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Semiclassical interaction of moving two-level atoms with a cavity field: From integrability
to Hamiltonian chaos

S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk
Laboratory of Nonlinear Dynamical Systems, Pacific Oceanological Institute of the Russian Academy of Sciences,

Ulica Baltiiskaya 43, 690041 Vladivostok, Russia
~Received 6 November 1998!

The dynamics of an ensemble of two-level atoms moving through a single-mode lossless cavity is investi-
gated in the semiclassical and rotating-wave approximations. The dynamical system for the expectation values
of the atomic and field observables is considered as a perturbation to one of the following integrable versions:
~i! a model with atoms moving througha spatially inhomogeneous resonantfield, and~ii ! a model with atoms
interacting witha nonresonanteigenmode which is assumed to behomogeneouson the cavity size. We find the
general exact solutions for both the models and show that they contain special solutions describing a coherent
effect of population and radiation trapping. Using the Melnikov method, we prove analytically transverse
intersections of stable and unstable manifolds of a hyperbolic fixed point under a small modulation of the
vacuum Rabi frequency. These intersections are believed to provide the Smale horseshoe mechanism of
Hamiltonian chaos. The analytical results are accompanied with direct computation of topographical maps of
maximal Lyapunov exponents that give a representative image of regularity and chaos in the atom-field system
in different ranges of its control parameters—the frequency detuning, the number, and the velocity of atoms.
@S1063-651X~99!09605-1#

PACS number~s!: 05.45.2a, 42.65.Sf
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I. INTRODUCTION

The basic simple model of interaction between matter
radiation comprises two-level atoms interacting with
single-mode electromagnetic field in a lossless cavity.
spite of its simplicity, the model is intrinsically nonlinea
with the atom-field coupling being the coefficient of th
nonlinearity. In recent decades, there has arisen a cons
able interest in extremely nonlinear dynamics in the ato
field interaction that is connected, mainly, with the fund
mental problem of correspondence of classical and quan
dynamics. The concept of dynamical chaos is at the hea
this problem. Despite the large amount of effort devoted
the problem of how chaos in the classical domain manife
itself in the evolution of corresponding systems in the qu
tum domain, a number of important questions still remain
unanswered@1#.

The semiclassical picture, when one treats atoms quan
mechanically and the electromagnetic field as classical
grees of freedom, may be considered as a kind of a pallia
In the semiclassical approximation, the powerful methods
nonlinear dynamics and ergodic theory are applied to a
bridized system with quantum and classical degrees of f
dom while leaving subtle questions of the effect of quant
correlations and fluctuations beyond the framework of
description. Obviously, the profound analysis of the comp
cated behavior of a semiclassical system can serve a
important step towards an understanding of the respec
properties of the corresponding fully quantized system.

In recent years it has become clear that the semiclas
hybridized systems can demonstrate truly chaotic mo
with positive maximal Lyapunov exponents, i.e., they c
show extremal sensitivity to initial conditions. Such syste
were first treated in the context of laser physics. Hamilton
PRE 601063-651X/99/60~1!/335~12!/$15.00
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chaos in the interaction of two-level atoms with their ow
radiation field has been found by Belobrov, Zaslavskii, a
Tartakovskii@2# and later numerically and analytically stud
ied in great detail by other authors@3–9#. Similar models,
which treat two-level objects interacting with a classical o
cillator, arise quite naturally in other fields of physic
mainly in molecular and solid-state physics~see, for ex-
ample, the small-polaron@10#, the spin-boson@11,12#, the
nonlinear dimer@13#, and the cavity-polariton@14# systems!.

Analytical and numerical studies of the semiclassi
atom-field systems prove that the counter-rotating terms
glected in the rotating-wave approximation~RWA! can lead
to chaotic behavior. Including the non-RWA terms brea
the regular evolution of the RWA model. The latter one c
be shown to be equivalent to an unforced nonlinear oscilla
@2#. Systematic corrections to the RWA provide a period
modulation of the near-separatrix motion of the oscillator@4#
that is known to be a generic mechanism for Hamilton
chaos. The physical mechanism for chaos may therefore
tied to virtual transitions in the atom-field system@4# that are,
of course, hardly probable under usual conditions.

The idea to use an additional external field, which is
jected into a cavity, in order to cause Hamiltonian chaoseven
in the RWAwas proposed in@15#. Recently, it was shown
numerically by two of the present authors@16# that the RWA
chaos in the semiclassical matter-radiation model may a
with moving two-level atomseven without any additiona
external field. Recent developments in cavity quantum ele
trodynamics~for a review on this subject, see@17#! give rise
to many situations where one has to deal with two-level
oms moving through a high-Q cavity ~for instance, a micro-
maser, a microlaser, an atom laser, atoms in traps, an
on!.

In this paper, we present the analytical and numeri
treatment of the problem of Hamiltonian chaos with tw
335 ©1999 The American Physical Society
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level atoms moving through an ideal single-mode cavity t
was numerically found in@16#. In Sec. II the model is speci
fied in detail. In the semiclassical limit and with the appro
mations adopted, we derive the dynamical atom-field sys
from the operator Heisenberg equations by replacing all
erators with their expectation values and consistently dr
ping all the quantum-correlator terms. This procedure m
be considered as an alternative to the Maxwell-Bloch eq
tions. The Heisenberg picture is, however, more prefera
because it enables us to take into account, in a natural w
some effects of the quantum correlations@18,19#. It is shown
that the semiclassical dynamics is governed by a comp
Duffing oscillator with a parametric excitation being caus
by a spatial inhomogeneity of the cavity mode that mod
lates the vacuum Rabi frequency of moving atoms.

