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Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity:
Integrability and soliton interaction in non-Kerr media

R. Radhakrishnan,1 A. Kundu,2 and M. Lakshmanan1
1Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India
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We propose an integrable system of coupled nonlinear Schro¨dinger equations with cubic-quintic terms
describing the effects of quintic nonlinearity on the ultrashort optical soliton pulse propagation in non-Kerr
media. Lax pairs, conserved quantities and exact soliton solutions for the proposed integrable model are given.
The explicit form of two solitons are used to study soliton interaction showing many intriguing features
including inelastic~shape changing or intensity redistribution! scattering. Another system of coupled equations
with fifth-degree nonlinearity is derived, which represents vector generalization of the known chiral-soliton
bearing system.@S1063-651X~99!05409-4#

PACS number~s!: 42.81.Dp, 42.65.Tg, 41.20.Jb
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I. INTRODUCTION

Optical solitons have a promising potential to beco
principal carriers in telecommunication due to their capa
ity of propagating long distances without attenuation a
changing their shapes@1–4#. Therefore considerable atten
tion is being paid theoretically and experimentally to analy
the dynamics of optical solitons in optical waveguides~for
example, silica fibers! under different contexts@1–6#. Such
investigations are helpful for realizing optical soliton app
cations, particularly in soliton-based optical communicat
systems @5# and nonlinear optical switches@6#. The
waveguides used in such optical systems are usually of
Kerr type@7#. Consequently, the dynamics of light pulses a
described by the nonlinear Schro¨dinger ~NLS! family of
equations with cubic nonlinear terms@7,8#. However, as the
intensity of the incident light field becomes stronger, no
Kerr nonlinearity effect comes into play and due to this a
ditional effect, the physical features and the stability of N
soliton can change@3#.

The way through which non-Kerr nonlinearity influenc
NLS soliton propagation is described by the NLS family
equations with higher-degree nonlinear terms@9–16#. There-
fore, investigations on these evolution equations become
portant from a theoretical point of view. Particularly th
importance has received a boost after the experimental
servation of the multistability of solitons in non-Kerr fibe
@17#. In general the models proposed in the literature@3,9–
16# for describing the non-Kerr effects are not complete
integrable and cannot be solved exactly by the inverse s
tering transform method. In such nonintegrable syste
therefore, the details of soliton interaction during collisi
cannot be described exactly and hence are still open to
bate. However, numerical stimulations@18# show that even
the slightest change from the Kerr nonlinearity results in
two solitons annihilating each other, merging or creat
many new solitons, depending on the initial inclination of t
two solitons and their shapes. But besides the impor
problem of computer time, the numerical approach is
very appealing in the sense that it is not a simple task to
PRE 601063-651X/99/60~3!/3314~10!/$15.00
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physical insight from purely numerical experiments. T
idea, therefore, is to use approximate analytical meth
such as the perturbation technique, variational method,
in order to compensate for the lack of exact results@19#. By
treating the quintic nonlinear terms due to the non-Kerr
fect as perturbations of the cubic NLS equations, i.e.,
stricting the effects of quintic nonlinearity to be less pr
dominant than the cubic terms, the NLS equations
studied both analytically and numerically in@3,10,13,16#.

In this paper we have obtained an integrable system
coupled NLS equations including cubic-quintic terms d
scribing the effects of quintic nonlinearity with arbitrary co
pling, which generalizes the coupled hybrid NLS equatio
with cubic nonlinearity@20,21#. The Lax pair, as well as an
infinite set of conserved quantities are derived for the p
posed integrable model. We also find the exact soliton so
tions for our model and using the explicit form of the tw
soliton solution we study the associated soliton collision.
remarkable interrelation between the proposed integra
model and the celebrated Manakov model@22# helps us to
use the recently discovered general two-soliton solution
the latter model@23#. This reveals the fascinating occurren
of shape changing inelastic soliton collision~that is, a rela-
tive redistribution of intensity or energy between the comp
nents! also in the present model, in addition to some oth
interesting features. We believe that such a study us
higher-order solitons~multisolitons! becomes important in
the light of the proposal by Hasegawa and Nyu@24# regard-
ing ‘‘eigenvalue communication,’’ in which the informatio
may be transmitted by higher-order solitons and a recent
sugested by Jakubowski, Steiglitz, and Squier@25# on the
nontrivial information transmission system, which uses
more general two-soliton solution of the Manakov syste
@22# derived by Radhakrishnan, Lakshmanan, and Hietar
in @23#. We also find that the Hamiltonian of the prese
integrable model is associated with a noncanonical Pois
bracket ~PB! structure. However, using the same Ham
tonian with canonical PB relations we derive anoth
coupled system with quintic nonlinearity, which may b
transformed to a vector generalization of the chiral-solito
model of Aglietti et al. @33#.
3314 © 1999 The American Physical Society
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The plan of our paper is as follows. The basic evoluti
equation with cubic-quintic nonlinearity which describes t
soliton evolution in non-Kerr media with parabolic nonlin
earity is discussed in Sec. II. Section III is devoted to
proposed model and presents its integrability property
explicit construction of the Lax pair as well as the hierarc
of conserved quantities generated through a recurrence
tion, which in turn is derived from a coupled Ricatti equati
using the Lax operator. Section IV gives the exact soli
solution for our cubic-quintic nonlinear evolution equatio
and using the explicit analytic solution we study here
collision process of solitons so as to understand the influe
of quintic nonlinear effects on the Manakov model. Sect
V establishes the interrelation and gauge transformation
tween our system and the Manakov model including
anyonlike nonultralocal PB for our model. Section VI pr
sents a vector generalization of the chiral soliton bear
system starting from the same Hamiltonian and discus
some of its interesting features. Section VII gives conclud
remarks.

