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Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method
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We present a numerical method to solve the equations for low-Reynolds-n(8to&eg flow in porous
media. The method is based on the lattice-Boltzmann approach, but utilizes a direct solution of time-
independent equations, rather than the usual temporal evolution to steady state. Its computational efficiency is
1-2 orders of magnitude greater than the conventional lattice-Boltzmann method. The convergence of the
permeability of random arrays of spheres has been analyzed as a function of mesh resolution at several
different porosities. For sufficiently large spheres, we have found that the convergence is quadratic in the mesh
resolution.[S1063-651X99)05309-X]

PACS numbes): 47.11+j, 47.15.Gf, 47.55.Mh

[. INTRODUCTION results for the permeability of random arrays of spheres as a
function of mesh resolution and porosity. We end with a
In the past decade, the lattice-Boltzmann method has beshort discussion.
come the simulation method of choice for a number of fluid

dynamics problemg1]. Initially developed by McNamara Il. LATTICE BOLTZMANN METHOD
and Zanetti{2] as a means to eliminate the statistical noise ] ) ] )
inherent in a lattice-gas automatdrGA) [3] and developed In this section we summarize the theoretical background

into a practical simulation tool by Higueet al.[4,5], it has to the Iattice—B_oItzmar_m method; more extensive discussions
recently been derived directly from the Boltzmann equatiorf@" be found in the literaturg,2,4,9,20. The state of the

by discretization in time and phase sp46e-8]. In contrast fsyst_emlls qharacter!zed by the dl_scretlzed.one-partlcle veloc-
with the LGA, the lattice-Boltzmann model is Galilean in- ity distribution functionn;(r.t), which describes the number
variant and has a velocity-independent equation of stat@f fluid particles at a lattice nodeat timet with a velocity
[9,10]. It retains the capability, inherited from LGA, to in- G- Herer, t, andg are discrete, whereag(r,t) itself is a
corporate complex boundary surfaces in a straightforwar§ontinuous variable. The mass densitfr,t) and the mo-
and reliable manndil1-14. The lattice-Boltzmann method Mentum density(r,t) are defined by moments of this veloc-

is at least comparable in speed and accuracy with competin§y distribution function

methodg 15-1§. ;

Lattice-Boltzmann simulations have been applied to simu-
late fluid flow in different porous structures, most recently a P“'t):; mi(r.0), (1)
packed bed of fibersl9]. However, the calculations are lim-
ited by the temporal evolution of the flow fields to steady J
state. The_inhere_nt sIovyness of' diffusive momen.tum trans- j(r,t)zz cni(r,t). 2)
port, combined with the irregularity of the geometrical struc- i=1
tures, often require simulations of 4010 cycles to deter-
mine the steady-state flow field. In addition, the slowness otierej(r.t)=p(r,t)u(r,t), with u(r,t) the macroscopic fluid
convergence often makes if difficult to decide when the sysVelocity; the summation runs over the complete set of veloci-
tem has actually reached a steady state. It is possible to arfies{ci}. For the two-dimensional lattice modgt9, and for
ficially accelerate the convergence of the permeability, buthe three-dimensional modék 18.
the reduction in the number of cycles is typically only a  The time evolution of the velocity distribution function in
factor of 2 or 3[14]. In this paper we present a more radical the presence of an external for@g., an externally applied
approach, which involves a direct solution of the time-Pressure gradient or gravitational figles governed by the
independent equations. The key idea is to solve for théliscretized Boltzmann equation
steady-state mass and momentum densities directly, rather
than allow them to evolve diffusively in time; this requires a ni(r+¢,t+1)=ni(r,t) + Ai(r,t) +f;(r,1), ©)
reformulation of the normal lattice-Boltzmann algorithm. ] ]

