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The singular value decomposition is a matrix decomposition technique widely used in the analysis of
multivariate data, such as complex space-time images obtained in both physical and biological systems. In this
paper, we examine the distribution of singular values of low-rank matrices corrupted by additive noise. Past
studies have been limited to uniform uncorrelated noise. Using diagrammatic and saddle point integration
techniques, we extend these results to heterogeneous and correlated noise sources. We also provide perturba-
tive estimates of error bars on the reconstructed low-rank matrix obtained by truncating a singular value
decomposition[S1063-651X99)09008-X]

PACS numbd(s): 02.50.Sk, 11.15.Pg, 05.90m

In analyzing large, multivariate data, certain quantitieswith real, non-negative entries, and tlge<q matrix V is
naturally arise that are in some sense “self averaging."unitary. Note that the matricelMT=UA2UT and MM
Namely, in the large size limit, a single data set can comprise=V'A2V are Hermitian, with eigenvalues corresponding to
a statistical ensemble for the quantity in question. One sucthe diagonal entries oA? and U andV the corresponding
quantity, the singular value distribution of a data matrix, ismatrices of eigenvectors. Consider the special case of space-
the subject of this paper. The singular value decompositioime datal (x,t). The SVD of such data is given by
_(SVD) isa rgprt_asentatmn of a gen_eral_matnx of fundamental l(x,t)=> Al ()ag(t), 1)
importance in linear algebra that is widely used to generate n
canonical representations of multivariate data. It is equiva-
lent to principal component analysis in multivariate statisticswherel,(x) are the eigenmodes of the spatial “correlation”
but, in addition, is used to generate low dimensional reprematrix C(x,x") == (x,t)I (x’,t), and similarlya,(t) are the
sentations for complex multidimensional time series. Oneeigenmodes of the “temporal correlation functio€(t,t")
example is to generate effective low dimensional representa= 2! (x,t)1(x,t"). If one considered the sequence of images
tions of high dimensional dynamical systems. Another ex-as randomly chosen from an ensemble of spatial images,
ample of current interest is to denoise and compress dynamtbenC(x,x") would converge to the ensemble spatial corre-
imaging data, in particular in the case of direct or indirectlation function in the limit of long times. If in addition the
images of neuronal activity. ensemble had space translational invariance, then the eigen-

In this paper, we use diagrammatic and saddle point intemodes! ,(x) would be plane waves X, the mode number
gration techniques to obtain the densities of singular valuewould correspond to wave vectors, and the singular values
of matrices whose entries have varying degrees of randonwould correspond to the spatial structure fa&(k). In gen-
ness. In particular, we study the problem in the asymptotieral, the image ensemble in question will not have transla-
limit of large matrix size; this limit is well justified in real- tional invariance; however, the SVD will then provide a ba-
istic cases as will be described below. The density of SV'ssis set analogous to wave vectors. In physics one normally
has been obtained before, with other techniques, for matriceancounters the structure factdsgk) that decay with wave
with each entry independently distributed normally with vectors, and in the more general case, the singular value
identical variance$1,2]. We are able to obtain distributions spectrum, organized in descending order, will show a decay
for some more general cases where the variances are niodicating the structure in the data.
equal and/or correlations are present between matrix entries. We consider the case of pxXq matrix M=Mg+N,

Our results have implications towards isolating random comwhereM, is fixed and the entries dfl are normally distrib-
ponents from image time series. Also, these results help inted with zero mean. We consider below several cases of
understanding the effects of truncating the SV spectrum at aormal distributions for entries df, including cases where
given point, a technique that is widely applied to removethere are correlations between entrieNofIt turns out that
noise from data. in the limit of largeq, the results are not restricted normal

