the following cases is q
easy.

Case~i!: ^Mia&5Mia
0 . The matrixM0 has singular values

l0a wherea51,...,q.
The covariance matrix is given as before by^(Mia

2Mia
0 )(M jb2M jb

0 )* &5s2d i j dab . In this case we obtain

G~z!5 (
a51

q
1

z2l0a
2 2

ps̃2

q2s̃2G~z!

5G0S z2
ps̃2

q2s̃2G~z! D ,

~16!

where

G0~z!5TrS 1

z2M0†M0D . ~17!

In case there are only a few nontriviall0a’s G(z) still
satisfies a polynomial equation of order two or high
Denby and Mallows@2# obtained similar results using a di
ferent method.

One of the simple consequences of Eq.~16! is the follow-
ing. Consider a situation where there are onlyr nonzero sin-
gular values ofM0, each of which is much bigger than th
noise. Let the nonzero SV’s be$l01,...,l0r%. In the limit of
zero noise,

G~z!5
q2r

z
1 (

a51

r
1

z2l0a
2 . ~18!

In presence of finite smalls, the pole at zero broadens into
branch cut that is close to the origin, and the other c
develop around the nontrivial singular values that are
away from the origin.

ConsiderG(z) for z close to the origin. Forz;s̃2, ignor-
ing terms of the order (s̃/l0a)2 for a<r , we find

G~z!' (
a5r 11

q
1

z2
ps̃2

q2s̃2G~z!

5
q2r

z2
ps2

12s2G~z!

, ~19!

which is just Eq.~13! with q replaced byq2r ,s ~but nots̃!
remaining the same. Hence, the smallestq2r singular val-
ues have the same distribution as arises from a pure n
matrix of a smaller size, namely,p3(q2r ). This result is
useful in fitting the formula to the tail of the singular valu
spectrum for a real data matrix, and is used in the fit d
played in Fig. 3.

Case~ii !: ^Mia&50 and^MiaM jb* &5s2Ci j Dab , whereC
andD are p3p andq3q matrices, respectively. Such co
relations may arise in imaging data due to filtering of
underlying uncorrelated spatial noise distribution, and
when there is temporal filtering of data. Uncorrelated no
with spatial inhomogeneity in the variance is also a spe
case of the above.

We go through same manipulations as in Eqs.~5! and~6!.
The saddle point solution is obtained by minimizing
e
te

.

ts
r

ise

-

r
e
l

S„Q~z!,R~z!…5
1

q
ln det@z2s̃2Q~z!D#

1
1

q
ln det@12R~z!C#1Q~z!R~z!

~20!

with respect toQ(z) andR(z). Hence the equations,

R~z!/s̃25
1

q
Tr

D

z2s̃2Q~z!D
5

1

q (
a51

q
da

z2s̃2Q~z!da
, ~21!

Q~z!5
1

q
Tr

C

12R~z!C
5

1

q (
i 51

p
ci

12R~z!ci
. ~22!

ci ’s are eigenvalues ofC andda’s are eigenvalues ofD.
The expression for the resolvent is

G~z!5^G~z!&5Tr
1

z2s̃2Q~z!D
. ~23!

To see how to use this result, let us consider a spe
case:^MiaM jb* &5s2Ci j dab . In this case, we can eliminat
R(z) andQ(z) to get

G~z!5Tr G̃~z!5
q

z2s2 Tr
C

12CG~z!

. ~24!

If the eigenvalues ofC areci5s i
2/s2, i 51,...,p, then,

G~z!5
q

z2(
i 51

p s i
2

12s i
2G~z!

. ~25!

How do we obtain the singular value spectrum from E
~25!? One way is to rewrite it as

z5
q

G
2(

i 51

p
1

G2 ~1/s i
2!

. ~26!

We want to knowG for real z. It is useful to first think ofz
as a function ofG in the complexG plane. We now look for
level sets of Im@z(G)#. By tracing the appropriate branch o
the curve Im@z(G)#50, one can solve forG(z) for real z.
Taking the imaginary part of the functionG(z) thus found
gives the density of singular values. The cumulative den
of states can be found by integrating the singular value d
sity.

