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Kink-antikink interactions in the double sine-Gordon equation
and the problem of resonance frequencies
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We studied the kink-antikink collision process for the “double sine-GorddB’'SG) equation in 31
dimensions at different values of the potential paramBte0. For small values oR we discuss the problem
of resonance frequencies. We give qualitative explanation of the frequency shift in comparison with the
frequency of the discrete level in the potential well of isolated kink. We show that in this region of the
parameteR the effective long-range interaction between kink and antikink takes place.
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[. INTRODUCTION and kinks can overcome the mutual attraction and go to in-
finity. This phenomenon was named “resonant energy trans-
The resonant energy exchange mechanism, which wker mechanism.”

shall consider in this paper, was originally observed in the Note that “higher-orders” escape windows were also
kink-antikink collisions for thex ¢5 theory. To examine such found. In these casésandK escape to infinity after three or
a process, one should consider an initial configuration in thenore collisions. For more detailed information about solitary
form of a kink (K) and antikink (?) placed atx=*xq (Xo wave interactions in the classical field theory, see Rzf.
>1) moving toward each other with some velocitigs It Let us now turn our attention to the system that we shall
was found that there is a critical value of the initial velocity investigate in the present paper. The double sine-Gordon
v,=0.2598, and av;>v,, inelastic KK scattering takes (DSG) equation can be obtained from the Lagrangian of the

place while atv;<v,, kinks and antikinks form a bound form
state. This bound state then decays into small oscillafibjs 1/ 04\2 1/06\?
Later on, when theKK collision process was studied EZE(E) —5(5 —V(¢) ()

more carefully, so-called escape windows were fol2Jdn
the range of the initial velocities;<v. Escape windows ith the potential
are merely some values of the initial velocity=v, at
which kinks escape to infinity after a second collision instead
of forming a bound state. This phenomenon was semiquan- V(¢)=— m( 77008¢—COSE)- 3
titatively explained in Ref.[2]. The point is that the
)\qs‘z‘-theory kink excitation spectrum has one zémansla- Parameter; may be assigned any arbitrary real values
tion) and one nonzer¢gshape mode with the frequencw, <yp<+). From Lagrangiar(2) we get for the real scalar
=/3/2. It was observed that the following condition is sat-field ¢(x,t) in (1+1) dimensions the following equation:
isfied with a reasonable accuracy:
> o PP 2 : ¢
w1 TyoV,) = 8+ 27, (1) ?— ﬁ+ —1+4| - (Znsmqs—smi) =0. (4)

whereT,;, is the time interval between the two collisions of |, the present work we shall consider the range0. In this
the kinks, n is an integer, and’ is some constant phase. c5se it is suitable to introduce parame®arelated withz by
During the firstKK collision, a part of their kinetic energy is the equality[4]
transferred to excitation of the kink discrete mods.

Therefore, kinks cannot escape to infinity and only go away

at some distance and collide again. If conditidn is satis-

fied, part of the energy that is conserved in the mades

returned back to the kink translation mo@lénetic energy  Equation(4) has a static topological solution in the form of a

41 kink (antikink) [4]:

1.
7= Z{smh2 R.
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10 T T T T - T kinetic energy is transferred while kinks passing through
T 100 s each other for the first time, i.eq, in Eq. (1), is smaller
[ A than the frequency of the localized DSG kink excitations at a
] givenR.

It is worth mentioning that the spectrum of the small os-
cillations about the 4 double sine-Gordon kink was also
investigated in detail in Refl5]. The authors of5] used
natural supersymmetry of the one-dimensional Sdimger
equation with the exactly known ground-state wave function.
w ] In [5], analytical expressions for the unnormalized eigen-

] functions of the descrete and continuum modes were also

ol—_
0080 0085 009 0095 0100 0105 0110 0115 presented.

