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Coupled nonlinear Schradinger equations with cubic-quintic nonlinearity:
Integrability and soliton interaction in non-Kerr media
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We propose an integrable system of coupled nonlinear “Saiger equations with cubic-quintic terms
describing the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in non-Kerr
media. Lax pairs, conserved quantities and exact soliton solutions for the proposed integrable model are given.
The explicit form of two solitons are used to study soliton interaction showing many intriguing features
including inelastia'shape changing or intensity redistributi@tattering. Another system of coupled equations
with fifth-degree nonlinearity is derived, which represents vector generalization of the known chiral-soliton
bearing system.S1063-651X99)05409-4

PACS numbe(s): 42.81.Dp, 42.65.Tg, 41.20.Jb

[. INTRODUCTION physical insight from purely numerical experiments. The
idea, therefore, is to use approximate analytical methods
Optical solitons have a promising potential to becomesuch as the perturbation technique, variational method, etc.,
principal carriers in telecommunication due to their capabil-in order to compensate for the lack of exact resi18]. By
ity of propagating long distances without attenuation ancreating the quintic nonlinear terms due to the non-Kerr ef-
changing their shapeld—4]. Therefore considerable atten- fect as perturbations of the cubic NLS equations, i.e., re-
tion is being paid theoretically and experimentally to analyzeStricting the effects of quintic nonlinearity to be less pre-
the dynamics of optical solitons in optical waveguidesr ~ dominant than the cubic terms, the NLS equations are
example, silica fibejsunder different contextsl—6]. Such ~ Studied both analytically and numerically i8,10,13,16.
investigations are helpful for realizing optical soliton appli- " this paper we have obtained an integrable system of

cations, particularly in soliton-based optical communicationCOl‘.'p.Ied NLS equations |r_1clud|n_g cublc-q_umtlc terms de-
systems [5] and nonlinear optical switcheg6]. The scribing the effects of quintic nonlinearity with arbitrary cou-

waveguides used in such optical systems are usually of th%“ng’ which generalizes the coupled hybrid NLS equations
9 P Y y with cubic nonlinearity{20,21]. The Lax pair, as well as an

Kerr type[?]. Consequeptly, the._dynamlcs of light p.ulses arnfinite set of conserved guantities are derived for the pro-
described by the nonlinear Schifoger (NLS) family of — ,ce integrable model. We also find the exact soliton solu-
gquatpns with gub!c nonl_mear_terr{\E,S]. However, as the tions for our model and using the explicit form of the two-
intensity of the incident light field becomes stronger, non-gqiton solution we study the associated soliton collision. A
Kerr nonlinearity effect comes into play and due to this ad-remarkable interrelation between the proposed integrable
ditional effeCt, the phySical features and the Stablllty of NLSmode| and the celebrated Manakov mom] he'ps us to
soliton can changg3]. use the recently discovered general two-soliton solution of

The way through which non-Kerr nonlinearity influences the latter modef23]. This reveals the fascinating occurrence
NLS soliton propagation is described by the NLS family of of shape changing inelastic soliton collisi@hat is, a rela-
equations with higher-degree nonlinear tef®s16]. There-  tive redistribution of intensity or energy between the compo-
fore, investigations on these evolution equations become inmentsg also in the present model, in addition to some other
portant from a theoretical point of view. Particularly this interesting features. We believe that such a study using
importance has received a boost after the experimental olitigher-order solitongmultisolitons becomes important in
servation of the multistability of solitons in non-Kerr fibers the light of the proposal by Hasegawa and Ng24] regard-
[17]. In general the models proposed in the literafl8®9—  ing “eigenvalue communication,” in which the information
16] for describing the non-Kerr effects are not completelymay be transmitted by higher-order solitons and a recent one
integrable and cannot be solved exactly by the inverse scasugested by Jakubowski, Steiglitz, and Squ&s] on the
tering transform method. In such nonintegrable systemspontrivial information transmission system, which uses the
therefore, the details of soliton interaction during collisionmore general two-soliton solution of the Manakov system
cannot be described exactly and hence are still open to dé22] derived by Radhakrishnan, Lakshmanan, and Hietarinta
bate. However, numerical stimulatioh$8] show that even in [23]. We also find that the Hamiltonian of the present
the slightest change from the Kerr nonlinearity results in thantegrable model is associated with a noncanonical Poisson
two solitons annihilating each other, merging or creatingbracket (PB) structure. However, using the same Hamil-
many new solitons, depending on the initial inclination of thetonian with canonical PB relations we derive another
two solitons and their shapes. But besides the importamtoupled system with quintic nonlinearity, which may be
problem of computer time, the numerical approach is notransformed to a vector generalization of the chiral-solitonic
very appealing in the sense that it is not a simple task to ganodel of Agliettiet al. [33].
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The plan of our paper is as follows. The basic evolution 1 1 i kn,
equation with cubic-quintic nonlinearity which describes the i| A+ V_At} ~ Koo gKowoAmt n—ao|A|2A
soliton evolution in non-Kerr media with parabolic nonlin- 9 0
earity is discussed in Sec. Il. Section Ill is devoted to the kn, an IM2ag iNaBo | 14
proposed model and presents its integrability property by +n—oﬂo|A| A+ vgno(|A| At Voo (|A[*A)=0,

