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We present an analytical theory of vectorial wave coupling in photorefractive cubic crystals which are, in
general, optically active. The theory is based on the systematic use of the spatial symmetry properties and the
apparatus of the Pauli operators to deal with two-dimensional vectors and matrices. It allows one to give a
unified description of a wide spectrum of photorefractive phenomena, including the efficiency and polarization
properties of Bragg diffraction, polarization two-beam coupling enhanced by ac fields, the influence of the
photoelastic effect, etc. Applications of the theory to crystals of the sillenite family and to particular photore-
fractive phenomena are given. A good qualitative agreement between the theoretical predictions and experi-
mental data for Bi,TiO,o (BTO) crystals is shown.S1063-651X99)12209-§

PACS numbeps): 42.70.Nq, 42.65.Hw

[. INTRODUCTION ac field up to 50 kV/cm, a decrease in the response time in
cw experiments to microseconds, and a demonstration of a
Photorefractive nonlinear wave coupling has been theariety of strong nonlinear effects relevant to applications,
subject of many studiefl —3]. Usually the strongest photo- such as fast phase conjugati@®), generation of surface light
refractive optical nonlinearity and, correspondingly, thewaves{10,11], and time separated recording and readout pro-
strongest wave interactions occur in photorefractive ferroS€sse$12]. _ . _
electrics, which are highly anisotropic. The wave surfaces for 1he main problem and the main specific features in de-
two light eigenmodes(often ordinary and extraordinary SCriPing the photorefractive wave coupling in cubic crystals
- ) is the vectorial character of the interaction. The distance be-
waves are well separated here knspace. For this reason,

wave interactions in ferroelectrics may succesfully be deWeen the wave surfaces knspace that corresponds to two
igenwavedelliptically polarized in the presence of an ap-

scribed by. cogpled equations for the scalar wave amplitude lied electric field is considerably smaller here than in fer-
The polarization properties of the wave coupling are un-

roelectrics. For this reason, the energy and polarization ex-
coupled here from the effects of energy and phase exchang ange between light waves cannot generally be held apart
Unfortunately, the photorefractive response of ferroelec-and’ correspondingly, the vectorial wave coupling cannot be

trics is not sufficiently fast for optical applications. Much reqyced to the scalar one. The proximity of the wave sur-
effort has been made to find faster photorefractive materialgyces, together with the specific features of the electro-optic
[1-3]. Nowadays, cubic crystals of the sillenite family effect in cubic crystals, also means that the wave coupling is
[Bi1,Si0,p (BSO), Biy,TiO,, (BTO), and Bi,GeGy,  highly sensitive to the input wave polarizations, to the crystal
(BGO)] meet the necessary requirements most fully. In thecut, to the applied field, etc. A wealth of strong nonlinear
absence of applied electric fields these materials are opticallyphenomena, a high spatial symmetry, and an apparent sim-
isotropic and optically active. plicity of formulation of the nonlinear problems is a chal-
Two techniquegdc and ag have been proposed to en- lenge for theorists in the field of photorefraction.
hance the value of the photorefractive response in sillenites The theoretical description of the photorefractive nonlin-
[4,5]. Both of them exploit applied electric fields. In the dc ear phenomena in cubic crystals, in general, and in the sille-
case this field is constant and the interacting light waves argites, in particular, remains, is spite of a great number of
slightly shifted in frequency from each other. In the ac casepublications, very fragmental; at present it does not meet the
which is proven to be most useful, an applied field oscillategequirements for experiment. The essence of the theoretical
in time and no frequency shift is needed between the lighttudies performed may be sketched as follows.
waves. The efficiency of the ac technique depends on the A considerable number of papers has been devoted to the
temporal profile of the applied fielf5]. The best enhance- analysis of vectorial wave coupling via a spatially uniform
ment corresponds to a square-wave profile when the ac fielgrating of the space-charge fiefld2—17. The results ob-
changes its sign periodically. tained have shown the importance of the polarization degree
Considerable progress in improving the photorefractiveof freedom and the orientation of the grating fringes about
characteristics of sillenites has been made several years agte crystal axes for optimization of the readout process.
[7,8]. The fabrication of thin and longfiberlike) BSO and Many of the above papers use various approximations or
BTO crystals has allowed an increase in the amplitude of theumerical methods to solve the vectorial Bragg-diffraction
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problem. It has become clear only recerith,17] that this (v) The theory is open for further development; deprived
problem can be solved exactly in the paraxial limit. In anyof the possibility to exhaust particular results, we often indi-
event, the assumption of a uniform grating cannot be appliegate the way to obtain them. As usual, we restrict ourself to
to the cases of strong energy and polarization exchange b#he paraxial approximation which is well justified for most
tween the interacting light beams. experiments.

The effects of weak two-wavéW) coupling have been The structure of the paper is the following. In Sec. Il we
considered in Refs[18—20 using the approximation of a Provide the reader with background information on the opti-
thin crystal. The corresonding results can be applied to &al permittivity of cubic crystals, including optical activity,

restricted set of experimental data related to the cases of {gnt absorption, and the linear electro-optic and elasto-optic
enhancement of the photorefractive response. effects. Then we derive a system of coupled vectorial equa-

Various aspects of the problem of enhancement of théions for the wave amplitudes that describes the linear propa-

photorefractive response in cubic crystals have been consi@ation and the mutual Bragg diffraction from a light-induced

ered in Refs[4—6,21,22. The effects of the energy and po- space-charge grating. The coupled wave equations include

larization exchange between the light beams were outside tﬁge minimum numbgr of phenomenological parameters con-
main line of these studies sistent with the spatial symmetry. In Sec. lll we specify the

Much effort has been made to describe the additionaf‘bove phenomenological parameters for two general optical

nonelectro-optic contribution to the photorefractive responscgonf'gur""t'o.nS and consujer the equivalent geometries and a
caused by the elasto-optic effd@3—-29. The obtained re- humber of important particular cases. The information pre-
sults now allow one to characterize fairly well the photore_sented here is sufficient for the description of most configu-

fractive nonlinearity for various optical configurations and rations rele}/atﬂt t? experlmenti' Sectflolp :1:/ IS devqted tg' a
polarizations of the light waves. summary of the linear properties of light waves in cubic

There is quite a number of recent publications aimed a{:rystals that are necessary for the subsequent theoretical con-
the analysis of strong nonlinear effects caused by the e Siderations. These properties include the effect of an applied

hanced photorefractive resporfs,30—33. Unfortunately, ield on the polarization properties of the eigenmodes and on

the authors of these papers usually restrict themselves to tge s'tructure of tthe (I:otr.respcf)r:rc]jmg wave difurfatc;es. In t?lec. v
formulation of the initial self-consistent equations for wave V€ 9IVE an exact soiution of the bragg-ditiraction probiem,
e(:onS|der|ng the amplitude of the space-charge grating as a

equations. The corresponding numerical results give no gerg:_onstant. We then apply our results to describe the giant

eral insight into the nonlinear phenomena under study. Morer_eadout pulses during the switching of an applied field; these

over, the initial equations often do not include details essenpljlses have been detected recently in ac experiments with

tial for wave coupling, such as the effect of the polarizationBTO crystals[12]. In Sec. VI we describe the photorefrac-

switching on the grating amplitude and the elasto-optic effive rgsponse of a cry_stal as applied to two main limiting
fect. A part of the numerical results obtained is outside theases: to the case of diffusion charge transfer and to the case

field of applicability of the starting equations. of an applied square-wave field. The obtained explicit rela-

Finally, we mention the papers devoted to the solution ofions for the grating amplitude enable us to formulate a

the nonlinear equations for wave coupling in cubic Crystalsclosed set of vectorial nonlinear equations for each of the

without optical activity as applied to the case of dominatinggbovevltlypes d(')f the ?ﬁotorefrac_tlvet_two-wave C(_)utpll?g. tlhn
diffusion transport[34,35. This particular case admits a ec. Wwe diScuss the approximations appropriate for the

quite comprehensive analytical treatment, however, it i iffusi_on and ac cases, obtain the corres_ponding simplified

nowadays mainly of academic interest in view of the weak-2quations and solutions for the wave amplitudes, and analyze

ness of the diffusion mediated photorefractive response. f[he polarization pr.ope'rtles of the energy exchange. Sec. Vil
In this paper we are making an attempt to lay the foundalS devoted to applications of the obtained general results to a

; ; ; .. _description of the angular and polarization dependences of
tion of an analytical theory of the vectorial wave coupling in . T
Y y ping >}he rate of spatial amplification in BTO crystals, and to a

a%omparison between theory and experiment. A comparison
of the main theoretical predictions for BTO crystals with
experiment is made in Sec. IX. In Sec. X we discuss the
merits of the developed theory and the prospects for its fur-
ther development and application. The conclusions are
drawn in Sec. XI.

active. The distinctive features of the proposed theory are
follows.

(i) The theory incorporates uniformly all main aspects of
2W coupling: readout, including the effect of optoelasticity;
recording, including the enhancement factors; arbitrary ori
entations of the grating vector and applied field; etc.

(i) We systematically exploit the properties of spatial
symmetry of cubic crystals; this imparts additional generality Il. BASIC RELATIONS
to the theoretical conclusions and makes them as free as
possible from model assumptions.

(i ) We use the apparatus of Pauli matrices to deal with The known cubic photorefractive crystals belong to point
two-dimensional vectors and matrices. The introduction ofsymmetry group 23BSO,BTO,BGQ. . .) and 43m (GaAs,
the Pauli matrices greatly simplifies the structure of the vecCdTe,InR . . .). In the absence of an electric field these crys-
torial equations and makes the calculation procedures easyals are optically isotropic. This isotropy may, however, co-

(iv) We analyze in detail possible approximations for theexist with optical activity; this is the case for group 23. The
nonlinear wave equations, as well as the field of applicabilityelectro-optic properties of the above cubic crystals are uni-
of the obtained results. form in symmetry.

A. Optical permittivity
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For a light wave with wave vectdk the optical permit- whereK is the grating vectorE,z is the complex vectorial
tivity tensor (g;;) of a cubic crystal, subject to an electric grating amplitude, and the asterisk stands for the complex
field E, can be presented in the form conjugate. Using the linearity of the effect of the electric

_ field on e, we have

€jj =né(1+i o k_l) 5” +2i p ng k2 5ij| k|+ 5€ij(E), .