In Sec. III we obtain general exact solutions of the sem
classical atom-field system in two limits. It is shown in th
first subsection that, if the frequency of the cavity mode
incides exactly with the atomic transition frequency, t
atom-field system is exactly integrableeven in the case of an
arbitrary spatial structure of the selected mode. In Sec. III B
we show that the model with an arbitrary detuning is in
grable if atoms move in a direction along which the cav
mode may be assumed to be homogeneous. In both cas
homoclinic structure consisting of two homoclinic tori co
tracting to a hyperbolic equilibrium point, which correspon
to the equilibrium semiclassical state with fully inverted a
oms and vacuum field, is found.

In Sec. IV we use the general exact solutions for the n
autonomous resonant system and the autonomous non
nant system to describe an interesting effect of locking of
oscillations of the atomic inversion and of the average nu
ber of photons that may occur, under appropriate conditio
with moving atoms if the atoms were prepared in the sa
superposition state with an arbitrary phase, and the ca
mode was prepared in a coherent state with the atomic ph

In Sec. V we show that spatial inhomogeneity of the no
resonant cavity field breaks the regularity and produ
Hamiltonian chaos with moving atoms. Using the h
moclinic tori found in Sec. III as a framework, we calcula
a Melnikov function whose simple zeros imply transver
intersections of the stable and unstable manifolds of a hy
bolic fixed point. The breakup of these homoclinic orbits
believed to be a source of Smale horseshoe chaos in
atom-field system. Poincare´ sections calculated show th
breakup of the unperturbed separatrix and a homocl
tangle. For an investigation of the chaotic oscillations in
system in different ranges of its control parameters, the n
ber of atoms, the detuning, and the velocity of atoms,
calculate topographical maps of the maximal Lyapunov
ponents.

II. SPATIAL INHOMOGENEITY OF THE CAVITY FIELD
MODULATES THE VACUUM RABI FREQUENCY

Consider ‘‘a droplet’’ withN two-level atoms that move
through a single-mode cavity along the axisr . The cavity
field is supposed to be inhomogeneous along this axis w
the functionf~r ! describing its spatial structure. The volum
of the droplet is supposed to be much smaller thanl f

3, where
l f is the wavelength of the field mode. We are working
t

m
p-
-
y
a-
le
y,

x

-

i-

-

-

s, a

-
so-
e
-
s,
e
ty
se.
-
s

-

r-

ur

ic
e

-
e
-

th

the strong-coupling regime,V0AN@v f /Q, whereV0 is the
amplitude of the vacuum Rabi frequency andv f andQ are
the frequency and the quality factor of the cavity, resp
tively. In this regime,N atoms exchange excitation with
cavity field with a period 2p/V0AN that is much shorter
than the atomicTa and cavityTf relaxation times. Since the
recoil energy of atoms accompanying emission of photo
R5(hv f)

2/2mc2, is very small ~it is of the order of
10218eV in the microwave range!, the change in kinetic en
ergy of the atoms can be neglected~the Raman-Nath ap
proximation!.

In the pointlike, single-mode, lossless, Raman-Nath, a
RWA approximations, the respective Hamiltonian has
form @20#

H5 1
2 \va(

j 51

N

sz
j 1\v f~a†a1 1

2 !

1\V0~r !(
j 51

N

~as1
j 1a†s2

j !, ~1!

where hva is the energy separation between two worki
atomic levels,sz , s65sx6 isy are the usual Pauli matri
ces, anda and a† are the field destruction and creation o
erators, respectively. The vacuum Rabi frequency depe
on the positionr of the center of the atomic droplet inside
cavity

V0~r !5udf~r !uS 2pv f

\Vc
D 1/2

, ~2!

where Vc is the cavity volume andd is the value of the
electric dipole moment.

The Heisenberg equations for the atomic and field ope
tors can be derived from the Hamiltonian~1! in a straight-
forward manner,

d

dt ( sx52va( sy1 iV0~r !~a2a†!( sz ,

d

dt ( sy5va( sx2V0~r !~a1a†!( sz ,

d

dt ( sz52 iV0~r !~a2a†!( sx1V0~r !~a1a†!( sy ,

~3!

d

dt
~a1a†!52 iv f~a2a†!2V0~r !( sy ,

d

dt
~a2a†!52 iv f~a1a†!2 iV0~r !( sx .

The crucial point is to disentangle the operator products
the type^(a6a†)s&, when deducing from Eq.~3! the equa-
tions for the expectation values of the respective operat
The simplest factorization of expectation values of the o
erator products to the products of the respective expecta
values @e.g., ^(a6a†)s&5^a6a†&^s&# is known as the
semiclassical approximation. As is shown in the Append
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PRE 60 337SEMICLASSICAL INTERACTION OF MOVING TWO- . . .
with N atoms this approximation is valid with the accura
of the order ofO(1/N). After taking expectation values with
respect to a factorized quantum state, we obtain from Eq~3!
the set of five coupled equations

ẋ52y2VNf ~t!zp,

ẏ5x2VNf ~t!ze,

ż5VNf ~t!~xp1ye!, ~4!

