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Semiclassical interaction of moving two-level atoms with a cavity field: From integrability
to Hamiltonian chaos
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The dynamics of an ensemble of two-level atoms moving through a single-mode lossless cavity is investi-
gated in the semiclassical and rotating-wave approximations. The dynamical system for the expectation values
of the atomic and field observables is considered as a perturbation to one of the following integrable versions:
(i) a model with atoms moving throughspatially inhomogeneous resondigid, and(ii) a model with atoms
interacting witha nonresonaneigenmode which is assumed toli@mogeneousn the cavity size. We find the
general exact solutions for both the models and show that they contain special solutions describing a coherent
effect of population and radiation trapping. Using the Melnikov method, we prove analytically transverse
intersections of stable and unstable manifolds of a hyperbolic fixed point under a small modulation of the
vacuum Rabi frequency. These intersections are believed to provide the Smale horseshoe mechanism of
Hamiltonian chaos. The analytical results are accompanied with direct computation of topographical maps of
maximal Lyapunov exponents that give a representative image of regularity and chaos in the atom-field system
in different ranges of its control parameters—the frequency detuning, the number, and the velocity of atoms.
[S1063-651%99)09605-1

PACS numbd(s): 05.45—a, 42.65.5f

I. INTRODUCTION chaos in the interaction of two-level atoms with their own
radiation field has been found by Belobrov, Zaslavskii, and
The basic simple model of interaction between matter and artakovskii[2] and later numerically and analytically stud-
radiation comprises two-level atoms interacting with aied in great detail by other authof8-9]. Similar models,
single-mode electromagnetic field in a lossless cavity. Iwhich treat two-level objects interacting with a classical os-
spite of its simplicity, the model is intrinsically nonlinear cillator, arise quite naturally in other fields of physics,
with the atom-field coupling being the coefficient of this Mainly in molecular and solid-state physi¢see, for ex-

nonlinearity. In recent decades, there has arisen a considé?Mple, the small-polarofl0], the spin-bosori11,12, the

able interest in extremely nonlinear dynamics in the atomlonlinear dimef13], and the cavity-polaritofil4] systems.
Analytical and numerical studies of the semiclassical

field interaction that is connected, mainly, with the funda- tom-field ‘ that th i tating t
mental problem of correspondence of classical and quanturﬁlggéc'jein fhyj reo?;ir?ggov\\//ilvezppreogﬁ gti?);\r/?/ '2)'2:;3” ?;Zj ne-
dynamics. The concept of dynamical chaos is at the heart 0 chaotic behavior. Including the non-RWA terms breaks

this problem. Despite the Igrge amouqt of effort.devotgd ¢ he regular evolution of the RWA model. The latter one can
Fhe pTOb'em of hO.W chaos in the clgssmal domqm mamfestﬁe shown to be equivalent to an unforced nonlinear oscillator
itself in th? evolution of co.rrespondmg sy;tems In the quan 2]. Systematic corrections to the RWA provide a periodic
tum domain, a number of important questions still remained;,oquiation of the near-separatrix motion of the oscill&4r
unanswered1]. _ that is known to be a generic mechanism for Hamiltonian
The semiclassical picture, when one treats atoms quantughaos. The physical mechanism for chaos may therefore be
mechanically and the electromagnetic field as classical deed to virtual transitions in the atom-field systé4 that are,
grees of freedom, may be considered as a kind of a palliativebf course, hard|y probab|e under usual conditions.
In the semiclassical approximation, the powerful methods of The idea to use an additional external field, which is in-
nonlinear dynamics and ergodic theory are applied to a hyjected into a cavity, in order to cause Hamiltonian chewsn
bridized system with quantum and classical degrees of fredn the RWAwas proposed inl5]. Recently, it was shown
dom while leaving subtle questions of the effect of quanturmumerically by two of the present authds] that the RWA
correlations and fluctuations beyond the framework of thechaos in the semiclassical matter-radiation model may arise
description. Obviously, the profound analysis of the compli-with moving two-level atomseven without any additional
cated behavior of a semiclassical system can serve as axternal field Recent developments in cavity quantum elec-
important step towards an understanding of the respectiveeodynamics(for a review on this subject, s¢&7]) give rise
properties of the corresponding fully quantized system. to many situations where one has to deal with two-level at-
In recent years it has become clear that the semiclassicaims moving through a hig) cavity (for instance, a micro-
hybridized systems can demonstrate truly chaotic motiormaser, a microlaser, an atom laser, atoms in traps, and so
with positive maximal Lyapunov exponents, i.e., they canon).
show extremal sensitivity to initial conditions. Such systems In this paper, we present the analytical and numerical
were first treated in the context of laser physics. Hamiltoniarireatment of the problem of Hamiltonian chaos with two-
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level atoms moving through an ideal single-mode cavity thathe strong-coupling regimé) N> w;/Q, whereQ is the
was numerically found ifi16]. In Sec. Il the model is speci- amplitude of the vacuum Rabi frequency aiad andQ are
fied in detail. In the semiclassical limit and with the approxi- the frequency and the quality factor of the cavity, respec-
mations adopted, we derive the dynamical atom-field systertively. In this regime,N atoms exchange excitation with a
from the operator Heisenberg equations by replacing all opcavity field with a period 2/Qo/N that is much shorter
erators with their expectation values and consistently dropthan the atomid , and cavityT; relaxation times. Since the
ping all the quantum-correlator terms. This procedure mayecoil energy of atoms accompanying emission of photons,
be considered as an alternative to the Maxwell-Bloch equar=(hw;)?/2mc?, is very small (it is of the order of
tions. The Heisenberg piCtUre is, however, more preferab|q0*18ev in the microwave rangethe Change in kinetic en-
because it enables us to take into account, in a natural wagrgy of the atoms can be neglectétie Raman-Nath ap-
some effects of the quantum correlatig8,19. It is shown proximation.