II. BASIC EVOLUTION EQUATIONS

Generally when high optical intensities~or materials with
high nonlinear coefficients even at moderate optical inte
ties, for example, semiconductor doped glasses, org
polymers, thin liquid-filled capillaries, etc.! are considered, it
is necessary to take into account higher power nonlinear
arising from an expansion of the refractive index in pow
of intensity I of the light pulse:n5n01n2I 1n4I 21•••,
where n0 is the linear refractive index coefficient an
n2 ,n4 . . . , arenonlinear refractive index coefficients@3,10#.

In the case ofn5n01n2I 1n4I 2, the wave equation for
high-intensity light pulse propagation in an isotropic sing
mode optical fiber with a circular cross section and fiber a
z can be written as

¹2E2
1

c2

]2DL

]t2 5
1

c2

]2DNL

]t2 , ~1!

where c is the speed of light, the linear partDL and the
nonlinear partDNL of the electric-field displacements are r
lated to the electric fieldE(r ,t) by the relation DL

5*0
`e(t8)E(t2t8)dt8 and DNL5e2uEu21e4uEu4, in which

e5n0
2 , e252n2n0 ande452n4n0.

A solution of Eq.~1! is sought in the form

E5eR~r !A~z,t !eibz2 ivt, ~2!

wheree is a unit vector in the direction of wave polarizatio
R(r ) describes the transverse field modes, in whichr is a
two-dimensional vector in thex-y plane andA(z,t) is a
slowly varying amplitude. Here we assume thatR(r ), which
is mainly defined by the linear effects, corresponds to
modal distribution of the fundamental fiber modeHE11, for
simplicity. Then from Eqs.~1! and~2!, assuming the tempo
ral dispersion of the dielectric permitivity to be small, usin
the slowly varying envelope approximation and followin
the procedure in Sec. II A of@8#, the following nonlinear
partial differential equation forA(z,t) can be obtained
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vg
AtG2

1

2
kvvAtt2

i

6
kvvvAttt1

kn2

n0
a0uAu2A

1
kn4

n0
b0uAu4A1

in2a0

vgn0
~ uAu2A! t1

in4b0

vgn0
~ uAu4A! t50,

~3!

where the subscriptv of the wave numberk ~i.e., kv) indi-
cates differentiation ofk with respect tov, the subscriptst
and z of A indicate differentiation ofA with respect to the
coordinatest andz, respectively, and the numerical values
the parametersa0 andb0 depend on the form of the functio
R(r ).

It is convenient now to transform the above equation t
reference frame moving with group velocityvg , and to in-
troduce dimensionless variables

q5
A

uA0u
,

g5
2n4b0uA0u2

n2a0
,

g15
2kvvv

3~2kvv! F 1

zNL~2kvv!G
1/2

,

g25
2

vg
F n2a0uA0u2

kn0~2kvv!G
1/2

,

g35
2n4b0uA0u2

vgF uA0u2

kn0n2a0~2kvv!G
1/2,

zNL
215

kn2a0uA0u2

n0
,

t→F 1

zNL~2kvv!G
1/2S t2

z

vg
D ,

and

z→ z

2zNL
,

in which zNL characterizes the nonlinear properties of t
fiber anduA0u is a measure of the maximum amplitude of t
input pulse. Now Eq.~3! takes the form

iqz1qtt12uqu2q1guqu4q1 ig1qttt1 ig2~ uqu2q! t

1 ig3~ uqu4q! t50. ~4!

Equation~4! describes the effects of quintic nonlinear term
proportional to the real parametersg andg3 on the dynamics
of the pulse envelope allowing self-phase modulation a
higher-order linear and nonlinear dispersions. For pu
widths greater than 100 fs, one can neglect the last th
terms of Eq.~4! and the resulting equation is a well-studie
@3,10# simple normalized NLS equation with cubic-quint
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nonlinear terms. Further, the system~4! is a special case o
the dynamical equation considered for the fiber system w
saturating nonlinearity@12#.