explicit construction of the Lax pair as well as the hierarchy
of conserved quantities generated through a recurrence rela- (©)
tion, which in turn is derived from a coupled Ricatti equation . . -
using the Lax operator. Section IV gives the exact solitonWhere the subscripb of the wave numbek (i.e., k,) indi-

solution for our cubic-quintic nonlinear evolution equation cates d|ffer.ent_|at|on Qk W|th.relspect tow, the subscripts
and z of A indicate differentiation ofA with respect to the

and using the explicit analytic solution we study here the i g vel d1th ical val f
collision process of solitons so as to understand the influencg20dinates andz, respectively, and the numerical values o
e parameteray and 8, depend on the form of the function

of quintic nonlinear effects on the Manakov model. Sectiont
V establishes the interrelation and gauge transformation bR (r : i i

tween our system and the Manakov model including the It is convenient now to t_ransform the al:_)ove equation to a
anyonlike nonultralocal PB for our model. Section VI pre- reférence frame moving with group velociiy, and to in-
sents a vector generalization of the chiral soliton bearindroduce dimensionless variables

system starting from the same Hamiltonian and discusses

some of its interesting features. Section VII gives concluding q= i
remarks. |A|
2n,Bo| Ao|?
II. BASIC EVOLUTION EQUATIONS y= ool
20
Generally when high optical intensitiésr materials with
high nonlinear coefficients even at moderate optical intensi- —Kpoo 1 12
ties, for example, semiconductor doped glasses, organic 7’1:3(_kww) zn(—Kyo) |
polymers, thin liquid-filled capillaries, efcare considered, it
is necessary to take into account higher power nonlinearities 2 [ nyag|Agl? 12
arising from an expansion of the refractive index in powers Yo=— m} ,
of intensity | of the light pulse:n=ngy+n,l +nyl?+-- -, Vgl KMol ™Koo
where ny is the linear refractive index coefficient and 5
n,,n, ..., arenonlinear refractive index coefficienf8,10]. yy= 2N, 80| Aol
In the case oh=ny+n,l +nyl?, the wave equation for 8 |Ag|? 2
high-intensity light pulse propagation in an isotropic single- Vg knohyar(—K,,)
mode optical fiber with a circular cross section and fiber axis
z can be written as . knyao|Ag|?
T
v2E 1 °D, 1 4°Dy, L 0
c? gt> ¢ a2 @ 1 112 ,
t— t——|,
ZNL( - kww) Vg

where ¢ is the speed of light, the linear pa, and the
nonlinear parDy, of the electric-field displacements are re- gnd
lated to the electric fieldE(r,t) by the relation D,
:fgé(t,)E(t_t,)dt, and DNL:€2|E|2+ E4|E|4, in which Z
2 z— ,
€=Ng, €,=2N,Ng and e4=2n4N,. 27\
A solution of Eq.(1) is sought in the form

in which zy, characterizes the nonlinear properties of the
E=eR(r)A(z,t)efziot, (2)  fiber and|Ao| is a measure of the maximum amplitude of the
input pulse. Now Eq(3) takes the form

whereeis a unit vector in the direction of wave polarization, . 2 4. - . 2
R(r) describes the transverse field modes, in whicis a 92+ A+ 2|00+ ylal e+ yaQuti va(|ala),
two-dimensional vector in the-y plane andA(z,t) is a +iys(lal*a)=0. 4
slowly varying amplitude. Here we assume tR{t), which

is mainly defined by the linear effects, corresponds to theequation(4) describes the effects of quintic nonlinear terms
modal distribution of the fundamental fiber mod&,,, for  proportional to the real parameteysandy; on the dynamics
simplicity. Then from Eqs(1) and(2), assuming the tempo- of the pulse envelope allowing self-phase modulation and
ral dispersion of the dielectric permitivity to be small, using higher-order linear and nonlinear dispersions. For pulse
the slowly varying envelope approximation and following widths greater than 100 fs, one can neglect the last three
the procedure in Sec. Il A of8], the following nonlinear terms of Eq.(4) and the resulting equation is a well-studied
partial differential equation foA(z,t) can be obtained [3,10] simple normalized NLS equation with cubic-quintic
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nonlinear terms. Further, the systdd) is a special case of fects. For this purpose, there are several ways to generalize
the dynamical equation considered for the fiber system withEq. (4) to a set of coupled equations depending on the physi-
saturating nonlinearity12]. cal situations. A fairly general form of coupled nonlinear

It is of further interest to extend the above analysis toSchralinger(CNLS) equations with cubic-quintic nonlinear-
include multimodeby which we mean multicomponeref- ity is

101, Queet 2(]02?+ Bloz?) s + ¥(|?+ Bla2?) da + pda + k8o — i [ Y1Queeet+ v2 (Al ?+ Bla2[?) 0y
+(0203 T BA03) A1+ ¥' (4107 +B0xd3) 1]+ ya[(|61|*+ Bl 62|*) %0411 =0,
1022 Qaut2(B|ae|*+[ 02l ) dz+ (Bl A1l *+ 2% ?do— pdo+ x01 — i u[ y1Gau+ v2L (Bl Al *+[d2?) az
+(BwG3;+ A203) G2+ ¥' (B0wd] + 0203 ) 021+ s (Bl 1 |*+]02|*)?d,]11=0. (5)