that the semiclassical dynamics is governed by a complex |n the pointlike, single-mode, lossless, Raman-Nath, and

Duffing oscillator with a parametric excitation being causedRwA approximations, the respective Hamiltonian has the
by a spatial inhomogeneity of the cavity mode that modu-form [20]

lates the vacuum Rabi frequency of moving atoms.

In Sec. Il we obtain general exact solutions of the semi- No
classical atom-field system in two limits. It is shown in the H=3}hw,>, oh+hoga’a+})
first subsection that, if the frequency of the cavity mode co- =1
incides exactly with the atomic transition frequency, the N ' _
atom-field system is exactly integratdgen in the case of an +HQ(r) > (ad), +a'ol), 1)
j=1

arbitrary spatial structure of the selected modie Sec. 111 B

we show that the model with an arbitrary detuning is ime'whereh is the enerav separation between two workin
grable if atoms move in a direction along which the cavity > ®a 9y sep . Ing
atgmlc levels,o,, o.=0oy*io, are the usual Pauli matri-

mode may be assumed to be homogeneous. In both casesé @ andal the field destructi q r
homoclinic structure consisting of two homaoclinic tori con- €s, an@ anda are tne field destruction and creation op-

tracting to a hyperbolic equilibrium point, which correspondsera:?]rs’ re_s{pectlvfetl%/. Thetvac??p Rtab| .fr((ajquelniy dgdpends
to the equilibrium semiclassical state with fully inverted at- on the positiorr of the center ot the atomic dropiet Inside a

oms and vacuum field, is found. cavity
In Sec. IV we use the general exact solutions for the non- 2w\ 12
f
autonomous resonant system and the autonomous nonreso- Qo(r)=|df(r)|( - ) , 2)
nant system to describe an interesting effect of locking of the Ve
oscillations of the atomic inversion and of the average nume L ore V, is the cavity volume and is the value of the

ber of photons that may occur, under appropriate Cond't'onselectric dipole moment.

with moving atoms if the atoms were prepared in the same The Heisenberg equations for the atomic and field opera-

superposition state \.Nith an arbitrary phqse, and thga CaVi%rs can be derived from the Hamiltonidh) in a straight-
mode was prepared in a coherent state with the atomic phasf%‘rward manner

In Sec. V we show that spatial inhomogeneity of the non-
resonant cavity field breaks the regularity and produces d
Hamiltonian chaos with moving atoms. Using the ho- mE o= —waE oy+iQO(r)(a—aT)E oy,
moclinic tori found in Sec. Ill as a framework, we calculate
a Melnikov function whose simple zeros imply transverse d
intersections of the stable and unstable manifolds of a hyper- - — _ T
bolic fixed point. The breakup of these homoclinic orbits is dtz 7 waE ox~ {holr)(ata )2 7z
believed to be a source of Smale horseshoe chaos in ougi
atom-field system. Poincarsections calculated show the .
breakup of );he unperturbed separatrix and a homoclinigjt 0= —i0g(r)(a—a") X o+ Qg(r)(a+ah X oy,
tangle. For an investigation of the chaotic oscillations in the 3
system in different ranges of its control parameters, the num-
ber of atoms, the detuning, and the velocity of atoms, we N ) N
calculate topographical maps of the maximal Lyapunov ex- grlata )=—iwa—a—0QNX oy,
ponents.

d
—(a—a')=—iws(a+a’)—iQy(r Oy.
Il. SPATIAL INHOMOGENEITY OF THE CAVITY FIELD dt( ) 3 ) ol )E X

MODULATES THE VACUUM RABI FREQUENCY . o .
The crucial point is to disentangle the operator products of

Consider “a droplet” withN two-level atoms that moves the type((a+a')o), when deducing from Eq3) the equa-
through a single-mode cavity along the axisThe cavity tions for the expectation values of the respective operators.
field is supposed to be inhomogeneous along this axis witlThe simplest factorization of expectation values of the op-
the functionf(r) describing its spatial structure. The volume erator products to the products of the respective expectation
of the droplet is supposed to be much smaller thdnwhere  values [e.g., ((axa’)o)=(aza')(s)] is known as the
\; is the wavelength of the field mode. We are working in semiclassical approximation. As is shown in the Appendix,
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with N atoms this approximation is valid with the accuracy ) £l f 1
of the order ofO(1/N). After taking expectation values with E—li(w+ D)+ |é+H | w|i-— 1) — = (Q\f )ZW}
respect to a factorized quantum state, we obtain from(&q. f f 2
the set of five coupled equations 1
X+ 5 (QnF)%E] =0 (10

x=—-y—Quf(7)zp,
with the initial conditions
y=x—Q\f(7)ze .
. £(0)=p(0)+ie(0), &0)=iwé&(0)—Qnf(0)n(0).
z=QO\f(7)(xpt+ye), 4 (1)

