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We extend the quantal hypernetted-ch@@HNC) method, which has been proved to yield accurate results
for liquid metals, to treat gartially ionizedplasma. In a plasma, the electrons change from a quantum to a
classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact
able to provide the electron-electron correlation at an arbitrary temperature. As an illustrating example of this
approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV
at a fixed normal ion density 1.6310°%cm®. The electron-ion radial distribution functigRDF) in liquid Rb
has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a
characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a
plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average
ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive
the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides
a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of
differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that,
with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion
and ion-ion RDF’s, and the charge population that are consistent with the atomic structure of each ion for a
partially ionized plasmd.S1063-651X99)04809-9

PACS numbgs): 52.25.Kn, 05.30.Fk, 61.25.Mv

[. INTRODUCTION what extent it can reproduce the observed structure factors of
liquid metals for which many reliable experimental data ex-
In order to calculate thermodynamic functions, transportist. This is a liquid metal that can be taken as a special type
coefficients, and optical properties in a partially ionizedof partially ionized plasma. In this context, we have pro-
plasma, it is a fundamental problem to determine the averageosed a set of integral equations for radial distribution func-
ionization Z,, the equilibrium correlations among ions and tions (RDF'’s) in a liquid metal as a nucleus-electron mixture
electrons, the atomic structufieound levels in the ionsand  [1] on the basis of the density-function@F) theory in the
the charge populatiofionization balanceof differently ion-  QHNC approximation. Already, we have applied the QHNC
ized species, in a self-consistent way with each other in thesaethod to several simple liquid met48-12), and obtained
quantities. However, at the present stage there is no theorfheir structure factors in excellent agreement with experi-
which can produce these quantities inpartially ionized ments. In these calculations, we have demonstrated that the
plasma in a unified manner. It is the purpose of the presefHNC method can determine the “outer structur@ie ion-
paper to show that the quantal hypernetted-cH@RINC) ion and electron-ion RDF’s and the ionic chargg in a
equation 1] developed for a liquid metal can be extended toconsistent way with the “inner structure(the atomic struc-
calculate these quantities of a partially ionized plasma in dure of the iongusing the atomic numbet, of the system as
unified manner. the only input data. Therefore, the QHNC method is suited
Up to the present, in the calculation of thermodynamicfor treating a partially ionized plasma, where the ion-ion and
functions or optical properties in a partially ionized plasma,electron-ion interactions may vary over a wide range in con-
the ion sphereg(lS) model [2—7] is used as the standard junction with the internal structure of each ion according to
method. Although there are many kinds of variations in thethe change of state condition. In a similar spirit, PeffdS]
IS model, the essential point of this model is that the ion-ionhas proposed the neutral pseudoatdw®A) method based
correlation in a plasma is approximated by the step functioron the DF theory to calculate the effective ion-ion potential
6(r —a) with the Wigner-Seitz radius; an atom is consid- for a partially ionized plasma. Gonea et al. have success-
ered to be either confined within the ion-sphere or immersedully applied this theory to alkali liquid$14] and alkaline-
in the infinite jellium. It should be remarked that this model earth liquidg 15]. The NPA method can be derived from the
is only applicable for high-density and low-temperature sys-QHNC theory with additional use of the IS approximation
tems, that is, limited to a narrow range of densities and temf16] in the determination of the pseudopotential to construct
peratures for the plasma state. an effective ion-ion interaction. This model is called in our
To judge whether a theory treating a partially ionizedapproach the jellium-vacancy modél and is used to obtain
plasma is proper or not, we have an important criterion as t@n initial guess for the effective ion-ion interaction in the
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iteration to solve the QHNC equation for a liquid metal. At model, making extensions to treat a plasma. As an illustrat-
this point, it should be recognized that the NPA method isng example, the application of this formulation to a Rb
not appropriate for treating a high-temperature plasma witplasma is shown in Sec. lll, where the numerical technique
the weak ion-ion correlation, since this method is based oo solve the QHNC equation is explained. In Sec. IV, we set
the IS model; this fact will be discussed in the present papetip the Saha equation on the basis of the DF theory, and the
In the present paper, we extend the QHNC method app”charge populations are calculated for Rb plasmas at a fixed
cable to a plasma state, where the electrons change fromliguid-metal density for several temperatures. The last sec-
quantum fluid to a classical fluid gradually with increasingtion is devoted to discussion, where the limitation of the IS
temperature; this is in contrast with a liquid metal where the"0del is also examined, and prospects of applications based
electrons can be assumed to be perfectly in the Fermi degeﬁ-;ethe QHNC method are mentioned, such as calculations of

erate state at zero temperature because of the density bei atomic stru_ctur_e and transpor'; co_efﬁmenfcs in a plasma,
high. When the electrons in a plasma begin to behave d the determination of the effective interactions to be used