A nonlinear directional coupler with quintic nonlinearitgr ~ particularly in connection with the integrability aspects. In
parabolic nonlinearity couplethasB=p=pu=0 [26]. For  the following sections, by identifying one such integrable
n=vy=0, Eq.(5) acts as a mathematical model for a peri- nonlinear evolution equation, we derive the two-soliton so-
odically twisted elliptical birefringent fibef27]. If y=p lution so as to get some idea about soliton interaction in
=k=1v;=7v3=0, and y'=1 then Eg.(3) becomes the non-Kerr media.

coupled hybrid nonlinear Schidimger equatiori20] used to

investigate the effects of birefringence on pulse propagation lll. INTEGRABILITY PROPERTY OF THE PROPOSED

in the femtosecond range. In the absence of quintic nonlinear MODEL: LAX PAIR AND CONSERVED QUANTITIES

terms proportional to the real parametgrand ys, soliton It is evident that Eq(5) does not exhibit the explicit ro-

Interaction supported by syste(rﬁ_) has been studied by de—_ tational symmetry in the internal space spanned by the vector
riving higher-order soliton solutions under the parameteric

restrictionsB=1 and 3y; =y, [28]. One may also note that (a1,0z). However, forB=1 such a symmetry is restored.

) . . . Assuming further thaty,=y;=v'=0, Eq. (5) can be re-
whenB=1 andy’ =1 the linear coupling terms proportional : 3 e
to the parametes and « in Eq. (5) can be removed without duced to the following quintic generalization of the coupled

affecting the other terms by using the transformation cubic NLS equation:
i92,+ Aret2(]qn|*+ a2l ar+ v(| e > +[d21%) ?as + pa

g\ . 0 .
s _lall'zy _cinl —|a—1TZ )
A CO{2>6 s Sm(2>e Az + 0z i w2l (|92 ?+|02?) dr+ (9103 + 205, A1 ]

=0
: 0 . ’
q,—sin = e'FZq1+cos<—) e Iy, (6) .
2 2 102+ Qo+ 2(]A1|*+ |92l ) dy + ¥(|aa] >+ 102/ *a2— paiz
wherel’=(p?+ «?)"? and §=tan !(«/p). If the nonlinear- + k01— iyl (a1 ?+]02|%) Qo+ (0103 + 0205, 9]
ity is restricted only to cubic terms corresponding to pulse
widths greater than 100 fs, one obtains the celebrated inte- =0 ®

grable Manakov mode22,39 The p and « terms can be removed from E) by using

i + +2 24 2 =0, transformation6). Equation(8) without quintic nonlinearity
Gaviz Gawie 201G+ 16w ) A was investigated ifi21]. However the remarkable fact is that
iQomzT Qomee+ 2 Aaml 2+ [ dam] 2 dom =0. 7) Eg. (8) itself can be shown to be exactly integrable. Our

proposed model is a further generalization of E8). and
There is a large amount of theoretical wik-5] devoted to  naturally of Eq.(7), where the internal rotational symmetry
the CNLS family of equations with cubic nonlinearity. How- is broken again and more parameters are introduced with
ever, to our knowledge, CNLS equations with non-Kerr non-arbitrary values, which can be chosen conveniently to suit
linearity have received very little attention in the literature, the real situations. The model can be given as

01,1 Aue+ 2100 *+[A2 ) A1+ (pa] 41l *+ p2] A2l ) *da+ 2p2[ (71— p1) [da|*+ (72— p2) [d2] *]]d2] 0
= 2i[(palasl?+ p2lGal®)a1]i+ 2i (p107 A1+ p205 G201 =0,
02,1 o+ 2]+ A2 2 Ao+ (71]01|*+ 72/ A2l ?) A2+ 271  (p1— 70)|Qa|*+ (p2— 72)| 92| ]| 91| a2
— 2i[(71|0a+ 2|0 *) A2 ]+ 21 (7107 Are+ 7203 A20) G2 =0, )



PRE 60 COUPLED NONLINEAR SCHRMDINGER EQUATIONS ... 3317

wherep,, p,, 71, and , are real free parameters. It is evident that with a symmetric redugtierp,= 7,=7,, we can
recover Eq.(8) from Eq. (9), while a different reduction withly; =q andqg,=0 (or q;=0 andqg,=q) yields the integrable
Kundu-Eckhaus equatig29]

i, + e+ 2/91%q+ pflal*a— 2ipa(|q?)a=0. (10)

Importantly this generalized mod@) turns out also to be exactly integrable. For establishing the integrability property of the
proposed system, which consequently proves also the integrability of the reduced B)oded find the Lax pair I(,M)
associated with Eq9) as

—i\ d: gz
L=| —qf —ify+iA 0 , (113
-q5 0 —i0y+iN
[—2iN*+i(lay?+]a2/®)]  2Nai+igy+ 60101 2N0p+iga+ 620,
M=| —2\ai+igf—6ya7  [2iN*=i[gy|?—i6y,] —iq1dz : (11b)
—2Nq3 +i05— 003 —i0103 [2iN2—i[qa|?—i65,]
where
! 2 2 ! 2 2
0= [ ol pdaddar, o= [ (nlaf raPiar (110
|
Here \ is the spectral parameter. It may be easily checked n-1
that the zero curvature conditidn,—M,+[L,M]=0, with —2ir®, =T®+ig, rM+q, Z r.rid
the explicit Lax operator§ll), yields Eq.(9). In Sec. V we
give other evidence of its integrability by relating systén n—1
to the integrable Manakov model through a gauge transfor- +a, 2 r e, (149
mation of the pair11) to the Manakov Lax operators. i=1