It is a complex Duffing oscillator with a parametric excita-
tion being caused by a spatial inhomogeneity of the cavity
mode that modulates the vacuum Rabi frequency of atoms
moving through the cavity.

e=wp—Q\f(7)y,
p=—we—Q\f(7)X

for the following quantities:
lll. INTEGRABLE LIMITS

N N N . . . . .
1 1 1 In this section we will show that the atom-field dynamical
X= ﬁlzl (o), y= N]Zl (oy), z= szl T2)s system(4) is exactly integrable, at least in the two cases. In
(5) Sec. Il A the exact solution of Eq$4) will be obtained in
. the case of the resonant interaction between moving atoms
e= i<a+a*>, p= I—(a*—a). and a cavity mode with an arbitrary spatial structure along

\/N \/N the axis of propagation of the atomic droplet. In Sec. 111B
the exact solution will be found for the systei@ with an

For atoms moving through a cavity with a constant veloc-arbitrary detuning but with a constant vacuum Rabi fre-
ity v,, the vacuum Rabi frequenc{?2) becomes a time- quency, the case corresponding to the model with two-level
dependent functionQ)o(r)— Qqf(v,t). The nonlinear non- atoms moving in a direction along which the cavity field
autonomous dynamical systend) is written in the does not vary spatially. In the Raman-Nath approximation, it
dimensionless form with the derivatives with respectrto is, of course, equivalent to the model with atoms at rest.
=w,t. As the control parameters, it has the dimensionless

collective vacuum Rabi frequency A. Nonautonomous resonant system
Qo VN If the frequency of the cavity mode; coincides exactly
Qp= 0 (6) with the atomic transition frequency,, i.e., if =1, the
Wa dynamical systent4) has the additional integral of motion
and the dimensionless detuning J=xe—yp (12
w resulting from a conservation of the interaction energy be-
=" (7) tween moving atoms and the resonant field that is valid in the
a

RWA for an arbitrary spatial structure of the cavity field

f(r).

When specifying a spatial profile of the eigenmode in Sec. The closed equation for the density of the atomic inver-

V, the atom-field systen@) will be show to have the third . : . .
control parameter, the velocity of atoms. The integrals oflonzcan be derl_v ed from the set of equatidds with the
motion help of the three integrals of motid®) and (12),

5 _ _2\_ R
R=x2+y?+7?=1, W=e’+p?+2z (8) z==0nfVWV-22)(1-2) - F". (13

o ] ) . Its general exact solution is written in terms of the Jacobian
reflect the unitarity of atomic evolution and a conservation Ofelliptic functions
energy, respectively.
Using the simplest factorization, we reduce the infinite-
. N — 2
dimensional state space of the fully quantum system to the 2(1)=21+(2,—29)sn*( V3 (23— 21) Qy

five-dimensional phase space of the semiclassical system.

Due to the integral$8), the motion is, in fact, restricted on a T , -7,
three-dimensional hypersurface. By introducing new X J;) f(r)dr =T ——-], (14
complex-valued variables 3 A
. . where
n=x+iy, &=ptie, 9
. . 1 7 dz

the dynamical systerfd) may be reduced to a single com- T= f . (15
plex ODE of the second order Q2 J200(2-21)(2— 2,) (2~ 25)
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Here —1=<z,<z,<z3<1 are the roots of the algebraic where a prime denotes differentiation with respect to the new
equation “time” QpJfof(t)dt.

The polar coordinatesu(q,v,J) help us to identify ho-
moclinic orbits in the integrable version of the original sys-

. . tem. Really, the phase portrait of Eq21) for the cases
The general exact solution for the other variables of the NON_ " ndV> 0 contains the orbits of an unforced, undamped

autonomous resonant atom-field system is written with the

. J . . teal Duffing oscillator with a separatrix in the planev
help of the solutior(14) for the atomic inversion as follows: homoclinic to the hyperbolic fixed pointv =0). This is

22— W2 —z+ 3 (W- F)=0. (16)

X=X sin(7+ ) —Y cog 7+ 6), a fixed pointS, :(Xs=Yys=es=ps=0,2,=1) of the original
problem that corresponds to all the atoms being in the fully
y=—Xcog 7+ 6)—Y sin(7+ 6), inverted state and vacuum fiel&, is always unstable at
(17) ~ exact resonance.
e=Zsin(t+6), In terms of the old variables, the homoclinic orbits are
given explicitly by
p=Zcog7+80),
Xo= =2 secliQy7)tan Qy7)cog 7+ 6y),
where
Yo= £ 2 sechiQy7)tani Qn7)Sin( 7+ 6p),
X=J271,
2o=1—2 secR(Qy7), (22
Y=x1-722-X?,
(18) po=*2 secliQy7)cog 7+ 6),
Z==*\W-2z,

o= *2 secliQy7)sin( 7+ 6y).