Vi

Il. GENERAL APPROACH

FIG. 1. The timeT,, between the first twoKK  collisions . S
(dashed curyeand the timeT,; between their second and third Up to_ now, Investigating th_e resona_mt energy excha_nge
collisions (solid curve as functions of the initial velocity, for R~ Mechanism involved the localized excitations over an iso-

=0.5. Dimensionless units. lated kink (or antikink). As it will be shown, in some cases

of the KK scattering such an approximation is not valid. In
The sign “+” corresponds to the case of kink,~” corre-  these cases one should consider the spectrum of small exci-

sponds to the case of antikink, ands an integer. Equation tations for theK K system as a whole. For this purpose, let us
(5) can be rewritten in the form look for the solution of Eq(4) for the field ¢ in the form

bri)(X) =4 = [ dse(X+R)— dpseR—X)],  (5) d(X, 1) =27+ ¢ (X—Xo) + Pr(X+Xg) + 5p(X,1).
. . . Such a configuration corresponds to the kink and antikink
wherg d’SGK(X)._A'arCtan expg is the sine Gordor‘(SG) placed atx=*xq plus some small perturbatioA¢(x,t),
equation 2r soliton. From Eq(5a) the physical meaning of 0 _ i

_ ; . | 64| <1. Taking into account thapk and ¢ are solutions
the parameteR becomes clear: DSG kink can be interpreted f Eq. (4), we get forse the following linearized equation:
as a superposition of two SG solitons, separated by the dig' E9- %, 9 ¢ 9 q '

tance R. 2

The KK collision process at a variety of values of the Oy— Opxxt+ Op—
parametery and the initial velocityv; was studied in detall
in Ref.[4]. As for the\ ¢3-theory case, there is some critical
velocity v, below which kinks form a bound state decaying where
into small oscillations. Note that in the DSG case this critical
velocity is a function of the parameter (or R) [4]. Q(X,Xg) =
It was found that in the DSG system the resonant energy ’
exchange mechanism also takes place. As a consequence
there is a system of escape windows at some valueg. of The explicit form of the functiorQ(x,x,) is rather cumber-
Note that there is one important difference in kink collision some(see the Appendix but nevertheless we can make sev-
processes betweeng; and DSG models. In the first case eral general notes. Inhomogenei®y(x,xo) in Eq. (6) is a
kinks cannot pass through each other at a valuable distanceonsequence of the fact that the configuration ‘“kink
while in the second they can travel to infinity after passing+antikink” is not a solution of Eq.(4). The function
through each other. This difference is a consequence of th@(x,x,) characterizes overlapping of the kink and antikink,
different structure of the potentia(#). becausegdy(x—Xo) and ¢g(x+x,) are exact solutions of
In Ref. [4] different values of the parametBrwere stud-  Eq. (4) when taken separately. Obviousl@(x,x,) is an
ied. At R=1.2, a typical picture of escape windows was even function ofx and x, and it falls down exponentially
similar to the )\¢‘2‘—theory case. However, at small&, whenx, increases. At fixed, as a function ofx, Q(x,Xg)
namely atR=0.5, a new phenomenon was observed in thdooks like two bumps with maxima at= *x,.
KK collisions — so-called quasiresonances. The essence of Let us now find the excitation spectrum férp. For this
the phenomenon is in the following. At all velocitiag  purpose we take Eq6) with zero on the right-hand side and

<v, We get capture and formation of theK bound state, 00K for 8¢ in the form

but the time between the second and third collisibpgas a SH(x,t) =€ “y(x)
function of the initial velocityv; has a series of well-defined ' '
maxima; see Fig. 1. Such behaviorbf(v;) means that the Then for the functiony(x) we get the following differential
resonant energy exchange mechanism appears in the systefgyation of the Schinger type:

but at the same time the energy that returns to the translation

mode during the second collision is not enough for kinks to —x"+U(X,%X0) x= 0°x, (8)
escape to infinity after the second collision. Besides, it turned

out that the frequency of oscillations in which a part of thewhere

=Q(x,%),  (6)

=27+ b+ by

v v v

+—| = ()
¢ b=y ¢ b=dx 96 G=27+ P+ Py
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9V
U(x,X0)=—5 : @ T

=2+ b+ Py

T
"

100

The explicit form of the potentidl(x,X,) is rather compli-
cated(see the Appendjxand depends crucially ox,. Note
that the shape of this potential depends on the param@ter (
or ) andU(X,Xg)—1 whenx— *=o. Hence,w<1 forms
the discrete excitation spectrum, aad>1 forms the con-
tinuum one. In the limitxo>1, U(Xx,Xg) as a function ofx
looks like two identical potential wells, separated by the dis-

80

60

40

tance X,. Each well contains one or more discrete levels, 0040 0045 0050 0055 0060 0065 0070 0075
which correspond to the localized excitations of the solitary Yi

kink (antikink). In the collision process, DSG kinks pass _

through each other, i.ex, decreases to zero and then starts FIG. 2. The timeT,, between the first twokK collisions
to increase again. At smalt,, the distance between the (dashed curveand the timeT,; between their second and third
wells is small and the discrete levels are not independenEOH'S'OnS(SOI'd curve as functions of the initial velocity; for R

With kinks moving toward each other from infinity, the ley- — 0-4- Dimensionless units.

els begin to split and then af<1 the mutual potential of

the systemKK is quite different from that of the solitary
kink (antikink).

