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Simple and practical finite-volume schemes for the lattice Boltzmann equation are derived in two and three
dimensions through the application of modern finite-volume methods. The schemes use a finite-volume vortex-
type formulation based on quadrilateral elements in two dimensions and trilinear hexahedral elements in three
dimensions. It is shown that the schemes are applicable to domains with irregular boundaries of arbitrary shape
in two and three dimensiongS1063-651X99)10809-7

PACS numbgs): 47.11+j, 05.20.Dd, 47.10tg

[. INTRODUCTION and validate it through extensive simulations.
Though successful in two dimensions, our 2D scheme still

In the past ten years, there has been steadily increasingannot deal with the realistic fluid flows which are usually
interest in the lattice Boltzmann methddBM) as a novel three-dimensional problems. In this paper, we are also going
approach for solving the fluid dynamics problems. This isto present a three-dimension(@D) scheme. In order to be a
due to the fact that the LBM has some very attractive feapractical scheme, a new scheme should be simple enough in
tures such as inherent parallelism, simplicity of coding, andhree dimensions and easy enough to code. We believe that
capability of incorporating complex geometry and micro-our scheme satisfies these requirements. And after all, our
scopic interactions in multiphase fluifis—4]. scheme is accurate, a point which will be proven by compar-

However, if one compares the LBM with the state-of-the-ing the numerical results with analytical ones. Designing a
art computational-fluid-dynamic§CFD) techniques, one 3D scheme is a nontrivial work. A great deal of care has to
finds that the LBM still has some shortcomings. One of thesédoe taken in order to create a simple and practical scheme. In
is that the LBM is restricted on a special class of uniform andwhat follows, one can see that our model for the hexahedral
regular spatial lattices. The limitation of using uniform lat- elements looks as if the interpolatigrerelinear. In fact, it is
tices is particularly severe in many practical applicationsnot linear but cubic in nature. This feature is remarkable and
where the complex geometry of boundaries cannot be welik indeed a product of achieving the goal of designing an
fitted by regular lattices. This is in contrast with the moderneasy-to-use, practical scheme while maintaining accuracy.
CFD techniques, which are generally capable of accommo- To appreciate the modern CFD techniques, one has to
dating fairly complex spatial meshes. Motivated by suchbegin with grid (or mesh generation for the physical do-
considerations, several researchers have attempted to extemein. There are two general types of grids commonly used in
the applicability of the LBM to irregular lattices. Succi and the modern CFD for discretizing the domain: structured grids
his collaborator$5] were the first to propose a finite-volume and unstructured grids. A structured grid is iap-ordered
formulation of the lattice Boltzmann equatidbhBE). How-  array of points in two dimensions and &i-k-ordered array
ever, the empirical formulas are quite complicated even foof points in three dimensions. Topologically and computa-
the simple rectangular meshes, and a free parameter has totienally, the structured grid is still rectangular. An unstruc-
introduced and adjusted in order to minimize the numericatured grid, often used in finite-element computations, is an
diffusion. Quite recently, another elegant finite-volumearray of points with no particular logical order. It offers more
scheme was developed by ChE#l. In another approach flexibility in representing complex geometries. However, this
proposed by He, Luo, and Demkd] for an arbitrary rect- flexibility does not come without a price. The spatial rela-
angular mesh, the density distributions move along their retionship between one grid and the others must be explicitly
spective directions of velocities to points which may or maystated since there is no logical relationship between one grid
not be on grid points. An interpolation step is thus introducedand its neighbors in their indexes. Thus the computational
to determine the density distributions at the grid points forspeed with unstructured grids is often reduced compared
the next time step. However, the above-mentioned apwith using structured ones. Thanks to the recent development
proaches of using irregular meshes are not satisfactory in thef grid generation techniqugd2,13, the structured grids
sense that the topology of the meshes used in the proposedn now be generated over the entire physical domain with
models is not arbitrary. In recent papé&9] we have pro- very complex shape. Although our finite-volume schemes
posed a new scheme based on modern finite-volume methodse applicable to both structured and unstructured grids with
[10,11 which is applicable to irregular meshes with arbitrary arbitrary connectivity, in this paper we will focus on present-
connectivity. While our methods follow from an application ing the explicit finite-volume schemes in structured grids.
of finite-volume methods to the LBE, they still keep much of  Grids can be constructed from a variety of finite elements.
the simplicity of the conventional LBM. In this paper, we are One often uses a set of triangular elemepisually for un-
going to give a detailed account of the quadrilateral schemstructured grids or quadrilateral element®ften for struc-
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tured grid$ in two dimensions, and tetrahedra elemdntsu-  dently in general. Our starting point of this paper is the lat-
ally for unstructured gridsor hexahedra elementsften for  tice Boltzmann equatiofLBE). Recently, it was show[il6]
structured gridsin three dimensions. The size and shape ofthat the LBE can be directly derived from the Boltzmann
the element can be varied to place more elements as oreguation by discretization of velocity space, giving a solid
wishes in an area of interest. It is important to distinguish theoot to the LBE. General finite-difference discretizations of
difference between finite elements and grids: Grids are théhe LBE can be found in Ref15].