Integrable systems, as is well known, possess an infinite
number of conserved quantities in involution, of which usu- ]
ally the lower ones zgre of physical importance. Explicit —2iT R, =TP+i 6,0 P +a, z rre
forms of such conserved quantities for the integrable system
(9) can be derived from a recurrence relation obtained from
the Ricatti equation related to the Lax operator. For this pur- +0q; z reoro, (14b
pose we use the linear system related to @4a =1

n—-1

B LD=LOLODOY), D=(dy dy.bg) (12 With Fl(la)= —(i/2)q3 . This gives finally the conserved quan-
tities in the explicit form as
and observe that

1 [+
, Ci==5 | dt(|Q1|2+|Q2|2) (19
Ina(\)=In e ™|, _.=> c A"
n
i [+
serves as the generator of the conserved quantjtgh sz_Zf dt —i(d1a5,+d203) + p1|as|*+ 72|05 *
through an expansion in the spectral parama&terhe first ‘°°
equation of the systerfl2) thus yields the relation +(pat+7)|a:ld a2, (16)
+
co=| dt(qIP+q,r?), n=1 13 [+
" f_m (QF5 7 Gale™) 49 c3=—§f_ At (Q107 + 02050 + (101l *+]02]*)

with the expansiod@=37_ '@\ "" a=1,2, where we a2 2 ; % *

have denoted (= ¢, /¢, L F(Z)_¢3/¢1 For finding +i(]a1|*Ny+[92|*Nap) +2i (N10197+ N2003,)

now the infinite set of conserved quantities we may use the —(N2|gq)?+N3lg,/?)], (17)
rest of the equations of Eq12) to derive a set of two

coupled Ricatti equations fdi")(\) andT'®(\). Expand- etc., where N;=0;,=p;|0:|°+ps|0o/?> and N,= 0y

ing in powers ofz as mentioned above we obtain the recur-= 7|q,|2+ 72|q§|. The above conserved quantities in Egs.
rent relations (15—(17) may be interpreted in terms of the number opera-
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1.2 T T T T
@ T ®)
L¥8r T 05 A {\ . FIG. 1. Real part of the one-
S s oL T soliton solution of(a) the Mana-
2 o4l 18 \/ V kov model, (b) the quintic gener-
05} - alized Manakov mode(see Eq.
N N 1} T
5 25 0 25 5 5 25 0 25 5

tor N, the total momentunP, and the total energy or the phases and therefore in the derivatives of the soliton profile
Hamiltonian of the systenH. However, it is intriguing t0  q.x,0a:, Which must also change the momentum and energy
remark that since here the fieldg,q; do not have canoni- of the soliton.

cal Poisson bracket relations some care has to be taken in Now exploiting the higher-soliton solutions of the Mana-
deriving the equation of motio9) from the Hamiltonian Kkov model it is also possible to find higher solitons for Eq.
(17). In fact the Poisson bracket structures of the fields(9) in an explicit form. The Manakov modér) has received
which are derived in Sec. V, show an interesting anyonlikeconsiderable attention in recent ye§8$,36,23 in order to

feature. understand the soliton collision in birerefringent fiber. How-
ever the importance of finding higher-soliton solutions in the

IV. EXACT SOLITON SOLUTIONS AND SCATTERING explicit form has been understood only quite recently
OF SOLITONS IN THE GENERALIZED MANAKOV [23,25. By constructing the most general two-soliton solu-
MODEL IN NON-KERR MEDIA tion of the integrable Manakov model, two of the authors

(R.R. and M.L) and Hietarinta[23] have shown that the
The proposed systex®) with quintic nonlinearity allows  soliton in birefringent fiber can in general change its shape
exactN-soliton solutions, which can be found, for example, after interaction due to an intensity redistribution among the
by Hirota’s method following the same procedure as in themodes, even though the total intensity remains conserved.
Manakov model. However a more direct and convenient wayrhis shape-changing collision arising essentially due to the
is to use the known solutions of the Manakov mo@®l  change in polarization angle helps us to realize the exciting

themselves for constructing the soliton solutions of 8. possibility of switching between componenfslowever, the
This is possible due to the interrelation between these tW@tandard shape-preserving collision property of the

models, which will be established in the next section. ThUS(1+ 1)_dimensiona| soliton System is recovered, when re-

we find the explicit one-soliton solution of Eq9) in the  strictions are imposed on some of the free parameters in the
form two-soliton solution [23].] Recently using the shape-
changing collision concept, Jakubowski, Steiglitz, and Squier
[25] have designed sequences of solitons operating on other
X secl{p(t—vz+ 8))el(xt+wd), (18  sequences of solitons that effect logic operations and they
suggested nontrivial information transformation system.
where different parameters of the solution are related to the Now in order to investigate the implication of this prop-
spectral parameteh=v+ix and the parameters of the erty of a soliton when the additional cubic and quintic non-
model as linear terms are included, we construct the two-soliton solu-
tion of the systent9) and expect again a nontrivial change in
the soliton phase as in the case of one-soliton solution. Such
a two-soliton solution expressed compactly through that of
the Manakov systerti7) (i ,d2m) takes the fornjsee Eq.
(24) below]

(ql 7q2) — (aei Sytanh(v(t—vz+ 6))”3ei 8, tanh(w(t—vz+ 6)))

1
V=2kKk, w= V2 — K2. 51:;(P1|a|2+P2|ﬂ|2)1

1
8= (mi|al+ 2l BI?)