It is of further interest to extend the above analysis
include multimode~by which we mean multicomponent! ef-
ri-

tio
e
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ri
t
l
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ls
nt
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fects. For this purpose, there are several ways to gener
Eq. ~4! to a set of coupled equations depending on the ph
cal situations. A fairly general form of coupled nonline
Schrödinger~CNLS! equations with cubic-quintic nonlinear
ity is
iq1z1q1tt12~ uq1u21Buq2u2!q11g~ uq1u21Buq2u2!2q11rq11kq22 im@g1q1ttt1g2@~ uq1u21Buq2u2!q1t

1~q1q1t* 1Bq2q2t* !q11g8~q1tq1* 1Bq2tq2* !q1#1g3@~ uq1u21Buq2u2!2q1# t#50,

iq2z1q2tt12~Buq1u21uq2u2!q21g~Buq1u21uq2u2!2q22rq21kq12 im@g1q2ttt1g2@~Buq1u21uq2u2!q2t

1~Bq1q1t* 1q2q2t* !q21g8~Bq1tq1* 1q2tq2* !q2#1g3@~Buq1u21uq2u2!2q2# t#50. ~5!
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A nonlinear directional coupler with quintic nonlinearity~or
parabolic nonlinearity coupler! has B5r5m50 @26#. For
m5g50, Eq. ~5! acts as a mathematical model for a pe
odically twisted elliptical birefringent fiber@27#. If g5r
5k5g15g350, and g851 then Eq. ~3! becomes the
coupled hybrid nonlinear Schro¨dinger equation@20# used to
investigate the effects of birefringence on pulse propaga
in the femtosecond range. In the absence of quintic nonlin
terms proportional to the real parametersg and g3, soliton
interaction supported by system~5! has been studied by de
riving higher-order soliton solutions under the paramete
restrictionsB51 and 3g15g2 @28#. One may also note tha
whenB51 andg851 the linear coupling terms proportiona
to the parameterr andk in Eq. ~5! can be removed withou
affecting the other terms by using the transformation

q1→cosS u

2DeiGzq12sinS u

2De2 iGzq2 ,

q2→sinS u

2DeiGzq11cosS u

2De2 iGzq2 , ~6!

whereG5(r21k2)1/2 andu5tan21(k/r). If the nonlinear-
ity is restricted only to cubic terms corresponding to pu
widths greater than 100 fs, one obtains the celebrated i
grable Manakov model@22,35#

iq1Mz1q1Mtt12~ uq1Mu21uq2Mu2!q1M50,

iq2Mz1q2Mtt12~ uq1Mu21uq2Mu2!q2M50. ~7!

There is a large amount of theoretical work@1–5# devoted to
the CNLS family of equations with cubic nonlinearity. How
ever, to our knowledge, CNLS equations with non-Kerr no
linearity have received very little attention in the literatur
n
ar

c

e
e-

-
,

particularly in connection with the integrability aspects.
the following sections, by identifying one such integrab
nonlinear evolution equation, we derive the two-soliton s
lution so as to get some idea about soliton interaction
non-Kerr media.

III. INTEGRABILITY PROPERTY OF THE PROPOSED
MODEL: LAX PAIR AND CONSERVED QUANTITIES

It is evident that Eq.~5! does not exhibit the explicit ro-
tational symmetry in the internal space spanned by the ve
(q1 ,q2). However, forB51 such a symmetry is restored
Assuming further thatg15g35g850, Eq. ~5! can be re-
duced to the following quintic generalization of the coupl
cubic NLS equation:

iq1z1q1tt12~ uq1u21uq2u2!q11g~ uq1u21uq2u2!2q11rq1

1kq22 img2@~ uq1u21uq2u2!q1t1~q1q1t* 1q2q2t* !q1#

50,

iq2z1q2tt12~ uq1u21uq2u2!q11g~ uq1u21uq2u2!2q22rq2

1kq12 img2@~ uq1u21uq2u2!q2t1~q1q1t* 1q2q2t* !q2#

50. ~8!

