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Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method

R. Verberg and A. J. C. Ladd
Chemical Engineering Department, University of Florida, Gainesville, Florida 32611-6005

~Received 14 April 1999!

We present a numerical method to solve the equations for low-Reynolds-number~Stokes! flow in porous
media. The method is based on the lattice-Boltzmann approach, but utilizes a direct solution of time-
independent equations, rather than the usual temporal evolution to steady state. Its computational efficiency is
1–2 orders of magnitude greater than the conventional lattice-Boltzmann method. The convergence of the
permeability of random arrays of spheres has been analyzed as a function of mesh resolution at several
different porosities. For sufficiently large spheres, we have found that the convergence is quadratic in the mesh
resolution.@S1063-651X~99!05309-X#

PACS number~s!: 47.11.1j, 47.15.Gf, 47.55.Mh
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I. INTRODUCTION

In the past decade, the lattice-Boltzmann method has
come the simulation method of choice for a number of flu
dynamics problems@1#. Initially developed by McNamara
and Zanetti@2# as a means to eliminate the statistical no
inherent in a lattice-gas automaton~LGA! @3# and developed
into a practical simulation tool by Higueraet al. @4,5#, it has
recently been derived directly from the Boltzmann equat
by discretization in time and phase space@6–8#. In contrast
with the LGA, the lattice-Boltzmann model is Galilean in
variant and has a velocity-independent equation of s
@9,10#. It retains the capability, inherited from LGA, to in
corporate complex boundary surfaces in a straightforw
and reliable manner@11–14#. The lattice-Boltzmann method
is at least comparable in speed and accuracy with compe
methods@15–18#.

Lattice-Boltzmann simulations have been applied to sim
late fluid flow in different porous structures, most recently
packed bed of fibers@19#. However, the calculations are lim
ited by the temporal evolution of the flow fields to stea
state. The inherent slowness of diffusive momentum tra
port, combined with the irregularity of the geometrical stru
tures, often require simulations of 104– 105 cycles to deter-
mine the steady-state flow field. In addition, the slowness
convergence often makes if difficult to decide when the s
tem has actually reached a steady state. It is possible to
ficially accelerate the convergence of the permeability,
the reduction in the number of cycles is typically only
factor of 2 or 3@14#. In this paper we present a more radic
approach, which involves a direct solution of the tim
independent equations. The key idea is to solve for
steady-state mass and momentum densities directly, ra
than allow them to evolve diffusively in time; this requires
reformulation of the normal lattice-Boltzmann algorithm.

In Sec. II we outline the essential ingredients of t
lattice-Boltzmann method and in Sec. III we present
method to compute the stationary solution of a lattic
Boltzmann model. In Secs. IV and V we compare the res
of the method with the standard time-dependent latti
Boltzmann method in two and three dimensions. We anal
the rate of convergence to steady state as a function of
porosity and lattice size. In Sec. V we also present pre
PRE 601063-651X/99/60~3!/3366~8!/$15.00
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results for the permeability of random arrays of spheres a
function of mesh resolution and porosity. We end with
short discussion.

II. LATTICE BOLTZMANN METHOD

In this section we summarize the theoretical backgrou
to the lattice-Boltzmann method; more extensive discussi
can be found in the literature@1,2,4,9,20#. The state of the
system is characterized by the discretized one-particle ve
ity distribution functionni(r ,t), which describes the numbe
of fluid particles at a lattice noder at time t with a velocity
ci . Here r , t, andci are discrete, whereasni(r ,t) itself is a
continuous variable. The mass densityr(r ,t) and the mo-
mentum densityj (r ,t) are defined by moments of this veloc
ity distribution function

r~r ,t !5(
i 51

J

ni~r ,t !, ~1!

j ~r ,t !5(
i 51

J

cini~r ,t !. ~2!

Herej (r ,t)5r(r ,t)u(r ,t), with u(r ,t) the macroscopic fluid
velocity; the summation runs over the complete set of velo
ties$ci%. For the two-dimensional lattice modelJ59, and for
the three-dimensional modelJ518.