ė5vp2VNf ~t!y,

ṗ52ve2VNf ~t!x

for the following quantities:

x5
1

N (
j 51

N

^sx&, y5
1

N (
j 51

N

^sy&, z5
1

N (
j 51

N

^sz&,

~5!

e5
1

AN
^a1a†&, p5

i

AN
^a†2a&.

For atoms moving through a cavity with a constant velo
ity va , the vacuum Rabi frequency~2! becomes a time-
dependent function,V0(r )→V0f (vat). The nonlinear non-
autonomous dynamical system~4! is written in the
dimensionless form with the derivatives with respect tot
5vat. As the control parameters, it has the dimensionl
collective vacuum Rabi frequency

VN5
V0AN

va
~6!

and the dimensionless detuning

v5
v f

va
. ~7!

When specifying a spatial profile of the eigenmode in S
V, the atom-field system~4! will be show to have the third
control parameter, the velocity of atoms. The integrals
motion

R5x21y21z251, W5e21p212z ~8!

reflect the unitarity of atomic evolution and a conservation
energy, respectively.

Using the simplest factorization, we reduce the infini
dimensional state space of the fully quantum system to
five-dimensional phase space of the semiclassical sys
Due to the integrals~8!, the motion is, in fact, restricted on
three-dimensional hypersurface. By introducing n
complex-valued variables

h5x1 iy , j5p1 ie, ~9!

the dynamical system~4! may be reduced to a single com
plex ODE of the second order
-

s

.

f

f

-
e
m.

j̈2S i ~v11!1
ḟ

f
D j̇1FvS i

ḟ

f
21D 2

1

2
~VNf !2WG

3j1
1

2
~VNf !2juju250 ~10!

with the initial conditions

j~0!5p~0!1 ie~0!, j̇~0!5 ivj~0!2VNf ~0!h~0!.
~11!

It is a complex Duffing oscillator with a parametric excit
tion being caused by a spatial inhomogeneity of the cav
mode that modulates the vacuum Rabi frequency of ato
moving through the cavity.

III. INTEGRABLE LIMITS

In this section we will show that the atom-field dynamic
system~4! is exactly integrable, at least in the two cases.
Sec. III A the exact solution of Eqs.~4! will be obtained in
the case of the resonant interaction between moving at
and a cavity mode with an arbitrary spatial structure alo
the axis of propagation of the atomic droplet. In Sec. III
the exact solution will be found for the system~4! with an
arbitrary detuning but with a constant vacuum Rabi f
quency, the case corresponding to the model with two-le
atoms moving in a direction along which the cavity fie
does not vary spatially. In the Raman-Nath approximation
is, of course, equivalent to the model with atoms at rest.

A. Nonautonomous resonant system

If the frequency of the cavity modev f coincides exactly
with the atomic transition frequencyva , i.e., if v51, the
dynamical system~4! has the additional integral of motion

J5xe2yp ~12!

resulting from a conservation of the interaction energy
tween moving atoms and the resonant field that is valid in
RWA for an arbitrary spatial structure of the cavity field
f~r !.

The closed equation for the density of the atomic inv
sion z can be derived from the set of equations~4! with the
help of the three integrals of motion~8! and ~12!,

ż56VNfA~W22z!~12z2!2J2. ~13!

Its general exact solution is written in terms of the Jacob
elliptic functions

z~t!5z11~z22z1!sn2XA1
2 ~z32z1!VN

3S E
0

t

f ~t8!dt82TD ;
z22z1

z32z1
C, ~14!

where

T5
1

VN&
E

z~0!

z1 dz

A~z2z1!~z2z2!~z2z3!
. ~15!
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Here 21<z1,z2,z3<1 are the roots of the algebra
equation

z32 1
2Wz22z1 1

2 ~W2J2!50. ~16!

The general exact solution for the other variables of the n
autonomous resonant atom-field system is written with
help of the solution~14! for the atomic inversion as follows

x5X sin~t1u!2Y cos~t1u!,

y52X cos~t1u!2Y sin~t1u!,
~17!

e5Z sin~t1u!,

p5Z cos~t1u!,

where

X5JZ21,

Y56A12z22X2,
~18!

Z56AW22z,

u52VNJE
0

t

f ~t8!Z22dt81u0 ,

whereu0 is a constant. When writing down the solution~17!,
the signs in front of the roots in Eqs.~18! should be chosen
to be the same, both the upper ones, or both the lower o

The nonautonomous integrable version of the dynam
system~4! with v51 may be transformed into an auton
mous one and written in a rotating frame in the form of t
canonical Hamilton’s equations. Following@21#, we intro-
duce new coordinatesu and q and their canonically conju
gated momentav and J that are connected with the ol
variables in the following way:

p1 ie5u exp@ i ~q1t!#,

x1 iy52S v1 i
J
u Dexp@ i ~q1t!#. ~19!

The integrable Hamiltonian in the new coordinates has
form

H05
1

2 S v21
J2

u2 D1 1
8 ~W2u2!2. ~20!

With the canonical Poisson brackets$u,v%5$q,J%51, one
has Hamilton’s equations

u85v,

v85 1
2 u~W2u2!1

J2

u3 ,

~21!

q85
J
u2 ,

J850,
n-
e

es.
al

e

where a prime denotes differentiation with respect to the n
‘‘time’’ VN*0

t f (t)dt.
The polar coordinates (u,q,v,J) help us to identify ho-

moclinic orbits in the integrable version of the original sy
tem. Really, the phase portrait of Eqs.~21! for the caseJ
50 andW.0 contains the orbits of an unforced, undamp
real Duffing oscillator with a separatrix in the planeu-v
homoclinic to the hyperbolic fixed point (u5v50). This is
a fixed pointS1 :(xs5ys5es5ps50,zs51) of the original
problem that corresponds to all the atoms being in the fu
inverted state and vacuum field.S1 is always unstable a
exact resonance.