The SVD of an arbitraryin general complexpxq ma-  distributions only. My may be thought of as the desired or
trix (p=q)M is given byM=UAV', where thepxq ma-  underlying signal. For SVD to be usefiV}, should effec-
trix U has orthonormal rows, thgx g matrix A is diagonal tively have a low-rank structure.
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It is convenient to work in terms of the resolvent \ / a
G2)=Tr(z=-MM)"1]=2> ——5, 2 Y
—A\q a , a . a
where G(z) is a complex function. The density of SV’s is z M M
given by
2\ a
p(\)= 2 SON—\,)= —lim IM[G(A%—ie)]. (3 \ / \ /
m e—0 + " s,,
a
Let the variance of a matrix entry be’. We proceed by z MT M= MJ] Mm
taking the limitp,q— o, p/q fixed, with the variances of the
matrix entries tending to zero asyl/o?=qo? is kept finite. FIG. 1. Diagrammatic representation of successive terms in the

The density of states being a self-averaging quantity, we argsolvent.
able to apply our results, obtained by averaging over the
ensemble, to the SVD of individual data matrices. 1 1

To illustrate the method, consider the simplest case, Z—TQ(Z):??R(Z)' (8)
where each element of the matrix is independently and iden- p/q
tically normally distributed with mean 0 and varianog. =Q(z). (9)
Since 1= R(Z)
G(2)=d,Inde(z— M M), @ WeUsmg the fact thatz,~exd —nq3Q(z),R(z))] and 4,
get
q
the average of the resolvent over the probability distribution G(2)=(G(2))= 7=520(2) (10
of the matrixM can be obtained fron{indetz—M™M)), ¢4 thatG(z) satisfies
which in turn may be computed using replicas. We introduce q
n replicas ofg-dimensional real vectorX,=(X,1,--:Xaq) G(z)= po? (11
X(a=1,...n). Consider the following |dent|ty: - m
nooq n This equation can also be obtained from a direct diagram-
znzf { IT II dx <exp( —=> XNz-MTM)X )> matic resummation ofTr 1/(z—M'M)) expanded in powers
a=1a=1 of 1/z. We average ove with (M;,M%,) =025 5, The
27\ N2 diagrammatic representation of these terms is shown in Fig.
:<F ([de(z—MTM)]~ (M2, (5) 1. In the largep,q limit, we have to consider only planar

diagrams[3]. The diagrams contributing to self-energy are
shown schematically in the Fig. 2. Summing the geometric

One obtains the desired quantity from the above by takm%enes in this limit, we obtain
n— 0. After some amount of algebraic manipulatiods,can pa2lq
be written as an integral over twox n matricesQ andR, > (9= 1-326(2)/q’ (12)
q q
—(ng/2)+n? G(z)= = —> (13
zn=2“2(2i HH deQexp(—g In dei(z z=2(z) _ pg
pr q—3°G(z)
The solution of this equation is
~2
—-52Q)+ — Inde(l—lR)+|Tr(QR) ) (6) I BT PR
G(2)= =z 1-0°(p/la-1)+z
Ideally one should take the—0 limit first and then let + \/[z_az(p/q+1)]2 4pc?q} (14)

g—-c°. In order to be able to perform analytical computa-

tions, we have to take the limit in the reverse order. That thisind

gives the correct answer is verified later by a direct diagram- _ N2 (N2—\2 1

e mothod p(N)= )\ 2V NN =N (15)
Whenp,q—oe, with p/q fixed, the integral is dominated

by some saddle point. We take the replica diagonal ansatz, (@) A

consistent with all the symmetries, nameQ, 5= Q(2) 8,5 L (g
andR,z= —iR(2) 8, ™ .
Then we have to minimize
p (b) -" ’. 4 . \‘
S(Q(2).R(2)=I[z-5*Q(2)]+ ; In(1-R(2) NN/ NN

r times, with full propagator.
+Q(2)R(2) (7)
FIG. 2. Diagrams that contribute to the self-energy in the large-
with respect toQ(z) andR(z). Hence the equations, (p,9 limit.



PRE 60 BRIEF REPORTS 3391

for Npmin<A<Apax and zero elsewhere, With\axmin 100 ' ' ' ' '

="&\/(p/q+1)t2x/ﬁ=f20\/(p+q)/2i \/ﬁ Equation FoN
15 has been derived before using different technid@gs i

Generalizing our methods, both the saddle point technique
and the perturbative method, to the following cases is quite
easy.