The time evolution of the velocity distribution function i
the presence of an external force~e.g., an externally applied
pressure gradient or gravitational field! is governed by the
discretized Boltzmann equation

ni~r1ci ,t11!5ni~r ,t !1D i~r ,t !1 f i~r ,t !, ~3!

whereD i(r ,t) describes the change inni(r ,t) as a result of
collisions and f i(r ,t) incorporates the effect of externa
forces. Each lattice-Boltzmann update consists of two ste
The first step includes the effects of collisions and exter
forces: for later use we define the velocity distribution fun
tion after this step asni* (r ,t),

ni* ~r ,t !5ni~r ,t !1D i~r ,t !1 f i~r ,t !. ~4!
3366 © 1999 The American Physical Society
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PRE 60 3367SIMULATION OF LOW-REYNOLDS-NUMBER FLOW VIA . . .
In the second step the post-collision distributionsni* (r ,t) are
propagated to the neighboring nodes in the direction of th
velocitiesci ,

ni~r1ci ,t11!5ni* ~r ,t !. ~5!

For convenience all quantities in this paper are given in
tice units; i.e., the nearest-neighbor distance and the t
step are both unity.

For low-Reynolds-number flows, the equilibrium distrib
tion function ni

eq(r ) is only required to linear order in th
fluid velocity @20#; i.e.,

ni
eq~r !5r~r !@a0

i 1a1
i ci•u~r !#. ~6!

The coefficientsa0
i anda1

i are determined by the condition
that the shear viscosity is isotropic and that the velocity m
ments ofni

eq(r ) reproduce the correct hydrodynamic fiel
for low-Reynolds-number flows: i.e.,( ini

eq(r )5r(r ),
( icini

eq(r )5 j (r ), and ( icicini
eq(r )5cs

2r(r )1, where cs

5A1/2 is the speed of sound and1 is the unit tensor. Nu-
merical values for the coefficientsa0

i and a1
i , in two and

three dimensions, are given below.
The collision operatorD i(r ,t) can be simplified by linear-

izing about the equilibrium distribution function@4,20#. It
takes a particularly simple form when the kinematic visc
ity v51/6 @20#

D i~r ,t !52@ni~r ,t !2ni
eq~r !#, ~7!

which is equivalent to the exponential relaxation time mo
@9,21# with a relaxation timet51. This choice of collision
operator is especially suitable for low-Reynolds-numb
flows, since the viscosity is not an important parameter
this case.

We incorporate an external pressure gradient“pext by
applying a uniform force densityg52“pext to the fluid, i.e.,

f i5a1
i ci•g. ~8!

Thus a constant increment of momentumD j5g is added to
each node at each time step. Using Eqs.~6!–~8!, we write the
lattice-Boltzmann equation@Eq. ~3!# for low-Reynolds-
number flow, in the presence of a uniform force density,

ni~r1ci ,t11!5(
j 51

J

~a0
i 1a1

i ci•cj !nj~r ,t !1a1
i ci•g. ~9!

To simulate the interactions between fluid and solid,
lattice-Boltzmann model must be modified to incorporate
boundary conditions imposed on the fluid by the solid pha
Fixed solid objects were introduced into lattice-gas mod
by replacing the normal collision rules at a specified set
nodes by the ‘‘bounce-back’’ collision rule@22#, in which
incoming particles are reflected back towards the nodes
came from. Detailed analysis of the bounce-back rule
two-dimensional Poiseuille flow has shown that the locat
of the zero-velocity plane is shifted from the location of t
boundary nodes, into the fluid, by an amount 0.51a @23–
25#, with a close to zero for kinematic viscosities near 1/6.
the hydrodynamic boundary is assumed to lie along
boundary nodes, the convergence of the flow field is o
ir
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linear in the mesh resolution. Approximate second-or
convergence can be achieved by assuming that the hydr
namic boundary is displaced by half a lattice spacing fr
the physical one, and then choosing a kinematic visco
close to 1/6, so thata is essentially zero@24#. However, this
method is still only first order for arbitrary orientations of th
boundary plane@25#. Several attempts to obtain more acc
rate boundary conditions have been suggested in the lit
ture @26–31#, but they are not easily applied to irregula
geometries.