The r and k terms can be removed from Eq.~8! by using
transformation~6!. Equation~8! without quintic nonlinearity
was investigated in@21#. However the remarkable fact is tha
Eq. ~8! itself can be shown to be exactly integrable. O
proposed model is a further generalization of Eq.~8! and
naturally of Eq.~7!, where the internal rotational symmetr
is broken again and more parameters are introduced
arbitrary values, which can be chosen conveniently to s
the real situations. The model can be given as
iq1z1q1tt12~ uq1u21uq2u2!q11~r1uq1u21r2uq2u2!2q112r2@~t12r1!uq1u21~t22r2!uq2u2#uq2u2q1

22i @~r1uq1u21r2uq2u2!q1# t12i ~r1q1* q1t1r2q2* q2t!q150,

iq2z1q2tt12~ uq1u21uq2u2!q21~t1uq1u21t2uq2u2!2q212t1@~r12t1!uq1u21~r22t2!uq2u2#uq1u2q2

22i @~t1uq1u21t2uq2u2!q2# t12i ~t1q1* q1t1t2q2* q2t!q250, ~9!
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wherer1 , r2 , t1, and t2 are real free parameters. It is evident that with a symmetric reductionr15r25t15t2, we can
recover Eq.~8! from Eq. ~9!, while a different reduction withq15q andq250 ~or q150 andq25q) yields the integrable
Kundu-Eckhaus equation@29#

iqz1qtt12uqu2q1r1
2uqu4q22ir1~ uqu2! tq50. ~10!

Importantly this generalized model~9! turns out also to be exactly integrable. For establishing the integrability property o
proposed system, which consequently proves also the integrability of the reduced model~8!, we find the Lax pair (L,M )
associated with Eq.~9! as

L5S 2 il q1 q2

2q1* 2 iu1t1 il 0

2q2* 0 2 iu2t1 il
D , ~11a!

M5S @22il21 i ~ uq1u21uq2u2!# 2lq11 iq1t1u1tq1 2lq21 iq2t1u2tq2

22lq1* 1 iq1t* 2u1tq1* @2il22 i uq1u22 iu1z# 2 iq1* q2

22lq2* 1 iq2t* 2u2tq2* 2 iq1q2* @2il22 i uq2u22 iu2z#
D , ~11b!

where

u15E
2`

t

~r1uq1u21r2uq2u2!dt8, u25E
2`

t

~t1uq1u21t2uq2u2!dt8. ~11c!
ke
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Here l is the spectral parameter. It may be easily chec
that the zero curvature conditionLz2Mt1@L,M #50, with
the explicit Lax operators~11!, yields Eq.~9!. In Sec. V we
give other evidence of its integrability by relating system~9!
to the integrable Manakov model through a gauge trans
mation of the pair~11! to the Manakov Lax operators.

Integrable systems, as is well known, possess an infi
number of conserved quantities in involution, of which us
ally the lower ones are of physical importance. Expli
forms of such conserved quantities for the integrable sys
~9! can be derived from a recurrence relation obtained fr
the Ricatti equation related to the Lax operator. For this p
pose we use the linear system related to Eq.~11a!

F t~l,t !5L~l,t !F~l,t !, F5~f1 ,f2 ,f3! ~12!

and observe that

ln a~l!5 ln f1e2 iltu t→`5(
n

cnl2n

serves as the generator of the conserved quantities$cn%
through an expansion in the spectral parameterl. The first
equation of the system~12! thus yields the relation

cn5E
2`

1`

dt~q1Gn
(1)1q2Gn

(2)!, n>1 ~13!

with the expansionG (a)5(n51
` Gn

(a)l2n, a51,2, where we
have denotedG (1)5f2 /f1 and G (2)5f3 /f1. For finding
now the infinite set of conserved quantities we may use
rest of the equations of Eq.~12! to derive a set of two
coupled Ricatti equations forG (1)(l) andG (2)(l). Expand-
ing in powers ofl as mentioned above we obtain the rec
rent relations
d

r-

te
-
t
m

r-

e

-

22iGn11
(1) 5Gnt

(1)1 iu1tGn
(1)1q1 (

i 51

n21

Gn2 i
(1) G i

(1)

1q2 (
i 51

n21

Gn2 i
(1) G i

(2) , ~14a!

22iGn11
(2) 5Gnt

(2)1 iu2tGn
(2)1q2 (

i 51

n21

Gn2 i
(2) G i

(2)

1q1 (
i 51

n21

Gn2 i
(2) G i

(1) , ~14b!

with G1
(a)52( i /2)qa* . This gives finally the conserved quan

tities in the explicit form as

c152
1

2i E2`

1`

dt~ uq1u21uq2u2!, ~15!

c252
i

4E2`

1`

dt@2 i ~q1q1t* 1q2q2t* !1r1uq1u41t2uq2u4

1~r21t1!uq1u2uq2u2#, ~16!

c352
i

8E2`

1`

dt@~q1q1tt* 1q2q2tt* !1~ uq1u21uq2u2!2

1 i ~ uq1u2N1t1uq2u2N2t!12i ~N1q1q1t* 1N2q2q2t* !