classical particles, it is difficult to calculate the free-electron!O" the molecular-dynamics simulation of a plasma as a clas-

density distribution under the external potential by solvingSICaI electron-ion mixture.
the wave equation. Therefore, FurukaWa7] used the
Thomas-Ferm{TF) approximation to evaluate the electron-  |I. SUMMARY OF A NUCLEUS-ELECTRON MODEL
electron RDF in the QHNC equation for a plasma. Also, Xu o ) ) ) )
and Hansen[18] applied the TF version of the QHNC Al|qg|d metal oraplasma |s_conS|dered as a_bmary mix-
method to a hydrogen plasma with a gradient correction tdure of ions and electrons; in this model, the ionic chatge
the TF kinetic energy of the electrons. In the full use of the@nd the electron-ion interaction are unknown except for a
wave equation to calculate the free-electron density distribuPerfectly ionized plasmgl 9,20, even if the ion-ion interac-
tion, we demonstrate that the QHNC method can treat a pafion IS taken as a pure Coulombic. In the case of a plasma, it
tially ionized plasma by taking liquid rubidium as an illus- S rather a fundamental problem to (_Jletermlne Fhe ionization
trating example; this exhibits what changes are found when & - Theé most fundamental model is to consider a liquid
liquid metal turns to a plasma state with increasing tempera_meta| as composed of nuclei and ele_ctrons._ In this model, _aII
ture at a fixed ion density. In a liquid metal, there is a cleafNPut data are known beforehand if provided the atomic
distinction between the inner-core and outer-core structuredUmberZ, of a liquid metal; this first-principles approach
in the electron-ion RDF, which allows one to construct anénables us to treat a plasma in a wide range of temperatures
electron-ion pseudopotential in a liquid metal. When a liquid@nd densities. Therefore, let us think of a plasma as a
metal changes into a plasma state, this distinction disappeafducleus-electron mixtur¢1] consisting ofN, nuclei and
and we cannot set up a pseudopotential in the same mannésN; €lectrons. Here, we single out one nucleus and fix it at
as is performed in the usual liquid-metal theory. the origin. Then, the fixed nuclgus at the origin in th_e mix-
In principle, the DF theory generates the exact densit)}ure causes t'he external potentials for ele(_:trons and ions, .and
distributions of electrons and ions in a plasma. Note that iiduces an inhomogeneous system, which can be equiva-
can yield only the average-ion structure in a partially ionizedently translated into a simpler system: a fixed nucleus with
plasma. In a real plasma, there are many differently ionizedhe atomic numbez , is surrounded by electrons and ions, of
ions around the average ion. The fundamental theory of ionwhich structurep,(r) is undetermined at first. This unknown
ization in a plasma is provided by the Saha equation. Howion structurepy(r) is determined by the condition that the
ever, the usual Saha equation can be applied only to a lowgentral ion Withng(r) formed at the origin must be the same
density equilibrium plasma, where the interactions amondgo any surrounding ion with the assumed structgggr)
particles are negligible. Although there are many modifica-around it:
tions of the Saha equation for applicability to dense plasmas
by introducing the continuum lowering, any modified theory pp(r)=n2(r). (2.1
cannot treat a dense plasma at low temperatures. In the

present paper, on the basis of the DF theory we derive th‘la'his leads to a self-consistent condition to determine the ion

Saha equation, which provides the charge population of dlf'structurepb(r); the central ion structura®(r) is iteratively

ferently ionized ions in a dense plasma in the region from d as the | hich determi . t effecti
low to high temperatures; this charge population yields arf/sed as the inputi,(r), which determines the next effective
otential based on the DF theory to evaluate a m%(\r)

average ionization consistent with an average ion in th i )
plasma determined in the DF theory. The bound levels ang?1l- From this relation Eq(2.1), the bound-electron number

the chemical potential contained in the Saha equation arés Of €achionin a plasma can be evaluated from the bound-
supplied by the QHNC equation for the ion-ion and electron-electron density distributiom(r) by Zg=Jqn(r)dr, that

ion RDF’s in the plasma. In this way, the QHNC method is!S Written as

shown to generate the electron-ion and ion-ion RDF’s, the

average ionizatiorz,, and the charge population of differ- M gi
ently ionized species to be consistent with the atomic struc- ZBEZ 0 : (2.2
ture (bound levelsof each ion in a unified fashion, as will be i=1 exgd B(e—pe)]+1

shown by the example of a rubidium plasma.