-
— ’ —2A4

b ZQNJJO f(r)2""dr'+ 6o, B. Autonomous nonresonant system

If detuned atoms move in a spatially homogeneous field

whereéf, is a constant. When writing down the solutictv), (f= : -
) X . =const), the atom-field dynamical systém becomes au-
the signs in front of the roots in EqElg) should be chosen tonomous and acquires the additional integral of motion

to be the same, both the upper ones, or both the lower ones.
The nonautonomous integrable version _of the dynamical C=Qn(xe—yp) —(w—1)z (23
system(4) with =1 may be transformed into an autono-
mous one and written in a rotating frame in the form of thethat describes a conservation of the energy of interaction
canonical Hamilton’s equations. Followir]@1], we intro- between atoms and the homogeneous cavity field in the
duce new coordinates and g and their canonically conju- RWA even out of resonancélow we can derive the equa-
gated momentar and J that are connected with the old tion of motion for the density of the atomic inversion
variables in the following way:

_ ,. [CH(ow—1)z 2|12
p+ie=uexdi(q+1)], z=+QN (W=-22)(1-2°) — o, (24)
x+iy=—|v+i g)exliii(qu 1. 19 that is solved in terms of the elliptic Jacobian function
Lm 7
The integrable Hamiltonian in the new coordinates has the Z=Zl+(22_zl)5r‘2( 2(23=2)Qn(7=T); 23_21)’
form (25)
1 T h
Ho=7 |02+ u7)+%(W—u2)2. 20 Mo
- 1 le dz 26)
With the canonical Poisson brackdts,v}={q,J}=1, one = '
has Hamilton's equations dsuimiad Qw2 J201(z-21)(2- 2,)(2 23)
U=0 andz;<z,<z; are the roots of the algebraic equation
W (0—1)3
Ve |5+ ———
v’=%u(W—u2)+Ug, 2 2045,
(21) ) Clw—1) W C?
XZ°—| 1+ ———|z+|5— =% | =0.
— Zo| M 5a2 )7t 37 502) =0 @D

c

Let us seek the solution of the autonomous version of Egs.
J =0, (4) for the variables, y, € andp in the form
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S
X= Usin(wr-i- 0)—Vcodwr+0),

S
y=-— UCOE{wT-i- 6)—Vsinw7+0),

(28)
e=Usin(wr+0),

p=Ucogwr+0).
With the help of the integrals of motiof8) and(23), it can
be shown that all the new variableés U, S and 6 are the

functions of the old variable,

U=+ yW-2z,

V=+.1-2>—(S/U)?

(29)
S=(Qy) [C+(0-1)Z],
C+H(w—1)z
o(1)= W2z d7r’' + 6.
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_+a2 ally aQy jot+l
yo—_7sec > T/tan > T|sin > T+ 60y
+(w—l)a ally w+1l
=20, sec > T|CO TT+00,
o? ally
zozl—?sect?(Tr), (33
ally |+l
€y=*asec — 7 sin Tr+00 ,
aQN w+l
po=*asec 5 7 co > T+ 6y,

where a?=4—[(w—1)/Qy]?. The solution(33) describes

the locus of states in which atoms radiate and reabsorb their
own field in infinite time. The orbit$33) are homoclinic to

the fixed pointS, . Contrary to the case of the resonant
interaction where it is always stable, this point can be
proven, out of resonance, to be unstableQif=|w—1|/2

and stable otherwisg22]. Under this condition, the expres-
sion under the square root efis non-negative.

In polar coordinates the autonomous nonresonant version Thus in the cas€)y=|w—1|/2 the autonomous nonreso-

of the dynamical systertd) may be written in the form of
the canonical Hamilton’s equations,

UZQNU,
., ) ? (0—1)%u
UZEQNU(W_U )+QNF_W’
(30)
_ z
q:QNUZ:
7=0
with the Hamiltonian
2 2
QN ((.0_1)
HOI%QN Uz+? +?(W_U2)2+ WUZ.
(31
The map from(x,y,e,p to (u,v,q,Z) is given by
. I (0o—1l)u) .
X+iy=— U+IG_IW exp[q+3(w+1)7],
(32

pt+ie=uexpi[q+3(w+1)7].

The specific solution on the separatrix, which takes place

with W=2, is given explicitly by

2
X =ta—sec aQNT tan aQNT co w+1r+6
0 2 2 2 2 0

aQN
ec 2

w+1
TT+6O

(w1

20,

7') sin

nant atom-field system possesses a two-sheeted homoclinic
manifold (a pair of two-dimensional homoclinic tgrivhich

is a collection of all the pairs of separatrices that connect the
equilibrium pointS, to itself. These tori are given explicitly

by the solution(33) or implicitly by the following values of

the integrals of motion ¥V=2,=0). This unperturbed
manifold provides a framework in which we will analyze in
Sec. V the chaotic oscillations in the nonautonomous non-
resonant atom-field interaction.

IV. HOW TO LOCK THE ATOMIC INVERSION
AND THE AVERAGE NUMBER OF PHOTONS
IN THE ATOM-FIELD INTERACTION

A. Nonautonomous resonant interaction

The general exact solutiori$7) and(18) obtained in Sec.
IIIA for resonant moving atoms contain a special solution
that leaves the density of the atomic inversiprand the
density of the average number of photans (e?+ p?)/4 un-
affected. We will seek the solution in the form