together with a constant phaseComparing with the Mana- 9:=9 el [(p1lazul®+p2lazml?)dt

kov soliton we see that there is an interesting phase change Lo ’

in the carrier wave. The plane-wave-like character in the _ ) )

Manakov model has been deformed into a wave, suffering Qo= Qg€ (T2l 72ltaul Dt (19
compression and rarification of the phases in a kinklike pro-

file [see Figs. (@ and Xb)]. This shows that the effect of where a general two-soliton solutid23] of the Manakov
quintic nonlinearity of our model appears in the soliton model is given by

(1, B1)€™ + (az, By €72+ (e7,e%)em i 12+ (e%2 6% e 727 73

+emtm tRiy @Mt M) + 004 @t t M2t 8y 4 @mat My TRay @mit Uy Mty 4Ry’

(da1m 1Q2M):1 (20)
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2.6

| LD |
06 7 =T 7 FIG. 2. Asymptotic forms of
oak i i i the intensity profilegqyy|?> and
|gzmil? of the two-soliton solution
02 T 051 T (20) of the Manakov model d;
o A 1 . o 0 L Loy =p,=71,=7,=0) with the pa-
10

|41Mt |2
|quase)®
-
[<,3

-

O
O

|qoase)?
|qoare)?

4 ting in the asymptotic soliton pro-
files.

1F

1
15 - - . .
oo 8 rameter valuek,=1.5+i0.5, k,
2.5 :
— 0.5
1
10

- - - - =2.0-i0.7, a1=B1=Bo=1, a,

| o} i) | —(39+180)/89,(a) atz= — 7 (be-
fore interaction, (b) at z=+7

T L5 T (after interaction Note the split-

0 0
-15 -10 -5 0 5 15 -15 - 0
t t

in which 7;=k;(t+ik;2), j=1,2, e%=ky,/(k;+k}), e?r  effects of phase terms are reflected. For comparing with the

= k11 /(K1 +K}), efe=wpnl (Ko +K3), pure Manakov model let us consider first the case p,
=7m,=7,=0. Figure 2, shows the asymptotic forms of
Sy (ki—ka) B (|ay|%|axl?) for this case az=F7 for the parameter val-
O K (K k) e @K1, uesk;=1.5+i0.5, k,=2.0~i0.7, a;=B1=B,=1, anda,
=(39+i80)/89. At z=—7, we have two well-separated
Ko—k; asymptotic profiles as shown in Fig(@ During the propa-
e’2= * (@K1~ a1k, gation, these two solitary profiles interact with each other as
(kot+k3)(ky+k3)

shown in Fig. 3 and change form after interaction. For ex-

ample, az= +7 they have the profiles as shown in FighR

= TR TR )(31K21— Bok11), The change in shape disappears if we apply the elastic col-
(ke tkp) (ki +k; lision (shape-preserving collisiprcondition, namelya; : a,

= B;: 8, by following the work of[23]. In Figs. 2 and 3, as

’ k _k
ool 17 K2

’ kZ_kl
e‘sz: * *
(ko+Kk3)(ky+k3)

(Bak12— B1K22),

|k1_k2|2

R = ( _
(ky+ kf)(k2+k§)|kl+k§|2\K11K22 K12K21),

e3

and

(@] +BiB})
TR

The six arbitrary complex parametetis, a,, B1, B2, K1,

and k, determine the amplitude, velocity and phase of the
asymptotic soliton. As we have detected already, we see also
here that the two-soliton solutiqi9) of Eq. (9) differs from

that of the Manakov model in phase terms in a nontrivial
way. Clearly, the phase change depends on the values of the
real free parameters,, p,, 71, andr,, and vanishes for the
trivial choice giving back the Manakov soliton. A natural
question, therefore, arises: Does this change in the phase of g, #
(d1,92) for nonzero values op, p,, 71, andr,, which in 2
turn accounts for the effect of the quintic terms in Eg),
make any qualitative change in the behavior of the soliton
collision? This can be directly studied using the two-soliton
solution (19)—(20) parallel to the procedure of the Manakov
model given in Ref[23]. In order to answer the above ques-
tion, we have plotted pictures of the soliton collision corre-
sponding to the function [§y/?|dx]?) instead of FIG. 3. Intensity profilegqy|> and|qgyu|? of the two-soliton
(la1)%.]92)?), since due to |@4]?.|d2?) = (|aiml?|dz2m|?) solution of the Manakov model with the parameteric values as in
one has to look into the derivatives of the fields, where theFig. 2.

6
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10

T T T T 25 T T T T
. (ai) | ol (bi) i
a_ 6F 1 =% T FIG. 4. Asymptotic forms of
= L1 1 =5, i the intensity profiles|q.|? and
|gx|? of the two-soliton solution
r 1 5r 1 (19) of the generalized mod¢9),
T a—T: 5 0 5 10 15 %5 10 5 0 5 10 15 (@ atz=~7, (b) 2=+7, for non-
t t zero values of the parameteps
85 T T T T 2 T T T T =p,=7,=7,=1 and with re-
soi- (aii) 1 L @i i maining parameters as in Fig. 3.
25 7 Note the suppression of the soli-
n_20f 4 e 1 T ton splitting, which appeared in
& 55l { = 10k i the asymptotic profile in Figs. 2
10 . and 3.
- -5 5 T
0 1 l/\L 1 0 1 1
-15 -10 5 g 5 10 15 -15 -10 -5 (t) 5 10 15