In terms of the old variables, the homoclinic orbits a
given explicitly by

x0562 sech~VNt!tanh~VNt!cos~t1u0!,

y0562 sech~VNt!tanh~VNt!sin~t1u0!,

z05122 sech2~VNt!, ~22!

p0562 sech~VNt!cos~t1u0!,

e0562 sech~VNt!sin~t1u0!.

B. Autonomous nonresonant system

If detuned atoms move in a spatially homogeneous fi
( f 5const), the atom-field dynamical system~4! becomes au-
tonomous and acquires the additional integral of motion

C5VN~xe2yp!2~v21!z ~23!

that describes a conservation of the energy of interac
between atoms and the homogeneous cavity field in
RWA even out of resonance. Now we can derive the equa
tion of motion for the density of the atomic inversion

ż56VNF ~W22z!~12z2!2S C1~v21!z

VN
D 2G1/2

~24!

that is solved in terms of the elliptic Jacobian function

z5z11~z22z1!sn2SA1
2 ~z32z1!VN~t2T!;

z22z1

z32z1
D ,

~25!

where

T5
1

VN&
E

z~0!

z1 dz

A~z2z1!~z2z2!~z2z3!
, ~26!

andz1,z2,z3 are the roots of the algebraic equation

z32SW2 1
~v21!2

2VN
2 D

3z22S 11
C~v21!

2VN
2 D z1SW2 2

C2

2VN
2 D 50. ~27!

Let us seek the solution of the autonomous version of E
~4! for the variablesx, y, e, andp in the form
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x5
S

U
sin~vt1u!2V cos~vt1u!,

y52
S

U
cos~vt1u!2V sin~vt1u!,

~28!
e5U sin~vt1u!,

p5U cos~vt1u!.

With the help of the integrals of motion~8! and ~23!, it can
be shown that all the new variablesV, U, S, andu are the
functions of the old variablez,

U56AW22z,

V56A12z22~S/U !2,
~29!

S5~VN!21@C1~v21!z#,

u~t!5E
0

t C1~v21!z

W22z
dt81u0 .

In polar coordinates the autonomous nonresonant ver
of the dynamical system~4! may be written in the form of
the canonical Hamilton’s equations,

u̇5VNv,

v̇5 1
2 VNu~W2u2!1VN

I2

u32
~v21!2u

4VN
,

~30!

q̇5VN

I
u2 ,

İ50

with the Hamiltonian

H05 1
2 VNS v21

I2

u2D1
VN

8
~W2u2!21

~v21!2

8VN
u2.

~31!

The map from~x,y,e,p! to (u,v,q,I) is given by

x1 iy52S v1 i
I
u

2 i
~v21!u

2VN
Dexpi @q1 1

2 ~v11!t#,

~32!
p1 ie5u expi @q1 1

2 ~v11!t#.

The specific solution on the separatrix, which takes pl
with W52, is given explicitly by

x056
a2

2
sechS aVN

2
t D tanhS aVN

2
t D cosS v11

2
t1u0D

7
~v21!a

2VN
sechS aVN

2
t D sinS v11

2
t1u0D ,
on

e

y056
a2

2
sechS aVN

2
t D tanhS aVN

2
t D sinS v11

2
t1u0D

6
~v21!a

2VN
sechS aVN

2
t D cosS v11

2
t1u0D ,

z0512
a2

2
sech2S aVN

2
t D , ~33!

e056a sechS aVN

2
t D sinS v11

2
t1u0D ,

p056a sechS aVN

2
t D cosS v11

2
t1u0D ,

where a2542@(v21)/VN#2. The solution~33! describes
the locus of states in which atoms radiate and reabsorb t
own field in infinite time. The orbits~33! are homoclinic to
the fixed pointS1 . Contrary to the case of the resona
interaction where it is always stable, this point can
proven, out of resonance, to be unstable ifVN>uv21u/2
and stable otherwise@22#. Under this condition, the expres
sion under the square root ofa is non-negative.

Thus in the caseVN>uv21u/2 the autonomous nonreso
nant atom-field system possesses a two-sheeted homoc
manifold ~a pair of two-dimensional homoclinic tori! which
is a collection of all the pairs of separatrices that connect
equilibrium pointS1 to itself. These tori are given explicitly
by the solution~33! or implicitly by the following values of
the integrals of motion (W52,C50). This unperturbed
manifold provides a framework in which we will analyze
Sec. V the chaotic oscillations in the nonautonomous n
resonant atom-field interaction.