A fundamental improvement to the nodal bounce-ba
rule is a bounce-back mechanism where the boundary no
lie along the links, midway between the solid and fluid nod
@32#. The key difference is that a particle at a node adjac
to the solid surface hits the surface and returns in one t
step, whereas it takes two time steps to return when
boundary nodes are located at the lattice nodes. In this ca
can be shown that the hydrodynamic boundary is locate
the boundary nodes, i.e., midway between the solid and fl
nodes, with deviations that are second order in the m
resolution@33,34#. In contrast with the second-order schem
cited above, this method is applicable to surfaces of arbitr
shape, without additional complications@13#.

In the presence of a uniform force density, the calculat
of the flow field is somewhat ambiguous, owing to the d
creteness of the lattice-Boltzmann update@34#. Although in
most published work the momentum density is measured
fore the application of the force density, it could equally w
be measured afterwards. Since the momentum density be
and after forcing are related,j1(r ,t)5 j2(r ,t)1g, the value
of j (r ,t) depends on the point in the update cycle where i
measured. To decide on the correct definition of the mom
tum density, drag coefficients obtained by driving the flu
flow with a uniform force density have been compared w
those obtained using a constant velocity boundary condi
@13#. The results agreed exactly if the mean of the veloc
field before and after forcing, i.e.,@ j2(r ,t)1 j1(r ,t)#/2, was
used. Therefore, we calculate the momentum flow fields a
half the force density is applied, which is equivalent.

Given a discretized model of a porous structure, defin
by the boundary nodes at the solid-fluid interfaces, Eq.~9!
can be successively iterated in time to determine the ste
state momentum flow field. It can be shown that this lon
time limit, with bounce-back conditions at the solid boun
aries, approximates the creeping flow or Stokes equation
the presence of an externally applied pressure gradi
“pext52g, with stick boundary conditions at the soli
walls. In the next section we show that the steady-state
lution can also be obtained directly, by solving a set of line
equations using a conjugate-gradient technique.

III. MATRIX FORMULATION

Although it may seem that the stationary solution of equ
tion Eq. ~9! can be found by settingni(r1ci ,t11)
5ni(r ,t), a more careful analysis reveals that most of t
equations are linearly dependent. In fact, due to mass
momentum conservation during collisions, the number
constraints for each fluid node is equal toD11, with D
being the spatial dimension of the lattice. Hence, the to
number of constraints for the entire lattice isNf(D11), with
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3368 PRE 60R. VERBERG AND A. J. C. LADD
Nf being the number of fluid nodes. Since the number
equations isJNf , andJ is greater thanD11 for all relevant
velocity models, no unique stationary solution of Eq.~9! can
be found in this way. The equations must be supplemen
by the equilibrium distribution function@Eq. ~6!# relating the
ni ’s to the D11 conserved quantitiesr(r ,t) and j (r ,t). In
fact, it is much more efficient to solve directly forr(r ,t) and
j (r ,t).

Following this reasoning we write the lattice Boltzman
equation@Eq. ~9!# in terms of the mass and momentum de
sities,r(r ,t) andj (r ,t), using Eqs.~1!, ~2!, and~6!. A vector
notation is used, in which lower case symbols repres
properties of the individual nodes and upper case sym
represent properties of the entire lattice. The velocity dis
bution functionni(r ,t) is then written as

n~r ,t !5$n1~r ,t !,...,nJ~r ,t !%; r5r1 ,...,rNf
,

~10!
N~ t !5$n~r1 ,t !,...,n~rNf

,t !%.

A similar notation is used for the post-collision velocity di
tribution functionni* (r ,t) andN* (t). Since the force density
is uniform,

f5$ f 1 ,...,f J%, F5$f,...,f%. ~11!