Notice that in Ref.[6] the analytical expression of the
bound state frequency of the kink-kink system is presente
for the entire range dR for large distances between kinks. In
the present paper, we study numerically the behavior of th
discrete levels corresponding to the kink-antikink system ex
citations in the range of smaR and for not too large dis-
tances between kinks and antikinks.

It is worth mentioning that taking into account both wells
is also necessary in cases when in each potential well there L Lo
a discrete level with small binding energy situated near théo,SS 9f energy due to rad_|at|_on is large. The situation ch.anges
continuum. In such cases one should take into account ove vith |_nc_reaS|ng_R. The binding energy of the_ﬂrst excn_ed
lapping of the wave functions in both wells evenxat>1. evel is increasing, and foR=1.2 the first excited level in

This means that under some conditions, long-range intera(jfhe we_II is already We”"OC"?‘”Z‘?d- For this reason the char-
tion between kinks and antikinks appears in the system acter size of the wave function is of the same order as that of

In what follows, we will show that within such an ap- the source. Hence the energy transfer mechanism is more
proach the phenomenon of quasiresonances observed in tﬁgectlve n th|s_case. .
DSG system aR=0.5 in Ref.[4] may be simply explained. From ana|y5|s_of the.quaswesonance peaks oflthev;)
We will also argue that the cause of the quasiresonances ROt for R=0.5 (Fig. 1), it follows that the frequency of the
just the resonant energy exchange mechanism, which leagéscrete mode being excited is approximately equakto

To answer the question of why at givéR quasireso-
nances or escape windows appeatr, it is required, generally
speaking, to solve E@6) for 5¢ with the right-hand side. At
g1e same time we can suggest some truelike hypothesis. Each

ump of the sourc&(x,X,) is localized on a size of order of

(see the Appendix In the case of smalR~0.4-0.6, the
first excited level in the well is not well-localizegbinding
energy is small Therefore, the integral of overlapping of
Q(X,Xg) and the wave function of the excited state is small.
It corresponds with the fact that the part of the kinetic energy
ligansferred to the discrete modsg is small, and hence the

to escape windows at some other valuesRofMoreover, =0.945. At the same time, in the well corresponding to one-
there is some intermediate region Bf where quasireso-
nances and escape windows appear together. 0l ' ' ' ' ' T
T
ll. SMALL R

160 .

In Ref.[4], quasiresonances were observeRat0.5. We
performed similar calculations and obtained an analogous 120 -
curveT,4(v;); see Fig. 1. Besides that, we have investigated

the KK collision process aR=0.4 andR=0.6. AtR=0.4
(Fig. 2) we get a picture of quasiresonance peaks analogou
to the caseR=0.5. At R=0.6 (Fig. 3 there seem to exist
escape windows in place of some peaks on the curve
Tos(v;). It confirms that quasiresonances and escape win-
dows are phenomena of the same nature, and with the pe ' v
rameterR increasing, some quasiresonance peaks transform

into the escape windows. At some intermediate valueR of G, 3. The timeT,, between the first twokK collisions
both phenomena are presented, and with further increasing @dashed curveand the timeT,; between their second and third
R only escape windows survive. R=1.2 in Ref.[4] a  collisions(solid curve as functions of the initial velocity; for R
perfect picture of escape windows and no quasiresonances0.6. Arrows denote probable positions of the escape windows.
was observed. Dimensionless units.
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at x= *20 moving towards each other with velocitiesy; ,
respectively. Moments of kink and antikink passing through
each other were fixed via field behavior at the origin0.