In Sec. Il we outline the essential ingredients of theWhereA(r,t) describes the change m(r,t) as a result of
lattice-Boltzmann method and in Sec. Ill we present acollisions and fi(r,t) incorporates the effe_ct of external
method to compute the stationary solution of a Iattice-force$- Each Igttlce—BoItzmann update co_n_S|sts of two steps.
Boltzmann model. In Secs. IV and V we compare the resultd he first step includes the effects of collisions and external
of the method with the standard time-dependent latticeforces: for later use we define the velocity distribution func-
Boltzmann method in two and three dimensions. We analyz&0n after this step as" (r,t),
the rate of convergence to steady state as a function of the
porosity and lattice size. In Sec. V we also present precise e () =ni(r,t) +Ai(r,t) +fi(r,t). 4
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In the second step the post-collision distributioii€r,t) are  linear in the mesh resolution. Approximate second-order
propagated to the neighboring nodes in the direction of theiconvergence can be achieved by assuming that the hydrody-
velocitiesc; , namic boundary is displaced by half a lattice spacing from
the physical one, and then choosing a kinematic viscosity
ni(r+c,t+1)=nf(r,t). (5)  close to 1/6, so that is essentially zer24]. However, this
. o . ) method is still only first order for arbitrary orientations of the
Eor convenience all quantities in this paper are given in ',atboundary pland25]. Several attempts to obtain more accu-
tice units; i.e., the nearest-neighbor distance and the timgyte poundary conditions have been suggested in the litera-
step are both unity. o ~ ture [26-=31], but they are not easily applied to irregular
For low-Reynolds-number flows, the equilibrium distribu- geometries.

tion function ni{r) is only required to linear order in the = A fundamental improvement to the nodal bounce-back

fluid velocity [20]; i.e., rule is a bounce-back mechanism where the boundary nodes
e\ O 6 lie along the links, midway between the solid and fluid nodes
A =p(rlag+aig-u(r]. 6) [32]. The key difference is that a particle at a node adjacent

The coeﬁicientsaio andail are determined by the conditions to the solid surf_ace hits the s_urface and returns in one time
step, whereas it takes two time steps to return when the

that the Shf ar viscosity is isotropic and that the velc_)cn_y mo'boundary nodes are located at the lattice nodes. In this case it
ments ofn7{r) reproduce the correct hydrodynamic fields

o o can be shown that the hydrodynamic boundary is located at
for Igw-Re_ynoIds-number fLOWS' he,2in; N=p("),  the boundary nodes, i.e., midway between the solid and fluid
Zienfqr)=j(r), and Zcani{r)=cp(r)1l, where ¢s  podes, with deviations that are second order in the mesh
=/1/2 is the speed of sound aridis the unit tensor. Nu-  resolution[33,34). In contrast with the second-order schemes
merical values for the coefficiens, anda;, in two and  cited above, this method is applicable to surfaces of arbitrary
three dimensions, are given below. shape, without additional complicatiop®3].

The collision operatoA;(r,t) can be simplified by linear- In the presence of a uniform force density, the calculation
izing about the equilibrium distribution functiof4,20]. It  of the flow field is somewhat ambiguous, owing to the dis-
takes a particularly simple form when the kinematic viscos-creteness of the lattice-Boltzmann updf3d]. Although in
ity v=1/6[20] most published work the momentum density is measured be-

o fore the application of the force density, it could equally well
Ai(r,t)=—[ni(r,n) —n(r)], (7)  pe measured afterwards. Since the momentum density before
which is equivalent to the exponential relaxation time modeli??(ﬁftt)e:j;%r;nd% agrr? t;]e;a;i?r:t(irr;tt)h ejl]p()(rj;z;c%c:gew\;]aelfeeit is

Eg’grlit‘g;thsa gilagggﬁn t;nglé ;)hrlslgh?llk’cs 22|32|]'r]s'?;]bermeasured. To decide on the correct definition of the momen-
P " pecially sui _lowW-Rey UMbeL im density, drag coefficients obtained by driving the fluid
flqws, since the viscosity is not an important parameter "Mow with a uniform force density have been compared with
this case. et those obtained using a constant velocity boundary condition
W? mcorpprate an externgl press‘{jﬁ gradlﬁrpf .by [13]. The results agreed exactly if the mean of the velocity
applying a uniform force density= — V p®‘to the fluid, i.e., field before and after forcing, i.6j_(r.t)+j, (r,t)]/2, was
used. Therefore, we calculate the momentum flow fields after
half the force density is applied, which is equivalent.
Thus a constant increment of momentm'h:g is added to Given a discretized model of a.porO.US. structure, defined
each node at each time step. Using E@5-(8), we write the by the boundary nodes at the solid-fluid interfaces, .
lattice-Boltzmann equation[Eq. (3)] for low-Reynolds- ~can be successively iterated in time to determine the steady-