2~N1
2uq1u21N2

2uq2u2!#, ~17!

etc., where N15u1t5r1uq1u21r2uq2u2 and N25u2t

5t1uq1u21t2uq2
2u. The above conserved quantities in Eq

~15!–~17! may be interpreted in terms of the number ope
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FIG. 1. Real part of the one
soliton solution of~a! the Mana-
kov model,~b! the quintic gener-
alized Manakov model@see Eq.
~18!#.
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tor N, the total momentumP, and the total energy or th
Hamiltonian of the systemH. However, it is intriguing to
remark that since here the fieldsqa ,qa* do not have canoni-
cal Poisson bracket relations some care has to be take
deriving the equation of motion~9! from the Hamiltonian
~17!. In fact the Poisson bracket structures of the fiel
which are derived in Sec. V, show an interesting anyonl
feature.

IV. EXACT SOLITON SOLUTIONS AND SCATTERING
OF SOLITONS IN THE GENERALIZED MANAKOV

MODEL IN NON-KERR MEDIA

The proposed system~9! with quintic nonlinearity allows
exactN-soliton solutions, which can be found, for examp
by Hirota’s method following the same procedure as in
Manakov model. However a more direct and convenient w
is to use the known solutions of the Manakov model~7!
themselves for constructing the soliton solutions of Eq.~9!.
This is possible due to the interrelation between these
models, which will be established in the next section. Th
we find the explicit one-soliton solution of Eq.~9! in the
form

~q1 ,q2!5~aeid1tanh„n(t2vz1d)…,beid2 tanh„n(t2vz1d)…!

3sech„n~ t2vz1d!…ei (kt1vz), ~18!

where different parameters of the solution are related to
spectral parameterl5n1 ik and the parameters of th
model as

v52k, v5n22k2, d15
1

n
~r1uau21r2ubu2!,

d25
1

n
~t1uau21t2ubu2!

together with a constant phased. Comparing with the Mana-
kov soliton we see that there is an interesting phase cha
in the carrier wave. The plane-wave-like character in
Manakov model has been deformed into a wave, suffer
compression and rarification of the phases in a kinklike p
file @see Figs. 1~a! and 1~b!#. This shows that the effect o
quintic nonlinearity of our model appears in the solit
in

,
e

,
e
y

o
,

e

ge
e
g
-

phases and therefore in the derivatives of the soliton pro
qax ,qat , which must also change the momentum and ene
of the soliton.

Now exploiting the higher-soliton solutions of the Man
kov model it is also possible to find higher solitons for E
~9! in an explicit form. The Manakov model~7! has received
considerable attention in recent years@35,36,23# in order to
understand the soliton collision in birerefringent fiber. Ho
ever the importance of finding higher-soliton solutions in t
explicit form has been understood only quite recen
@23,25#. By constructing the most general two-soliton sol
tion of the integrable Manakov model, two of the autho
~R.R. and M.L.! and Hietarinta@23# have shown that the
soliton in birefringent fiber can in general change its sha
after interaction due to an intensity redistribution among
modes, even though the total intensity remains conser
This shape-changing collision arising essentially due to
change in polarization angle helps us to realize the exci
possibility of switching between components.@However, the
standard shape-preserving collision property of
(111)-dimensional soliton system is recovered, when
strictions are imposed on some of the free parameters in
two-soliton solution @23#.# Recently using the shape
changing collision concept, Jakubowski, Steiglitz, and Squ
@25# have designed sequences of solitons operating on o
sequences of solitons that effect logic operations and t
suggested nontrivial information transformation system.

Now in order to investigate the implication of this prop
erty of a soliton when the additional cubic and quintic no
linear terms are included, we construct the two-soliton so
tion of the system~9! and expect again a nontrivial change
the soliton phase as in the case of one-soliton solution. S
a two-soliton solution expressed compactly through that
the Manakov system~7! (q1M ,q2M) takes the form@see Eq.
~24! below#

q15q1Mei *(r1uq1M u21r2uq2M u2)dt,

q25q2Mei *(t1uq1M u21t2uq2M u2)dt, ~19!

where a general two-soliton solution@23# of the Manakov
model is given by
~q1M ,q2M !5
~a1 ,b1!eh11~a2 ,b2!eh21~ed1,ed18!eh11h1* 1h21~ed2,ed28!eh11h21h2*

11eh11h1* 1R11eh11h2* 1d01eh1* 1h21d0* 1eh21h2* 1R21eh11h1* 1h21h2* 1R3
, ~20!
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FIG. 2. Asymptotic forms of
the intensity profilesuq1Mtu2 and
uq2Mtu2 of the two-soliton solution
~20! of the Manakov model (r1

5r25t15t250) with the pa-
rameter valuesk151.51 i0.5, k2

52.02 i0.7, a15b15b251, a2

5(391 i80)/89,~a! at z527 ~be-
fore interaction!, ~b! at z517
~after interaction!. Note the split-
ting in the asymptotic soliton pro-
files.
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in which h j5kj (t1 ik jz), j 51,2, ed05k12/(k11k2* ) , eR1

5k11/(k11k1* ) , eR25k22/(k21k2* ) ,

ed15
~k12k2!