IV. HOW TO LOCK THE ATOMIC INVERSION
AND THE AVERAGE NUMBER OF PHOTONS

IN THE ATOM-FIELD INTERACTION

A. Nonautonomous resonant interaction

The general exact solutions~17! and~18! obtained in Sec.
III A for resonant moving atoms contain a special soluti
that leaves the density of the atomic inversionz and the
density of the average number of photonsn5(e21p2)/4 un-
affected. We will seek the solution in the form

xtrap57A12g4 cosS gVNE
0

t

f ~t8!dt82t1f D ,

ytrap56A12g4 sinS gVNE
0

t

f ~t8!dt82t1f D ,

z~0!52g2, ~34!

etrap5b cosS gVNE
0

t

f ~t8!dt82t1f D ,

ptrap5b sinS gVNE
0

t

f ~t8!dt82t1f D ,
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wheref is an arbitrary phase andg2 is an arbitrary number
from the interval 0<g2<1. The expression~34! obeys the
original system~4! with v51 if the field amplitudeb is
connected with the initial atomic inversionz(0) by the fol-
lowing condition:

b56Az~0!2@z~0!#21. ~35!

These results may be resumed as follows. If atoms at
cavity entrance are prepared in the same superposition
with an arbitrary phasef as follows:

x~0!57A12g4 cosf, y~0!56A12g4 sinf,

z~0!52g2, ~36!

and the cavity mode is prepared initially in a coherent st
with the atomic phasef and the amplitudeb satisfying the
condition ~35! as follows:

e~0!5b cosf, p~0!5b sinf, ~37!

then the density of the atomic inversionz of moving atoms
and the density of the photon numbern5b2/4 do not evolve
regardless of the spatial structuref~r ! of the cavity mode
along the propagation axis. The total energy and the inter
action energy in these trapping states are given by

Wtrap5b222g2, Jtrap52bA12g4. ~38!

Thus, the receipt for locking the atomic inversion of mo
ing two-level atoms and the average number of photons
single-mode lossless cavity is the following. Prepare the fi
mode in a coherent state~37! with a phasef and atoms at the
cavity entrance in the same superposition state~36! with the
same phasef and the initial inversionz(0) connected with
the field amplitude by the condition~35!. In spite of the
oscillations of both the atomic~x,y! and the field~e,p! vari-
ables@see Eq.~34!#, the atomic inversion and the averag
number of photons remain stationary and equal to their in
values. This is a result of the synchronized oscillations of
atomic and field subsystems.

The nonpositive initial inversion,21<z(0)52g2<0,
can be considered as the necessary condition for popula
locking. It follows from Eq.~35! that in order to lock the
population and the radiation starting with zero inversi
z(0)50, one needs an infinitely large number of initial ph
tons in the cavity mode,b→`. The respective field stat
may be treated as a phase state. To lock the population in
ground state, one needs to prepare the field in the vac
state,b50. It is a trivial consequence of the fact that th
initial state ux(0)5y(0)5e(0)5p(0)50, z(0)521& is a
simple equilibrium point of the dynamical system~4!. One
can lock the population in any superposition state with
initial Bloch vector to be chosen from the lower Bloch sem
sphere21<z(0)<0 by preparing the cavity mode in th
respective coherent state. To lock the population ofN atoms
with, say, the density of inversionz(0)521/2, one needs
3N/8 initial photons.

The effect of coherent trapping with two-level atoms h
been found@23# within the Jaynes-Cummings model treatin
a single two-level atom that interacts with a single mode
e
ate

e

a
ld

l
e

on

he
m

e

s

f

the quantized radiation fieldin a lossless cavity. In contrary
to the multilevel case, where there are additional transit
channels between which a coherent interference can occu
the two-level case, the atomic dipole interferes destructiv
with a coherent cavity eigenmode inhibiting the transitio
between the two levels. In the framework of the fully qua
tized Jaynes-Cummings model, the population inversion
be expressed in the form of a series in the photon popula
numbers that contains an interference term depending o
relative phase between the dipole and the coherent sta
the eigenmode. If this phase is zero, the amplitude of
oscillations of the population amplitude has been shown
merically to be extremely small@23#.

We demonstrate here that the effect of population a
radiation trapping can occur with moving two-level atom
which are at exact resonance with a spatially inhomogene
cavity eigenmode. It means that, under appropriate co
tions, the effect of trapping can persist in maser-type exp
ments with atomic beams. In the semiclassical limit, it
even possible to find in the explicit form@see Eqs.~35!–~37!#
a class of the initial conditions for the atoms and the fie
under which the atomic population inversion and the aver
number of cavity photons can be locked.

B. Autonomous nonresonant interaction

In this section we describe briefly the effect of trappi
with atoms moving through a spatially homogeneous sing
mode field whose frequency is not at exact resonance w
the atomic frequency. It is easy to check that the spe
solutions

xtrap56A12@z~0!#2 cosS v11

2
t1w D ,

ytrap56A12@z~0!#2 sinS v11

2
t1w D ,

z~0!5S v21

2VN
D 2

, ~39!

etrap57
2VN

v21
A12@z~0!#2 cosS v11

2
t1w D ,

ptrap56
2VN

v21
A12@z~0!#2 sinS v11

2
t1w D

of the general solutions~28! and~29! leave the density of the
atomic inversionz and the density of the average number
photonsn unaffected. Assumingt50 in Eq. ~39! one can
find the corresponding initial states of the atoms and
cavity field that provide trapping. As in the case of the no
autonomous resonant system, trapping will occur if the
oms are prepared in a superposition state and the field
coherent state with the same phase. Contrary to the reso
case, the respective values of the density of the initial ato
inversion should be chosen from the upper Bloch se
sphere, 0<z(0)<1. One limit case,z(0)50, is realized at
exact resonance and considered in the preceding section
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other limit case,z(0)51, corresponds to the fixed pointS1

that is an equilibrium state in the semiclassical approxim
tion.