number flow, in the presence of a uniform force density, asState momentum flow field. It can be shown that this long-
time limit, with bounce-back conditions at the solid bound-

o _ aries, approximates the creeping flow or Stokes equations in
ni(r+¢,t+1)= 2 (apt+aiG-¢)n(r,)+ajc-g. (9 the presence of an externally applied pressure gradient,
=1 Vp®'=—g, with stick boundary conditions at the solid

To simulate the interactions between fluid and solid, theValls: In the next section we show that the steady-state so-
lattice-Boltzmann model must be modified to incorporate thdution can also be obtained directly, by solving a set of linear
boundary conditions imposed on the fluid by the solid phase€duations using a conjugate-gradient technique.

Fixed solid objects were introduced into lattice-gas models

by replacing the normal collision 'ru'les at a specifieq set of IIl. MATRIX FORMULATION

nodes by the “bounce-back” collision rulg22], in which

incoming particles are reflected back towards the nodes they Although it may seem that the stationary solution of equa-
came from. Detailed analysis of the bounce-back rule fotion Eg. (9) can be found by settingn;(r+¢,t+1)
two-dimensional Poiseuille flow has shown that the location=n;(r,t), a more careful analysis reveals that most of the
of the zero-velocity plane is shifted from the location of theequations are linearly dependent. In fact, due to mass and
boundary nodes, into the fluid, by an amount-Bb [23—  momentum conservation during collisions, the number of
25], with « close to zero for kinematic viscosities near 1/6. If constraints for each fluid node is equal Bot+ 1, with D

the hydrodynamic boundary is assumed to lie along théoeing the spatial dimension of the lattice. Hence, the total
boundary nodes, the convergence of the flow field is onlynumber of constraints for the entire latticeNg(D + 1), with

fi= ailci -g. (8)

J
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N; being the number of fluid nodes. Since the number ofwhereT is the JN; X JN; transition matrix, withT;;=1 for

equations isJN;, andJ is greater tha + 1 for all relevant
velocity models, no unique stationary solution of E8).can

valid transitions and’j; =0 elsewhere. In the case of normal
propagation(i.e., if r+¢; is a fluid nodg, the only nonzero

be found in this way. The equations must be supplementedlements ofl have column indexes corresponding to node

by the equilibrium distribution functiofEqg. (6)] relating the
n;’s to theD+ 1 conserved quantitieg(r,t) andj(r,t). In
fact, it is much more efficient to solve directly fp(r,t) and

j(r,t).

and velocity¢; paired with row indexes corresponding to
noder +¢; and velocityc; . If r+¢; is a solid node, the mid-
way bounce-back rule is applied. In that case the only non-
zero element in the column corresponding to nedand

Following this reasoning we write the lattice Boltzmann velocity ¢; is the row corresponding to nodeand velocity
equation[Eq. (9)] in terms of the mass and momentum den-c;,, wherec;. is in the opposite direction tq, .
sities,p(r,t) andj(r,t), using Eqs(1), (2), and(6). A vector Finally, we project the velocity distribution functions after
notation is used, in which lower case symbols represenpropagation onto the conserved quantities,
properties of the individual nodes and upper case symbols

represent properties of the entire lattice. The velocity distri-

bution functionn;(r,t) is then written as
n(r,t)={ny(r,t),...ny(r,H} r=ro,...ry,,
(10)

N(t)={n(ry,t),....n(ry,t)}.