1) Se (E)=Se (Eq) +[de (Eg) e T+c.cl. (6)

where ng is the refractive indexg is the light absorption It is essential that the dependencﬁs(l?o) and 5;(&) are

coefficient, p is the rotatory powerg;; is the unit second . . _ g
p y P O generally different. Since the uniform fiekey, does not pro-

rank tensor, ands; is the unit antisymmetric third rank ¢ . | d tal ite for thi
tensor. The Latin subscripts hereafter denote Cartesian cor1q-uce any stress in an unclamped crystal, we can write for this
dpost actual case,

ponents and repeated components in the products’ me
summation ovek, y, andz The first two terms in Eq(l) . 4 ©)
describe the optical permittivity in the absence of any elec- d€ij (Eo)=—ngra EoHjj”, (7
tric field. The components of the isotropic tenségsand 6, (0)— 11(0) — (0} ) .

are the same in each Cartesian coordinate system. The po¥here Hi’=H;’=pi;’n/, Eq is the amplitude of the ap-
tive sign of p corresponds to the corkscrew rule for the ro- plied field, anch® is the unit vector indicating the orientation

tation of the polarization plane. In crystals of point groupof E,,. In the case whek, does not depend di the vector
431rr_1hthv|a oﬂlcal a'lCtII\E”wllsdabse'T)p:?H i fect of th n® is defined uniquelyn®=Ey/E,. In the ac case, when
e last term in Eq(1) describes the linear effect of the Eo(t) changes its sign periodically, the vectt is defined

electric fieldE on the optical permittivity. This term is wor- wcent for the sian: anv choice for® leads to th m
thy of special attention. It has been supposed initially that th&XCEPL Tor Ihe sign, any choice €ads 1o the same
rphy3|cal results.

effect of the electric field is reduced to the so-called linea . TP .
electro-optic effect, i.e. _ The spatially oscHIa_tmg field indeed produces a stress in-
T side the crystal and this stress depends on the orientation of
= the vectorEg . This vector can, in turn, be written &
56ij(E):_ngrij| E, 2 . K _ ) ) Eﬁ
=nEg, where Eg is the scalar grating amplitude and
wherer;j, is the electro-optic third rank tensor. This tensor is = K/K is the unit grating vector. Then, for the tensorial am-
real and symmetric in the first two indices; in crystals of plitude 5}(@2), we can write

point group_43m and 23, it is characterized by only one
independent componert;, and may be presented as 56”(|§R): —nngERHij , (8)

Fiji=Ta1 pi(j?)v 3 whereH;; is a tensor including the electro-optic and elasto-
optic contributions. This tensor is also real and symmetric in
Wherepi(ﬁ) is the normalized electro-optic tensor. This tensorthe indices andj. As a rule, the elasto-optic contribution to
is not isotropic; its components look especially simple in they does not exceed the electro-optic one; hence the elements
crystallographic coordinate system, of the tensoH are quantities comparable with or less than

p D=5 (4 One. These quantities are functionsrofind are known for
il it the main optical configurations relevant to experiment; see

However, it has become clear about ten years{2ge-25 also Sec. lll. With the elasto-optic contribution neglected we

that the dependencg (E) (we use hereafter the sign “hat” obviously haveHijipfﬁ)n|. Note that the vecton is not

to mark tensors and matrideis not described fully by Eq. generally parallel tm° although, for experiments with exter-

(2). The point is that the so-called elasto-optic effect can alsmal light beams, usuallp|n°.

contribute. The scheme of this additional influence is as fol- Thus the elasto-optic effect renormalizes the electro-optic

lows. The electric field produces a stress inside the crystaknsor and this renormalization depends in a known way on

owing to the piezoelectric effect and this stress results, inthe orientation of the grating vector. The field-induced

turn, in an independent contribution &. This contribution ~ change of the optical permittivity is always anisotropic.

includes the elasto-optic and piezoelectric coefficients, as Table | gives representative optical constants for BTO and

well as the elasticity moduli. BSO crystals. These parameters will be used in the following
The procedure of how to calculate the elasto-optic contrinumerical estimates.

bution is described in detail in Reff23—-28. In this paper

we are merely interested in a simple and effective use of the

accumulated results for the description of photorefractive 1. Usual representation

wave mixing; To perform this program we assume that the | ot two light waves, 1 and 2, of the same frequencje
electric fieldE consists of a uniform park,, and a spatially  incident onto thexXY plane of a crystal. The corresponding
oscillating part, electric light field,€, inside the crystal may be presented as

B. Two-wave coupling via a space-charge grating

E=Eo+EgeX +E;e K, (5 E=(AeRiT+A ek e Totb o, (9)
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TABLE I. Triplets of basis vectorsxy,z equivalent to  parameters is opposite to the sign af,; and may be both
[001],[110],[110] (left column and [001],[110],[110] (right  positive and negative; this sign is often unknown in experi-

column. ment.
The left-hand sides of Eq$10), which are the same for

X Y, z X, Y, z waves 1 and 2, describe linear propagation in the presence of

— — — optical activity and field-induced birefringence, whereas the
(001}, [110], [1_10] (001}, [1_10]' [Eo] right-hand sides are responsible for the nonlinear coupling.
(oo1j, (110,  [110]  [0O1},  [110],  [110] The presence of light absorption yields a common exponen-
[001], [110], [110] [001], [110], [110] tial factor exptaz/2) in the expressions for the amplitudes
[001], [110], [110] [001], [110], [110] Ay, It does not affect the polarization properties and, if
[100], [011], [011] [100], [o11], [011] required, may be taken into account in the final expressions
[100], [o11, [011] [100], [011], [011] for 5\1,2. For simplicity, from now on we omit the terms
[100], [011], [011] [100], [o11, [011] a,&l,Z/Z in Egs.(10). One can check thereafter that the total
[100], [011], [011] [100, [011], [O11] intensity | y=|A;|?+|A,|? remains constant across the crys-
(010, [101], [101] (010, [101], [101] tal._This is an obvious generalization of _the known conser-
[010] [101] [10T] [010] [10T] (101] vation law for the scalar two-wave coupling.

_ i 7 : - Up to this point our treatment of the vectorial two-wave
(0107, (101},  [101  [010],  [101],  [101] coupling was not much different from the treatment by other
[010], [101], [101] [010], [101], [101] authors. Below we are creating a step to unify and simplify

@ (b) the set(10) using the technique of Paul matrices[35,36|.

2. o representation

where the wave amplitudds, , are slowly varying functions  The apparatus of matrices is an ideal tool to deal with
of the propagation coordinateand the time; the lengths of 2D vectors and matrices. Three matrices (operatory,

the wave vectorss; ,, are equal tk=wno/C (cisthelight & & & \hich may formally be considered components

velocity). The angles between the wave vectlafyg and thez . = . .
axis are supposed to be small, which holds true for mos?]c the vectorial operatosr, are defined by the expressions

photorefractive experiments. Within such a paraxial approxi- 0 1 A 0 —i A 1 0
mation the amplitudesA;, may be treated as two- 012(1 O)’ 2—< ) ( )
dimensional(2D) vectors withx,y components.

The wave vectors’ diﬁerenc@=|21—lzz is nothing else
than the grating vector of the light-induced spatial grating.These Hermitian matrices possess a number of remarkable
This vector and the vectcﬁo are supposed to have arbitrary mathematical properties. The most fundamental of them is
orientations in theXY plane. the relation

Using Egs(1), (6), and(8), and the notation introduced in ~ o~ L -
the paraxial approximation, one can obtain from Maxwell 0a0p=Oaplti dapy 0y, (13
equations the following coupled system for the vectorial

wave amplitudesﬁl,z,

i 0 737lo -1

where1is the unit 2<2 matrix and each of the Greek indices
a, B, andvy takes the values 1, 2, and@o not mix these up
with the Latin indices andj taking the valuex, y, 2). As

i+ h Al_i G A1=iEKVA2 follows from Eg.(13), any combinatior(function of the o
gz 2 ’ matrices is reduced to a linear combination of them. In par-
(10) ticular, the following equivalent of the known Euler formula
a\ . e e is valid for theo matrices[35,36],
E+§ A,—iGA=IEZ VA,. .
N Qo
. . e'? ?=1cosp+i——sing, (14
The matricesG andV are given by ¢
G~=SEOH-(-O)+ip S Wherqu=(qo1,go2,qo3) is a real 3D vectofnot to be mixed
g g Hze up hereafter with vectors in the coordinatey, z spacé and
(12) ¢ is its length. The definition of the matrix exponent,
Vij=s Hij,
. ~ 1. 1. ’
here s= —wngrul)\ is a material parameter and the Latin expU)=1+ EUJF EU oo (15

indicesi andj assume independently the valuesndy. As is
clear from Eqs(11) and the symmetry properties of the ten- is similar to the definition of the scalar exponent éxXpith

sorsH andH(©), see the previous subsection, the mattiis ~ help from the Taylor series. A
real and symmetriey;; =V =V;;, and the matribG is com- An eAlrbitrary 2<2 complex matrixJ may be expressed by
plex and HermittianG;; =ij . The sign of the introduced 1 ando,
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O=cy1+¢C o, (16)

wherecy=1Tr(0), ¢=1Tr(o U), and Tr means the tak-
ing of the matrix trace. The derivation of this relation ex-
ploits Eq.(13) and the fact that Tr&)zo. Actually, Eq.(16)
represents the decomposition of the matiisinto the isotro-
pic and the anisotropic parts. In the case whefis a Her-

mitian matrix, the constantc, and the vector ¢
=(c4,Cy,Cq) are real quantities.

Using the above mathematical properties, we present the

matricesG andV, given by Egs(11), in the canonical form,

17

where the real scalar parametey and the real vectors
=(vq,v,,v3) and k= (k,k,k3) are given by

=k-0, V=pyl+tv- o,

G

vo=S(Hyx+ Hyy)/2;

Vl:SHXyI V2:O, VSZS(HXX_Hyy)/27 (18)
k1=SEHY), ko=—p, Ka=SE(HQ—H)/2.
As was stated earlier, the parameteris given by s=

_Wn8r41/)\.

Correspondingly, Eqs(10), with light absorption ne-
glected, attain the final form,

Jd LAl . S
E_lK'U A;=iEx(vgtv o)A,
(19
Jd LAl . NS
(E_|KU) A2:|E}:(V0+V'O')Al.

The information about the linear properties of the light
waves is now included in the vectar, whereas the param-
eters v and vy characterize the wave coupling. Generally
speaking, the matrixG also has an isotropic contribution
sEy (H@+H{P)1/2. This contribution gives, however,
only a small renormalization of the refractive indeu,

which usually leads to no significant effects. The presence o

the parametew, on the right-hand side of Eq19) has an

important meaning, namely, that the wave interaction has an

isotropic part.
The matrix elementsl;; andH{” entering Eqgs(18) are

some dimensionless parameters of the order of one, depend-

ing on the orientation of the vectors and n® in the XY

B. I. STURMAN et al.

PRE 60

(a) (b)
2,[110]

) Co

x, [001] 2, [110]

J G

x, [001]

=
=y

y, [110] ¥, [110]
FIG. 1. Two basic nonequivalent configurations for 2W cou-
pling in cubic crystals.