~k11k1* !~k1* 1k2!
~a1k212a2k11!,

ed25
k22k1

~k21k2* !~k11k2* !
~a2k122a1k22!,

ed185
k12k2

~k11k1* !~k1* 1k2!
~b1k212b2k11!,

ed285
k22k1

~k21k2* !~k11k2* !
~b2k122b1k22!,

eR35
uk12k2u2

~k11k1* !~k21k2* !uk11k2* u2
~k11k222k12k21!,

and

k i j 5
~a ia j* 1b ib j* !

ki1kj
.

The six arbitrary complex parametersa1 , a2 , b1 , b2 , k1,
and k2 determine the amplitude, velocity and phase of
asymptotic soliton. As we have detected already, we see
here that the two-soliton solution~19! of Eq. ~9! differs from
that of the Manakov model in phase terms in a nontriv
way. Clearly, the phase change depends on the values o
real free parametersr1 , r2 , t1, andt2, and vanishes for the
trivial choice giving back the Manakov soliton. A natur
question, therefore, arises: Does this change in the phas
(q1 ,q2) for nonzero values ofr1 , r2 , t1, andt2, which in
turn accounts for the effect of the quintic terms in Eq.~9!,
make any qualitative change in the behavior of the soli
collision? This can be directly studied using the two-solit
solution~19!–~20! parallel to the procedure of the Manako
model given in Ref.@23#. In order to answer the above que
tion, we have plotted pictures of the soliton collision corr
sponding to the function (uq1tu2,uq2tu2) instead of
(uq1u2,uq2u2), since due to (uq1u2,uq2u2)5(uq1Mu2,uq2Mu2)
one has to look into the derivatives of the fields, where
e
so

l
the

of

n

-

e

effects of phase terms are reflected. For comparing with
pure Manakov model let us consider first the caser15r2
5t15t250. Figure 2, shows the asymptotic forms
(uq1tu2,uq2tu2) for this case atz577 for the parameter val-
uesk151.51 i0.5, k252.02 i0.7, a15b15b251, anda2
5(391 i80)/89. At z527, we have two well-separate
asymptotic profiles as shown in Fig. 2~a!. During the propa-
gation, these two solitary profiles interact with each other
shown in Fig. 3 and change form after interaction. For e
ample, atz517 they have the profiles as shown in Fig. 2~b!.
The change in shape disappears if we apply the elastic
lision ~shape-preserving collision! condition, namelya1 :a2
5b1 :b2 by following the work of@23#. In Figs. 2 and 3, as

FIG. 3. Intensity profilesuq1Mtu2 and uq2Mtu2 of the two-soliton
solution of the Manakov model with the parameteric values as
Fig. 2.
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FIG. 4. Asymptotic forms of
the intensity profilesuq1tu2 and
uq2tu2 of the two-soliton solution
~19! of the generalized model~9!,
~a! at z527, ~b! z517, for non-
zero values of the parametersr1

5r25t15t251 and with re-
maining parameters as in Fig. 3
Note the suppression of the sol
ton splitting, which appeared in
the asymptotic profile in Figs. 2
and 3.
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mentioned, there is a splitting in each of the asymptotic p
files which appear before and after interaction.~Note that the
scalloping nature of the intensity profiles along the direct
of propagation in Fig. 3, and also in Fig. 5 below, is mere
a numerical artifact arising from aliasing and sampling
fects.! This happens for the following reason. In the ca
corresponding to the Manakov model one obtains

qjMt
n7 ;Aj

n7knReihnIsech~hnR1fn7!

3$@2knR tanh~hnR1fn7!#1 iknI%uz→6` ,

j ,n51,2, ~21!

where hnR5knR(t22knIz), hnI5knIt1(knR
2 2knI

2 )z, the
subscriptj denotes the mode, while the superscriptn7 is
used to define the two different interacting solitary wav
appearing atz;7`, andAj

n7 and fn7 determine the unit
polarization vector and phase of the modes as defined in
@23#. From Eq.~21! one can note that for a suitable choice
the parametersknR and knI , the solitary waves get peake
around two values as shown in Figs. 2 and 3.