A similar notation is used for the post-collision velocity dis-
tribution functionn;* (r,t) andN* (t). Since the force density

is uniform,

fz{fl,,fJ}, Fz{f,,f} (11)

Finally, M(t), the vector of conserved quantities is defined

by

m(r,t) ={p(r,t),j(r,O}; r=ry,...Iy,s

(12)
M) ={m(ry,t),...m(ry,.t)}.

The dimension of the vectors n*, andf is J, while that of
the corresponding vectolé, N*, andF is JN;. The dimen-
sions ofm andM areD+1 and @+ 1)N;, respectively.

m(r,t+1)=p-n(r,t+1),

(16)

M(t+1)=P-N(t+1),
with the ([O+1)N;XJIN; block-diagonal matrix P
=diag{p,...,p} and the D+ 1)xJ projection matrixp de-

fined such that itgth column is given byc.f., Egs.(1) and
2]

pi={1c]}". (17
Using Egs.(13), (15), and(16), we obtain
M(t+1)=P-T-(E-M(t)+F), (18

which completes the formulation of the lattice-Boltzmann
equation as a set of linear equations in terms of the vector of
conserved quantitiesl. We note that Eq(18) is equivalent

to Eq.(9), coupled with the midway bounce-back rule at the
boundary nodes, but there is no apparent computational ad-
vantage in this formulation of the time-dependent problem.
Equation(18) is equivalent to a set of finite-difference equa-
tions with a particular set of stencils that are based on the
lattice-Boltzmann update. For comparison with other finite-
difference methods we give example stencils for propagation

We proceed by writing the lattice-Boltzmann update inand bounce-back in Table |I.

terms of the vector of conserved quantitidgt). First, we
write the collision step in vector notation,

n*(r,t)=e-m(r,t)+f,

(13
N* (1) =E-M(t)+F.

The matrixE is a IN;X(D+1)N; block-diagonal matrix,
E=diade,... e}, of IX(D+ 1) expansion matrices which
are defined such that théh row of e is given by[c.f., Eq.
6]
e={ap.a\G}. (14)

Note that the right-hand side of E(.3) is already written in
terms of the conserved quantities.

The propagation step is incorporated by writiNgt + 1)

At steady statéM (t+1)=M¢(t), reducing Eq(18) to the
linear system of equations

A-M=B, (19

with
A=1-P.-T-E (20)

and
B=P-T-F. (21)

Despite appearances, E(L9) cannot be solved in its
present form. In going from the time-evolution equatj&.
(18)] to the time-independent equatipBEg. (19)], we have
neglected the fact that the steady-state solution depends on
the initial mass densityp(r,t=0), as well as on the con-

in terms of N*(t). This requires shifting the elements of straints imposed by mass and momentum conservation. The
N*(t) in accordance with the propagation of the velocity steady-state momentum densiifr) is completely deter-

distribution functions,n;(r,t), to the neighboring nodes

mined by the boundary conditions and force density, but

+¢ . The propagation step can be written as a simple matrigince onlyVp couples to the momentum flux, the steady-

multiplication

N(t+1)=T-N*(t), (15)

state mass densify(r) is undetermined to within an additive
constant. This implies that one can always express the den-
sity at a certain fluid node in terms of the densities at all the
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TABLE I. Stencils for propagation and bounce-back in thed,0 and(1,1,0 directions, based on the
lattice-Boltzmann update. The updated vector of conserved quantities at a particular isodesum of
contributions from neighboring fluid nod@sEach contribution is obtained by a matrix multiplication of the
appropriate propagation sten@ilormalized by dividing by 24with the vector of conserved quantities at the
neighboring nod¢. In the case of a solid neighboring node, the bounce-back stencil is used, together with the
conserved quantities at nodeAll other stencils can be obtained straightforwardly by symmetry operations.