numerical nodes in the physical domain, while finite ele- In the following, we present our finite-volume lattice
ments are the basic geometric structures covering the ddoltzmann methodFVLBM) with quadrilateral elements in
main. Thus, one can have structured grids with triangulatwo dimensions. We start with the lattice Boltzmann equa-
elements(e.g., a simple regular triangular lattice with six tion, which reads:

neighbors around each ngdand one can also have unstruc- i

tured grids with triangular elements.g., an irregular trian- i _

gular mesh with different number of neighbors around dif- Gt TV Vi=Qitavi-F @
ferent nodeps In what follows, the formulations of our finite-

volume methods for the lattice Boltzmann equation withwheref; is the particle distribution function associated with
quadrilateral and hexahedral elements are given in Sec. motion along theith direction in velocity spacey; is the

and Sec. lll, respectively; numerical simulation results onvelocity in theith direction,i=1,2,... m with m the num-
various fluid problems are presented in Sec. IV, and Sec. \per of different velocities in the modeF, is the external
concludes with a discussion and summary. body force, COEfficientr:l/Eivizx=1/Eivi2y. and(); is the
collision operator commonly approximated by the Bhatragar-
IIl. FINITE-VOLUME LATTICE BOLTZMANN SCHEME Gross-Krook mode[17], or the single-time relaxation ap-
IN TWO DIMENSIONS proximation,

In the original formulations of the LBM it was understood
that the discretization of velocity space is closely coupled to
that of physical space. For example, one model commonly
used is the nine discrete velocities in association with thavhere f{9is the local equilibrium distribution and is the
square lattice in physical space in two dimensions. Similarlyrelaxation time. Here we will choose the nine velocities-bit
for a triangular spatial lattice, the seven discrete velocitie§D2Q9—two dimensions, nine velocitiesodel[ 18] for the
were used. But as discovered in recent papér4,19, this  velocity discretization and arbitrary quadrilateral element for
coupling is actually not necessary. The discretizations in vethe spatial discretization. The nine discrete velocities are de-
locity space and in physical space can be treated indepefined by

1 e
Qi:_;(fi_fiq)1 (2

(0,0), i=0
vi={ (cod(i—1)m/2],sir (i—1)m/2]), i=1,2,3,4 3)
V2(co$ (i —5) w2+ ml4],si{ (i —5) w/2+ w/4]),  i=5,6,7,8

and the equilibrium distributioi’®is given by[18] The equilibrium distribution is formulated specifically to re-

cover the Navier-Stokes equation in the low-Mach-number
ea_ . 30y 20y u)2— 3[yl2 limit with kinematic viscosityr= 7/3 [14,15.
Ff=wipl 142 (vi- W)+ 2 (v W= 2[ul, @ In order to solve the above LBEEQ. (1)], one could use
one of two common methods: the finite-difference method
and the finite-volume method. In the finite-difference ap-
proach, the differential form of the equation is solved at dis-
pZE £ 5) crete space points. On the other hand, the finite-volume ap-

~ proach solves an integral form of the equation. Instead of
solving the equation at discrete points, the equation is solved

over a small “control volume.” The finite-volume approach
u=>, fivi/p (6)  has two major advantages over the finite-difference approach
i in some area: the integral form of the equation can capture

discontinuities in the solution, and it is more suitable for

are the density and velocity, respectively, and complex geometry. In the following we illustrate how our

finite-volume scheme is constructed.