Xirap= + V1= 74COS< YQNJ’ f(r')dr' —7+ ¢
0

Yiap== 1= 7" sin( yQNf H(r)dr' — 7+ &
0

20)=—7% (34

etrap=,8c0{ yQNJO f(r')d7' — 7+ ¢

ptrap::BSin( 7QNf0 f(r)dr' —7+ ¢
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where ¢ is an arbitrary phase angf is an arbitrary number the quantized radiation fielth a lossless cavity. In contrary
from the interval G<y?<1. The expressioli34) obeys the to the multilevel case, where there are additional transition
original system(4) with w=1 if the field amplitudeg is  channels between which a coherent interference can occur, in
connected with the initial atomic inversi@{0) by the fol-  the two-level case, the atomic dipole interferes destructively

lowing condition: with a coherent cavity eigenmode inhibiting the transitions
between the two levels. In the framework of the fully quan-
B=+z(0)—[z(0)] L. (350 tized Jaynes-Cummings model, the population inversion can

be expressed in the form of a series in the photon population
These results may be resumed as follows. If atoms at thgumbers that contains an interference term depending on a
cavity entrance are prepared in the same superposition staiglative phase between the dipole and the coherent state of

with an arbitrary phase as follows: the eigenmode. If this phase is zero, the amplitude of the

_ ) oscillations of the population amplitude has been shown nu-
x(0)=Fy1-9y*cosp, y(0)==1-7vy*sing, merically to be extremely smalR3].

5 We demonstrate here that the effect of population and

2(0)=—v~, (36)  radiation trapping can occur with moving two-level atoms

. . _— . which are at exact resonance with a spatially inhomogeneous
and the cavity mode is prepared initially in a coherent Statecavity eigenmode. It means that, under appropriate condi-

with Fhe atomic phase r?md the amplitude8 satisfying the tions, the effect of trapping can persist in maser-type experi-
condition (35) as follows: ments with atomic beams. In the semiclassical limit, it is
_ o even possible to find in the explicit forpsee Eqs(35)—(37)]
e(0)=pcosp, p(0)=Bsing, (37 a class of the initial conditions for the atoms and the field
then the density of the atomic inversiarof moving atoms undebr Wh']f:h thg at?]mm populattl)onlln\ll(er&c,lon and the average
and the density of the photon numbes 82/4 do not evolve ~ "UMber of cavity photons can be locked.
regardless of the spatial structurér) of the cavity mode

along the propagation axisThe total energy and the inter- B. Autonomous nonresonant interaction

action energy in these trapping states are given by In this section we describe briefly the effect of trapping

with atoms moving through a spatially homogeneous single-

— nR2_ 2 — 1,4
Waiap=B"=27"  Juapg= —BV1= 7" (38) mode field whose frequency is not at exact resonance with
Thus, the receipt for locking the atomic inversion of mov- tst:)elu?;?]rglc frequency. It is easy to check that the special

ing two-level atoms and the average number of photons in a
single-mode lossless cavity is the following. Prepare the field
mode in a coherent statd87) with a phasep and atoms at the Xrap= £ V1-— [2(0)]? cos(
cavity entrance in the same superposition staé with the
same phase and the initial inversiore(0) connected with L
the field amplitude by the conditiof85). In spite of the N e~ B K
oscillations of both the atomi¢x,y) and the field(e,p vari- Yuap= = V1=[2(0)] sm( 2
ables[see EQq.(34)], the atomic inversion and the average
number of photons remain stationary and equal to their initial
values. This is a result of the synchronized oscillations of the z(0) =(
atomic and field subsystems.

The nonpositive initial inversion—1<z(0)= — y?><0,

w+1

2

T+ @

T+ @

w—1\?
) : (39

N

can be considered as the necessary condition for population 20y w+1
locking. It follows from Eq.(35) that in order to lock the Curap™ + 7 V1-[2(0)]*co > Thel
population and the radiation starting with zero inversion

z(0)=0, one needs an infinitely large number of initial pho- 20 +1

tons in the cavity modeB—=. The respective field state —+ N 172000 Psin @ -+
may be treated as a phase state. To lock the population in the Puap™ =, 71 [2(0)] ¢

ground state, one needs to prepare the field in the vacuum

state, 3=0. It is a trivial consequence of the fact that the of the general solution@8) and(29) leave the density of the

initial state|x(0)=y(0)=e(0)=p(0)=0, z(0)=—1) isa  atomic inversiorz and the density of the average number of

simple equilibrium point of the dynamical systef@#). One  photonsn unaffected. Assuming=0 in Eq. (39) one can

can lock the population in any superposition state with thefind the corresponding initial states of the atoms and the

initial Bloch vector to be chosen from the lower Bloch semi- cavity field that provide trapping. As in the case of the non-

sphere—1=<2z(0)<0 by preparing the cavity mode in the autonomous resonant system, trapping will occur if the at-

respective coherent state. To lock the populatiod@toms oms are prepared in a superposition state and the field in a

with, say, the density of inversion(0)= —1/2, one needs coherent state with the same phase. Contrary to the resonant

3N/8 initial photons. case, the respective values of the density of the initial atomic
The effect of coherent trapping with two-level atoms hasinversion should be chosen from the upper Bloch semi-

been found 23] within the Jaynes-Cummings model treating sphere, Gz(0)<1. One limit casez(0)=0, is realized at