V. HAMILTONIAN CHAOS

A. Melnikov analysis

Now we return to the original nonintegrable problem
nonautonomous nonresonant atom-field system~4! that takes
into account both a spatial inhomogeneity of the cavity mo
and a detuning between atoms and the field.

Homoclinic motion of a Hamiltonian system is a motio
that is asymptotic to a periodic motion att→6`. As was
shown by Poincare´ @24#, the existence of isolated homoclin
orbits results in a complicated behavior of trajectories
Hamiltonian systems. There exists a general method that
prove the presence of chaotic motion by detecting transv
intersections between perturbed stable and unstable
moclinic manifolds~a homoclinic structure! and by calculat-
ing the width of the respective stochastic layer. This meth
was developed by Melnikov@25# and generalized in@26# ~for
a review see, e.g.,@27#!.

In the absence of spatial modulation of the vacuum R
frequency (f 5const) the evolution of the atom-field syste
is periodic and is governed by the exact solutions to be
tained in Sec. III B. The main effect of the modulatio
V0(t)5V0f (t), is to produce, out of resonance (vÞ1), a
homoclinic structure in the vicinity of the separatrix of th
unperturbed autonomous system.

In this section we use the Melnikov method@25# to prove
the existence of chaotic trajectories by detecting transv
intersections between perturbed stable and unstable m
folds. This is a standard method suited for the case of sm
periodic perturbations of integrable systems. In order to
ply the method, we introduce vector notations and rew
the original atom-field dynamical system~4! in the form

ṡ5F~s!1eG~s,t!, ~40!

where each vector has five components, namely

s5~x,y,z,e,p!T,

F~s!5„2y2VNzp,x2VNze,VN~xp1ye!,vp2VNy,

2ve2VNx…T, ~41!

G~s,t!5„2g~t!zp,2g~t!ze,g~t!~xp1ye!,2g~t!y,

2g~t!x…T.

When writing down the original system~4! in the vector
form ~40!, we have represented the modulationf (t) in Eq.
~4! in the following form:

f ~t!511
e

VN
g~t!. ~42!

The basic idea of the Melnikov analysis is to make use
exact solutions of the unperturbed integrable system (e50)
in the computation of a perturbed system of the form~40!.
We referred to the autonomous nonresonant system tre
in Sec. III B as the unperturbed system. The unpertur
-
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system possesses a two-sheeted homoclinic manifold
sisting of a collection of all the pairs of separatrices h
moclinic to a fixed pointS1 and connecting this hyperboli
point to itself. The manifold is parametrized byt and is
given explicitly by the solutions~33! with u050 and u0
5p. With the help of the integrals of motion one can al
represent it implicitly by the equations

R51, W52, C512v. ~43!

The homoclinic manifold possesses three normal vectors

n15“R, n25“W, n35“C, ~44!

where

“5S ]

]x
,

]

]y
,

]

]z
,

]

]e
,

]

]pD . ~45!

The Melnikov functionM (t0) measuring the signed distanc
between the stable and unstable manifolds of the equilibr
point S1 at t0 along the normaln to the unperturbed ho
moclinic manifold is proportional toeM (t0)1O(e2). It is
given by @25#

M ~t0!5E
2`

`

n•Gdt, ~46!

where G is the perturbation part of the vector field whic
is given in our case by the last equation in Eqs.~41!.
This integral is evaluated along the separatrix~33!. Since
n1(s0)•G(s0)5n2(s0)•G(s0)50 we need to measure th
Melnikov distance in only one directionn3(s0)5(VNe0 ,
2VNp0,12v,VNx0 ,2VNy0).

It should be noted that our analysis is applicable to
physical situation with atoms moving through a cavity in
direction along which the depth of modulation of the
vacuum Rabi frequency may be considered to be smal
compared with the amplitude value, i.e.,e!VN @see Eq.
~42!#. We suppose the harmonic modulationg(t)
5sinvmt, with vm being a dimensionless modulation fre
quency. After calculating the scalar product

n3~s0!•G~s0!5
12v

VN
sin@vm~t2t0!#

dz0

dt
~47!

and substituting Eq.~47! into Eq. ~46!, we can carry out the
integration by parts with the result

M ~t0!5
2p~12v!vm

2

VN
3 sh~vmp/aVN!

cos~vmt0!. ~48!

It is evident from Eq.~48! that out of resonance,vÞ1, the
Melnikov integral has simple zeros as a function oft0 . If
M (t0) has simple zeros, then the stable and unstable m
folds of the hyperbolic point intersect transversally, resulti
in Smale horseshoe chaos@27#.

B. Poincaré sections and Lyapunov exponents

We have performed some computer simulations on
nonautonomous nonresonant atom-field system~4! assuming
the modulation of the vacuum Rabi frequency of movi
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atoms to be large. Suppose the simplest spatial variatio
the cavity modef (r )5sin(kpr/Lc), which corresponds to a
TEk mode in a rectangular cavity withLc being the cavity
length andk11 being the number of nodes in the cavity. F
moving atoms, it becomes the time-periodic function that
the following form in the dimensionless timet5vat:

f ~t!5sin~bvt!, ~49!

whereb[va /c is the ratio of the velocity of atoms to th
velocity of light.