4/9, i=0 Figure ¥a) shows a generic situation in which quadrilat-
. eral elements surround an interior node of the grid. Here we

wi=4 19, 1=1234 () use the finite-volume method of cell-vertex type. In this type

1/36, i=5,6,7,8. of formulation, allf;’s at the grid nodes are known. We need

where
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X(&,7)=Xp+ (Xg=Xp)§+(Xp—Xa) 77

+(Xc=Xa—Xp—Xp)é7, 8

Y& ) =Yat(Ye—Ya) é+(Yo—YaA) 7
+(Yc—Ya—Yp—Ya)én. 9)

This mapping maps (0)((1,0),(1,1),(0,1) tA,B,C,D, re-
spectively, and the straight coordinate lines in ¢gheplane

to the straight lines in they plane as shown in Fig.(fb).
The particle distribution functiorf; is then assumed to be
linear along the images of either &or # line in the xy
plane. Notice thaf; is not bilinear in thex andy variables,
but in the¢ and » variables. This is the familiar so-called
isoparametric representation commonly used in the finite-
element methodsee Ref[10]).

We use the bilinear interpolation to obtain the function
value at any position from the values at the four nodes. By
“bilinear” we mean that a function on anit quadrilateral
element[0=<¢<1,0<sy<1] has the form off(&,7)=a,
+aé+a,ntazén, whereay to a; are determined by the
function values at the four nodes. Thus the function is linear
along constant or » lines. For any quadrilateral element
other than a unit quadrilateral element, a mapping should be
first used to transfer the element on the plane into a unit
on the £7 plane, and therefore the function on a general
(0,0) o0 quadrilateral element typically has terms including all qua-
dratic terms ofx?, y2, andxy. It should be noted that the
function is linear along the images of constgrand » lines.

We choose the control volume to be the polygon
ABCDEFGH surrounding the grid nod® as shown in Fig.
1(a). HereA is the midpoint of edg® P, C is the midpoint
of edge PP3, and B is the geometric center of element
PP,P,P3. Thus, the coordinates,, Xg, andxc are given

by

(0,1) (1,1)

XA:(XP+XP1)/2, XB:(XP+XP1+XP2+XP3)/41

(b) B XC:(XP+ Xps)/z. (10)

FIG. 1. (@ Diagram of finite elements sharing one common Likewise, D is the center of elememP;P,Ps. The integra-
node. HereP,P;,P,,...,Pg stand for the mesh grid points. tijon control volume consists of polygoRABC, PCDE,
A.B,C,D,E,F,G,H make the edges of the control volurigoly-  pEFG, andPGHA. In the following we focus on the inte-
gon) over which integration of the PDE of Eq1) is performedjb) gration over the polygo® ABC. Similar integrations would
diagram for mapping between a unit quadrilatérgiper pattand a e gone over all other polygons and the results summed.
general ondlower par}. The integration of the first term in E(L) is approximated

as
to calculate thd;’s at non-grid-node positions. The$gval-

ues at non-grid-node positions would be interpolated from af; afi(P)
the knownf;’s at the grid nodes using standard interpolation LABCE AT
procedures depending on the type of elements. Let us briefly

describe how the interpolation is done in the case of quadriwhereS; 55 is the area oPABC andf;(P) is thef; value
lateral elements. Suppose that the fluid domain is decomat grid nodeP. In what follows, the grid-node index is given
posed into a union of quadrilaterals. Furthermore, we assumg@ parentheses following thie values. In the above equation,
that if any two quadrilaterals intersect, the intersection cafye have made an approximation tHatis constant over the
only be their common edge. Each quadrilateral can bgrea PABC to prevent us from having to solve a set of
viewed as the one-to-one image of the unit square via a cqsquations. This kind of approximation known as “lumping”
ordinate transformation. More specifically, in FigbLthe s 3 common practice used in the finite-volume metHdds
bottom quadrilatera@ in the Xy plane has vertices, B, C, The integration of the second term of Ed) will give
and D. There is a unique bilinear mapping of the top unitfluxes through the four edgé®A, AB, BC, andCP. Since
squareQ in the £7 plane ontoQ: we will sum over all the polygons likeeABC, PCDE,