To find discrete levels in the potentiéd), we used the
fact that the wave function falls down exponentially at large
distances. We took the solution of the Sdfirger equation
in the form y~exp&y1—w?) at x=—50 and solved nu-
merically stationary equatio(8). As a result, we goj at x
=50 as a function ofv. Whenw does not correspond to the
discrete levely grows exponentially with at positivex’s,
but if @ coincides with a discrete level of the potential, then
x is exponentially suppressed at largen real computations
we observed thay(x=50) changed its sign whea passed
a discrete level. Note that this method, which is being ap-

FIG. 4. The excitation frequency as a function of the initial plied to the searching of a shallow level, does not yield a
half-distance betweeld andK. R=0.5. Dimensionless units. good result. In such a case one should take more distant
starting and ending points. The origin of the problem is in

kink excitations there is a discrete level with frequengy  the following: for a shallow levetv— 1, and exponents fall
=0.967. As it will be shown, this deviation is not incidental and grow very slowly with increasing
and may be easily interpreted within our approach.

At small R the system is close to the pure sine-Gordon
case. Therefore, the critical velociy, is small (v.,=0 cor-
responds to the pure sine-Gordon gased potential9) in This paper presents a qualitative and semiquantitative ex-
the Schrodinger equatiof®) has one discrete level situated planation of the phenomenon of quasiresonances in colli-
near the continuuntin the pure sine-Gordon case there is sions of kinks and antikinks of the double sine-Gordon equa-
only zero modg The presence of a shallow level implies tion at smallR. It is shown that the resonant energy exchange
that the corresponding wave function falls down slowly with mechanism being applied in its previous form does not give
the distance from the well. For this reason, while studyingsatisfactory results for frequencies.

the KK collision process it is necessary to take into account It was shown that the resonant energy exchange between
the fact that the wells affect each other even at large disthe kinks’ translation mode and the discrete excitations of the

tances. This leads to changes in the excitation spectrum. IKK system as a whole takes place. At snRilit is essential
Fig. 4 we show how the excitation frequency of thk&  because of the long-range interaction in the system caused by

system depends on the distance betwieand K (this dis- the presence of a shallow level in the discrete spectrum of

tance is equal to%). From the plot it is seen that even at excithations of an iSOIatﬁd kin{antikilnk). itatively th
xo>1, there is some visible splitting of the higher discrete 1 N€ Proposed mechanism explains qualitatively the de-

level. In the presence of the second well, this lewgl  Cr€ase Of the resonance frequemgyin Eq. (1) at smallRin
—0.967 splits into two sublevels: the higher with™ comparison with the discrete frequency of an isolated kink.
- . . l

>0.967 and the lower witho$®"<0.967. In the collision
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V. CONCLUSIONS

APPENDIX

IV. NUMERICAL CALCULATIONS In the equation

We solved the second-order partial differential equation

2 2
(4) numerically on the lattice wittAx=0.01. Initial condi- ﬁ_ M N

+—=0, Al
tions were taken in the form of kink and antikit®) situated e ax: 9 (A1)
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whereV(¢) has the form(3), let us substituteb=27+ ¢p« [7 andR are related byy=(1/4)sinlt R].
+ ¢+ 6¢. Taking into account thaty and ¢ are exact Let us use Q(x,xp)=0 in Eg. (A2) and substitute
solutions of Eq(Al) and linearizing with respect tb¢, we  5¢(X,t) = xy(x)expwt). Then we obtain
get
— 4 — .2
Pop PSP PV X"+ U(X,X0) x= 0%,
at? x> 9d®

0¢=Q(x,Xo), (A2)

27+ g+ i where

whereQ(X,X) is given by Eq.(7). If we substitute explicit )
expressions for kinks and antikinks situatedkat = x;, re-

U(X,Xg)=—
spectively, then we get (X,Xo) 2

=21+ P+ by

S,—S_ s_(1-5s%)
Q(X,Xg) = ( +4 . . . .
0= 154, (1+sﬁ)(1+32_) n (1+2)2 Insert here explicit expressions for kinks and antikinks. As a
result, we have
L[S | si1-s2)
X|1= s e 2 2
1+S§_ (1+S§—)2 U(XX ): L 1-st 1_S+—|— 487S+
1-2\2 T 144y 1462 1452 (1+82)(1+52)
o R H ’ (A3) 19 1-2
87 1+s? 1+¢°
where - +
sinh(x % X) 4s_s, i
g, =0 0 T 47| (Ad)
- coshR (1+s2)(1+s7%)
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