Finally, M (t), the vector of conserved quantities is defin
by

m~r ,t !5$r~r ,t !,j ~r ,t !%; r5r1 ,...,rNf
,

~12!
M ~ t !5$m~r1 ,t !,...,m~rNf

,t !%.

The dimension of the vectorsn, n* , andf is J, while that of
the corresponding vectorsN, N* , andF is JNf . The dimen-
sions ofm andM areD11 and (D11)Nf , respectively.

We proceed by writing the lattice-Boltzmann update
terms of the vector of conserved quantitiesM (t). First, we
write the collision step in vector notation,

n* ~r ,t !5e•m~r ,t !1f,
~13!

N* ~ t !5E•M ~ t !1F.

The matrix E is a JNf3(D11)Nf block-diagonal matrix,
E5diag$e,...,e%, of J3(D11) expansion matricese, which
are defined such that thei th row of e is given by@c.f., Eq.
~6!#

ei5$a0
i ,a1

i ci%. ~14!

Note that the right-hand side of Eq.~13! is already written in
terms of the conserved quantities.

The propagation step is incorporated by writingN(t11)
in terms of N* (t). This requires shifting the elements o
N* (t) in accordance with the propagation of the veloc
distribution functions,ni(r ,t), to the neighboring nodesr
1ci . The propagation step can be written as a simple ma
multiplication

N~ t11!5T•N* ~ t !, ~15!
f

d

-

nt
ls
i-
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whereT is theJNf3JNf transition matrix, withTi j 51 for
valid transitions andTi j 50 elsewhere. In the case of norm
propagation~i.e., if r1ci is a fluid node!, the only nonzero
elements ofT have column indexes corresponding to noder
and velocity ci paired with row indexes corresponding
noder1ci and velocityci . If r1ci is a solid node, the mid-
way bounce-back rule is applied. In that case the only n
zero element in the column corresponding to noder and
velocity ci is the row corresponding to noder and velocity
ci 8 , whereci 8 is in the opposite direction toci .

Finally, we project the velocity distribution functions afte
propagation onto the conserved quantities,

m~r ,t11!5p•n~r ,t11!,
~16!

M ~ t11!5P•N~ t11!,

with the (D11)Nf3JNf block-diagonal matrix P
5diag$p,...,p% and the (D11)3J projection matrixp de-
fined such that itsj th column is given by@c.f., Eqs.~1! and
~2!#

pj5$1,cj%
T. ~17!

Using Eqs.~13!, ~15!, and~16!, we obtain

M ~ t11!5P•T•~E•M ~ t !1F!, ~18!

which completes the formulation of the lattice-Boltzma
equation as a set of linear equations in terms of the vecto
conserved quantitiesM . We note that Eq.~18! is equivalent
to Eq. ~9!, coupled with the midway bounce-back rule at t
boundary nodes, but there is no apparent computational
vantage in this formulation of the time-dependent proble
Equation~18! is equivalent to a set of finite-difference equ
tions with a particular set of stencils that are based on
lattice-Boltzmann update. For comparison with other fini
difference methods we give example stencils for propaga
and bounce-back in Table I.

At steady stateM (t11)5M (t), reducing Eq.~18! to the
linear system of equations

A•M5B, ~19!

with

A512P•T•E ~20!

and

B5P•T•F. ~21!