SpaBC: (11
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1 SPABC
—(f.—f® —
BCT(fl f|q)d0' T

(PA, PC, PE, andPG) will cancel out. Therefore, we will [9Af;(P)+3Af;(Py)

PEFG, and PGHA, the net flux through internal edges j
omit the explicit expression from the internal edges, P

+Af(P,)+3Af;(P3)]/16. (25)

fPABCVi'VfidU:Vi'J'ABfidHVi'fBCfid'Hs’ (12 With these results, the integration of E(l) over the
polygonPABC is complete. The integration over the whole

wherel ¢ represents fluxes through internal edges. With theContrOI volumeABCDEFGH Is just the sum of contribu-

- " : - - tions from all these terms over different polygoR&®\BC,
standard assumption of bilinearity &fs in quadrilateral el- ; ;
ements, the flux is then given by PCDE, PEFG, andPGHA. Thereforef; at grid nodeP is

updated as follows:

f Vi- Viido=vi-Naglagl fi(A) +(B)]/2 fi(F>,t+At)=fi(P,t)+E > (collisions
PABC SP aroundP
+V;-ngclgd fi(B)+ i (C) ]2+,
— > (fluxes | +av;-F, (26)
(13) aroundP

wheren,g and ngc are the unit vectors normal to the edge whereS; is the total area of the control volume around grid
AB andBC, respectively, antl,g andlzc are the lengths of nodeP, and “collisions” and “fluxes” refer, respectively, to
AB andBC, respectively. the finite-volume-integrated contributions from the collision
With the assumption of bilinearity of, and f79 over the  term and fluxes.
quadrilateral elements, the integration over the collision term In the finite-volume scheme of cell-vertex type, the up-
of Eq. (1) [i.e., Eq.(2)] results in the following formula: date of thef;’s at boundary nodes is similar to that for inte-
rior nodes except that at the boundary the corresponding co-
1 . bABC volumes are half-covolumef8]. Let us look at Fig. (a)
—JPABC;(fi—fiq)dff:— - LATi(P)+ATi(A) again and assume th&;, P, and P, are boundary nodes
separating the fluidupper half from the lower half. As for
+Af(B)+Af(C)]/4, (14) the interior fluid nodes, we updatg’s at P by covolume
integrals. However, the covolume is now not complete in the

where 27 directions as the polygorBEFG and PGHA are now
not included. This leads to one difference when integrating

Af(P)=f(P)—f(P), (15  the second term of Eq(1) over polygonsPABC and

PCDE. The flux terms over edgeBA and EP, which we

A (A)=F,(A) — FHA), (16) omitted in the case of interior nodéise., |5 in Eq. (12)] as

they were internal fluxes, must now be included in the cal-
culation. They are actually easy to evaluate as shown in Eq.

Afi(B)=fi(B)—f{{B), (17) (12) for fluxes over other edges. The velocity of the bound-
ary wall is used when we calculatg? for the boundary
Afi(C)=f{(C)—f{{C). (18 nodes using Eq4). This is to enforce the nonslip boundary
condition.
Here f;(A), f;(B), f;(C) and their corresponding equilib-
rium particle distributionff{A), f74B), f7{(C) functions  |1I. FINITE-VOLUME LATTICE BOLTZMANN SCHEME
are the values at nongrid nodés B, and C, respectively. IN THREE DIMENSIONS
These may be obtained by interpolation from the four grid , ) ) .
nodes at elemer® P,P,Ps, In thre_e d|men5|_0ns_, we ch_oose the nineteen velocities for
the velocity discretization as in the D3Q19 mofi&8]. The
f.(A)=[f,(P)+f,(P)]/2, (19 equilibrium distribution functions are
fei=$p[1-3u-u] if |v[?=0, 27

fi(B)=[fi(P)+fi(Py) +fi(Py)+fi(P3)]/4, (20
9= f5p[1+3(vi-u) + 2(vi-w)?=3u-u] if |v[?=1,

fi(C)=[fi(P)+fi(P3)]/2, (21 (28)
YA =[FEYP)+ Y P;)]/2, (22) 9= 35p[1+3(vi-u) +3(vi-u)>=3u-u] if |v[*=2,
(29