Propagation Bounce-back
(1,0,0 (1,1,0 (1,0,0 (1,1,0
2 4 0 1 2 2 2 -4 0 O 1 -2 -2 0
2 4 00 1 2 2 0 2 -4 0 O 1 -2 -2 0
0 0 0O 1 2 2 0 0 0 OO 1 -2 -2 0
0 0 0O 0 0 0O 0 0 0 O 0 O 0 O

other nodes, and consequently E@E9) still have one lin-  model comprising rest particles and particles with velocities
early dependent row. In order to obtain a unique solution thain the {10} and the{11} directions[20]; it is isotropic and
satisfies both the boundary conditions and the initial condiGalilean invariant. The coefficients for the rest partick$,
tions, we replaced the first equation of the sysfém. (19)]  anda$, are 1/6 and 1/3, respectively, and the coefficients for
with an equation that sets the total fluid mass to a Constanihe remaining Ve|ocitie$io andail’ are equa' to 1/6 and 1/3
We have verified that the steady-state solution of the mofq the {10} directions and 1/24 and 1/12 for th&1} direc-
mentum density is independent of the value of the total fluidjgns.

mass, which we set to zero for convenience. The resulting Tq check the new algorithm, which we refer to as the
linear problem is regular, but with a nonsymmetric coeffi- matrix method, we first simulated a square array of disks at
cient matrixA, and can be solved using the biconjugate grayyg porosities,=0.6 andé=0.9, and three mesh resolu-
dient algorithm[35] tions, for comparison with Ref.13]. The volumetric flow

If the sample contains disconnected pores, the total fluidate(j) is defined as the volume-averaged momentum density
mass in each region must be specified independently. It is

simplest to treat these disconnected clusters, common in po-
rous media, as individual systems. We used a cluster analysis ()= } bg+ iz i(r) 22)
program to separate the different clusters and determined the 2 N N '
flow in each cluster individually. The volumetric flow rates
through all the percolating clusters were added together t
obtain the total volumetric flow, while nonpercolating clus-
ters were treated as solid since they do not contribute to th
permeability. D : . .
A final complication arises from the fact that the mass ancIOr :L\edreduc_(ejd dtr_aglf;)r(iﬁ, / V<!>’_I9b;?'n|$/d V}”gg;ﬁ matrix
momentum densities do not uniquely determine the velocitymeln ?:i arfvl\,:gr;g;\i,v tze r(;?:tigle e?ro? 0 '
distribution function. Therefore, applying Eq6) to the 9: '
steady-state mass and momentum densities does not lead to
the steady-state velocity distribution function. To obtain the K= (i) eonvd
correct velocity distribution function from the solution vector € C_W' (23
M [Eg. (19)], a complete lattice-Boltzmann cyd&qgs. (13)
and (15)] is necessary. Only one cycle is required because , , ) ,
every velocity distribution function with the correct steady- @S @ function of the number of iterations, for the matrix
state mass and momentum densities relaxes to the steady€thodlma, and the conventional time-dependent lattice-
state velocity distribution function in one time stigq. (7)]. oltzmann method,,.. The errors are measured relative to
The components of the resulting vectdrare equivalent to  the fully converged volumetric flow ratefj)con,g. Results
those obtained from the long-time limit of E¢(9). This has ~Were obtained for radiuR=7.5 disks at porositiegh=0.6

8nd the total drag force® is given byFP=Ng= Ng,. In Eq.
22) we have accumulated half the applied force density at
ach fluid node, as discussed in Sec. Il. The numerical results

also been verified numerically. (L=21) and¢=0.9 (L=42). For the high porosity sample
the matrix method converges approximately 30 times faster
IV. TWO-DIMENSIONAL ELOWS than the time-dependent method, whereas at low porosity the

gain is less, approximately a factor 5.