mentioned, there is a splitting in each of the asymptotic prowheres, and 8, are equal tg, andp, for j=1, while tor;
files which appear before and after interactidvote that the  and r, for j=2. Since here the second term dominates over
scalloping nature of the intensity profiles along the directione first in the region of splitting, the splitting effect naturally
of propagation in Fig. 3, and also in Fig. 5 below, is merely gt supressed. Comparing Figs. 3 and 5 it is also important
a numerlgal artifact arising from al_lasmg and sampling ef-iy hote that the intensity of solitondgy|2,]qx|?) at the
fects) Thls.happens for the following reason. .In the CaS€intersection region for the solutiofl9) of our generalized
corresponding to the Manakov model one obtains model is much higher than that for E@O) corresponding to

the Manakov model. The above processes vividly demon-

Ajhai~ A Knge'Misecti 7ngt+ 6" strate the nontrivial effect of the additional terms involving
X[ = knrtanH 7ng+ &)1+ iKni o so s parameterg,, p,, 71, and, appearing in Eq(9).
jln: 1121 (21)

where 7,r=Knr(t—2Kn2), 7q=knt+(Kig—kz)z, the
subscriptj denotes the mode, while the superscripgt is lque|?
used to define the two different interacting solitary waves
appearing ag~ ¥, andAl" and #"* determine the unit
polarization vector and phase of the modes as defined in Ref.
[23]. From Eq.(21) one can note that for a suitable choice of
the parameterk,r andk,,, the solitary waves get peaked
around two values as shown in Figs. 2 and 3.

Now to investigate the effect of nonzero valueof p,,
74, and 7, or in other words to see the nontrivial contribu-
tions due to cubic-quintic generalizatiag®), we evaluate
dji=[ajmtTidjm 0 lexpd;), j=1,2, and plot the
asymptotic behavior of the two-soliton solutioh9) to the
quintic generalization of the Manakov model E§) in Figs.
4(a) and 4b). The corresponding interaction profile of the
solitons during their propagation is shown in Fig. 5. We gt |?
observe first that, as in the case of Manakov model, here also
generically the fascinating shape-changing inelastic collision
persists. However, in this case one can overcome the split-
ting effect of Figs. 2 and 3 corresponding to the Manakov
model. For example, if we sgi;=p,=7m=7,=1, in Eq.
(19) then the splitting of solitons disappears asymptotically,
as evident from Figs. 4 and 5. The reason for this is that now

we have FIG. 5. Intensity profildq]? and|gy|? of the two-soliton so-
lution (19) of the generalied Manakov model with the parameter
2_ 2 2 2_ 2 2 in Fi i i i i iSi
|qjt| = |Qth| + |qu| |9jt| = |Qth| + |qu| values as in Fig. 4. Note the persistence of inelastic soliton collision

as in the Manakov model and a higher intensity of modes during
><(51|q1M|2+ 52|q2M|2), soliton interaction compared to the Manakov model.



PRE 60 COUPLED NONLINEAR SCHRMDINGER EQUATIONS ... 3321

V. RELATION TO THE MANAKOV MODEL be derived directly from the Hamiltoniaii7) by careful ap-
plication of the PB structuré€25) and the relationd, 6(x
As we have mentioned above there exists an interesting y) = §(x—Y).
interrelation between the quintic generalizati@ and the
Manakov model7), which in fact we have used already in VI. VECTOR GENERALIZATION OF CHIRAL
deriving the soliton solutions of Eq9). We establish now SOLITONIC MODEL
this relationship by showing that the Lax operators of these o )
two models are related through a local gauge transformation e have seen that for obtaining E§) from the Hamil-
[29-31], while the fields are connected by a nonlinear transfonian (17) we have to use noncanonical brackets E2§).
formation in dependent variables. On the_z oth_er hand, if nevertheless one considers them to be
It is known [32] that under a gauge transformation of the canonical, i.e.,

Jost functiord® ' = g® with the gauge fielg)  U(3), the Lax
Operators transfo?m as gatg @e ( ) {ql(x)nqr(y)}zé(x_y)aji {q|(X),qJ(y)}:0, (26)

22) from the same Hamiltqniaﬁ17) we can derive complet.ely
different coupled equations with fifth-degree nonlinearity. If
for simplicity we assume,=p,= 7= 1= po, We can de-
rive these equations easily from as

L'=g"'Lg—-g 'g;, M'=g 'Mg—-g'g,.

Choosing now the specific form

1 0 0
i1+ Auee+2(192) 2+ 92 a1— 3p5(] 9] >+ 2] 2)?
g=| 0 exp—ioy) 0 , 23 41z qlt.t (|Q1|2 |Q2|2)Q1 po(laal *|Q2| )70,
0 0 exi—i6,) —2ipol (|01]*+[0d2l*)dse+ (A7 d1e+ 93 A20)d1]=0,

2
with its elementsd,, 6, being the same functions afandt @0
as in Eq.(119 and performing the transformatiq22), one  and similarly forg, by interchanging the indices22 in Eq.
can conveniently remove the diagonal terms involving(27). We notice that this system of coupled equations again
011,05 and 64,,0,, in the Lax pair[(119,(11b)]. It can be  with cubic-quintic nonlinearity is a new system which is dif-
observed further that the resultant gauge-transformed Laferent from Eq.8) presented earlier. To analyze these equa-
operators reduce exactly to those of the Manakov modeions more closely we perform again a nonlinear variable