FFAB)=[FFAP) + 7Py + F7(P2) + 74P3)]/4, (23 where p=23;f; and pu=ZX;f;v; are the macroscopic mass

density and momentum density, respectively.
fPAC)=[FFAP)+f7(P3)]/2. (24) Given a flow domain, we can fit it with a grid made up of
hexahedral elements. The unknowiyis are sought at the
Substituting Eqs(15)—(24) into Eq. (14), we obtain vertices(node$ of the elements labeled &'s in Fig. 2. For
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z
A f vi-Vfidv:vi.J fids+vi-f f;dS
P, P PoABCDEFG ABDE BCEF
6
|
|
P, ! P, DEFG
//IE____IE’_'} With the assumption of trilinearity of;’s in hexahedral ele-
sb__ | _Es ! ments, the flux is
[ | | |
|| E . P,
O 7 = J V- VEdv=1+1,+I5+1 (32)
b os % P,ABCDEFG
ea By
e
e with
P, P,
x I l:Vi . f fi dS
ABDE

FIG. 2. Diagram of one hexahedral element and its correspond-
ing control volume. Heré®,,P4,..., andP; are the grid nodes. =

<

i-NaspeSaspd fi(A)+fi(B)+fi(D)+f,(E)]/4,

33
easy visualization we have drawn the element as a cube. Any 39
interior f; values are to be computed by interpolating from | — f fds
the f;’s at the nodes using the trilinear interpolation proce- 279 Jacer |
dures. By trilinear we mean that a function iuait hexahe-
dral element[0<é<1,0<7<1,0<y<1] has the form =Vi-NgcerSeced fi(B) +fi(C)+fi(E) + fi(F)]/4,
of (&, mx)=aptaré+antasxy+aséntaséx+asny (34)
+as&ny, wherea, to a; are determined by the function
values at the eight nodes of the hexahedral element. Thus the l—v.. f £ ds
function is bilinear along constart or » or y planes, and S P
linear along any axis if the other two are kept constant. For
any hexahedral element other than the unit element, a map- = Vi-NoereSperal fi(D) +fi(E) +fi(F)+fi(G)]/4,
ping should be first used to transfer the elementyiz space (35
into a unit in énx space, and therefore the function in a
general hexahedral element typically has terms including aWvherenagpe, Necre, andnperg are the unit vectors normal
cubic terms such as® andx?y. to the surface plandBDE, BCEF, and BCEF, respec-

In Fig. 2, we are interested in the updatefgs at node  tively, andSagpe, Sgcer. andSperg are the areas of sur-

P,. One could imagine that there are eight hexahedral eld2cés ABDE ~ BCEF, and DEFG, respectively.
ments sharing nodB,, though we have only drawhpartof ~ [i(A).fi(B), ... fi(G) and their corresponding equilibrium
them (one hexahedral elemerfor clear illustration in this particle distribution functions are the values of these vari-

: . : ables at non-node position,B, ...,G. These functions
Iﬁ:fé);meég:]:éggg g)fégrgr;l]g\?vlg?leggp.ozl's lire]?;\e'nc?s may be obtained by interpolation from the nodes at element
and G are the midpoint of edg®,P;, PoPs, and P,P-, ﬁo[l?l(P )+|?7(P )e;rg];f(gigﬁ);([;i(;%+fi(Pl)]/Z, fi(B)
respectively,B, D, and F are the geometric center of area -, O = it 177 jivt 2] Tt sl i
elementP,P,P,P5, PyP,P,P,;, and PyPs;PsP;, respec-
tively, and E is the geometric center of volume element
PoP1P,P3P4P5P¢P5. In the following, we focus on the in-

Assuming the trilinearity off; and 7 over the three-
dimensional hexahedral elements, the integration over the
collision term of Eq.(1) results in the following formula:

tegration over the hexahedré®y)ABCDEFG The integra- 1
tion of the first term in Eq(1) is approximated as —f —(fi—f%dv
PoABCDEFGT
VPOABCDEFG !
of; ati(P) =——————| > cAfi(PY |, (30
——dv=—"—Vp aBCDEFG: (30) T k=0
P,ABCDEFG It at o

where Afi=f;— 79, cq=27/64, c;=c3=c,=9/64, c,=cC,

=cg=3/64, andcs=1/64. Thef;(P,) and their correspond-
where Vp apcpere IS the volume of hexahedron ing equilibrium particle distribution functions are the values
Po,ABCDEFGandf;(Py) is thef; value at nodeP,,. of these variables at nod® .