a single two-level atom that interacts with a single mode ofexact resonance and considered in the preceding section. The
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other limit casez(0)=1, corresponds to the fixed poiSt, system possesses a two-sheeted homoclinic manifold con-
that is an equilibrium state in the semiclassical approximasisting of a collection of all the pairs of separatrices ho-
tion. moclinic to a fixed pointS, and connecting this hyperbolic
point to itself. The manifold is parametrized hyand is
V. HAMILTONIAN CHAOS given explicitly by the solutiong33) with 6,=0 and 6,
] ) = . With the help of the integrals of motion one can also
A. Melnikov analysis represent it implicitly by the equations
Now we return to the original nonintegrable problem,
nonautonomous nonresonant atom-field sysigénthat takes R=1, W=2, (=l-o.
into account both a spatial inhomogeneity of the cavity mod
and a detuning between atoms and the field.
Homoclinic motion of a Hamiltonian system is a motion n=VR, n,=VW, ns=V(, (44)
that is asymptotic to a periodic motion &t =o. As was
shown by Poincarf24], the existence of isolated homoclinic where
orbits results in a complicated behavior of trajectories in
Hamiltonian systems. There exists a general method that can v=(2 2 9 9 9 (45
prove the presence of chaotic motion by detecting transverse ax’'ay’ 9z’ ge’ ap)’
intersections between perturbed stable and unstable ho-
moclinic manifolds(a homoclinic structureand by calculat- ~ The Melnikov functionM (7,) measuring the signed distance
ing the width of the respective stochastic layer. This method’etween the stable and unstable manifolds of the equilibrium
was developed by Melnikof25] and generalized if26] (for ~ Point S, at 7, along the normah to the unperturbed ho-
a review see, e.g[27)). moclinic manifold is proportional t&M (7o) + O(€?). It is
In the absence of spatial modulation of the vacuum Rabgiven by[25]
frequency €= const) the evolution of the atom-field system "
is periodic and is governed by the exact solutions to be ob- M(TO)ZJ n-Gdr, (46)
tained in Sec. llIB. The main effect of the modulation, @
Qy(t)=Qf(t), is to produce, out of resonance 1), a _ ) i )
homoclinic structure in the vicinity of the separatrix of the Where G is the perturbation part of the vector field which
unperturbed autonomous system. is given in our case by the last equation in qu.1).
In this section we use the Melnikov methf25] to prove This integral is evaluated along the separati®8). Since

the existence of chaotic trajectories by detecting transversgi(%o) - G(S) =na(s) - G(sp) =0 we need to measure the
intersections between perturbed stable and unstable marll€lnikov distance in only one direction(sp) = ({neo,
folds. This is a standard method suited for the case of small” nPo,1~ @, QnXo, = QyYo). o )

periodic perturbations of integrable systems. In order to ap- |t Should be noted that our analysis is applicable to the
ply the method, we introduce vector notations and rewritg?hysical situation with atoms moving through a cavity in a

(43

®The homoclinic manifold possesses three normal vectors

the original atom-field dynamical systef) in the form direction along which the depth of modulation of their
vacuum Rabi frequency may be considered to be small as
5=F(s)+eG(s,7), (40 compared with the amplitude value, i.&<Qy [see Eq.
) (42)]. We suppose the harmonic modulatiog(r)
where each vector has five components, namely =sinwy, 7, With o, being a dimensionless modulation fre-
s=(xy.zemT, quency. After calculating the scalar product
l-w . dz,
F(9)=(-y—Qnzpx—Qnze Qn(Xptye),wp—Qyy, Na(%0)- G(S0)= g =sinlon(7=70) ] 7= (47)
—we— Q)" 41
© W) “D and substituting Eq47) into Eq. (46), we can carry out the
G(s,7)=(—g(7)zp,—g(r)ze,g(7)(xXp+Yye),—g(7)y, integration by parts with the result
- T 2m(1- o)l
9w M(70)= o oy 0% onT). (49
When writing down the original syster®) in the vector NSTROmTTAZEN
form (40), we have represented the modulati(r) in Eq. |t is evident from Eq(48) that out of resonancey#1, the
(4) in the following form: Melnikov integral has simple zeros as a functiongf If
M (7o) has simple zeros, then the stable and unstable mani-
€ . . . .
f(r)=1+~—g(7). (42)  folds of the hyperbolic point intersect transversally, resulting
Qy in Smale horseshoe chaf7].

The basic idea of the Melnikov analysis is to make use of
exact solutions of the unperturbed integrable system()
in the computation of a perturbed system of the fq@0). We have performed some computer simulations on the
We referred to the autonomous nonresonant system treatemnautonomous nonresonant atom-field sysgénassuming
in Sec. IlIB as the unperturbed system. The unperturbethe modulation of the vacuum Rabi frequency of moving

B. Poincare sections and Lyapunov exponents
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p(au)

05 '
05 0 05 2 .

e(au)

FIG. 1. Poincaresection on the field plane-p with Q=0.2,

FIG. 2. Same as Fig. 1 withV=1.
0=0.9,b=0.1, and the energyV=—1.8. g

_ ) _ . shown in Fig. 4 with the energy)/=2 corresponding to the
atoms to be large. Suppose the simplest spatial variation Ghjtia| state with practically fully inverted atomgg=1.

the cavity modef (r) =sin(knr/L), which corresponds to @ | closed dynamical system, chaos has its origin in ex-

TE, mode in a rectangular cavity with; being the cavity yremal sensitivity to initial conditions, which is characterized
length anck+ 1 being the number of nodes in the cavity. For py the Lyapunov exponents
moving atoms, it becomes the time-periodic function that has
the following form in the dimensionless time= w,t: 1 (7)
)\i:"m )\i(T), )\i(T): im —In———, (50)
f(7)=sinbwr), (49) oo s0—07  Ai(0)