We have simulated fluid flow in periodic and random ar- In Fig. 2 we show the number of iterations required to
rays of disks. All simulations used a squarg L lattice with  reduce the relative errar,, to less then 10° as a function
periodic boundary conditions in both directions. The totalof the linear dimensioi.. The slope of the lower solid line
number of lattice nodes occupied by fluidNs, giving a  (matrix) is 1 and that of the upper solid lingbe) is 2. The
porosityp=N; /N, whereN=L?. The external pressure gra- vertical bars span a relative error between 4Qlowest
dient is applied in they direction, such tha¥ p®'= -8 point) and 108 (highest point The results indicate that the
i.e., the uniform force density=8,. We used a nine-speed time to convergence increases approximately linearly with



3370 R. VERBERG AND A. J. C. LADD PRE 60

102t 105
@)
104
106 .
< Nﬁ
@ 108 oo 1041
107101 ~§
1012}
104 . . . : : : 108 ¢
0 100 200 300 400 500 600 700
Lt 035 040 045 050 055 060 065
102 ¢
(b)
104 FIG. 3. Number of iterations to convergeneg,<10 6, in a
random array of disks as a function of porosity The solid sym-
108 ¢ bols are the results of the matrix methdd,{) and the open sym-
w® 100 | bols those of the time-dependent methbg,) for 81 disks(circles
and 729 diskgsquares
1010+
gain in convergence rate is approximately two orders of
1072 magnitude.
1014 , ‘ , Next we analyze the rate of convergence in idealized two-
0 5 10 15 20 dimensional porous structures composed of random arrays of
10° I, disks. We generated three systems, containing 9, 81, and 729

disks per unit cell with linear dimensioris=63, 189, and
tions, for the matrix method), . (3 and the time-dependent 567, respectively. The disk radius and porosity of each sys-

methodl .. (b). The system is a square array of disks with radius®m WereR=7.5 and ¢=0.6. For each system size, five
R=7.5 and porosityp=0.6 (circles and ¢=0.9 (squareks configurations were generated by Monte Carlo simulation

and from each of those 15 configurations four additional con-
figurations were created, with porosities 0.55, 0.50, 0.45, and
6?40, by increasing the radius of the disks. Each configura-
tion was cluster analyzed to detect percolating pore net-
works. As discussed in Sec. Ill, we simulated flow in each
percolating pore structure individually and then accumulated
the volumetric flow rates at the same pressure gradient. Non-
105 | percolating pores were treated as solid nodes in these simu-
i lations, since they do not contribute to the permeability.

In Fig. 3 we show the number of iterations required to
reduce the relative error to less than £0as a function of
porosity ¢. The results are averages over five random con-
figurations of 81 or 729 disks; for clarity the series with nine
L] disks has not been shown, but the same qualitative results
were obtained. At each lattice size, the number of iterations
to convergence increases smoothly with decreasing porosity;
102 | at ¢=0.40 the matrix method is about 40 times faster than
§ the time-dependent method. At this porosity, the relative er-
ror for the 729 disk system failed to converge beyond?.0

101 = ' — even after 10 steps; at this point the calculation was termi-
10 L 100 nated. Thus for random arrays, the matrix method becomes

FIG. 2. Number of iterations required to reduce the relative errormUCh_mo,re efficient than the tlme-dgpgndent metholdwat

£, to less than 10° as a function of the linear dimensiob, (in porosity, in contrast to results for periodic arrays. The reason

lattice unit3. The solid symbols are the results of the matrix methodfr the slow convergence of the time-dependent method in
(I.) and the open symbols those of the time-dependent methotPW-porosity random structures is unknown, but it is a uni-
(). The system is a square array of disks with radus7.5 and ~ Versal feature in both two and three dimensions.
porosities¢p= 0.6 (circle9 and ¢=0.9 (squares The vertical bars

indicate a range of convergence criteria between *1Qowest V. THREE-DIMENSIONAL FLOWS

point) and 108 (highest point The solid lines are a guide to the

eye; the lower line has a slope of 1 and the upper line has a slope We have simulated flow through idealized three-
of 2. dimensional porous structures composed of random arrays of

FIG. 1. Relative errorg., as a function of the number of itera-

system size using the matrix method, as opposed to the qu
dratic dependence expected for diffusive dynanfies, the
time-dependent lattice-Boltzmann metho#or the highest
resolution (=126) and the highest porosityp&0.9) the

100

108 |

Imat ; Ilbe
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10° . . . . TABLE Il. Reduced permeability K&? and Kozeny coefficient
Co [see Eq.(25)] for a single configuration of random spheres.
Ky/R? Ky /R* Ky, IR?