Integration of the second term of E@.) will give fluxes With these results, the integration of Ed) over thej
though six surface?,ABC, P,ADG, Po,CFG, BCEF, control volume, i.e., the hexahedr®gABCDEF Gcentered
ABDE, andDEFG. As in two dimensions, we will omit the at nodeP,, is complete. The integration over the whole con-
fluxes from the internal surfaces. With this, we have trol volume is just the sum of contributions from all these
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FIG. 3. Numerical velocity profilg§data points in the steady
state for the Poiseuille flow compared with the analytical solution
(solid curve.

FIG. 4. Numerical velocity profilddata points in the steady
state for rotating Couette flow, compared with the analytical solu-
tion (solid curve v 4(r)=0.01(/30-60f).

terms over different hexahedra. Therefofeat nodePy is

updated formally as in Eq(26), where “collisions” and —RZ)=0.01(/30—60k). One can see from Fig. 4 that the
“fluxes” are now referring, respectively, to the three- agreement with the theoretical results is excellent. The global
dimensional finite-volume-integrated contributions from theerror was found to b&;=1.16x10"°.

collision term and the fluxes. To illustrate the flexibility of the above FVLBM scheme,
we then simulate a two-dimensional Poiseuille flow between
IV. NUMERICAL EXAMPLES two curved plates as shown in Fig. 5. The curved channel has

In this section, we demonstrate the validity and accurac pinusoidal modulation in the top and bottom plates with
' y bottor=A SIN(2+2mxIN)  and  Yigp=L[1+ A sin(3m/2

of the FVLBM schemes using examples with known exact . ; . .
solutions, or comparing the results with the ones obtained+277xn‘)]' Here A is the modulation amplitude) is the

from other traditional methods. The first example is themOdUI"’ltlon periodicity, and. is the channel width in the

two-dimensional Poiseuille flow between two parallel pIates.IS'mS':e?Tf] zsvr: ﬁmi?“(t)t(:g:;e% tl?)utehéo Ctgl?n Sggt?:)itg g:;r::]:ins
We choose the fluid densitp=1.0 and relaxation time y ' P

: with one wavelength\ in the x direction. In the simulation
7=1.0(v=7/3=1/3) with external body force F o > - .
=2.604x10 %¢,. The numerical parameters for the time we usedh =2L, A=0.15, and. =32. The numerical param-

and grid steps arAt=0.5, Ax=1.0, andAy=1.0. The total ZteEsAfor_ tlhg F‘I'\ﬂ_eBll\l/l Xali;lep—:6];1.>2,3;: Orgs Aatr: 0'2526 arwe
N, X Ny, =64x32 mesh grids are used. We set the initial con- *= yt_th. ) ¢ be d yf_ B 2%64>< 10-5 N -th t
ditions for the macroscopic velocity field to be zero. Figure 3 ave set the external body 1orcene: 2. & sotha

shows the numerical results of the steady velocity profile an he maX|mum.v9.IOC|ty fou, IS O.'Ol in the case cﬁ\=_0, and

the corresponding analytical solutian(y)=FL2/(8pv)[1 he compressibility of the fluid is thus negligible. Since there

—(2y/L—1)?], whereL=AyN,=32 is the channel width is no analytical solution for the Poiseuille flow in the curved
1 y .

The agreement with the theoretical results is excellent, anﬁlg?/?gfls't(\;\:(eeshaeveu:;?;\rge(\fvimethssrgteanpdrgzenr;a?li/ef-zlr?g-ctglle
the global error was found to de;=2.15x 10" °. d

Next, we present two-dimensional simulation of rotating(MAC) method in order to explicitly verify our FVLBM