Despite appearances, Eq.~19! cannot be solved in its
present form. In going from the time-evolution equation@Eq.
~18!# to the time-independent equation@Eq. ~19!#, we have
neglected the fact that the steady-state solution depend
the initial mass density,r(r ,t50), as well as on the con
straints imposed by mass and momentum conservation.
steady-state momentum densityj ~r ! is completely deter-
mined by the boundary conditions and force density,
since only¹r couples to the momentum flux, the stead
state mass densityr~r ! is undetermined to within an additiv
constant. This implies that one can always express the d
sity at a certain fluid node in terms of the densities at all
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TABLE I. Stencils for propagation and bounce-back in the~1,0,0! and ~1,1,0! directions, based on the
lattice-Boltzmann update. The updated vector of conserved quantities at a particular nodei is a sum of
contributions from neighboring fluid nodesj. Each contribution is obtained by a matrix multiplication of th
appropriate propagation stencil~normalized by dividing by 24! with the vector of conserved quantities at th
neighboring nodej. In the case of a solid neighboring node, the bounce-back stencil is used, together w
conserved quantities at nodei. All other stencils can be obtained straightforwardly by symmetry operati

Propagation Bounce-back
~1,0,0! ~1,1,0! ~1,0,0! ~1,1,0!

S2 4 0 0

2 4 0 0

0 0 0 0

0 0 0 0

D S1 2 2 0

1 2 2 0

1 2 2 0

0 0 0 0

D S2 24 0 0

2 24 0 0

0 0 0 0

0 0 0 0

D S1 22 22 0

1 22 22 0

1 22 22 0

0 0 0 0
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other nodes, and consequently Eqs.~19! still have one lin-
early dependent row. In order to obtain a unique solution t
satisfies both the boundary conditions and the initial con
tions, we replaced the first equation of the system@Eq. ~19!#
with an equation that sets the total fluid mass to a const
We have verified that the steady-state solution of the m
mentum density is independent of the value of the total fl
mass, which we set to zero for convenience. The resul
linear problem is regular, but with a nonsymmetric coe
cient matrixA, and can be solved using the biconjugate g
dient algorithm@35#.

If the sample contains disconnected pores, the total fl
mass in each region must be specified independently.
simplest to treat these disconnected clusters, common in
rous media, as individual systems. We used a cluster ana
program to separate the different clusters and determined
flow in each cluster individually. The volumetric flow rate
through all the percolating clusters were added togethe
obtain the total volumetric flow, while nonpercolating clu
ters were treated as solid since they do not contribute to
permeability.

A final complication arises from the fact that the mass a
momentum densities do not uniquely determine the velo
distribution function. Therefore, applying Eq.~6! to the
steady-state mass and momentum densities does not le
the steady-state velocity distribution function. To obtain t
correct velocity distribution function from the solution vect
M @Eq. ~19!#, a complete lattice-Boltzmann cycle@Eqs.~13!
and ~15!# is necessary. Only one cycle is required beca
every velocity distribution function with the correct stead
state mass and momentum densities relaxes to the ste
state velocity distribution function in one time step@Eq. ~7!#.
The components of the resulting vectorN are equivalent to
those obtained from the long-time limit of Eq.~9!. This has
also been verified numerically.

IV. TWO-DIMENSIONAL FLOWS

We have simulated fluid flow in periodic and random a
rays of disks. All simulations used a squareL3L lattice with
periodic boundary conditions in both directions. The to
number of lattice nodes occupied by fluid isNf , giving a
porosityf5Nf /N, whereN5L2. The external pressure gra
dient is applied in they direction, such that“pext52êy ;
i.e., the uniform force densityg5êy . We used a nine-spee
at
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model comprising rest particles and particles with velocit
in the $10% and the$11% directions@20#; it is isotropic and
Galilean invariant. The coefficients for the rest particles,a0

0

anda1
0, are 1/6 and 1/3, respectively, and the coefficients

the remaining velocities,a0
i anda1

i , are equal to 1/6 and 1/3
for the $10% directions and 1/24 and 1/12 for the$11% direc-
tions.

To check the new algorithm, which we refer to as t
matrix method, we first simulated a square array of disks
two porosities,f50.6 andf50.9, and three mesh resolu
tions, for comparison with Ref.@13#. The volumetric flow
rate^j & is defined as the volume-averaged momentum den

^ j &5
1

2
fg1

1

N (
Nf

j ~r !, ~22!

and the total drag forceFD is given byFD5Ng5Nêy . In Eq.
~22! we have accumulated half the applied force density
each fluid node, as discussed in Sec. II. The numerical res
for the reduced drag force,FD/v^ j &, obtained with the matrix
method are identical to those in Table IV of Ref.@13#.