I1l. MAIN OPTICAL CONFIGURATIONS

A. Two basic configurations

Most optical configurations relevant to experiment may
be described uniformly with the help of the geometrical
scheme shown in Fig.(&). The propagation axiscoincides

with the crystal axi§110], the x andy axes are directed

along[001] and[110], respectively, and the azimuth angles
in the XY plane are measured from the principal 81] in

the direction that is standard for a polar coordinate system. In
the general case, the anglgsand that define the orienta-

tions of the vectoréo andK are different.

Figure Xb) shows another optical configuration that is not
equivalent to the previous one because its basis vectors can-
not be made coincident with the basis vectors of Fig) by

the symmetry transformations of the point group 23 a8ch4
(see also below in this sectipThe photorefractive manifes-
tations are generally different for these nonequivalent con-
figurations analogously to the difference in photorefractive
phenomena in ferroelectrics for opposite directions of the
polar axis. Mathematically, the transition from one configu-
ration to the other is expressed by the multiplication of the

matricesH andH(® by a factor of—1. It is therefore suffi-
cient to describe the dependendég(¢) and H{({,) for
the basic configuration shown in Figal

For the optical configuration depicted in Figalthe ma-

E}ix H©)(¢,), characterizing the change of the optical per-
ittivity owing to the applied uniform field, has a simple

el

Using Egs.(18), we easily calculate the parameters; as

0

sin{g

singg
C0s{y

(0)—

i] (20)

plane. For the cases relevant to experiment we calculaignctions of¢,,
these parameters below in Sec. Ill. It is remarkable that the

ratios v, /v3 and k1 / k3 may be different owing only to the
elasto-optic contribution tde (E) and a nonzero angle be-
tweenn andn ©. Otherwise, we find from Eq€18) that (v
X k)=0.

The strengths of the effects of optical activity and field-
induced birefringence are determined by the paramétgrs
and |sEy|, respectively. The value zero of, in Egs. (18)

- ﬁcosgo.

5 (21)

k1=SEysindy, k3=

The elasto-optic contributions make the angular depen-
dences H;;({) more complicated in comparison with

H{”(£o). Figure 2 shows these dependences for BTO and
BSO crystals obtained on the basis of the literature data

means that the space-charge field does not affect the optici24,28. The nonperturbed dependencbl;%o)(g) are also

activity.

shown for comparison.
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(a) (b) (a) (b)

BTO BSO BTO BSO
0.6
9
0.3 =
= e
;:’; 0.0 S VA JIIT
-0.3 \/ \/ <
0.6
Iﬁ'
g n
= 2
*
5 05K
T
= z 00
T I
2]
> -05
180 90 0 90 180 -180 90 0 90 180 180 90 0 90 180 -180 90 0 90 180
¢ (deg) ¢ {deg) ¢ (deg) ¢ (deg)
FIG. 2. Dependences of the matrix elemertg({) for BTO (a) FIG. 3. Dependences, ; i(¢) for BTO (a) and BSO(b) crys-

and BSO(b) crystals; the dashed lines correspond to the nonpertals.
turbed functions.

. . . B. Particular optical configurations and cases
It is important that the following symmetry properties

hold true for the elements of tHé matrix, For experiments with applied electric fields, optical con-

figurations are defined by the orientation of the field vector

H(O=Hx( =), Hy(H=Hyy (=), E, with respect to the crystal axes. Four particular configu-
rations, which correspond to different values of the arigle
Huy(0)=—Hy(— ), (22  inFig. 1(a), are of particular intere¢®,13,24: (i) the longi-
tudinal configuratiorE||[001], i.e., siny,=0; (ii) the trans-
Hij({)=—H;j({xm). versal configuratior’EOL[OOl], i.e., cog,=0; (iii) the diag-

_ o onal configurationE||[111]; here {o=arctan{2), i.e., o
These properties are clearly seen in Fig. 2. They follow, as it-54 7° or —125.3°; and(iv) the diagonal configuration
may be proven, from the properties of spatial symmetry Ofﬁo\l[lll]; here o= —arctan@/i), ie., {o=—547° or

the crystals of the point group 23 andm. As seen from 125 3° The above diagonal configurations are similar but
Egs. (18) and Eq.(22), the functionv,({) is odd, whereas not equivalentsee this in more detail in Sec. VIl

the functionswo(£) and v(¢) are even(see also Fig. B As we have mentioned, the grating veckors not parallel

To gain a preliminary impression of the role of the elasto- .~ . T .
¢ P yImp {o Eq in the general case. This is relevant to the studies of

optic contributions, we look again at Fig. 2. One sees that", e : ; S
these contributions cannot be neglected in the general cas¥ide-angular light-induced scatteriifanning, which is due

On the other hand, they dominate only in rare cases. We caq the recording of a variety of noise gratings by a pump
expect that the elasto-optic contributions are most importanf/@ve and weak seed waves. For experiments with external
in the cases when the conventional electro-optic effect faildight beams, as a rul& is parallel toE,. Keeping in mind
occasionally to provide the wave coupling. Otherwise, thethis actual situation we consider four particular cafsse
optoelasticity should give only moderate corrections to thedlso Fig. 1a)].

coupling characteristics. Note that for some special orienta- (i) The fully longitudinal caseK|E,|[001], i.e. sing
tions of the grating vector the elasto-optic contributions turn=sin,=0. In this geometry the elasto-optic contribution is
to zero(see Figs. 2 and 3, and also below in this segtion  gpsentd=H© and the only nonzero componentof® is

With neglected elasto-optic contributions we hd¥¢?) Hgg,): +1. Correspondingly, we have heng=*s/2, v,

=H©)(¢) and, correspondingly, =0, andvz=+s/2.
(i) The fully transversal caseK|E,L[001], i.e., cos{
_S . __S =c0s{,=0. Here the diagonal elemertts, andH,, remain
Vo=5C€08L,  vy=ssing,  wy=—gcosi. (29 equal to zero fo=r3=0) and the elasto-optic contribution

moderately renormalizes the value of the nondiagonal matrix
These expressions are useful for rough calculations. elementsH,,=H,, as compared withi {)=H{)=+1.
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(2) (b)

: | : |
1 ! | 1
| | 1 :
: ! L E [001] c !
1 ! I :
i ! i ¢ v, [110] | FIG. 4. Geometrical schemes for the forward
! : ! G o (@) and the backwardb) optical configurations;
! : . K [ the dashed lines depict the crystal faces.
, 2, : ' 2, A0
L [110) | : [110] i
1 | | :
i i | i
(i) The fully diagonal cases K|Ey|[111] and In experiment, theC axis is usually perpendicular to the

K||Eol[111]. Here tant=tan{y= * \2; in the diagonal ge- applied field. In this case, as one can see fr_om_Fig. 4, the
ometries the elasto-optic contributions are clearly pro_anglego between the applied field _and tl_s(ems is different
nounced(see Figs. 2 and)3 for the forward and backyvqrd configurations. Thereforethe _
dependences for 2W mixing should not be the same. This
difference has, however, nothing to do with nonequivalence
of the forward and backward directions. In Sec. VIII we
For any cubic crystal of the point group 23 0B there  analyze the orientation characteristics of 2W coupling for
are 12 symmetry transformations that do not affect its macforward and backward optical configurations in more detalil
roscopic propertie§35,37,38. In addition to the trivial unit ~as applied to experiments with BTO crystals.
transformation these are 180° rotations around three princi-
pal crystal axes;=120° rotations around four principal di- IV. LINEAR PROPERTIES OF LIGHT WAVES
agonals, and combinations of these symmetry tranforma- ) . . .
tions. Therefore, we can immediately indicate eleven optical Let us first apply Egs(19) to c_ie_scnbe t.h('a light eigen-
configurations equivalent to the one shown in Figa)l mode_s in the abs_ence of wave _mlxmg. Omitting the Ferins on
Table Ka) gives the corresponding triplets of the basjg,z  the right-hand side and putting the wave amplitude
vectors for all equivalent configurations. Any of these triplets*€XPik 2, we come to the following linear algebraic eigen-
may be used as the basis vectors of the Cartesian righ¥2lue problem for each of two waves,
handed coordinate system. The first line of Talj& torre- R
sponds to the coordinate system shown in Fig).1Analo- (k-0)A= Sk A. (24)
gously, Table (b) lists the optical configurations equivalent
to the one shown in Fig.(b). The sets entering Table&)
and kb) have no overlap. The introduced notion of equiva-
lent and nonequivalent optical configurations and the abowv , )
formulated method for their description considerably exten € length of the wave yectdxrfor two eigenlightwaves(+)
the capability of our theory. and(—). One can find directly from Eq24) that
Using the properties of spatial symmetry, one can easily Sk = + 25
prove the identity of the characteristics of the so-called for- =T
ward and backward 2W coupling. This fact is important for . .
the interpretation of the available data on light-induced Scat'gh_ergafore, the @stance b.etwgen the wave surfacesxis 2
tering and the description of schemes of optical generatioP{VIthln th? paraxial a_lipproxmatlon. _
based on four-wave mixing. Let us assume, see Fig. 4, that a The eigenvectoré... , that correspond to the eigenvalues
backward configuration is obtained from an initial foward 6k and define the polarization states of the)(modes, are
configuration by means of a 180° rotation of the samplediven by
around an arbitrarg-axis lying in theXY-plane. In experi- _
ment this axis is parallelperpendicular to certain crystal A.=(1+0 o)A, (26)
faces. As seen from Fig. 2 and the first two lines of Table
I(a), the backward configuration is equi\{algnt to the forwa‘.rdwherec;: ~lx is the unit vector anndE, andA® is an arbi-
one. Therefore all the angular charactgnsﬂqs of 2W .couplmgrary 2D vector. This relation may be verified algebraically
must be the same for the above configurations. This merely . L2 Do 2 ) -
means that the forward and backward directions are physiSing the identity ¢-o)“=1. The eigenvectord\. are, as
cally equivalent in harmony with the reciprocity principle Usual, not defined uniquely which is, however, of no impor-
[41]. It is assumed indeed that all of the angles for the fortance for the charaoctenzat:)on of the polarization states
ward and backward configurations are measured fronxthe [39,40. By choosingA,=1, Ay=0 and introducing the unit
axis directed along the corresponding principal axis of thepolarization vectore. =A_. /|A.|, we obtain the following
crystal[see Figs. @) and 4b)]. explicit relation:

C. Equivalent configurations

Since the operatorx(- :?) is Hermitian, Eq.(24) admits two
real eigenvaluesk.. , which are nothing but corrections to
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(a lation A(—Ey,z) =A* (Ey,z) from Eq. (30). This signals a
change of sign of the polarization rotation at each point of

) (b)
) ) +)
the crystal when switching the applied field.