FIG. 3. Comparison of singular values from a SVD of an fMR
data set with the theoretical formula for a noise only matrix.
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Qualitative insight may be gained by realizing that t
real and the imaginary parts ofz are the two components o
the electric field in a two-dimensional electrostatic proble
with a chargeq at the origin, and point charges of streng
21 placed at each of the points (1/s i

2,0), i 51,...,p in the
complexz plane.

In addition to the density of singular values, one can try
compute the correlations between nearby singular value
is well known in the theory of random matrices that t
correlation functions of the eigenvalues of a random Herm
ian matrix has interesting universal features@4#. This is true
for eigenvalues chosen from a small enough region, so
the eigenvalue density in that region is more or less const
We find that the correlations of the singular values of a m
trix, having each matrix element independently and ide
cally distributed with mean zero and variances2, are in the
same universality class as the Gaussian unitary ensem
The probability densityp(Dl) of level spacingsDl goes as
Dl2 for Dl!D2l. The probability density ofs5Dl/S

5D/D̄l for the Gaussian unitary ensemble is well known
the random matrix literature@4#. It is possible that empirica
level-spacing statistics can be used as a diagnostic to find
which singular values correspond mostly to ‘‘noise’’ an
which correspond mostly to ‘‘signal.’’

So far, we have discussed what happens to the sing
values. We would also like to estimate the errors made
reconstructing the matrix by keeping a small number ter
on the left-hand side of 1, which correspond to the bigg
singular values. If we keep too few terms, we lose part of
signal.

Let us go back to case~i!, namely, when each element o
the matrixM is independently distributed with same varian
s2 but different means. LetMia

0 5^Mia&5(bl0bui
0b* va

0b

andMia5(blbui
b* va

b . We would like to calculate the mea

and the variance of the variableM̂ ia5(bPSlbui
b* va

b , where
S is a subset of$1,...,q%.

For smalls,

^M̂ ia&5 (
bPS

Fl0bui
0b* va

0b12l0b
2 s2(

cÞb

l0c

~l0b
2 2l0c

2 !
ui

0c* va
0c

22s2l0b(
cÞb

l0c
2

~l0b
2 2l0c

2 !2 ui
0b* va

0bG1o~s4!, ~27!
-
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var~M̂ ia!5s2(
bPS

F uui
0b* va

0bu2

1l0b
2 (

j Þb

~l0b
2 1l0 j

2 !

~l0b
2 2l0 j

2 !2 uui
0 j* va

0bu2

1l0b
2 (

cÞb

~l0b
2 1l0c

2 !

~l0b
2 2l0c

2 !2 uui
0b* va

0cu2

24 (
cPS,cÞb

~l0b
2 l0c

2 !

~l0b
2 2l0c

2 !2 uui
0c* va

0bu2G1o~s4!.

~28!

In this expressionj runs from 1 top with l0 j50, for j .q.
To illustrate the utility of these results, we consider t

SV distribution obtained from a space-time data set cons
ing of functional magnetic resonance images~FMRI!. The
experimental details regarding the chosen data set can
found in @5#. For our purposes, the data constitutes a 17
3550 matrix. The longer dimension corresponds to a sub
of the pixels in a 64364 spatial image obtaining by discard
ing pixels which have intensity below a selected thresho
In Fig. 3, the tail of the SV distribution from this data
displayed along with a fit to a theoretical curve obtain
from Eq. ~15!. The distribution has two adjustable param
eters. One of them is the variances. A second adjustable
parameter in the fit is the rank of the original matrix, whic
in this case has been assumed to be 60. We fit the tail to
singular values of a 17243~550260! pure-noise matrix. In
fact, in the present case the uncorrelated noise can be
mated independently, and is therefore not really a free fitt
parameter. We found that the fitted value ofs is in close
correspondence with the independently estimated value
the noise variance.

In the example above, the good fit obtained between
theoretical curve and the tail in the SV distribution indicat
that the noise entries in the original data were uniform a
uncorrelated. It is easy to find experimental data where th
conditions are violated, for example optical measurement
electrical activity in brain tissue@6,7# where the illumination
is not fully uniform and the shot noise varies from point
point in space. Alternatively, the data may be spatially
tered and correlations may be introduced in space but no
time. Both of these cases produces SV distributions that c
not be fit by the procedure described above, but may
understood using Eq.~25!.
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