) ) ] where A(7) is the distance between two initially adjacent
whereb=v,/c is the ratio of the velocity of atoms to the {rajectories at timer, which may be specified as the Euclid-
velocity of light. ean distance between two phase-space points. For an

To verify the breakup of the separatii83) whenw#1,  m dimensional dynamical system there existLyapunov
we calculate Poincargections of the coupled atom-field flow

generated on the direct product space of the surface of thr »
atomic Bloch sphere and the field oscillator plane. The non-
autonomous nonresonant atom-field systdirhas two inte-
grals of motion(8). Therefore, a standard two-dimensional
Poincaresurface of section is defined by fixing one variable
out of the three independent ones. We define a Poirssre
tion by x=0 with x>0, which is realized on the phase plane
of the field variables-p with the following fixed values of
the control parameters: the collective vacuum Rabi fre-
quencyQy=0.2, the detuningn=0.9, and the velocity of 3 o
atomsb=0.1. Figures 1-4 demonstrate these sections at foul
different values of the initial total energy=e?+ p?+2z.
In each figure we plot the successive sections of six trajec-
tories started at the six different initial conditioeg(0)=
~pj(0)=0.3j, X(0)=0, 7(0)=3W+[e;(0)12 [y;(0)I?
=1-[z(0)]% j=0,2,4,6,8,10.

A rather regular structure is visible in Fig. 1, which shows
the Poincaresection for atoms entering a cavity, practically,
in the ground stateW = —1.8). A separatrix becomes vis-
ible on the planee-p when the total energy reach&g=1 '2_2 .
(Fig. 2. With the total energy increased, a stochastic layer e (au.)
near the separatrix begins to show (ig. 3 withWW=1.4).
The Poincaresection that is generic for developed chaos is FIG. 3. Same as Fig. 1 withy=1.4.




PRE 60 SEMICLASSICAL INTERACTION OF MOVING TWG . .. 343

0 A(a.u)

0.010

0.8.

0.5

Q. (au.) 10

FIG. 5. Topographicah map showing the regions of periodic
and chaotic motion on the frequency plane() (b=0.01).

- -2 0 - 2
e(a.u.) x(0)=y(0)=0, z(0)=1, e(0)=p(0)=1, (51
FIG. 4. Same as Fig. 1 withV=2.

which corresponds to initially fully inverted atoms entering a
cavity with the initial density of photons to be equal to
numbers §;, i=1,2,..m). Since the volume of a given el- n(0)=2%[e(0)?+p(0)?]=3%. The values of\ are encoded
ement of phase space is always invariant for a conservativiey the color using a linear scale which is shown on the right
dynamical system, we ha®™ , \;=0. The values\; mea- sides of the maps. In calculating the maximal Lyapunov ex-
sure the rates of expansion of a volume element innthe ponent, we employ(7) according to Eq(50). In taking the
principal directions. If\;<0, then the volume element limit (50) we integrate the equations of motion up to
shrinks in the corresponding directionNf>0, then the vol- =32 000 with a ste@7=1 and check the results at each step
ume element expands exponentially in that direction, and ifvith the help of the conservation law@8).
\i=0, then the growth is linear. The rates of growth of a Figures 5 and 6 show the-{y maps calculated at the
volume element of phase space in various directions can biixed values of the dimensionless velocity of atorhs
used to describe the trajectories that pass through such vot=0.01 and 0.1, respectively. It is clear from the figures that
ume elements. A trajectory is chaotic if the maximal chaos disappears when the atomic frequency is close to the
Lyapunov exponenk is positive. Therefore, the Lyapunov field frequency. The logb-Qy map of chaos at the fixed
exponents allow us to determine whether individual orbitsvalue of the detunings=0.9 is given in Fig. 7. It is seen
are chaotic and to compare the strength of their randomnesom the figure that comparatively strong chaos arises in a

A dynamical system may be considered as a transformaather narrow range of the values of the atomic velocities
tion of phase space. In other words, the volume of a giverfrom b=0.01 to 0.3. The logb-» map shown in Fig. 8 has
element of phase space representing different initial phasg rather symmetric structure with respect to the line of exact
points is transformed into a deformed volume during theresonancew=1. It is calculated at the fixed value of the
evolution. When this volume has smooth boundaries, then
the respective flow is regular. A chaotic flow arises when the 2.0 IMa.u.)

0.04

—10.03

initial volume element stretches, shrinks, and folds. The local5
exponential divergence of trajectories produces a local®
stretching, but because of the global confinement in the
phase space of our conservative Hamiltonian system witt
two degrees of freedom this stretching is accompanied by
folding. Repeated stretching and folding produces very com-
plicated motion that is known as chaotic. 1.0
When a dynamical system possesses more than a sing|
control parameter, it is useful to compute topographical
maps[14,14 that give a representative “portrait” of chaos.
Such a map shows the values of the maximal Lyapunov ex-
ponentA of the system with given initial conditions as a
function of two of the control parameters at fixed values of
the other parameters. We have computed the topographical
maps with all three control parameteis,, », andb varied Q,(au.) 1
for the atom-field systen) with the following initial con-
dition: FIG. 6. Same as Fig. 5 with=0.1.