[22,35 if we introduce transformed fields change asq,—Q,=0,e "o with 6, =N=|Q4|?+|Q,|%.
. After some lengthy but simple manipulations one can reduce
Jam=0a€XP(—16,), a=12 (24)  the system(27) further to a more compact form with only

. . ) , _cubic nonlinearity:
along with their conjugates. At the same time transformation

(24) reduces Eq99) to those of the Manakov modér). iQazt QartT2(N—pgj)Q,=0, (28
The above points establish the relationship between these

models and justifies the form of the soliton solution pre-where we have denotep=j;+j,,j.=i(Qx Qar— QaQ%)-
sented in the earlier section for mod@). Moreover, this We immediately recognize that this is nothing but the vector
procedure also provides an alternative proof of the integrageneralization of the Agliettet al. equation[33], however
bility of our model. It is important to note that under such awith the addition of a cubic nonlinearity coming from the
gauge transformation the Poisson bracket structure of thBlanakov model. Nevertheless the systéd® shows re-
fields also gets changed. To find such changes in the canoniarkable property close to the chiral-soliton featur¢ 35.

cal structure we may use transformati@) to express our In particular assuming the one-soliton form @g=A,s(t
field through the Manakov fields and assuming standard ca~vz)e'l(v2t* 2 one may conclude that here the quantity
nonical relation(26) for the Manakov model, we can derive x=1+vp, acts as the effective coupling constant of the

the anyonlike relations for the fields of E®): nonlinear term, which regulates the intensity of the soliton.
Therefore, for the soliton velocity > —1/p, only (with pg

{92(x),a1 (Y)} = 8(x—y) +ipre(x—y)ds(x)q7 (Y), >0) a bright solitary wave solution, as in the case of the

Manakov model, can exist. With decreasing velocity the ef-

191(x),01(y) } =ip1e(y =x)01(x)q1(Y), fective coupling constank also decreases, which interest-

(25) ingly causes the intensity of the soliton to increase and re-
flects a possible nonintegrable property of the model. Finally

{01(%),02(Y)} = —i[p20(x—y) = 710y —Xx)1d1(X)q2(Y), for the soliton velocity = — 1/p, the nonlinear term to sus-
tain the soliton disappears and hence no such soliton can
{01(2,05 ()} =i[p20(x—y) — 710y —x)191(X) 05 (Y), appear anymore. However, for the negative velocity below

this value,v<—1/pg, the sign ofx flips and kinklike exact
etc., wheree(x) = 6(x) — 8(—x) is the sign function defined dark solitons can appear. Fp<O the whole picture re-
through the step functiond(x)=1 for x>0, 6(x)=0, for  verts. This amazing solitonic feature evidently is a generali-
x=<0. Note that ax=y the fields exhibit a canonical prop- zation of the chiral soliton property ¢83] due to the pres-
erty, while atx#y their behavior is nonultralocal and mim- ence of the Manakov term, as well as the multicomponent
ics anyonlike propertieg34] in the classical limit. It may be nature, and may have important applications in nonlinear op-
remarked here that the generalized Manakov equ&fipcan  tics. The suspected nonintegrable nature of this system and
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consequently the original chiral-solitonic syst¢88] can be tic soliton collisions, as in the Manakov case, persist in our
convincingly proved by showing that the conserved quantiinodel. We believe that our results will be found equally

ties of the model are not in involutiopin particular, using useful in more general situations like E@) by taking our

the canonical brackéP6) it can be shown thafic,,c3}#0].  model as the unperturbed part and treating the remaining
Therefore, though this system possesses the Lax pair aridrms as perturbations.

infinite conserved quantities, their noninvolutiveness spoils We have also established the relationship between the
the integrability. The involution of the conserved quantities,proposed model and the Manakov model at the Lax pair
however, is restored if we use the noncanonical bra@®t level as well as at the field solution level, which shows an

and this ensures the exact integrability of E®). intriguing change in the canonical structure, namely the
bosonic relations of the Manakov model transforms into the
VII. CONCLUSION anyonic relations of the present system.

) _ Another remarkable fact is that assuming the standard ca-
We have constructed the Lax pair of the proposed intengnical structure for our fields we are able to derive from the
grable CNLS equatior{9) with cubic-quintic nonlinearity  same Hamiltonian yet another coupled system with cubic-
governing the soliton propagation in non-Kerr media, andyyintic nonlinearity. This novel model, which turns out to be
using it generated the infinite set of its conserved quantitieponintegrable, represents a vector generalization of the
in the explicit form. We also presented the exact one angnodel of Agliettiet al., famous for exhibiting chiral-soliton
two-soliton solutions of the model using those of the well-go|ytions. Such a chiral-soliton property also prevails in the
known Manakov model. It has been demonstrated throughresent vector case showing fascinating properties of the
the explicit two-soliton solution of the proposed model thatsglitons, like changing intensity with soliton velocity, van-
the intensity of the derivative of the soliton in the interac- ishing of bright solitons, and the appearance of dark solitons
tion region is much higher than that of the Manakov model.pgjow a certain velocity, etc. Such properties may have im-

Manakov soliton gets split and peaks around two values as

shown in Figs. 2 and 3. However, such splitting can be sup- ACKNOWLEDGMENT

pressed in the generalized cubic-quintic equat@®nhaving

nonzerop’s and 7's as has been demonstrated in Figs. 4 and The work of R.R and M.L. forms part of a Department of
5. These figures also confirm that the shape-changing inelaScience and Technology research project.