Case(i): (M;3)=M?,. The matrixM° has singular values
Noa Wherea=1,...0.

The covariance matrix is given as before KyM;,
~MQ) (Mjp—M§,)* )= 028, 8, In this case we obtain

Sorted Singular Values

0 100 200 300 400 500

q 1 p'5_2
G(2)= 2, = Go( Z- —— Ordinal Number
a=1 2 po q-o°G(2))’ . .
Z—Npa— TG(Z) FIG. 3. Comparison of singular values from a SVD of an fMRI
a-a (16) data set with the theoretical formula for a noise only matrix.
1
where . S(Q(2) R(2)= - Indefz-3°Q(2)D]
Go(2)= Tr( W) : 17 1
+ a Indef1-R(z2)C]+Q(2)R(2)
In case there are only a few nontriviah,'s G(z) still (20)

satisfies a polynomial equation of order two or higher.
Denby and Mallowg?2] obtained similar results using a dif-
ferent method. 1 D 13 da

One of the simple consequences of Etf) is the follow- R(Z)/"&z:anm =32 7-320(2)d,’ (21)
ing. Consider a situation where there are onlyonzero sin- . a

with respect toQ(z) andR(z). Hence the equations,

gular values oM°, each of which is much bigger than the 1 C 12 G
noise. Let the nonzero SV's H&gy,...,\q ). In the limit of Q(2)= aTr 1-R(z)C a;l 1-R(2)C;” (22)
zero noise,
, ¢i's are eigenvalues df andd,’s are eigenvalues db.
q-r 1 The expression for the resolvent is
G(z)=—+, ——. (19

z —1Z—\
a=1 Oa (23)

1
G(Z)=<Q(Z)>=Tfm-

In presence of finite smadt, the pole at zero broadens into a
branch cut that is close to the origin, and the other cuts

o To see how to use this result, let us consider a special
develop around the nontrivial singular values that are far,

ase:(Miabe)zozcijﬁab. In this case, we can eliminate

away from the origin. R(2) andO(2 to get
ConsiderG(z) for z close to the origin. Foz~?, ignor- 2 Q@ tog
ing terms of the orderd/\q,)? for a<r, we find G(2)=TrG(z)= q _ (24)
q — -0’ Tr————
1 q—r —
G(2)~ 2> = . (19 1-CG(2)
et i z— i If the eigenvalues o€ arec;=o0?/0?, i=1,...p, then
q—52G(2) 1-0%G(2) oh o e
q
which is just Eq(13) with q replaced byg— o (but not%) C@A=—5— (25
remaining the same. Hence, the smallgstr singular val- z—z 5
. . . . . i=1 1-o0j G(Z)
ues have the same distribution as arises from a pure noise !
matrix of a smaller size, namelp X (q—r). This result is How do we obtain the singular value spectrum from Eq.
useful in fitting the formula to the tail of the singular value (25? One way is to rewrite it as
spectrum for a real data matrix, and is used in the fit dis- q p 1
layed in Fig. 3. === . 26
play g =5 21 mz— (26)

Caselii): (Miz)=0 and(M;,M?,)=0?C;;D,y, whereC
andD arepXp andqgXxq matrices, respectively. Such cor- We want to knowG for real z. It is useful to first think ofz
relations may arise in imaging data due to filtering of anas a function ofG in the complexG plane. We now look for
underlying uncorrelated spatial noise distribution, and/odevel sets of Ifiz(G)]. By tracing the appropriate branch of
when there is temporal filtering of data. Uncorrelated noisehe curve Ifiz(G)]=0, one can solve foG(z) for real z
with spatial inhomogeneity in the variance is also a speciallaking the imaginary part of the functid@(z) thus found
case of the above. gives the density of singular values. The cumulative density

We go through same manipulations as in E§sand(6). of states can be found by integrating the singular value den-
The saddle point solution is obtained by minimizing sity.
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Qualitative insight may be gained by realizing that the
real and the imaginary parts afare the two components of

the electric field in a two-dimensional electrostatic problem,

with a chargeq at the origin, and point charges of strength
—1 placed at each of the points (rf/,O), i=1,.p in the
complexz plane.