To verify the breakup of the separatrix~33! whenvÞ1,
we calculate Poincare´ sections of the coupled atom-field flo
generated on the direct product space of the surface of
atomic Bloch sphere and the field oscillator plane. The n
autonomous nonresonant atom-field system~4! has two inte-
grals of motion~8!. Therefore, a standard two-dimension
Poincare´ surface of section is defined by fixing one variab
out of the three independent ones. We define a Poincare´ sec-
tion by x50 with ẋ.0, which is realized on the phase plan
of the field variablese-p with the following fixed values of
the control parameters: the collective vacuum Rabi f
quencyVN50.2, the detuningv50.9, and the velocity of
atomsb50.1. Figures 1–4 demonstrate these sections at
different values of the initial total energyW5e21p212z.
In each figure we plot the successive sections of six tra
tories started at the six different initial conditionsej (0)5
2pj (0)50.1j , x(0)50, zj (0)5 1

2W1@ej (0)#2, @yj (0)#2

512@zj (0)#2, j 50,2,4,6,8,10.
A rather regular structure is visible in Fig. 1, which show

the Poincare´ section for atoms entering a cavity, practical
in the ground state (W521.8). A separatrix becomes vis
ible on the planee-p when the total energy reachesW51
~Fig. 2!. With the total energy increased, a stochastic la
near the separatrix begins to show up~Fig. 3 withW51.4).
The Poincare´ section that is generic for developed chaos

FIG. 1. Poincare´ section on the field planee-p with VN50.2,
v50.9, b50.1, and the energyW521.8.
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shown in Fig. 4 with the energyW52 corresponding to the
initial state with practically fully inverted atoms,z0.1.

In closed dynamical system, chaos has its origin in
tremal sensitivity to initial conditions, which is characterize
by the Lyapunov exponents

l i5 lim
t→`

l i~t!, l i~t!5 lim
D i ~0!→0

1

t
ln

D i~t!

D i~0!
, ~50!

where D~t! is the distance between two initially adjace
trajectories at timet, which may be specified as the Euclid
ean distance between two phase-space points. For
m-dimensional dynamical system there existm Lyapunov

FIG. 2. Same as Fig. 1 withW51.

FIG. 3. Same as Fig. 1 withW51.4.
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numbers (l i , i 51,2,...,m). Since the volume of a given el
ement of phase space is always invariant for a conserva
dynamical system, we haveS i 51

m l i50. The valuesl i mea-
sure the rates of expansion of a volume element in them
principal directions. If l i,0, then the volume elemen
shrinks in the corresponding direction. Ifl i.0, then the vol-
ume element expands exponentially in that direction, an
l i50, then the growth is linear. The rates of growth of
volume element of phase space in various directions ca
used to describe the trajectories that pass through such
ume elements. A trajectory is chaotic if the maxim
Lyapunov exponentl is positive. Therefore, the Lyapuno
exponents allow us to determine whether individual orb
are chaotic and to compare the strength of their randomn

A dynamical system may be considered as a transfor
tion of phase space. In other words, the volume of a gi
element of phase space representing different initial ph
points is transformed into a deformed volume during
evolution. When this volume has smooth boundaries, t
the respective flow is regular. A chaotic flow arises when
initial volume element stretches, shrinks, and folds. The lo
exponential divergence of trajectories produces a lo
stretching, but because of the global confinement in
phase space of our conservative Hamiltonian system w
two degrees of freedom this stretching is accompanied
folding. Repeated stretching and folding produces very co
plicated motion that is known as chaotic.

When a dynamical system possesses more than a s
control parameter, it is useful to compute topographical
maps@14,16# that give a representative ‘‘portrait’’ of chaos
Such a map shows the values of the maximal Lyapunov
ponentl of the system with given initial conditions as
function of two of the control parameters at fixed values
the other parameters. We have computed the topographicl
maps with all three control parametersVN , v, andb varied
for the atom-field system~4! with the following initial con-
dition:

FIG. 4. Same as Fig. 1 withW52.
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x~0!5y~0!50, z~0!51, e~0!5p~0!51, ~51!

which corresponds to initially fully inverted atoms entering
cavity with the initial density of photons to be equal
n(0)5 1

4 @e(0)21p(0)2#5 1
2 . The values ofl are encoded

by the color using a linear scale which is shown on the ri
sides of the maps. In calculating the maximal Lyapunov
ponent, we employl~t! according to Eq.~50!. In taking the
limit ~50! we integrate the equations of motion up tot
532 000 with a stepdt51 and check the results at each st
with the help of the conservation laws~8!.

Figures 5 and 6 show thev-VN maps calculated at the
fixed values of the dimensionless velocity of atomsb
50.01 and 0.1, respectively. It is clear from the figures t
chaos disappears when the atomic frequency is close to
field frequency. The log10b-VN map of chaos at the fixed
value of the detuningv50.9 is given in Fig. 7. It is seen
from the figure that comparatively strong chaos arises i
rather narrow range of the values of the atomic velocit
from b.0.01 to 0.3. The log10b-v map shown in Fig. 8 has
a rather symmetric structure with respect to the line of ex
resonance,v51. It is calculated at the fixed value of th

FIG. 5. Topographicall map showing the regions of periodi
and chaotic motion on the frequency planev-VN (b50.01).

FIG. 6. Same as Fig. 5 withb50.1.
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collective vacuum Rabi frequency,VN52. The mapsb-VN
andv-VN give us, in fact, the values ofl as a function of
the number of atomsN @see the expression~6!# which may
be considered as an adjustable control parameter of the a
field system along withb andv.