Couette flow where fluid is contained between two concen—SCheme' In Fig. 6 we plot the numerical results of the veloc-

tric cylinders. The outer cylinder rotates with velocifye, ity field from the FVLBM and the numerical solutions from
while the inner cylinder rotates with velocity,e,, i.e.,
ve(r=R;)=V; andv,(r=R,)=V,. The important point to
note here is that this particular problem possesses high sym-
metry for flow field, however the FVLBM scheme reported
here needs no preassumptions of symmetry. Here we have
taken the radii of the two cylinders to ;=30 andR, ESsaniE
=60, the velocity of the inner cylindev,;=—0.01, and the

outer cylinderV,=0.01. The numerical parameters for the
FVLBM are p=1.0, 7=0.5, At=0.25, A9=27/180, and L1 L
Ar=1.0. TheN,X N,=180x 30 mesh grids are used. We set N
the initial conditions for the macroscopic velocity field to be
zero. In Fig. 4 we show the numerical results of the steady
velocity profile and the corresponding analytical solu- FIG. 5. The quadrilateral meshes used for Poiseuille flow be-
tion vy(r)=[(VoR,—V{Ry)r+ R1R2(V1R2—V2R1)/r]/(R§ tween two curved plates.
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FIG. 6. Velocity profiles in steady state for Poiseuille flow between two curved platesx-€Ebenponent velocity was plotted if®)
U(x=0y), (b) u,(x=3\/4y), and they-component velocity was plotted {i8) u,(x=0y), (d) uy(x=3\/4,y). Two sets of symbols stand
for finite-volume LBE simulationgcircles and MAC simulations of the Navier-Stokes equatipius).

the Navier-Stokes equation. Excellent agreement was foundsing the usual conformal mapping of complex potential. As
as shown in the figures. in most practices, more grids are placed close to the rigid

We also simulate the two-dimensional problem of planebody since the fluid velocity changes more rapidly near the
Couette flow but with a half-cylinder of radilR resting on  solid boundary in order for the nonslip condition to be satis-
the bottom plane. The cylinder center is placed in the origirfied. In the simulation we usB= 20 for the radius of cylin-
of the coordinatesX=0,y=0). The bottom plang=0isat der, U=0.1 for the top plane speed, and, XL,
rest and the top plang=L, moves with uniform velocity _g 5R%6R for the physical domain. The numerical param-
Ue,. The flow field would beuX Uy/L, in the absence of eters for the FVLBM arep=1.0, 7=0.5, andAt=0.25, and
the half-cylinder. The quadrilateral meshes used for they, X N,=100x 60 grids are used. Figure 8 shows the nu-
simulation are shown in Fig. 7. The meshes are generategierical results from the FVLBM and the numerical results
by solving the Navier-Stokes equation with the standard
finite-element method FEM). Again excellent agreement
was found.

In three dimensions, we simulated the Taylor-Couette
flow where fluid is contained between two concentric long
cylinders as shown in Fig. 9. The outer cylinder rotates with
a velocity Ve,, while the inner cylinder is kept at rest, i.e.,
Vye(r=Ry,0,2)=0 andv4(r=R,, 6,z)=V. We set the initial
conditions for the macroscopic velocity field to be zero. We
have taken the radii of the two cylinders to Bg=20 and
R,=40 and the rotating speed of the outer cylindeto be

FIG. 7. The quadrilateral meshes used for flow past a half0.01. We choose the fluid densjpy= 1.0 and relaxation time
cylinder resting on a plane. 7=1.0 with external bodyr=0. The numerical parameters




PRE 60 FINITE-VOLUME LATTICE BOLTZMANN SCHEMES IN . .. 3387

0.01

0.009+-

0.008+-

0.007

0.006

0.005+-

0.004-

0.0031

0.0021

0.001

L L L L L
20 40 60 80 100 120 140
¥

20 2'2 2'4 2'6 2'8 3'0 3'2 3'4 3'6 3'8 40
FIG. 8. Velocity fieldu,(x=0y) in the center of the channelis £ G 10, Numerical velocity profilédata pointsin the steady

plotted. Two sets of symbols stand for finite volume LBE simula- giate for rotating Taylor-Couette flow, compared with the analytical
tions (circles and FEM simulations of the Navier-Stokes equation solution (solid curve v(,(r)=V[R1R2/(R§—Ri)](rlRl—Rllr).

(plus).