In Fig. 1 we show the relative error,

«c5
u^ j &2^ j &convgu

u^ j &convgu
, ~23!

as a function of the number of iterations, for the mat
method I mat, and the conventional time-dependent lattic
Boltzmann methodI lbe. The errors are measured relative
the fully converged volumetric flow rate,^ j &convg. Results
were obtained for radiusR57.5 disks at porositiesf50.6
(L521) andf50.9 (L542). For the high porosity sampl
the matrix method converges approximately 30 times fa
than the time-dependent method, whereas at low porosity
gain is less, approximately a factor 5.

In Fig. 2 we show the number of iterations required
reduce the relative error«c , to less then 1026 as a function
of the linear dimensionL. The slope of the lower solid line
~matrix! is 1 and that of the upper solid line~lbe! is 2. The
vertical bars span a relative error between 1024 ~lowest
point! and 1028 ~highest point!. The results indicate that th
time to convergence increases approximately linearly w
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3370 PRE 60R. VERBERG AND A. J. C. LADD
system size using the matrix method, as opposed to the
dratic dependence expected for diffusive dynamics~i.e., the
time-dependent lattice-Boltzmann method!. For the highest
resolution (L5126) and the highest porosity (f50.9) the

FIG. 2. Number of iterations required to reduce the relative e
«c to less than 1026 as a function of the linear dimension,L ~in
lattice units!. The solid symbols are the results of the matrix meth
(I mat) and the open symbols those of the time-dependent me
(I lbe). The system is a square array of disks with radiusR57.5 and
porositiesf50.6 ~circles! andf50.9 ~squares!. The vertical bars
indicate a range of convergence criteria between 1024 ~lowest
point! and 1028 ~highest point!. The solid lines are a guide to th
eye; the lower line has a slope of 1 and the upper line has a s
of 2.

FIG. 1. Relative error,«c , as a function of the number of itera
tions, for the matrix method,I mat ~a! and the time-dependen
methodI lbe ~b!. The system is a square array of disks with rad
R57.5 and porosityf50.6 ~circles! andf50.9 ~squares!.
a-

gain in convergence rate is approximately two orders
magnitude.

Next we analyze the rate of convergence in idealized tw
dimensional porous structures composed of random array
disks. We generated three systems, containing 9, 81, and
disks per unit cell with linear dimensionsL563, 189, and
567, respectively. The disk radius and porosity of each s
tem wereR57.5 andf50.6. For each system size, fiv
configurations were generated by Monte Carlo simulat
and from each of those 15 configurations four additional c
figurations were created, with porosities 0.55, 0.50, 0.45,
0.40, by increasing the radius of the disks. Each configu
tion was cluster analyzed to detect percolating pore n
works. As discussed in Sec. III, we simulated flow in ea
percolating pore structure individually and then accumula
the volumetric flow rates at the same pressure gradient. N
percolating pores were treated as solid nodes in these s
lations, since they do not contribute to the permeability.

In Fig. 3 we show the number of iterations required
reduce the relative error to less than 1026 as a function of
porosity f. The results are averages over five random c
figurations of 81 or 729 disks; for clarity the series with ni
disks has not been shown, but the same qualitative res
were obtained. At each lattice size, the number of iterati
to convergence increases smoothly with decreasing poro
at f50.40 the matrix method is about 40 times faster th
the time-dependent method. At this porosity, the relative
ror for the 729 disk system failed to converge beyond 1022,
even after 105 steps; at this point the calculation was term
nated. Thus for random arrays, the matrix method beco
much more efficient than the time-dependent method atlow
porosity, in contrast to results for periodic arrays. The rea
for the slow convergence of the time-dependent method
low-porosity random structures is unknown, but it is a u
versal feature in both two and three dimensions.