Although Eq. (30) for the complex amplitudeA fully
characterizes the evolution of the polarization state along the
crystal, it is useful to represent it in an equivalent form by
introducing the so-called Stokes parametefs,é,,és
[39,41]. These real parameters, which may be considered as
componets of the Stokes vectdr are ideally compatible

with the apparatus ofr matrices; they can describe uni-
FIG. 5. Polarization ellipses for¥) eigenmodes befor@) and  formly the polarization properties of totally and partially po-

+)

after (b) switching of an applied field. larized waves. The Stokes vectaf is defined asé
\/Ki—K'g =Tr(3 ﬁ)_, WherefIaB=AaAE/I o Is the polarization _matrix.
. 1 This definition of¢ corresponds to the representation of the
ei:\/T—K Latice | @7 I matrix in the formiT=2% (1+£.3). The parameters; 5

-~ Vk* ks characterize the degree of linear polarization and the param-
eter &, characterizes the degree of ellipticity. For a totally

Obviously the polarization vectoss. are orthogonal to each polarized wavewhich is our only interest in this papethe

other,éf .e_=0. length of the Stokes vectofr=|§| equals one. If, in addition,
The eigenvectors.. fully describe the polarization states this wave is polarized linearly with an inclination angieto

of the (+) eigenmodes. Generally, these vectors are comth€Xx axis we havet; =sin 2p, £,=0, and£;=cos 2.

plex, i.e., the eigenwaves are elliptically polarized; the large USing Egs.(13) and(30), we can find the dependence of

axes of the ellipses are mutually orthogonal and the rotatiof® Stokes vector on the propagation coordinate,

directions are opposite each otlisee Fig. 5. In the absence . S . I

of an applied field we have, ;=0; this corresponds to the &= £C0s 2+ (£9X 0)sin 2xz+20(0- £o)Sirxz,

left and right circularly polarized eigenwaves. If optical ac-

tivity is neglected, the eigenvectoes become real; that is, Where§0=§(0) is the input Stokes vector. One sees that the

the eigenwaves become linearly polarized. For sufficiently, dependence of the polarization state is defined by the mu-
large applied fields|sEy|>|p|, the degree of the ellipticity

becomes as small ap/sEy)2. tual orientation of the vector§, and o=«/«. If £&,==*0,

From Egs.(18) and (27) we obtain the relation which corresponds t&(0)=e.., the polarizion state remains
unchanged during the linear propagation.

(31)

e.(—Eg)=6*(Ey), (29)
V. EXACT SOLUTION OF THE BRAGG-DIFFRACTION
which is useful for the analysis of the photorefractive re- PROBLEM
sponse in the presence of an applied ac fiskk Sec. V)l , i ,
This relation means that switching of the applied field results Eduations(19) enable us to easily obtain the exact solu-
in switching of the large and small ellipse axes without anytion for the wave amplitudeA, , in the case when the grat-

change of the rotation directiorisee Fig. 5. ing amplitudeEg does not depend on the propagation coor-
The linear differential equation for the wave amplitude dinatez. In particular, we can easily describe the diffraction
,&(z), efficiency of a spatially uniform grating, as well as the po-
larization properties of the diffracted wave without any re-
dA P strictions on the crystal thicknegsthe value of the grating
EZI(K- o)A, (290  amplitude|Eg|, and the rotatory powes [16]. To find the

exact solution, we introduce new variablé;:=,5\1 exp
which follows from Egs.(19), allows one to describe the (—igp)*+A,instead ofA ,, whereg,=arg(Eg) is a constant
linear wave propagation for an arbitrary input amplitudephase. As a result, from Eq&l9) we arrive at two indepen-
,&(O). Thecorresponding solution is dent linear equations fdB, andB_. The explicit solution
o R of these equations is
A(z)=e (< D2A(0)=[1 coskz+i(0- a)sinkz]A(0). ) L
(30) B.(2)=€"9+*B.(0), (32)

One sees that the amplitudeis generally a superposition of whereg. = K-GO+ |Eg| (vo1+ 5.3)_ From Eq.(32) and the

two eigenmodes. In order to excite only one eigenmode ingefinition of B.. we obtain the sought solution fd; »,
side the crystal, one should use an elliptically polarized input - '

wave with the amplitude&(O) proportional to one of the Al,z(Z)Zt(Z) ,&1‘2(0)+eti¢o T_(2) Azyl(o), (33

eigenvectorse. (Eo). If the input amplitudeA(0) is real X
(i.e., the input wave is linearly polarizgdve obtain the re- where the transformation matricé@s (z) are given by
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~ 1 - -
T.(2)= E(e'gﬂte'gfz). (34

To describe the diffraction of wave 1 from the grating,

one should pu,(0)=0 and calculaté,(1). From Eq.(33)
we get

n(E,)/m(0)

Ay(l)=e""%0T_(1) A,(0). (35)

The phase factor expf,) entering this expression affects

neither the diffraction efficiencyy=|A,(1)|?/|A1(0)|? nor
the polarization state of the diffracted wave 2. Using Eq.

(14), the matrixT_ may be presented as E, (kV/cm)

T =al+b-o. (36) FIG. 6. Normalized diffraction efficiency; versusg, for dif-

ferent crystal thicknesk

Qv

The scalara and the 3D vect05=(b1,b2,b3) are given by _ _ _ )
applied field, |sEy|>|p|, strongly suppresses this rotation

1 i1E¢ vl Bl v because it makes the eigenwaves nearly linearly polarized in
a= 5 (€7 cosk | —e 1Ko cosk ), the x and they directions[see Eq.(27)]. For this reasori)
the diffraction efficiencyn remains very low andii) the
' (37 . S .
R . o wave coupling cannot significantly affect the buildup of the
b=5(0+e"EK|"0' sink | —o_e Eclo singk_1), spatial grating. During switching of a square-wave field
(when |sEy|=<|p|) the recorded grating becomes instantly
where & =E+|E‘|Z and. = r. Ik highly diffractive. In other words, the processes of nonper-
ek =onEIRE turbing recording and efficient readout become separated in
Let £,(0) be the Stokes vector for input wave 1. Then, time, The most obvious manifestations of this effect are giant
using Eq.(13) and the definition of the Stokes vector given yaadout pulses during switching of a square-wave ac-field in
in the previous section, the diffraction efficieneyand the 2W-mixing experiments with fiberlike BTO crystal&2].
Stokes vectoréz(l) for the diffracted wave 2 may be ex-

pressed through the known paramet@@ndb as follows: VI. PHOTOREEFRACTIVE RESPONSE

n=|al?+|b|2+ £,(0)-(ab*+a* b+ib*-b), To be able to fully describe the photorefractive 2W cou-
pling, we should supplement Eqd.9) for the wave ampli-
n§2(|)=i 5.5 * +(|a|2—|5|2) 51(0)+[a*5+ia*5- 51(0) tudes by relations for the photoref[active response expressing
L the grating amplitudeeg throughA; ,. Using the conven-
+b(b*-£,(0))+c.cl. (39 tional one-trap—one-band model for the charge transfer
[1-3] and assuming provisionally that the applied field is
These equalities give the general solution to the Braggparallel to the grating vectdi.e., =, in Fig. 1) we have,

diffraction problem. This solution incorporates, in particular, within the linear approximation in the contrast of the light
the influence of the elasto-optic effect. It includes, actually, Zpattem'

great deal of information on the polarization, orientation an

field dependence of and &. JEx 1 Ey Eq+Ep—iEq
As an application of Eq9.38) we consider a simple ex- 7+ T E E.TE-—IE. K

ample relevant to recent ac-experiments with fiberlike BTO d = =M T =D TR0

crystals[12]. Figure 6 shows the normalized dependences ,&l.,&’z‘ 1 En(Ep+iEp)

7(Eg;l) for the longitudinal optical configurationK(|E) =
and the input linear polarization parallel to thexis. These
dependences correspond to E) and(38), and the BTO
parameters given in Table Il. One sees that increaking
leads to a remarkable decrease in the diffraction eﬁiCiencyParameters
The larger the thicknedsthe sharper the peak ef(Ey). For
=15 mm and|Ey =30 kV/cm, which is typical of the

lo 74 Ew+Ep—iEq’ (39

TABLE Il. Optical parameters of BTO and BSO crystals.

BTO BSO BSO
(A=633 nm) (=514 nm) Q=633 nm)

above experiments, the ratig(0)/5(|Eo|) is as high as 30. Refractive 2.58 2.6 2.54

The described feature has a clear physical meaning and jndex, n,
important implications. Since in the longitudinal geometry rotatory 6.5 deg/mm  38.6 deg/mm  21.4 deg/mm
only theyy-component of the interaction matrikis nonzero power, p =113 cm?! =6.74 cm! =3.73 cm!
[see Eqs(11) and(20)], diffraction of an initiallyx-polarized  Electro-optic 4.74 pm/V 4.51 pm/V 4.41 pm/V

wave is possible only after a rotation of the polarization coefficient,r,;
plane owing to optical activity. However, a sufficiently large
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TABLE lll. Material parameters for BTO and BSO crystals.  the case of a strong square-wave ac fiel&EJ&=0, Eq.(39)
gives the simplest expression for the steady-state photore-

Parameters BTO BSO fractive response
Effective trap 210" cm 3 10" cm 3 = r
density.N, Ex=—iEp(A1-A3)/ly, (43)
Mobility-lifetime 2x10°7 eIV 5X1077 cn?/V ~ .
prodﬁct L whereEp=Ep (1+ ED/Eq)‘l. This formula shows that the
Dieleciric 47 56 spatial grfatmg isT/2 sh|ft§d with respec.t to the light fringes.
constants The maximum value oEp as a function ofK occurs at

KRy=1, whereRy= (e€okg T/N, €%)¥? is the Debye screen-
ing length. For the BSO parameters given in Table Il we
Here, is the dielectric relaxation timéo=|A|2+|Ay? is  obtainKnay=1.3x10° cm * andEF™=3 kv/cm. A simi-_
the total intensity, anp , E,, andEy are the characteristic lar estimate is valid for BTO crystals. The photorefractive

fields, response in the diffusion case is fairly weak.
The case of a square-wave ac field is worth a more de-
KkgT eN 1 tailed consideration. It is supposed that the oscillation period
DT Eq:ﬂ’ EM:K_MT' (40 of Eo(t) is much shorter than the characteristic buildup time

of the space-charge field which is, in turn, comparable with
wheree is the elementary chargkg is the Boltzmann con- 74. Therefore, we can perform an averaging of B39) over
stant, T is the absolute temperaturd, is the effective trap a period of the ac field, treatingy; as a constant value,5].
concentrationee, is the dielectric constant, andr is the  An averaging of the left-hand side does not present any dif-
mobility-lifetime product for photoelectrons. The dielectric ficulties. Taking into account the inequaliti€42) and as-
relaxation is usually due to the photoconductivity caused bysuming that E, cosy{>Ep ,Ey,, we represent first the prod-

photoexcited electrons. In this case uct of the three factors befolgg asiwg+ yg, where