[1] G. P.Agarwal,Nonlinear Fiber Optics 2nd ed.(Academic, [16] D. Artigas, L. Torner, J. P. Torres, and N. Akhmediev, Opt.

New York, 1995. Commun.143 322(1997; P. Honzatkoijbid. 127, 363(1996.
[2] Yu. S. Kivshar and B. L. Davies, Phys. Reg98, 81 (1998. [17] G. Dattoli, F. P. Orisitto, and A. Toree, Opt. Lett4, 456
[3] N. Akhmediev and A. AnkiewiczSolitons: Nonlinear Pulses (1989.

and BeamgChapman & Hall, London, 1997 [18] A. W. Snyder and A. P. Sheppard, Opt. Leit8, 482 (1993.
[4] H. A. Haus and W. S. Wong, Rev. Mod. Ph{8, 423(1996. [19] C. Pare and M. Florjanczyk, Phys. Rev.44, 6287 (1990,
[5] A. Hasegawa and Y. Kodam&olitons in Optical Communi- and references therein.

cations(Oxford University Press, Oxford, England, 1995 [20] M. Hisakado, T. lizuka, and M. Wadati, J. Phys. Soc. H8;.
[6] M. N. Islam, Ultrafast Fiber Switching Devices and Systems 2887(1994).
(Cambridge University Press, Cambridge, England, 1992 [21] M. Hisakado and M. Wadati, J. Phys. Soc. J&3, 3962

[7] A. C. Newell and J. V. MoloneyNonlinear Optics(Addison- (1994); 64, 408(1995.
Wesley, New York, 199 [22] S. V. Manakov, Zh. Esp. Teor. Fiz.65, 505 (1973 [Sov.
[8] F. Abdullaev, S. Darmanyan, and P. Khabibulla®ptical Phys. JETP38, 248 (1974].
Solitons(Springer-Verlag, Berlin, 1993 [23] R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Phys.
[9] A. E. Kaplan, Phys. Rev. Leth5, 1291(1985; R. H. Enns, S. Rev. E56, 2213(1997).
S. Rangenekar, and A. E. Kaplan, Phys. Rev3® 1270 [24] A. Hasegawa and T. Nyu, J. Lightwave Technoll11, 395
(1987; R. H. Enns and D. E. Edmundsoibid. 47, 4524 (1993.
(1993; A. Kumar, T. Kurz, and W. Lauterbon, Phys. Lett. A [25] M. H. Jakubowski, K. Steiglitz, and R. Squier, Phys. Rev. E
235, 367 (1997. 58, 6752(1998.
[10] D. I. Pushkarov and S. Tanev, Opt. Comma24, 354(1996); [26] A. Ankiewicz and N. Akhmediev, Opt. Commuri24, 95
S. Tanev and D. I. Pushkaromid. 141, 322(1997). (1996.
[11] A. Kumar and A. Kumar, Opt. Commuri25 377 (1996. [27] S. Wabnitz, S. Trillo, E. M. Wright, and G. |. Stegeman, J.
[12] J. M. Soto-Crespo and L. Pesquera, Phys. Re\hi6E7288 Opt. Soc. Am. B8, 602 (1992); S. Trillo, S. Wabnitz, W. C.
(1997. Banyai, N. Finlayson, C. T. Seaton, G. |. Stegeman, and R. H.
[13] C. Zhou, X. T. He, and S. Chen, Phys. Rev4®, 2277(1992. Stolen, IEEE J. Quantum ElectroQE25, 104 (1989.
[14] V. V. Afanasjev, P. L. Chu, and Yu. S. Kivshar, Opt. Le®, [28] R. Radhakrishnan and M. Lakshmanan, Phys. Res,2949
1388(1997). (1996.

[15] V. Skarka, V. I. Berezhiani, and R. Miklaszewski, Phys. Rev.[29] A. Kundu, J. Math. Phys25, 3433(1984; F. Calogero, In-
E 56, 1080(1997. verse Probl3, 229 (1987; Li Shen, inSymmetries & Singu-



PRE 60 COUPLED NONLINEAR SCHRMDINGER EQUATIONS ... 3323

larity Structures edited by M. Lakshmanan and M. Daniel [33] U. Aglietti, L. Griguolo, R. Jackiw, S. Y. Pi, and D. Seminara,

(Springer, Berlin, 1990 p. 27. Phys. Rev. Lett77, 4406(1996.
[30] S. Kakei, N. Sasa, and J. Satsuma, J. Phys. Soc6dp519  [34] A. Kundu, hep-th/9811247unpublishedl
(1995. [35] D. J. Kaup and B. A. Malomed, Phys. Rev.48, 599 (1993;
[31] K. Kondo, K. Kajiwara, and K. Matsui, J. Phys. Soc. JB6, M. Karlsson, D. J. Kaup, and B. A. Malomed, Phys. Rea4
60 (1997. 5802 (1996.
[32] V. I. Zakharov and L. A. Takhtajan, Theor. Math. Phg8, 17 [36] R. Radhakrishnan and M. Lakshmanan, J. Phy28A2683
(1979; Solitons: Introduction and Applicationgdited by M. (1995.

Lakshmanar(Springer-Verlag, Berlin, 1988p. 86.