In addition to the density of singular values, one can try to

compute the correlations between nearby singular values.
is well known in the theory of random matrices that the

correlation functions of the eigenvalues of a random Hermit-

ian matrix has interesting universal featufds This is true
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varMig) =0 3 | [u™ve|”
2 2
3,3, SO0 e oo
7 (Ngp—Ag))
(N2, +A2)
+)\Sb2 TOb 2002|Ui0b*Vgc|2
It c#b ()\Ob_)\OC
(Agb)‘%c) Ocx ,,0b
— ————|u2* V92| + o(o?).
ceS,c#b ()\Sb—)\ﬁc)2| I a| ( )
(29)

for eigenvalues chosen from a small enough region, so thdh this expressiof runs from 1 top with \o;=0, for j>q.
the eigenvalue density in that region is more or less constant. To illustrate the utility of these results, we consider the
We find that the correlations of the singular values of a maSV distribution obtained from a space-time data set consist-

trix, having each matrix element independently and identi-

cally distributed with mean zero and variane®, are in the

same universality class as the Gaussian unitary ensemblg

The probability densityp(AN) of level spacing\\ goes as
AN? for AN<A™\. The probability density ofs=A\/S

=A/AN for the Gaussian unitary ensemble is well known in
the random matrix literaturgd]. It is possible that empirical
level-spacing statistics can be used as a diagnostic to find o
which singular values correspond mostly to “noise” and
which correspond mostly to “signal.”

ing of functional magnetic resonance imag&dRlI). The
experimental details regarding the chosen data set can be
found in[5]. For our purposes, the data constitutes a 1724
‘550 matrix. The longer dimension corresponds to a subset
of the pixels in a 6464 spatial image obtaining by discard-
ing pixels which have intensity below a selected threshold.
In Fig. 3, the tail of the SV distribution from this data is
displayed along with a fit to a theoretical curve obtained
from Eq. (15). The distribution has two adjustable param-
%ﬁers. One of them is the varianee A second adjustable
parameter in the fit is the rank of the original matrix, which
in this case has been assumed to be 60. We fit the tail to the

So far, we have discussed what happens to the singulaingular values of a 1724(550-60) pure-noise matrix. In
values. We would also like to estimate the errors made ifact, in the present case the uncorrelated noise can be esti-
reconstructing the matrix by keeping a small number termsnated independently, and is therefore not really a free fitting
on the left-hand side of 1, which correspond to the biggesparameter. We found that the fitted value ®fis in close
singular values. If we keep too few terms, we lose part of thecorrespondence with the independently estimated value of

signal.

Let us go back to casg), namely, when each element of
the matrixM is independently distributed with same variance
o? but different means. LeM2=(M;,)=3\qpu’?* v
andM,;, ==\ puP*v2. We would like to calculate the mean
and the variance of the variablig;, = Ebes)\buib*vg, where
Sis a subset of1,...q}.

For smallo,

~ Noc
M) = NopuPP* v+ 202 02> ————ul*vO°
< |a> bgs 0obYi a Ob & ()\(Z)b_)\(Z)C) i a
NG
C
—20" N2y oz 7V | Folah), (27)
c#b ()\Ob )\OC)

the noise variance.

In the example above, the good fit obtained between the
theoretical curve and the tail in the SV distribution indicates
that the noise entries in the original data were uniform and
uncorrelated. It is easy to find experimental data where these
conditions are violated, for example optical measurements of
electrical activity in brain tissufg,7] where the illumination
is not fully uniform and the shot noise varies from point to
point in space. Alternatively, the data may be spatially fil-
tered and correlations may be introduced in space but not in
time. Both of these cases produces SV distributions that can-
not be fit by the procedure described above, but may be
understood using Ed25).
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