The Hamiltonian approach we have adopted through
the paper is valid over time intervals shorter than all
relaxation times. This approach is based on the stro
coupling limit

TR[
2p

V0AN
!Ta ,Tf , ~52!

whereTR is the period of the collective vacuum Rabi osc
lations, andTa, f are the lifetimes of the atomic states and
the photons in a cavity, respectively. In numerical expe
ments that compute maximal Lyapunov exponents, Ham
tonian chaos can be diagnosed over a time interval of
order of the correlation decoupling time@28# Tcor
52p/val. In terms of the collective vacuum Rabi fre

FIG. 7. Topographicall map on the log10 b-VN plane
(v50.9).

FIG. 8. Topographical l map on the log10 b-v plane
(VN52).
m-

ut
e
g-

f
-
l-
e

quencyVN and l, the condition for numerically observing
Hamiltonian chaos can be rewritten as

VN[
V0AN

va
@l. ~53!

A Rydberg maser operating in the strong-coupling regi
with a beam of two-level Rydberg atoms injected into
small high-Q cavity seems to be a promising device for o
serving semiclassical Hamiltonian chaos in real experime
The Rydberg atoms have the transition frequency of the
der of va.1011– 1012rad/s, the electric dipole matrix ele
mentd.103 atomic units, the one-photon vacuum Rabi fr
quencyV0.105– 106 rad/s, and the lifetime of the circula
Rydberg states,Ta.1022 s @29#. Parameters of a microwav
maser cavity are the following:Q.1010, Lc.1 cm, and
Tf.1021– 1022 s @29#. As it follows from our numerical
results~Figs. 5–8!, one can reach the regime of the chao
vacuum Rabi oscillations with the strength of chaos of
order of l.0.01 operating with a droplet consisting o
106– 107 atoms and flying with the velocity more thanva
.108 cm/s. It should be noted that to our knowledge micr
maser experiments are performed with much slower ato
va,105 cm/s @29#.

VI. CONCLUSION

We analyze the RWA nonlinear dynamics in one of t
simplest models of laser and atomic physics that compr
two-level atoms moving through a high-Q cavity and inter-
acting with a single eigenmode of the cavity. The main pro
lem in which we are interested in this paper is a transition
Hamiltonian chaos in the case when the field cannot be
sumed as homogeneous on the cavity size. The Heisen
equations for the expectation values of a complete set of
atomic and field observables are shown to be integrabl
the two limit cases: the nonautonomous resonant inte
tion and autonomous nonresonant interaction. The respec
general exact solutions are given for both the models.
use them to reveal and describe the coherent effect of loc
of the oscillations of the atomic inversion and of the rad
tion field that may occur under appropriate conditions. T
integrable equations are shown to possess special orbits
are homoclinic to the state with fully inverted atoms and
vacuum cavity field which is an equilibrium one in the sem
classical approximation. With the help of the Melniko
method we prove analytically transverse intersections
stable and unstable manifolds of this equilibrium point und
small modulation of the vacuum Rabi frequency caused b
slightly inhomogeneous field. These transverse intersect
are believed to provide the Smale horseshoe mechanism
chaos. To confirm numerically the chaotic dynamics in t
semiclassical RWA model, we compute Poincare´ sections
and maximal Lyapunov exponents under strong modula
of the vacuum Rabi frequency. The Lyapunov topographi
maps showing the regions of regular and chaotic motion p
vide representative numerical ‘‘portraits’’ of the system
dynamics in different ranges of its control parameters.
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APPENDIX: ACCURACY OF THE SEMICLASSICAL
APPROXIMATION

In this appendix we introduce new atomic and field o
erators with commutators vanishing at the limit of a lar
number of atoms,N→`, and show in an explicit form tha
the semiclassical approximation is valid in this limit.

Let us introduce new operators normalized to the num
of atoms

A5
a

AN
, A†5

a†

AN
,

~A1!

Sx5
1

N (
j 51

N

sx
j , Sy5

1

N (
j 51

N

sy
j , Sz5

1

N (
j 51

N

sz
j ,

which satisfy the following commutation relations:

@A†,A#5
1

N
, @Si ,Sj #5

2i

N
ei jkSk , i , j ,k5x,y,z.

~A2!

Neglecting all the quantum correlations, one can obtain fr
the Heisenberg equations of motion for the operators~A1! a
closed set ofc-number equations for the expectation valu
of the respective operators
e
.

cs
f

h.

s.

s

n

-

r

s

x̃5^Sx&, ỹ5^Sy&, z̃5^Sz&,
~A3!

ẽ5^A†1A&, p̃5 i ^A†2A&.

Differentiating with respect tot5v0t, this set can be easily
shown to have the same form as Eqs.~4!,

x852 ỹ2VNf ~t!z̃p̃,

y85 x̃2VNf ~t!z̃ẽ,

z85VNf ~t!~ x̃p̃1 ỹẽ!, ~A4!

e85v p̃2VNf ~t!ỹ,

p852vẽ2VNf ~t!x̃.

The commutators~A2! of the normalized operators vanis
at the N infinite limit. It is obvious that the semiclassica
approximation is valid at this limit with the relative erro
O(1/N). The equations of motion for these operators a
their expectation values~A4! do not depend on the numbe
of atomsN. We want to emphasize that with the help of th
normalization~A1! one can incorporate in a natural way in
respective equations of motion some quantum correla
terms since the dependence on the small parameter 1/N ap-
pears only in the quantum correlators when the commuta
~A2! do not vanish identically.
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