Now to investigate the effect of nonzero values ofr1 , r2 ,
t1, andt2 or in other words to see the nontrivial contrib
tions due to cubic-quintic generalization~9!, we evaluate
qjt5@qjMt1 iq jM u j t #exp(iuj), j51,2, and plot the
asymptotic behavior of the two-soliton solution~19! to the
quintic generalization of the Manakov model Eq.~9! in Figs.
4~a! and 4~b!. The corresponding interaction profile of th
solitons during their propagation is shown in Fig. 5. W
observe first that, as in the case of Manakov model, here
generically the fascinating shape-changing inelastic collis
persists. However, in this case one can overcome the s
ting effect of Figs. 2 and 3 corresponding to the Manak
model. For example, if we setr15r25t15t251, in Eq.
~19! then the splitting of solitons disappears asymptotica
as evident from Figs. 4 and 5. The reason for this is that n
we have

uqjt u25uqjMt u21uqjM u2uu j t u25uqjMt u21uqjM u2

3~d1uq1Mu21d2uq2Mu2!,
-

n

-
e

s

ef.

so
n
lit-
v

,
w

whered1 andd2 are equal tor1 andr2 for j 51, while tot1

andt2 for j 52. Since here the second term dominates o
the first in the region of splitting, the splitting effect natural
gets supressed. Comparing Figs. 3 and 5 it is also impor
to note that the intensity of solitons (uq1tu2,uq2tu2) at the
intersection region for the solution~19! of our generalized
model is much higher than that for Eq.~20! corresponding to
the Manakov model. The above processes vividly dem
strate the nontrivial effect of the additional terms involvin
parametersr1 , r2 , t1, andt2 appearing in Eq.~9!.

FIG. 5. Intensity profileuq1tu2 and uq2tu2 of the two-soliton so-
lution ~19! of the generalied Manakov model with the parame
values as in Fig. 4. Note the persistence of inelastic soliton collis
as in the Manakov model and a higher intensity of modes dur
soliton interaction compared to the Manakov model.
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V. RELATION TO THE MANAKOV MODEL

As we have mentioned above there exists an interes
interrelation between the quintic generalization~9! and the
Manakov model~7!, which in fact we have used already
deriving the soliton solutions of Eq.~9!. We establish now
this relationship by showing that the Lax operators of th
two models are related through a local gauge transforma
@29–31#, while the fields are connected by a nonlinear tra
formation in dependent variables.

It is known @32# that under a gauge transformation of t
Jost functionF85gF with the gauge fieldgPU(3), the Lax
operators transform as

L85g21Lg2g21gt , M 85g21Mg2g21gz . ~22!

Choosing now the specific form

g5S 1 0 0

0 exp~2 iu1! 0

0 0 exp~2 iu2!
D , ~23!

with its elementsu1 ,u2 being the same functions ofz and t
as in Eq.~11c! and performing the transformation~22!, one
can conveniently remove the diagonal terms involvi
u1t ,u2t andu1z ,u2z in the Lax pair@~11a!,~11b!#. It can be
observed further that the resultant gauge-transformed
operators reduce exactly to those of the Manakov mo
@22,35# if we introduce transformed fields

qaM5qa exp~2 iua!, a51,2 ~24!

along with their conjugates. At the same time transformat
~24! reduces Eqs.~9! to those of the Manakov model~7!.

The above points establish the relationship between th
models and justifies the form of the soliton solution p
sented in the earlier section for model~9!. Moreover, this
procedure also provides an alternative proof of the integ
bility of our model. It is important to note that under such
gauge transformation the Poisson bracket structure of
fields also gets changed. To find such changes in the can
cal structure we may use transformation~24! to express our
field through the Manakov fields and assuming standard
nonical relation~26! for the Manakov model, we can deriv
the anyonlike relations for the fields of Eq.~9!:

$q1~x!,q1* ~y!%5d~x2y!1 ir1e~x2y!q1~x!q1* ~y!,

$q1~x!,q1~y!%5 ir1e~y2x!q1~x!q1~y!,

~25!

$q1~x!,q2~y!%52 i @r2u~x2y!2t1u~y2x!#q1~x!q2~y!,

$q1~x!,q2* ~y!%5 i @r2u~x2y!2t1u~y2x!#q1~x!q2* ~y!,

etc., wheree(x)5u(x)2u(2x) is the sign function defined
through the step function:u(x)51 for x.0, u(x)50, for
x<0. Note that atx5y the fields exhibit a canonical prop
erty, while atxÞy their behavior is nonultralocal and mim
ics anyonlike properties@34# in the classical limit. It may be
remarked here that the generalized Manakov equation~9! can
g

e
n
-

x
el

n

se
-

-

e
ni-

a-

be derived directly from the Hamiltonian~17! by careful ap-
plication of the PB structure~25! and the relation]xu(x
2y)5d(x2y).