V. THREE-DIMENSIONAL FLOWS

We have simulated flow through idealized thre
dimensional porous structures composed of random array

r

od

pe

FIG. 3. Number of iterations to convergence,«c,1026, in a
random array of disks as a function of porosityf. The solid sym-
bols are the results of the matrix method (I mat) and the open sym-
bols those of the time-dependent method (I lbe) for 81 disks~circles!
and 729 disks~squares!.
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spheres, using the 18-speed model discussed in Ref.@20#.
This model has velocities in the$100% and the$110% direc-
tions and does not include rest particles; it is isotropic a
Galilean invariant. The coefficientsa0

i are equal to 1/12 for
the $100% directions and 1/24 for the$110% directions, while
a1

i 52a0
i . All configurations use a cubic unit cell with per

odic boundary conditions in all directions. The linear dime
sion of the lattice in each direction isL ~i.e., N5L3) and the
external pressure gradient is again applied in they direction.

Five different random configurations of 54 nonoverla
ping spheres, with radiusR52, were obtained by melting a
bcc lattice in a box with a linear dimensionL515, giving a
porosityf50.464. To obtain lower porosities, four new co
figurations were created from each of the original configu
tions, with porosities of approximately 0.4, 0.3, 0.2, and 0
again by increasing the radius. In addition, each configu
tion was replicated at higher mesh resolutions by increas
all linear dimensions~sphere coordinates, sphere radius, a
box length! by factors of 2, 4, and 8. We emphasize that t
arrangement of spheres in a particular configuration was
same for each mesh resolution and porosity.

In Fig. 4, we show the rate of convergence as a funct
of porosity and mesh resolution. We compare the numbe
iterations to convergence («c,1026) for the matrix method
(I mat) and the conventional time-dependent lattic
Boltzmann method (I lbe). The results are averages over t
five different random configurations. Just as for the disks,
matrix method becomes increasingly more efficient with
creasing porosity; at the lowest porosity it requires a facto
20–65 fewer iterations.

The macroscopic flow of fluid in a porous medium
characterized by the permeability tensorK , which relates the
volume-averaged momentum flow^j & to the external pressur
gradient¹p

ext ~Darcy’s law!,

n^ j &5K•g. ~24!

We can compare our calculations of permeability with t

FIG. 4. Number of iterations to convergence,«c,1026, in a
random array of spheres as a function of porosityf. The solid
symbols are the results of the matrix method (I mat) and the open
symbols those of the time-dependent method (I lbe). Results are
shown for three mesh resolutions:L530 ~circles!, L560 ~squares!,
andL5120 ~triangles!.
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Carman-Kozeny equation for nonoverlapping spheres~ne-
glecting the dependence of specific surface area on mi
structure! @36#:

Kyy

R2 5
f3

9c0~12f!2 . ~25!

Our results forc0 at the highest porosity (f50.464) con-
verge to a value slightly larger than 5~see Table II!, consis-
tent with values found in the literature for nonoverlappi
spheres@37–39#. The decrease inc0 with decreasing porosity
is consistent with the expected reduction in specific surf
area as the spheres overlap. However, a quantitative ana
of the dependence ofc0 on porosity is outside the scope o
this paper.

The effect of mesh size on the permeability of rando
arrays of overlapping spheres has been analyzed as a
tion of porosity for one of the five initial configuration
~Table II!; the sphere coordinates, relative to the box leng
are the same in each case. The configuration with the low
porosity (f'0.1) and the lowest resolution (L515) turned
out to have no percolating clusters and was discarded. It
replaced by a higher mesh resolution structure (L5240) at
the same porosity. To compare the different mesh resolut
we normalized the permeabilityK by the square of the
sphere radiusR to make it dimensionless. The reduced pe
meabilitiesK /R2 are shown in Fig. 5 and are also summ
rized in Table II. It can be seen that the results forL560 and
L5120 are within 10% of one another, even at low poros

We have quantified the rate of convergence of the per
ability with increasing mesh resolution by expressing t
relative error

TABLE II. Reduced permeability K/R2 and Kozeny coefficient
c0 @see Eq.~25!# for a single configuration of random spheres.