1 e «al 2

o P f (42) L= T EutEofu  Ewm

Ta €€ Nw “rgEgcosy’ TN g Eicody Eq
wherefi w is the energy of a light quantum amdis the light (44)

absorption coefficient. ) . One sees thabg is an odd function ok, and, consequently,
Now we want to generalize E(39) to the case wheK is it disappears after the time averaging. The paramgterin
not parallel toEy; this is important for the description of contrast, is an even function &;; it is not affected by the
light-induced scattering. To obtain the desired result it isaveraging.
sufficient to replace in Eq(39) the amplitudeE, by the To perform the averaging of the right-hand side of Eq.
longitudinal (with respect to K) field component, E, (39), we should take into account two facts. First, in view of
. E,cosy, where cogy=n-n® andn andn® are again the € inequalities| Eqo|>Ep ,Ey, the factor Eo+iEp)/(Ey
unit grating and field vectors. Actuallf, cosy is the driv- T Ep—iEo) in the leading approximation does not depend
ing field for the grating formation. on E, and equals. Second, the amplitude, , can change
Table Ill gives a representative set of material parametergonsiderably when switchingy(t) because of the changing
for BTO and BSO crystals and Table IV lists the correspondinear properties of the crystal. This feature has been over-
ing numerical estimates for the characteristic fields. It is seefpoked in previous studies. As shown in Sec. IV, switching
that the following inequalities are fulfilled with a large safety of the applied field transformé, , into A%, if the corre-
margin: sponding input waves are linearly polarized. The average of
A;-A% in this case is thereforeAi-A%)'=Re(A;-A%).
Fortunately, the case of linear input polarization is the most
These inequalities define most of the characteristic featurd@Portant for ac experiments with the sillenites. In what fol-
of the sillenites. ows we restrict ourselves to this case while considering the
We consider below two important limiting cases for the Wave coupling. R
photorefractive response: the case of zero applied field and Note that the amplituded, , are changing not only be-
cause of the linear propagation but also because of diffrac-
TABLE IV. Characteristic fields for the data of Table Ill and tion from the light-induced grating. Therefore, it should be

Eq>Ep,Eu, Eq2|EO|. (42

A=20 pm. verified afterwards that this diffraction does not eliminate the
— properwﬁlvz(—Eo);&’l“z(Eo) used for the time averaging.

Characteristic BTO BSO We shall do this next in Sec. VII.

fields Taking into account the results of the averaging, we arrive

E, 250 kV/em 105 kV/em at the following expression for the steady-state photprefrac-

Ey 15 Kkv/em 0.6 kvicm tive response in the presence of a square-wave ac field,

Ep 0.08 kVicm 0.08 kvicm

Ex=—i|Eocos|Q(A1-A3) /1o, (45
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40 normalized vectorial amplituded; ,=A, ,/\/l, instead of
o 5\1’2. For these new variables we have the conservation law
3 30r _ in the form|a,|?+|a,|?=1.
o In the case of diffusion transport, by combining EGk9)
S and (43) we have, in steady state,
4 20r )
° da, =~ _ -~ ..
< E*'PazaleD(al'az)Vaz,
£ 10H
& (47)
0 - : : d—52+i G,8,= —Ep(a*-a,)Va
0 10 20 30 40 dz ' P72% Dle1 G2/ Ve,
Driving field (kV/cm)
FIG. 7. Dependence of the qualifgnhancemeitfactor Q on where the interaction matri¥ is giveq by Eq_s(ll).
the grating spacing\. and the value of the driving fieltE, cosyi In the case of a square-wave ac field, using E#8) and
for N;=2x10' cm 3 and ur=2x10"7 cm?/V. (45) we obtain, for steady-state coupling,
where da, .~ . S e
E_l(K'0)31=Q|E0005¢|(31'az) Vay,
lwg| [|Eqcosy| Ep+Ey |7t (48)
Q= = (46) .
YK Eq |EOCOS¢| daz L S S 20
E_l(K'U)azz —Q|[Eqcosyl(al -ay)'Vay,

If Eq>|Eqcosy{>Ey Ep, we haveQ>1. In this important
casewy and yg are the eigenfrequency and the damping
constant for a space-charge wave with the wave veiétor
andQ is the quality factor for this wavp42]. This factor, as
one can see from Eq$40) and (46), depends orK and
|Eq cosy.

where the real vectok= (k1,x,,«3) is given by Eqs(18).
Recall that the components, ; change their sign periodi-
cally together withEy(t), whereag x4 4,|Eo|, andk,=—p
remain constant.

. Let us underline the difference between the conditions of
Equation(45) clearly shows the advantage of the ac teCh_applicability of Egs.(47) and(48). The first set of equations

nique. The grating remains/2 shifted with respect to the . - . . S
“gqht fringes %nd itg amplitude becomes much gpreater than it$ valid for arbitrary input polarizations of the waves 1 and 2

the case of zero applied fie]@,5]. The enhancement of the and, aEtugﬂy, without ar_ly severe restrictions on the coQtrast
grating amplitude is not only due to a large valug®f| but ~ M=2|21-a3[. The nonlinear effects are, however, fairly
also due to a large value of the quality fact@r>1. Figure ~ Weak in the diffusion case. Equatio8) pretend to be valid

7 shows the dependence of the qualgyphancementfactor only 1:0r linear input polarizations and for the contrast
Q on |Eycosy| and the grating spacing =2=/K for the  2|a;-a3|=<1/Q2 To justify fully these equations we should
BTO parameters given in Table Ill. One sees that, for suffiverify (see the previous sectipthat 51'2_@»1*’2 when Ey—
ciently large driving field,_ the optimum gra“’_]@_l spgcing —E,. Taking into account that the matrix does not depend
Aop*|Eo cosyl. For very high values of the driving field, o, g ang thatk; < E,, one can make sure that the neces-

2> i . . . .
|Eo cosyf*>E(Ey +Ep), the productEq cosyf Qin Eq.(45) g4y transformation property is really in harmony with the
saturates at the level &, . structure of Eqs(48).

Note that large values of the qualifgnhancemeitactor . . ~ .
Q also have some disadvantages for optical applications. Th Using Eq.s.(48) and t.he general properties of tiematrix
ormulated in subsection 2B one can check that the scalar

point is that the field of applicability of Eq45) is restricted S o .
product @;-a}), which is supposed to be real at input, re-

by the inequalitym=Q~2, wherem=2|A;-A%|/l, is the . g

contrast of the light pattern. For larger valueséxcitation mains real for any. Therefore, the prime in Eq#48) can be
. . B omitted. One should not forget, however, that E48) can-

of higher spatial harmonieskg3K, ..., aswell as the para- 4t he applied to the case of elliptic input polarizations.

metric excitation of spatial subharmonics come onto the Neither of the vectorial equation@?) and (48) can be
scaen_e[4_2_—4éﬂ. Both of these effects reduce the amplitudegqeq analytically in the general case, in contrast with the
Ex significantly. case of scalar two-wave coupling. For many important lim-
iting cases, however, analytical solutions to the vectorial
VIl. TWO-BEAM COUPLING two-wave problem are possible. The character of the ap-
proximations applicable to Eq&17) and(48) is quite differ-
ent.

After we have found the relationships between the grating As one can see from Tables | and Ill, and E(fsl), the
amplitudeEg and the light waves amplitude&l,z, we can fotatory powerp IS tYBIC§1”y significantly greater than the
formulate a self-consistent set of equations for two-waveelements of the matri€yV. This is especially true for BSO
coupling. To simplify this set additionally, we introduce the (and also BGQ crystals. Therefore, we can exploit the in-

A. Equations for two-beam coupling
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equalityED|Vij /p|<1 in solving Eqs(47). Another inequal-
ity relevant to experiment i§p|V|l<1; this means that the
crystal is nonlinearly thin.

For the ac case, the inequalify| E, cosyV|>|p| is often

fulfilled. It is the basis for perturbative procedures to solve k; K T
Egs. (49). -)

B. Diffusion case
1. Approximation of a nonlinearly thin crystal

To exploit the inequalityV|Epl <1, we first exclude the
linear terms responsible for the optical activity from Egs.
(47). This may be done by the following linear transforma-

tion from 51,2 to new amplitudezﬁlyz, FIG. 8. Geometrical scheme of wave coupling for weak photo-

refractive nonlinearity.

b, Az)=e€'"*2a; ). (49 A T sin2pl - -
dlai|*=*Ep(a;-ay)|as -| vol + (v-o)
Actually, this is analogous to the so-called interaction repre-
sentation in quantum mechani¢85,36. The introduced sir? pl . R
transformation is unitary, i.e., it does not change the scalar - (vgo1—v103) |ay|+c.c. (53

products; in particularh* - b,=a% - a,. Furthermore, it does

not change the boundary conditions becau§§2(0) This expression is valid for arbitrary input polarizations and
:51’2(0). Using Egs(13), (14), and(17), we have instead of intensity ratio. Usually in 2W-mixing experiments the input

Egs.(47), polarizations are linear and equal for waves 1 and 2. In this
case the polarization state is defined by the agghetween
dBl - the polarization plane and theaxis and Eq(53) attains the
EZED(bl-bz‘)hbz, form
" (50 i +mZED I sin 2pl ( 25+ v, 5in 20)
) ~ N o A a12 == VO V3COS V15|n ()
4z~ Eo(bi-by)hby, 2 2p
Sir? pl )
- (vgsin2¢— v, COS 2p) |, (54

with h=h(z) given by

wherem is the input value of the contrast. This expression is
useful for the diagnosis of different crystals taking into ac-

Within the first order perturbation theory, we obtain from Cﬁunt thﬁ phfcf)toelaftiﬁ contriblljtionsﬁ@an((jj;.flt:xplicitl?/
. - - e shows the effect of the optical activity and of the initial po-
Egs.(50) the expressions fofb, ,=b, 1) —b; {0), larization on the photorefractive gain.

The grating amplitud&g remains nearly constant within

ﬁ: Voi+ Ccos 2pZ( 1—; ’(;)') —sin 2pZ( V3(}1_ vl(}3) . (51)

i ~ > > Sin 2p| O . . . .
ob,=Ep (a;-a%)| vol +——(v-0) the above approximation, irrespective of the value of the
2p productpl. This constant amplitude is given by E¢3) with
sifpl . . the input values of the amplitude?slyz. The diffraction effi-
- (vzgo1—v103) Ay, ciency of such a grating is described by the formulas of Sec.