=V andv,(r,0,r =R,)=0. Obviously, this is different from
for the time and grid step arat=0.25, A9==/45, Ar  Taylor-Couette rotating flow, where the boundary condition
=1.0, andAz=1.0. The total ofN,X N, X N,=90x 21X 32 isV,y(r=R;,0,2)=0 andv,(r=R,,0,2z)=V. In the simula-
mesh grids are used. In Fig. 10 we show the numerical retion, the numerical parameteffiuid density, relaxation, time
sults of the steady velocity profile and the correspondstep, etd. are the same as in the rotating Couette flow.
ing analytical solution v,(r)=V[R;R,/(R3—R2)](r/R,  Again, we have compared our numerical results with the
—R1/r). From Fig. 10 one can see that the agreement wittanalytical solutionv,(r)=V In(r/R,)/In(R;/Ry). In Fig. 11
the theoretical results is excellent, and the global error wagie show the numerical results and find that they agree ex-

found to bel;=3.26x10"°. tremely well with the theoretical result. The global error was
We have also simulated a flow where the inner cylinderfound to bel;=4.16x 10" 5.
moves parallel to its axis with constant velocitg, inside a In the final example, we apply the FVLBM to simulate

coaxial cylinder, which is kept at rest, i.a/,(r=R;,0,2) the Poiseuille flow between the two concentric long cylin-
ders. The flow has the analytical velocity profile between
two cylinders,

r

R—” 7

for R;=r=<R, with boundary conditionv,(r=R,6,2)
=V,(r=R,,0,z)=0. We choose the fluid density=1.0,

F R:-R?

_ 2 .2 2 1
=— —ri —
VA= R R R
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FIG. 11. Numerical velocity profiles in the steady state for the
inner cylinder moving parallel to the axis with constant velocity
FIG. 9. Scheme diagram for the flow between two concentricVe, while the outer cylinder kept at rest. The analytical solution is
cylinders. the solid curvev,(r)=V In(r/R,)/In(Ry/Ry).
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0012 ; : . T T T T T T V. CONCLUDING REMARKS

To conclude, we have proposed finite-volume schemes for
solving the lattice Boltzmann equation in two and three di-
mensions. The schemes are flexible and can be applied to

0.01F

00081 1 unsteady, incompressible fluid flow in a wide variety of re-
v.(r) gions which contain arbitrarily shaped internal and external
o00st 1 boundaries. The schemes involve minimum approximation

and do not need to introduce any free parameters. We have
not found numerical diffusion problems in our finite-volume
schemes. The CFL condition in the current finite-volume
scheme is found to be of the formAtc/h<1, wherehis a
minimum length scale of the control volume aods a con-
stant depending on the shape of the control volume. The
formulation on which our schemes are based does not require
a special mesh connectivity. This allows the LBE methods to
. . L . be applied to many interesting systems that were previousl|

FIG. 12. Numerical velocity profiles in the steady flow for Poi- difficﬁrljt to treat us)i/ng the cor?ve)rlwtional LBM, as vfl)e illus- Y
seille ﬂOW. between two concentric long cylinders, compzareozl Wlthtrated in this paper. Several applications such as turbulent
the analytical solution (solid curv vy(r)=F/t4p»}{Re=r" 4 hear airfoil as well as extensions to thermal problems
+[(RE=R3)/In(R, /Ry IIN(r/R,)}. : AS W . mal p

2 are under investigation and will be reported in subsequent
publications.

0.004+-

0.0021

L L L L L L L L L
20 22 24 26 28 30 32 34 36 38

relaxation timer=1.0(v= 7/3), and external body forcé
=(20/3)x10 %¢,. The time step and grid step arkt
=0.25, Ag=m/45, Ar=1.0, and Az=1.0. A total of

N XN, XN,=90x 21X 32 mesh grids are used. It is worth
emphasizing again that even though the Poiseuille flow prob- This work was supported by PRF under Contract No.
lem has high symmetry in velocity field, the FVLBM scheme 33160-GB9 and the Research Corporation under Grant No.
needs no preassumptions of flow symmetry. The numericalC4250. The simulations were performed on the SGI Origin
result of Fig. 12 is compared with the theoretical curve. The2000 at the Ohio Supercomputer Center. The authors thank
agreement with the theoretical results is excellent, and globd)r. S. A. lvanenko at the Computing Center of the Russian
error was found to bé&,=2.75x 10" °. Academy of Science for helpful discussions.
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