104} L R ¢ (100%) (103 (103 ¢
~ 15 2.00 0463 0.843 12.5 0.252 3.08
L 211 0.376 0.482 6.00 0.240 2.52
~§ 10° ¢ 222 0.280 0.249 2.21 0.0922 212
235 0.179 0.143 0.573 0.107 1.64
30 4.00 0464 0491 8.80 0.0702 4.28
102 | . . 421 0.376 0.257 4.07 0.0584  3.67
. , . , 444 0.277 0.140 1.48 0.0565 2.75
0.0 0.1 0.2 0.3 0.4 0.5 471 0.177 0.0735 0.379 0.0377 2.33
¢ 5.00 0.087 0.0083 0.0295 0.0046 2.62
60 8.00 0.464 0.399 7.59 0.0409 5.08
FIG. 4. Number of iterations to convergeneg,<10 ¢, in a 8.42 0.376 0.262 3.46 0.0499 4.38
random array of spheres as a function of porosityThe solid 889 0.277 0.133 1.25 00434 361
symbols are the results of the matrix methdg,.0 and the open 941 0176 00514 0.297 0.0268 2.93

symbols those of the time-dependent methdg.). Results are
shown for three mesh resolutioris= 30 (circles, L =60 (squares
andL =120 (triangles.

10.0 0.087  0.0082 0.0322 0.0063  2.53
120 16.0 0.464  0.400 7.36 0.0502 5.11
16.8 0.376  0.256 3.33 0.0503 4.49

spheres, using the 18-speed model discussed in [RE}. 1.8 0277 0.134 1.18 00426 3.82
This model has velocities in thE00 and the{110 direc- 18.8 0176~ 0.0474 0.275 00242 3.21
tions and does not include rest particles; it is isotropic and 20.0 0.087  0.0075 0.0284  0.0057  2.73
Galilean invariant. The coefficienty, are equal to 1/12 for 240 400 0.085  0.0074 0.0277  0.0055  2.94
the {100 directions and 1/24 for th§l10; directions, while
aj=2ay. All configurations use a cubic unit cell with peri-
odic boundary conditions in all directions. The linear dimen-
sion of the lattice in each direction is(i.e., N=L%) and the
external pressure gradient is again applied inytlagrection.
Five different random configurations of 54 nonoverlap-

Carman-Kozeny equation for nonoverlapping spheres
glecting the dependence of specific surface area on micro-
structure [36]:

ping spheres, with radiuB= 2, were obtained by melting a Kyy @3
bcc lattice in a box with a linear dimensiar= 15, giving a RZ ™ 9cy(1- )% (29)

porosity ¢=0.464. To obtain lower porosities, four new con-
figurations were created from each of the original configura-

tions, with porosities of approximately 0.4, 0.3, 0.2, and 0.1 OUr results forc, at the highest porosity=0.464) con-

again by increasing the radius. In addition, each configura\—’erge toa value slightly_ larger Fhan(§ee Table I, consis—.
nt with values found in the literature for nonoverlapping

tion was replicated at higher mesh resolutions by increasin(ée h he d . h d . '
all linear dimensiongsphere coordinates, sphere radius, an P ere$37—3q._ The decrease i, wit lecreasing porosity
box length by factors of 2, 4, and 8. We emphasize that thelS consistent with the expected reduction in specific surface

arrangement of spheres in a particular configuration was th&é2 as the spheres overlap. However, a quantitative analysis
same for each mesh resolution and porosity. of the dependence af, on porosity is outside the scope of

In Fig. 4, we show the rate of convergence as a functiorfiS Paper.

of porosity and mesh resolution. We compare the number of The effect of m_esh size on the permeability of random
iterations to convergences {<10~°) for the matrix method ~arrays of overlapping spheres has been analyzed as a func-