V. Measurements of the diffraction efficiency may be per-
formed by the instantaneous blocking of one of the pump

. -~ e sin2pl . ~ i ili -
5b,= —Ep(a* - ay)| vl + P (5-3) beams or with the use of auxiliary Bragg-matched readout
2p beams.
sir? pl - "~ o N
_ (v30,— v103) |ay. (52) 2. Resonant approximation

In the case when the crystal is not nonlinearly thin and,

additionally,| p|>Ep|V|, one can use another approximation
based on the introduction of the scalar amplitudes of the
supposeij to b? taken at=0. The smallness of the correc- optical (=) modes. We explain the idea of this approxima-
tions, | by 4<|a; 7, is guaranteed by the smaliness of thetion, which may be called resonant, with the help of Fig. 8.
productsEpvl andEpwgl, irrespective of the value gil. The distance between the wave surfacgs,i® much greater
From Eqs(52) we can calculate further the changes in thethan the broadening of these surfaces owing to the wave
wave intensities, coupling. Furthermore, spatial gratings may be recorded only

The amplitudesﬁlz on the right-hand side of Eq$52) are
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by wave pairs of the same polarizatior (or —) because the only one that can be considered on the basis of @§s.

wave pairs with orthogonal polarizations produce no intenyecause of the restrictior‘ é1'5~>2\‘|SQ72 on the contrast.
sity modulation. For this reason, diffraction processes which 1o exploit the undepleted pump approximation, it is use-
change the polarization state are nonresofwffiBragg) and  fy| to get rid of the linear terms in Eq$48) responsible for

may be neglected. o _ the linear propagation. This may be done by the unitary
To perform the resonant approximation, we introduce thgransformation

scalar amplitudea.. (for the moment we omit the subscripts A

1,2 by means of a, =€z, (58
~_ ~ aipz ~ a—ipz -
a=a.e.e+aee” (59 {0 new amplitudes; ,, which is analogous to the one per-

formed in the previous subsection. Within the new represen-

where, in agreement with Eq$27), the unit polarization . )
9 as27) P tation Eqgs.(48) attain the form

vectors aree, =(1,%i)/y2. By multiplying Eqgs.(47) sca-

larly by e% and omittipg quickly oscillating[as exp(Qp;)] dBl . A
nonresonant terms which appear on the right-hand sides, we oz~ (P1b2)"(Aotq-o)by,
obtain
. (59
da;. - db, . e~
d—lz‘zEDvo(a1+a’2‘++a1,a’2‘,)aZi, dy =~ (P1-bz)(dotq-a)by,
(56) B .
da,. B . X : whereqy=Q |Eq cosi#fv, is a real constant,
—=—Epvg(aj,ar,ta;_a,_)a;- .

dz prOtTi Ty T G=0Q |Eo cosy|(6(5-6)+[ #— 6(5-6)]cos 2z
This compact system of four coupled equations corresponds —(96)sin 2xz) (60)
to the scheme of wave coupling discussed above. It pos-
sesses the following integralsonservation laws is a real 3D vector dependent on the propagation coordinate,

and, as abovey= «/ k.

2+ 2:| , N >
las [ +ag =1 The derivativedb,/dz, being of the second order im,

lag_|?+]|a,_|2=1,, may be put equal to zero. Therefore in the first equation of
(57)  EGs.(59 we can pub,(z) =b,(0)=a,(0). Since the ampli-
ajpay —azia; =Jp, tudesa, , are normalized to unity and,|?>|a,|?, we have

|a,|?=1. Now we recall that the initial Eqg48) are valid
only for linearly polarized input waves. This means that the

1., are real andl, , are complex constants. Consequently,input amplitudea,(0) is a real unit polarization vector; it

the set of four complex equatiois6) has, in fact, only two ~May be specified by the angle, measured from th& axis,

degrees of freedom. It is analogous to the equations for tha,(0)= (cose,,singy,).

scalar 4W coupling and, in many cases, admits analytical \uyltiplying the equation foib, scalarly byb,, we arrive

solutiong[45]. In_ the_ case yvhen two incident waves have at the following scalar equation f‘ﬁl' 52'

the same polarizations it is reduced to equations for the sca-

lar two-wave coupling. The fractions of thet( and (—) d . . ..

eigenmodes in each of the beams 1 and 2 here remain un- d—z(b1~b2)=(b1'b2)’(qo+ gy Sin 2¢,+ Q3 COS 2p,).

changed along the crystal. 61)
Unfortunately, strong nonlinear effects can hardly be at-

tained in the sillenites in the diffusion case in view of fairly |n accordance with Eq(60), the components, 5 are real

a,.aj_+tay.a;_=J,.

small values of the produstEp . functions of z The imaginary part of the produdi;-b,
therefore remains equal to zero. This does not mean, how-
C. Ac case ever, that the vectob,(z) is real; in general it is complex,

In this case, beam coupling is very strong and the api-€., the output polarization of wave 1 is elliptic. Another
proximation of a nonlinearly thin crystal usually fails. On the important feature of Eq61) is that the valuesjy ; 3 remain
other hand, the characteristic nonlinear rate he@E,|, is  unchanged during switching of the applied field; this means,
comparable withor even larger thanthe distance between in turn, that the producﬁl~52 does not experience any
the wave surfaces,< In this situation the resonant approxi- changes because of switching.
mation also fails. The most useful analytical tool here is the By integrating Eq(61), using Eqs(18), and recalling that

undepleted pump approximation. It is valid when the inten+;, . p,=3a, - a,, we obtain the following explicit relation,
sity of one beantlet it be beam Lremains weak throughout

the crystal, i.e., the contrast remains small. This approxi- (g3, .a,)(z)=(a;-a,)(0)expI'z+ C, sin 2xz+ C, Sirfxz),
mation is applicable to describe the weak signal amplifica- 62)
tion, as well as the light-induced scatterifige fanning phe-

nomenon. Note that the case of an undepleted pump is ofterwhere
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(v-K)

K2

-

I'=Q|Eqcosy|| vo+ (K1 SiN 2¢,+ k3 COS 2p5)

(63
and

_QIE, cosy]
2k3

— K3( v- ’;)]COS 2p5),

Ci ([szl—Kl(;-/z)]Sin 20,+ [ k%3

(64)
_ QIEgcosulp

K2

CZZ (Vssin 2(P2_V1 Ccos 2(P2)

We see from Eq(62) that the parametdr, which we call the
increment, primarily defines the process of spatial growth
ForT'l>1, the theory predicts a very strong amplification of
the weak wave 1.

A few general features of the expressi@3) for the in-
crement are worth noting.

(i) I consists of an isotropic and an anisotropic contribu-

tion. The isotropic contribution%v,) does not depend on
the polarization of the pump, whereas the anisotropic on

(cv- k) depends essentially on this angle; in particular, it

changes the sign whep,— ¢, =+ 7/2.
(i) The opposite directions of the grating vector corre-
spond to the opposite signs of the increment, e —T

whenK— —K({— ¢+ ). This feature is clearly seen from
Egs.(18), (20), and(22).

(iii) The increment” does not depend on the sign 6§
andn®. This follows from the definition of the vector [see
Egs.(18)].

(iv) Sincel is odd inv,, v and even ik, the transition
from the basic configuration shown in Fig(al to the non-
equivalent configuration of Fig.(ft) results in the replace-
mentI’(¢,{o)— —1'(£,{0)-

The contributions to the exponent of E@2) related to
the parameter&, , influence the spatial amplification sig-
nificantly only for|C, J=1. As seen from Eqg64), each of
the parameter€, , is the product of the enhancement factor
Q, which typically does not exceed 5+86], and a dimen-
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>a,(0)|. First, we should se#;(0)||a,(0) to maximize the
preexponent. Second, which is more important, we should
optimize the incremerf with respect tap,. At the optimum

we have

\/K21+ K3Z|Ij' E|

I'=Q|E, cosy|
0 K§+K§+p2

Vo+

’

K1 Sign(v- k) K SigN(v- k)

sin 2 =, oS
(65)
and, correspondingly,
ay(1)-a,~|ay(0)le". (66)

Note that the optimum polarization angbe does not depend
on the sign ofE,.

The expressiof65) for I' may further be maximized with
respect to the length of the grating vectét, and to the

angles{ and ¢,, specifying the orientations df and E,.

éuch a maximization is important for practical purposes. An

example of the maximization of the increment as applied to
BTO crystals is given in the next section. As a general as-
sertion we can say that the absolute maximunh' @f, {y,K)

indeed corresponds t||E, (to ¢=¢—{,=0) and to the
lengthK maximizing the enhancement factQ(|E,|,K) for

a given value of (see Fig. 7. For an arbitrary anglé, the

maximum ofI"({) generally takes place fap+#0.

The output value of the produé1~§2 is definitely an
important measurable characteristic of the spatial amplifica-
tion. However, it does not fully describe the output proper-
ties of wave 1 because it cannot specify its output intensity
and polarization. To find the output value of the vectorial
amplitudeBl we should substitute the value of the product
b,-b%=a,-a,, given by Eq.(62), into the first of Eqs(59)
and calculate the integral. In the case wHén jJ=1, the
analytical calculation is problematic and the polarization
properties of the amplified wave are rather complicated.

Fairly simple results may be obtained f&i|E, and |p|

sionless factor dependent on the optical configuration in<|sEy|, which are relevant to ac experiments with BTO

guestion and on the polarization angle. For many impor-
tant cases the dimensionless factds,/Q, are much less
than one. For example, we hal@,|/Q<1 for two limiting
cases|sEy|>|p| and|sEy|<|pl; the first case is relevant to

ac experiments with BTO crystals and the second one ma&

often be justified for BSO and BGO crystals. The factor
|C4]/Q is small for |p|>|sEy|; in the opposite limit,|p|
<|sEy|, it is definitely small fork||E, because of the small-
ness of the elasto-optic contributions i@ ; (see also the
next section

An important feature of Eq62) is that the argument of

the exponent does not depend on the polarization of the wedRt€NSity,

crystals.

In the limit under study, which corresponds #h«, we
put q=Q|Eq|», C1,=0 and I'=Q|Eo|(vo+ vy Sin 2p,
+v3C0S 2py). Assuming that exd{)>1, we obtain from
gs.(59) and(62), for the vectorb(1),

N . E .
b1(|)2(b1'bz)(o)erly(lfﬁ‘lﬁo')bz- (67)

This expression allows one to calculate the gain factor for the
la;(1)/a1(0)|2=|b,(1)/by(0)|2 It is obviously

wave 1; it depends, however, on the pump polarization angl§iven by exp(Z'l) with a preexponential factdof the order
@,. The dependence on the input polarization of wave 1 ié)f 1) depending on the input polarization vectors. The opti-

only expressed by the preexponential factc&i«éz)(O).

mum direction 0151,2(0) coincides with the direction of the

The mentioned properties enable us to optimize the polarizaeigenvector of the matrix- o, which corresponds to the

tion angles for the case of strong amplificatioa,(l)]

large eigenvaluer. The corresponding inclination angle,
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and the increment” are given by cos 2,=v;/v, sin2¢,
=, /v, andT’ = Q|Ey|(vo+ v). With these values we have

|a;(1)/a,(0)|3=e?Bl (ot )1, (68)

To describe the output polarization state we should return

from 51(I) to the amplitudea, (1) using Eq.(58). In the case

of arbitrary linear polarizations of waves 1 and 2, the output

wave 1 is elliptically polarized. For the above optimum con-

ditions the output polarization state coincides, however, with

the input one.