L R f
Kyx /R2

(1023)
Kyy /R2

(1023)
Kyz /R2

(1023) c0

15 2.00 0.463 0.843 12.5 0.252 3.08
2.11 0.376 0.482 6.00 0.240 2.52
2.22 0.280 0.249 2.21 0.0922 2.12
2.35 0.179 0.143 0.573 0.107 1.64

30 4.00 0.464 0.491 8.80 0.0702 4.28
4.21 0.376 0.257 4.07 0.0584 3.67
4.44 0.277 0.140 1.48 0.0565 2.75
4.71 0.177 0.0735 0.379 0.0377 2.33
5.00 0.087 0.0083 0.0295 0.0046 2.62

60 8.00 0.464 0.399 7.59 0.0409 5.08
8.42 0.376 0.262 3.46 0.0499 4.38
8.89 0.277 0.133 1.25 0.0434 3.61
9.41 0.176 0.0514 0.297 0.0268 2.93

10.0 0.087 0.0082 0.0322 0.0063 2.53
120 16.0 0.464 0.400 7.36 0.0502 5.11

16.8 0.376 0.256 3.33 0.0503 4.49
17.8 0.277 0.134 1.18 0.0426 3.82
18.8 0.176 0.0474 0.275 0.0242 3.21
20.0 0.087 0.0075 0.0284 0.0057 2.73

240 40.0 0.085 0.0074 0.0277 0.0055 2.9
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«5
uKyy~L !2Kyy~L5`!u

uKyy~L5`!u
, ~26!

as a power of the box length,«}L2R, with

R~L !5 log2

uKyy~2L !2Kyy~L !u
uKyy~4L !2Kyy~2L !u

. ~27!

Thus R51 represents linear convergence,R52, quadratic
convergence, etc. ForR(15), the permeability of structure
with linear dimensionsL515, 30, and 60 are used, forR(30)
those with linear dimensionsL530, 60, and 120; and fo
R(60) those with linear dimensionsL560, 120, and 240.
The results shown in Fig. 6 indicate that the convergenc
approximately second order in the mesh resolution, as
pected from our choice of bounce back rules. Deviations
smallerL are due to the fact that the convergence is not tr
asymptotic. This is illustrated by the negative value ofR(30)
at the lowest porosity, while the higher resolution simu
tions at the same porosity indicate quadratic converge
R(60)52.5.

VI. CONCLUSION

In this paper we have presented a numerical method
solve the Stokes equations for stationary low-Reynol
number flow in porous media. The method gives the stea
state solution directly, utilizing the linearity of the velocit

FIG. 5. Reduced permeability of a random array of sphe
Kyy /R2, as a function of porosityf: L515 ~circles!, L530
~squares!, L560 ~triangles!, andL5120 ~diamonds! ~cf., Table II!.
-
d
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x-
at
y

-
e,

to
-

y-

distribution function for low-Reynolds-number flows.
maintains the advantages of the lattice-Boltzmann method
particular that arbitrarily complex geometries are easily
corporated. The new method is 1–2 orders of magnitu
faster than the conventional time-dependent method for
model configurations discussed in this paper, although
actual time to update a single node is about 30% longer.
rate of convergence of the matrix method may be furt
increased by preconditioning@35#. A drawback of the presen
method is that it requires approximately 50% more mem
than the conventional lattice-Boltzmann method.

In addition, we have presented a detailed analysis of
convergence of the permeability as a function of mesh re
lution for random arrays of spheres. Our results indic
second-order convergence in the mesh resolution for the
bounce-back method, in agreement with theoretical anal
for planar walls@33,34#.

The matrix method can be extended to finite-Reynol
number flows, although the lattice-Boltzmann equation is
longer linear in the velocity distribution function. Howeve
it is impossible at this point to make any estimate of the g
in the convergence rate. This question remains open to
ther research.
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