(I..) and the conventional time-dependent Iattice-tion of porosity for one of the five initial configurations
BcTI?zmann method|(,.). The results are averages over the(Table I); the sphere coordinates, relative to the box length,

five different random configurations. Just as for the disks, th&r€ th_e sam~e in eacg Cﬁsel' The configlguration with the Igwest
matrix method becomes increasingly more efficient with dePorosity (¢~0.1) and the lowest resolution. € 15) turne

creasing porosity; at the lowest porosity it requires a factor ofPut to have no p_ercolatmg clusters gnd was discarded. It was
20—65 fewer iterations. replaced by a higher mesh resolution structure-@40) at

The macroscopic flow of fluid in a porous medium is the same porosity. To compare the different mesh resolutions

characterized by the permeability tensarwhich relates the W€ normalized the permeabilitk by the square of the

volume-averaged momentum fldyy to the external pressure Sphet:_?_ _rad:gﬁ!;zto mak;: it dimegsiorélessd The r(Iaduced per-
gradientvpext (Darcy’s law), meabilities are shown in Fig. 5 and are also summa-

rized in Table Il. It can be seen that the resultslfer 60 and
_ L =120 are within 10% of one another, even at low porosity.
v(j)=K-g. (24) We have quantified the rate of convergence of the perme-
ability with increasing mesh resolution by expressing the
We can compare our calculations of permeability with therelative error



3372

14

12t

10

K  /R?

10°

0.3 0.4

¢

0.0 0.1 0.2 0.5

R. VERBERG AND A. J. C. LADD

PRE 60
3
A »
o+ _ _ _|
.
Heg ® °
- .
3 ,|
R
ol
N
- . . . .
0.0 0.1 0.2 03 0.4 0.5

¢

FIG. 5. Reduced permeability of a random array of spheres,

Kyy/Rz, as a function of porosity¢: L=15 (circles, L=30
(squareg L =160 (triangles, andL =120 (diamonds (cf., Table I).

_ |Kyy(|—)_Kyy(|—:°°)|

, 26

Kyy(L=)] (20
as a power of the box lengtlecL R, with
Kyy(2L) =Ky, (L

R(L)=log [Kyy(2L) = Kyy(L)] 27

?[Kyy(4L) —Kyy(2L)[°

Thus R=1 represents linear convergendes 2, quadratic
convergence, etc. FAR(15), the permeability of structures
with linear dimension& =15, 30, and 60 are used, fB30)
those with linear dimensions=30, 60, and 120; and for
R(60) those with linear dimensions=60, 120, and 240.
The results shown in Fig. 6 indicate that the convergence i
approximately second order in the mesh resolution, as e
pected from our choice of bounce back rules. Deviations

smallerL are due to the fact that the convergence is not truly

asymptotic. This is illustrated by the negative valudk¢80)
at the lowest porosity, while the higher resolution simula-
tions at the same porosity indicate quadratic convergenc
R(60)=2.5.

VI. CONCLUSION

In this paper we have presented a numerical method t
solve the Stokes equations for stationary low-Reynolds

FIG. 6. Rate of convergend®(L) of the permeability of a ran-
dom array of spheres as a function of porosity,L =15 (circles,
L =30 (squares andL =60 (triangles.

distribution function for low-Reynolds-number flows. It
maintains the advantages of the lattice-Boltzmann method; in
particular that arbitrarily complex geometries are easily in-
corporated. The new method is 1-2 orders of magnitude
faster than the conventional time-dependent method for the
model configurations discussed in this paper, although the
actual time to update a single node is about 30% longer. The
rate of convergence of the matrix method may be further
increased by preconditionin85]. A drawback of the present
method is that it requires approximately 50% more memory
than the conventional lattice-Boltzmann method.

In addition, we have presented a detailed analysis of the
convergence of the permeability as a function of mesh reso-
Jution for random arrays of spheres. Our results indicate
S . ; .
Second-order convergence in the mesh resolution for the link
hounce-back method, in agreement with theoretical analysis
or planar walls[33,34].

The matrix method can be extended to finite-Reynolds-
number flows, although the lattice-Boltzmann equation is no
longer linear in the velocity distribution function. However,

Stis impossible at this point to make any estimate of the gain

in the convergence rate. This question remains open to fur-
ther research.
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