VIIl. APPLICATIONS TO BTO CRYSTALS

Most of the factual data on strong 2W mixing are ob-
tained in ac experiments with fiberlike BTO crystals. The
amplitude of the square-wave applied field ranges here fro

B. I. STURMAN et al.
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FIG. 9. Dependencé({y) for BTO crystals; the dashed line is

IHlotted with neglected elasto-optic contributions.

20 to 50 kV/cm and the input pump beams are linearly po-
larized. Below we apply the results of the previous subsecwhich corresponds to the diagonal configuration. This result

tion VII C to a description of 2W mixing in BTO crystals

coincides with the prediction made in RE25]. Note that we

and to an interpretation of the available experimental data. lihavef=1 for both the longitudinal {,=0) and transversal

our subsequent treatment we do not supposeKhE,.

A. Characteristic features of BTO crystals

Let us make some numerical estimates to define the chaf

acteristic features of the ac case as applied to BTO crystal
Using the data of Table | and settifg,| =30 kV/cm, we
have|sEqg|=12 cm !. This value considerably exceeds the
rotatory powep=6.5 deg/mm=1.13 cm 1. Consequently,
we havex?+ k3> k5= p?; this means that the effect of the
optical activity onI" andC, , [see Eqs(63) and (64)] may
be neglected.

Figure 7 shows that the maximum value @Q{A) satu-
rates at the leveQ=6 for |Eycosy{=15 kV/cm. This im-
mediately gives a rough estimafe=70 cm ! for the incre-
ment. Such a high value means the possibility of a ver
strong spatial amplification of proper light waves.

As seen from Fig. 7, the optimum grating spacifigis
directly proportional to the absolute value of the driving field
|[Eqcosyf. For |Eqcosy{=30 kV/icm we have A,y
=30 um, which corresponds to the interaction angle
(taken in aiy of about 1.2°. Such small values of the char-

acteristic angles justify the used paraxial approximation with

a large margin of safety.

(¢o=m/2) configurations; this means that the gainli(,)
attained for the diagonal geometry is quite modefatsout
15%). With the elasto-optic contributions taken into account
the solid ling, the function f({;) peaks again at{,

=54.7°; here we havé,,=1.4. Therefore, the gain in the
increment for the diagonal geometry becomes as high as
40% in comparison with the longitudinal and transversal ge-
ometries. The absolute maximum of the increment for BTO
crystals andEy=30 kV/cm may be evaluated aB,,y
=100 cnil.

Now we estimate the effect of the paramet€ss, in Eq.
(62) on the spatial amplification in BTO crystals. Using Egs.
(64), the inequality|p|<|sEp|, and neglecting the elasto-
optic contributions, one can find th#t,|= Q|cosyp/sky;

yJor Q=6 and |p/sEy|=0.1 it gives |C,|=<0.6. In other

words, the effect of the paramet€s, is fairly small. For the
parametelC; we have within the same approximation,

(€cos{q sin 2¢,+ 2 sind €OS 2p5)
(sir? £o+0.25 cod £4)%?

Ci= %|cos:,//|sim//
(70

Using the results of subsection VII C and neglecting op-

tical activity, we can find the optimum configuration for 2W
coupling in BTO crystals. By setting/={y(#/=0), A
=Aopt, andp=0 in Eq.(65), and recalling the definition of
k13 anduvg 13 We obtain, for the incremerdt as a function

of o,
I'=5|Eo| QmaX|Eol) f (o), (69)

f=0.5H o+ Hyy) +[SiNZoH ¢y~ 0.25 cOFo( H

- Hyy)|/\/5inz§o+ 0.25 CO§ {o-

Figure 9 shows the dependenidg,) calculated for the data
of Fig. 2(@) for H;;({o). With the elasto-optic contributions
omitted (the dashed linewe have the maximum valug, 4
=(3+1//3)/2=1.155 for (,=arccos(1{3)=54.7°,

This expression shows that the maximum effecCoftakes

place for|sin 2y{~1, i.e., for large angles betwe&handE,.

This case is not actually relevant for the amplification of
weak signals but it is important for the description of light-
induced scattering. Furthermore, one can find tf@f|
=Q)|sin 2y{/8 for the transversal and diagonal configurations
irrespective of the polarizaton angfe. This means that the
spatial oscillations in Eq(62) related toC, are of minor
importance as compared with the strong exponential growth
with the ratel’. For the longitudinal configuration{{=_0)

and ¢,= 7/4 we have the maximum valu€,,=Q sin 2//2;

it may be practically as high a®-3. The effect of the
spatial oscillations superposed on the exponential spatial
growth is pronounced in this case. Below we shall use Eg.
(70) and the above estimates as applied to particular cases.
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FIG. 10. Contour lines of the produ@(\K/2w)|cosyf for
|Eol]=30 kV/cm. The chosen parameters of the BTO crystals are (b)
the same as for Fig. 7. ’

B. General observations on the angular dependence of the
increment

Our next aim is to describe the dependence of the incre-
mentI” on the propagation direction of a weak light beam
and on the polarization of the pump beam as applied to the
experimental conditions. To attain this goal, it is convenient

to use the polar interaction ange= \|K|/27 instead of K|
and to measure all of the azimuth angles not fromxlais
but from the horizontal parallel to the applied field; this
means that, instead of the anglesind ¢, (see Fig. 4, we Bcosy (deg)
use the angleg={— ¢, and ¢p= @, — {o. R

As is seen from Eq(63), the angular dependence of the  FIG. 11. Contour lines of the incremehi{(\K/27)=const-0
increment originates from two different sources, namely,for the longitudinal configuration; the casés and(b) correspond
from the producQ|cosy{ and from the square bracket. The to the vertical ¢,=/2) and horizontal ¢,=0) polarizations of
quality factorQ [see Eq.(46)], depends org and . It is  the pump wave 2.
remarkable that the functioQ( 6, ) has nothing to do with
the choice of the optical configuration; it is defined by the I'=s|E, cosy/|Q sir? ¢, COSYr. (72
material parameters and the amplitufig|. Figure 10 shows
the angular dependence @f|cosy{ for the representative |n accordance with this expression, the optimum polarization
parameters of BTO given in Tables | and Ill, afBlo|  angle isp,=m/2 (the vertical polarizationand the depen-
=30 kv/cm. Itis clearly seen that this dependence is symgence on the azimuth anglg is characterized by a maxi-
metric about the horizontal and the vertical directions, and ifyym aty=0 and by a minimum ag= 7. For ¢p=0 (the

is characterized by two pronounced maximums. Note that afgrizontal polarizationwe havel =0, which is no exponen-
increase of Eo| does not give any real gain in the maximum tja| amplification.

enhancement factor starting from10 kV/cm; in harmony Figures 11a) and 11b) show the dependencd¥ 6, )

yvith Fig. 7 it results mainly in a decrease of the optim.um plotted for ¢, = /2 and 0, respectively, on the basis of Eq.
interaction angled. The second factdthe square bracketin (71). In the first case, taking into account the elasto-optic
Eq. (63)] does not depend on the polar angleits depen-  effect does not produce any substantional changes as com-
dence ony and ¢, is defined by the optical configuration in pared with the result given by E¢72); the maximum value
question. After the above preliminaries we turn to the treatnpf ' here is about 75 cht. For ¢,=0 the elasto-optic
ment of particular optical configurations that correspond tQsffect removes the prohibition on wave coupling; i6# 0

—0siny (deg)

different values of the anglg, in Fig. 1(a). the incrementl” takes positive but relatively small values.
Note finally that the paramet&; given by Eq.(70) turns to
C. Longitudinal configuration, Eg[[001] zero forg,= /2 and 0.

The dependencE&(0,y) for the backward configuration
obtained by a 180° rotation of the sample around the vertical
[110] axis(see Fig. 4, may be obtained by a 180° rotation of

I'=Ss|Eq cosy/|Q(H,y cog ept Hnyinngp). (72) the spatial distributions shown in Fig. 11 around the vertical
axis. This follows from the general observation of Sec. lll
that the characteristics of 2W coupling remain the same for
The dependenced,,(¢),Hy,({) are given in Fig. 2. If the any backward configuration, provided that all of the angles
elasto-optic contribution is omitted, E¢71) simplifies to are measured from the corresponding principal axis.

In this simplest case we pdh=0,y={,¢p= ¢,, and
=0. Using Eqgs(18) and(63), we obtain
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D. Transversal configuration, E L [001]

In this case we sely=7/2, {=y¢+ 72, ¢,=@p+ /2
and, correspondinglyx;=sEy, k3=0. Using Eq.(63) we
get

I'=$s|Eq cosy|Q(vo— vy Sin 2¢;), (73

wherev ; are given by Egqs(18) and Fig. 3. With neglected
elasto-optic contributions we obtain, instead of EXR),

—0siny (deg)

F=—%S|Eocos¢|Q(sin¢+2cos¢sin2gop). (74) s (1 ¢=0 90" () ]

-12 -6 0 6 12
For ¢,=0,m/2 the above expressions fbr yield two sym- Bcosy (deg)
metric lobes in quadrants Ill and IYsee Fig. 129)]. The
optimum conditions for the spatial amplification correspond
to ¢,= = /4 andy= — 0.5+ arccos(2{/5)=(— 90+ 64)°
see Figs. 1@®) and 1Zc). The paramete€, is zero in this
particular case. A 180° rotation of the sample around the
vertical [001] axis here does not change the angular depen-
dencel’(6,¢) because the forward and backward configura-
tions are physically equivalent.

—8siny (deg)

E. Diagonal configurations 6t an 0 _
Let us first consider the diagonal configuration, 0. =45"
Eol[111]. In this case we havfsee also Fig. @)] (= -12 . L .
+{o, 2= @p+ o With {y=arctan(/2)=54.7° and, corre- -12 -6 0 6 12
spondingly, k;=2sEy/\3, k3=—sEy/2y3. Using Eq. fcosy (deg)
(63) we obtain, after simple calculations, ©

1
Fii1)=3 B0 cosy|QI3ro+ (2y2, — vg)cos 2pp].
(79

With neglected elasto-optic contributions g, 5({) this re-
lation is replaced by

—8siny (deg)

1 . el ]
Ty =ﬁs| Eo cosy| Q[ (cosy— /2 siny) (n ()

. —-12 L | L
+(3 cosyr+ /2 sing)cos 2p,]. (76) brs o 0 6 12

For ¢,=0 (the horizontal polarizatiorthe increment’ 77, beosy (deg)

as a function _Of v pgaks _at ¥=0; here, _F[lll] _ FIG. 12. Contour lined (\K/27) = const>0 for the transversal
%ZSJ E0|Q/‘/§' This case is optimum for the spatial ampli- configuration; the cases), (b), and(c) correspond tap,=0,7/2;
fication. ¢p=ml4; andp,= — /4, respectively.