——0.02

—10.01

—10.00

0'8.0 0.5 0
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00 A@.u.) quency(Qy and\, the condition for numerically observing
= 0.040 Hamiltonian chaos can be rewritten as
| '
= 0.035
(@]
S 0.030 Q \/N
Q= -2, (53)
0.025 Wa
-1.0] 0.020
0.015 A Rydberg maser operating in the strong-coupling regime
8idTo with a beam of two-level Rydberg atoms injected into a
small highQ cavity seems to be a promising device for ob-
(:005 serving semiclassical Hamiltonian chaos in real experiments.
0.000 The Rydberg atoms have the transition frequency of the or-
der of w,=10"-10"rad/s, the electric dipole matrix ele-
205 25 50 mentd==10°® atomic units, the one-photon vacuum Rabi fre-
Q@u) quencyQ,=10°—1Crad/s, and the lifetime of the circular

Rydberg statesT,=10 2s[29]. Parameters of a microwave
FIG. 7. Topographicalx map on the log,b-Qy plane  maser cavity are the following:Q=10%, L,~1cm, and
(0=0.9). T;=101-102s [29]. As it follows from our numerical
results(Figs. 5—8, one can reach the regime of the chaotic
collective vacuum Rabi frequenc@y=2. The map-Qy  vacuum Rabi oscillations with the strength of chaos of the
and »-(Qy give us, in fact, the values of as a function of  order of A=0.01 operating with a droplet consisting of
the number of atomsl [see the expressiof®)] which may  10P—10’ atoms and flying with the velocity more than,
be considered as an adjustable control parameter of the atom-1 8 cmy/s. It should be noted that to our knowledge micro-
field system along witth and . maser experiments are performed with much slower atoms,
The Hamiltonian approach we have adopted throughout <105 cm/s[29].
the paper is valid over time intervals shorter than all the
relaxation times. This approach is based on the strong-
coupling fimit VI. CONCLUSION
We analyze the RWA nonlinear dynamics in one of the
R=—r=<T,,Ts, (52 simplest models of laser and atomic physics that comprises
QN two-level atoms moving through a higb-cavity and inter-
acting with a single eigenmode of the cavity. The main prob-
whereTyg is the period of the collective vacuum Rabi oscil- [em in which we are interested in this paper is a transition to
lations, andT, ; are the lifetimes of the atomic states and of Hamiltonian chaos in the case when the field cannot be as-
the photons in a cavity, respectively. In numerical experi-sumed as homogeneous on the cavity size. The Heisenberg
ments that compute maximal Lyapunov exponents, Hamilequations for the expectation values of a complete set of the
tonian chaos can be diagnosed over a time interval of thatomic and field observables are shown to be integrable in
order of the correlation decoupling timd28] T., the two limit cases: the nonautonomous resonant interac-
=2mlwyh. In terms of the collective vacuum Rabi fre- tion and autonomous nonresonant interaction. The respective
general exact solutions are given for both the models. We
Aa.u) use them to reveal and describe the coherent effect of locking
0.10 of the oscillations of the atomic inversion and of the radia-
006 tion field that may occur under appropriate conditions. The
integrable equations are shown to possess special orbits that
are homoclinic to the state with fully inverted atoms and a
0.07 vacuum cavity field which is an equilibrium one in the semi-
0.06 classical approximation. With the help of the Melnikov
0.05 method we prove analytically transverse intersections of
stable and unstable manifolds of this equilibrium point under
small modulation of the vacuum Rabi frequency caused by a
slightly inhomogeneous field. These transverse intersections

0.08

0.04

0.03

0:02 are believed to provide the Smale horseshoe mechanism of
0.01 chaos. To confirm numerically the chaotic dynamics in the
0.00 semiclassical RWA model, we compute Poincaestions
& and maximal Lyapunov exponents under strong modulation
8o 0 (@) 2.0 of the vacuum Rabi frequency. The Lyapunov topographical

maps showing the regions of regular and chaotic motion pro-
FIG. 8. TopographicalA map on the logb-w plane Vvide representative numerical “portraits” of the system’s
(Qn=2). dynamics in different ranges of its control parameters.
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Differentiating with respect te-= wgt, this set can be easily

APPENDIX: ACCURACY OF THE SEMICLASSICAL shown to have the same form as EG®,
APPROXIMATION

In this appendix we introduce new atomic and field op- X=—-Y—Quf(7)Zp,
erators with commutators vanishing at the limit of a large
number of atomsN—o, and show in an explicit form that
the semiclassical approximation is valid in this limit.

Let us introduce new operators normalized to the number
of atoms Z2=Q\f(7)(Xp+Ve), (A4)

J=%—Q\ ()28,

6= wp—Q\f(7)Y,

LN LN LAY p=— w— OQpf(7)%
SN2 Tk SN2 0y Sy ok
=1 The commutator§A2) of the normalized operators vanish
at the N infinite limit. It is obvious that the semiclassical
approximation is valid at this limit with the relative error
2i O(1/N). The equations of motion for these operators and
[ATA]= N [SoSI=geiSa  Lik=xy.z their expectation valuegA4) do not depend on the number
(A2) of atomsN. We want to emphasize that with the help of the
normalization(Al) one can incorporate in a natural way into
Neglecting all the quantum correlations, one can obtain frontespective equations of motion some quantum correlation
the Heisenberg equations of motion for the operatddy a  terms since the dependence on the small paramdieaf/
closed set oft-number equations for the expectation valuespears only in the quantum correlators when the commutators
of the respective operators (A2) do not vanish identically.

which satisfy the following commutation relations:
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