VI. VECTOR GENERALIZATION OF CHIRAL
SOLITONIC MODEL

We have seen that for obtaining Eq.~9! from the Hamil-
tonian ~17! we have to use noncanonical brackets Eq.~25!.
On the other hand, if nevertheless one considers them t
canonical, i.e.,

$qi~x!,qj* ~y!%5d~x2y!d i j , $qi~x!,qj~y!%50, ~26!

from the same Hamiltonian~17! we can derive completely
different coupled equations with fifth-degree nonlinearity.
for simplicity we assumer15r25t15t25r0, we can de-
rive these equations easily fromc3 as

iq1z1q1tt12~ uq1u21uq2u2!q123r0
2~ uq1u21uq2u2!2q1

22ir0@~ uq1u21uq2u2!q1t1~q1* q1t1q2* q2t!q1#50,

~27!

and similarly forq2 by interchanging the indices 1↔2 in Eq.
~27!. We notice that this system of coupled equations ag
with cubic-quintic nonlinearity is a new system which is d
ferent from Eq.~8! presented earlier. To analyze these eq
tions more closely we perform again a nonlinear varia
change asqa→Qa5qae2 ir0u with u t5N[uQ1u21uQ2u2.
After some lengthy but simple manipulations one can red
the system~27! further to a more compact form with onl
cubic nonlinearity:

iQaz1Qatt12~N2r0 j !Qa50, ~28!

where we have denotedj 5 j 11 j 2 , j a5 i (Qa* Qat2QaQat* ).
We immediately recognize that this is nothing but the vec
generalization of the Agliettiet al. equation@33#, however
with the addition of a cubic nonlinearity coming from th
Manakov model. Nevertheless the system~28! shows re-
markable property close to the chiral-soliton feature of@33#.
In particular assuming the one-soliton form asQa5Aas(t
2vz)ei [(v/2)t1vz] , one may conclude that here the quant
k511vr0 acts as the effective coupling constant of t
nonlinear term, which regulates the intensity of the solito
Therefore, for the soliton velocityv.21/r0 only ~with r0
.0) a bright solitary wave solution, as in the case of t
Manakov model, can exist. With decreasing velocity the
fective coupling constantk also decreases, which interes
ingly causes the intensity of the soliton to increase and
flects a possible nonintegrable property of the model. Fina
for the soliton velocityv521/r0 the nonlinear term to sus
tain the soliton disappears and hence no such soliton
appear anymore. However, for the negative velocity bel
this value,v,21/r0, the sign ofk flips and kinklike exact
dark solitons can appear. Forr0,0 the whole picture re-
verts. This amazing solitonic feature evidently is a gener
zation of the chiral soliton property of@33# due to the pres-
ence of the Manakov term, as well as the multicompon
nature, and may have important applications in nonlinear
tics. The suspected nonintegrable nature of this system
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consequently the original chiral-solitonic system@33# can be
convincingly proved by showing that the conserved qua
ties of the model are not in involution@in particular, using
the canonical bracket~26! it can be shown that$c2 ,c3%Þ0#.
Therefore, though this system possesses the Lax pair
infinite conserved quantities, their noninvolutiveness sp
the integrability. The involution of the conserved quantitie
however, is restored if we use the noncanonical bracket~25!
and this ensures the exact integrability of Eq.~9!.

VII. CONCLUSION

We have constructed the Lax pair of the proposed in
grable CNLS equation~9! with cubic-quintic nonlinearity
governing the soliton propagation in non-Kerr media, a
using it generated the infinite set of its conserved quanti
in the explicit form. We also presented the exact one a
two-soliton solutions of the model using those of the we
known Manakov model. It has been demonstrated thro
the explicit two-soliton solution of the proposed model th
the intensity of thet derivative of the soliton in the interac
tion region is much higher than that of the Manakov mod
Moreover, the localized part of the time derivative of t
Manakov soliton gets split and peaks around two values
shown in Figs. 2 and 3. However, such splitting can be s
pressed in the generalized cubic-quintic equation~9! having
nonzeror ’s andt ’s as has been demonstrated in Figs. 4 a
5. These figures also confirm that the shape-changing ine
s
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s
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tic soliton collisions, as in the Manakov case, persist in o
model. We believe that our results will be found equa
useful in more general situations like Eq.~5! by taking our
model as the unperturbed part and treating the remain
terms as perturbations.

We have also established the relationship between
proposed model and the Manakov model at the Lax p
level as well as at the field solution level, which shows
intriguing change in the canonical structure, namely
bosonic relations of the Manakov model transforms into
anyonic relations of the present system.

Another remarkable fact is that assuming the standard
nonical structure for our fields we are able to derive from
same Hamiltonian yet another coupled system with cub
quintic nonlinearity. This novel model, which turns out to b
nonintegrable, represents a vector generalization of
model of Aglietti et al., famous for exhibiting chiral-soliton
solutions. Such a chiral-soliton property also prevails in
present vector case showing fascinating properties of
solitons, like changing intensity with soliton velocity, van
ishing of bright solitons, and the appearance of dark solit
below a certain velocity, etc. Such properties may have
portant applications in nonlinear optical processes.
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