Figure 13a) shows the dependendgiy)(6,¢) obtained
for ¢,=0 from Eq.(75). It gives qualitatively the same re- N ) .
sult as the simplified Eq76). The angular distribution here @ngular distribution here has the form of a main lobe, situ-
has the form of a lobe pointed in the horizontal direction.2t€d in quadrant lll, and a secondary one lying in quadrant

The absolute maximum of the increment]’;17;

=100 cm!, is attained just in this case. Now we turn to the diagonal configuratidgy|[111]. In
For ¢,==*m/2 (the vertical polarization the square this case we should put=y+&o, ¢o=¢p+ Lo With fo=
bracket in Eq.(76) peaks aty=arctan(/2)— m=—125.3°, —arctan(/2)=—54.7°. Using Eq.(65 and the symmetry

Since the produd®|cosy] decreases gradually with increas- properties of the functions, ; 3 mentioned in Sec. IlI, one
ing |siny, the maximum ofl"(¢) shifts slightly fromy=  e€asily finds thatI'115(¢,¢p,0)=I'a11)(— ¥,¢p,6). In
—125.3° towards zero. Note th@,=0 for ¢,=0,m/2. other words, the angular distributions of the increment for
Figure 13b) displays the angular dependence of the in-[111] and[111] configurations transform into each other by
crementl’ 773 calculated from Eq(75). This dependence is a 180° rotation around the horizontal axis. In particular, by
not much different from the one predicted by E@6). The  making this transformation, one can easily get from Fig. 13
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6} (1) ) . FIG. 14. Light-induced scattering in the longitudinal optical
: . ] configuration. The pattern&@) and (b) correspond to the vertical
12 i #,=90 and horizontal pump polarization, respectively.
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foosy (deg) IX. COMPARISON WITH EXPERIMENT

. - _ To compare the results of the previous section with ex-
FIG. 13. Contour lined’(AK/2m) =const0 for the diagonal  oriment we carried out measurements of light scattering
configuration[111]; the case¢a) and(b) correspond tap,=0 and  patterns in BTO crystals for the longitudinal, transversal, and
¢p= 2. diagonal configurations. The experimental setup was similar
to the one described in Reffl10,30. A laser beam of a
the angular distributions of"[1145(¢/,6) for ¢,=0 and wavelengtih=632.8 nm and a diameter1.2 mm was in-

+ /2. In accordance with the statements in Sec. lll, thecident normally onto the sample. The corresponding 2D dis-
angular distributions fol’;773; and I'j114; look similar but  tribution of scattered light was recorded in the far field with
they are not equivalent. a CCD camera. Typical pump intensity and ac frequency

Finally, we consider the angular dependence of the increwere =0.8 W/cnt and 50 Hz, respectively. The amplitude
ment for the backward configuration obtained from the diag-of the square-wave ac fieltE,|, ranged from 10 to 20 kV/

onal[111] configuration by a 180° rotation around the ver- M- The moderate values i,| stem from the dimensions
tical axis[see Fig. 40)]. For this backward configuration we Of the BTO samples used>45.9x25.3,4.3<2.5X25.9, and

have Z,= m— arctan(/2) and another choice of the experi- 3-3<4.3X9.9 mn? for L, T, andD configurations, respec-
mental variablesy and ¢,: {=y+ m—arctan(2), ¢, tively. The first numbers are the interelectrode distances and

=<pp+7-r—arctan@/§). The problem is to find the relation- the last ones are the crystal thicknesdedJnfortunately,

- ; les with #4—7 mm and with the interelectrode dis-
ship between the incremehiz(¢, ¢,,) for the backward ge- samp . .
ometry and the incremerft (i, ;) for the initial forward tance of 2-3 mm, which seem to be the best for fanning

) . _ L - experiments, were not available for us.
conflguratlo_n. Using Eq(63), th_e definition ofvg,v,«, aqd Figures 14a) and 14b) show the scattering patterns ob-
the properties of symmetry given by Eq@2), we easily tained in the longitudinal configuratiorEg||[001]) for the
obtain o )
polarization anglep,=90° and¢,=0, respectively. These
distributions have to be considered in conjunction with Figs.
— T(— o — 11(a) and 11b) for the increment™ (6, ). In agreement with
Peldrep. O)==1(=¢. = 6). {77 theory, we have a one-lobe structure for the first and a two-
lobe structure for the second case. Orientations of the lobes
In what follows from the above relation, the dependenceglso meet the theoretical predictions. Note that the far right
I'g(¢,0) for ¢,=0,m/2 may be obtained from the corre- parts of the scattering lobes in Fig. 14 are cut by the crystal
sponding dependenc¥y, 0) [see Figs. 1&) and 13b) by  edge.
a 180° rotation around the vertical axis. The same relation The light patterns presented in Fig. 15 are observed for
(77) connects the increments for the init{d11] configura- the transversal configuratiom,L[001]. Two similar two-
tion and the corresponding backward one. lobe patternga) and(b) correspond to the polarization angle
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FIG. 16. Scattering distributions for the diagonal optical con-
figuration Eo[[111]. Patterns(a) and (b) are obtained forp,=0
and ¢,=90°; pattern(c) is also obtained for the vertical polariza-
tion (¢,=90°), but the sample has been rotated prior by 180°
around the vertical axis.

tal direction ¢,=0. Switching the pump polarization from
horizontal (@,=0) to vertical (=90°) dramatically

I T T T 1 changes the scattering patt¢see Fig. 16)]. The only lobe
-20 -10 0 10 20 here points in the directiogr=220°, which corresponds to

Ocost (deg) the angular dependence of the increment given by Fig)13

The light distribution of Fig. 1&) is obtained fore,=90°
after a 180° rotation of the sample around the vertical axis.
In accordance with theory, it is not really different from the
distribution obtained by a 180° rotation of Fig.(bfaround
the vertical.

A clear feature of the light distributions shown in Figs. 15
and 16 is the separation of the scattering [sbérom the
pump spot. This is especially pronounced for the cases of
strong scatterinfsee Figs. 1&) and 1%d) and 16a)—16(c)],

I T | | ] when the role of distortions of the pump spot is diminished.

-20 -10 0 10 20 This feature is in line with theory which predicts decreasing
Ocosy (deg) scattering for sufficiently small scattering angles.

One more obvious point of qualitative agreement between

FIG. 15. Scattering patterns for the transversal optical com‘igu-theory ,and_ eXpe_”ment is the polarization dependepce of the
ration. The case&), (b), (c), and(d) correspond to the pump po- Scattering intensity for each of the above configurations. This
larization anglep, equal 0°, 90°, 45°, ane- 45° to the horizontal. ~agreement may be established by comparing the effect of

light polarization on the brightness of the lobes and the effect
¢,=0 andp,=90°, respectively. They are in good qualita- of the same polarization on the value of the increnléf$ee
tive agreement with the angular dependence of the incremefiigs. 11-16. o
given by Fig. 12a). For p,=45° ande,= —45° experiment Therefore, we have found good qualitative agreement be-
gives one-lobe distribution of scattered ligsee Figs. 1)  tween the main theoretical predictions for BTO crystals and
and 18d)]. Again, this is in harmony with the angular dis- €xperiment. A more detailed quantitative comparison be-

—0sinvy (deg)

—6Osinvy (deg)

tribution of I' shown in Figs. 1¢b) and 1Zc). tween the theory and the observations is beyond the scope of
Last, Fig. 16 shows three different scattering patterns fohis paper.

Fhe qhagonal conf|gurat|orEol|[111]. The _stro_ngest scatter- X DISCUSSION

ing is observed for the horizontal polarizatiop,=0 [see

Fig. 16a)]. In accordance with the theoretical Fig.(a8 we Let us summarize and discuss first the main merits of the

have here one lobe of scattered light pointing at the horizonanalytical approach used as compared with the methods of
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the preceding theoretical considerations. The developedump approximation can easily be generalized to the case of
theory is distinguished by a high level of generality. It coverscircular and elliptic input polarizations. It is remarkable that
a large variety of optical configurations relevant to experi-the exponential amplification here can be free of the spatial
ment, it incorporates flexibly the accumulated results on thescillations.

elasto-optic contributions to the photorefractive response, it (iii) The rate of spatial amplificatiohl can be optimized
includes the effects of optical activity and field-induced bi- with respect to the pump polarization and orientation of the
refringence, and last, it allows one to describe the effect ofipplied ac field for an arbitrary value of the rotatory power,
enhancement of the space-charge field. which is important for BSO and BGO crystals.

In spite of its generality, the theory remains fairly simple  (iv) The effect of nonexponential spatial amplification,
in form. Its main relations are highly informative but not pronounced in BSO crystals, may be investigated in detail.
unwieldy. Such a compromise is due to the extensive use of (v) The effect of wave coupling on the subharmonic gen-
the properties of spatial symmetry, the use of a number oération in BSO and BTO crystals is worthy of a special
phenomenological characteristics known from experimentsstudy. This effect is clearly seen in ac experimdd].
and the introduction of the formalism of Pauli matrices. (vi) Vectorial four-wave processes of the phase conjuga-

The factors of different physical meaning are well sepa+tion and of the parametric scattering, as well as the surface
rated in the theoretical expressions. Such a block structureave formation in fiberlike BTO crystals, are also a chal-
makes the theory flexible and adjustable to the use of piecdenge for the analytical theory.
of information extracted from different sources. For ex-
ample, the angular dependence of the increnheist defined XI. CONCLUSIONS
by the product of the enhancement fac®@(6, ) (which is
relevant to the known effects of excitation of space-charge An analytical theory of the photorefractive vectorial wave
waves[42]) and an azimuth factor dependent on the choicecoupling is developed for cubic crystals of the point group
of the optical configuration and on the pump polarization.23 and 8m. In a unified manner the theory incorporates the
Realization of this fact allows one to connect the charactereffects of optical activity and field-induced birefringence, the
istics of different phenomena, to see the physical limitationsnfluence of optoelasticity, and the enhancement of the pho-
on the light contrast, and to optimize the conditions for wavetorefractive response by an ac field. It is applicable to a wide
coupling. range of optical configurations and light polarizations, and

The analytical expressions are highly useful for the intro-adjustable to the introduction of various approximations. Ap-
duction of various approximations: the undepleted pump applications of the theory are given to the analysis of the po-
proximations, the approximation of weak and strong opticalarization and orientation characteristics of 2W coupling in
activity, etc. An extensive analysis of particular and limiting BTO crystals. A good qualitative agreement with experimen-
cases is beyond the scope of this paper. We can indicateal data for BTO crystals is demonstrated. The prospects for
however, some promising directions for application and genfurther development and application of the obtained results

eralization of the obtained results. are discussed.
(i) Analysis of the rate of spatial amplification in the pres-
ence of a large dc field does not present any serious difficul- ACKNOWLEDGMENTS
ties. It is of interest in view of early47] and recen{48]
experiments with BSO crystals. Financial support from INTAS and SFB 225 is gratefully

(ii) The results obtained in Sec. VII within the undepletedacknowledged.
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