The paper is organized as follows. In Sec. Il, we present for the ion withM bound stateg; with the degeneracy; ,
summary of the QHNC method along with the one-and the ionic charge is obtained By=Z,—Zg. Also, the
component QHNC equation for an electron gas in the jelliumchemical potential? involved in Eq.(2.2) is determined by
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Here,n‘0 denotes the number density of electrons or ians ( 05 ' 5
=e or |). In addition, the bare ion-electron interaction is Q@™
obtained from the self-consistent potential based on the DF
theory Wlth use Of some approx|mat|0[@] FIG. 1. lon-ion structure faCtOS”(Q) for |IqUId Rb at a tem-

perature of 313 K; the QHNC method yields a structure fa¢ftdr

Z, c by i e s curve in excellent agreement with experimeritgen[26] and full
Vei(r)=— T*’f Ve [r=r')ng(r")dr circles[27]).
+,uxc[n2(r)+ ngl— mxc(ng), (2.9 HNC approximation[23]). (3) An approximatev(r) is

taken to be Eq.(2.4), where we adopt the Gunnarsson-

where u xc(ng) is the exchange-correlation potential in the Lundqvist formula[24] for the exchange-correlation poten-
local-density approximation. tial uxc(nd). (4) v, (r) is taken as a pure Coulombige?/r.

Thus, with use of the average ionizati@n and the bare (5) For liquid metals where the electrons can be assumed to
ion-electron interactiorve(r), a plasma can be now mod- be at zero temperature, the electron-electron DCF is approxi-
eled as a mixture of electrons and ions interacting througlnated byC.(Q)= — BveoQ)[1— G*"(Q)] in terms of the
pair potentials/;; (r)[i,j=e or1]. Applying the DF theory to  the local-field correction(LFC) G*®'(Q) of the jellium
this electron-ion mixture model, the ion-ion and electron-ionmodel; we have used the LFC proposed by Geldart and
RDF’s g; (r) are exactly expressed in terms of direct corre-Vosko[25] in our many applications to liquid metals.
lation functions(DCF’s) C;;(r) and bridge functions;(r) Under these approximations, a set of integral equations
[1]. Moreover, it is shown from these expressionsdg(r) can be solved to determine the electron-ion and ion-ion cor-
that the electron-ion mixture can be described as a oneelations in a liquid metal together with the ionization and
component fluid interacting only via pairwise interaction electron bound states. Figure 1 is an applied example of this
Ver(), if the bridge functionB,,(r) is taken to be the one- procedure to liquid metals: the structure factors of liquid

component bridge function. rubidium at temperature 313 K and density 2Q87%cm®.
The full curve is the QHNC result, which exhibits an excel-
C(r)=exd — Bvex(r) + y(r)+ By (r)]—1—y(r) lent agreement with experiments denoted by open circles

(neutron scattering26]) and full circles(x-ray [27]). From
this example, we can expect the QHNC method to yield good
results for partially ionized plasmas. However, when we ap-
ply the QHNC method to a plasma, there occur the following
problems; the LFC involved in the electron-electron DCF
A _ of B . e 1 A must be evaluated at arbitrary temperature in dealing with a
BCei(r)=ne (r|Ve=Tei/B=Bei/B)/ng =1~ Blei(r), plasma. Although the LFC at the absolute zero temperature
(2.6 ; ) .
has been calculated by many investigators and applied to

since the effective interionic interactiong(r) is given by ~ many kinds of liquid metals, there is no standard way to
calculate the LFC at finite temperature. For this purpose, we

with an interactionveg(r), and the other is an equation for
Vei(r), which is expressed in the form of an integral equa-
tion for the electron-ion DCEE(r):

|Ce|(Q)|2n8X% adopt the one-component QHNC equat|@8] for an elec-
BVer( Q)= BV, (Q)— . - (2.7 tron gas in the uniform positive background to obtain the
1-nCedQ)Xq electron-electron DCF at arbitrary temperature, which is

e ) ) . written for an integral equation for the electron-density dis-
Here, y(r)=J/C(|r=r"[)ng[g; (r")—1]dr’, andB denotes  gipution n.(r|e) around the fixed electron in an electron gas,

an operator defined by
Ne(r]€)=ng(r|Uem) =if(€)|i(r)|? (2.9

]:Q[I:’J“f(f)]E(XOQ)an[f(f)]:(XOQ)af exiQ-rIf(ndr, i
2.9

for an arbitrary real numbew, and represents a quantum BUeﬁ(r)EBVee(r)_f Ced|r—r")[ne(r'|e)—ngldr’.
effect of the electrons through the density response function (2.10
X% of the noninteracting electron gas. We can obtain a set of

closed integral equatioriseferred to as the QHNC equation Here,f(¢) is the Fermi distribution function and the DCF for
from Eqgs.(2.5—(2.7) by introducing the following approxi- a one-component system is defined by

mations[1]. (1) Bg;=0 (the HNC approximation (2) The

bridge functionB,, of the ion-electron mixture is approxi- nSCee(Q)Ellxg—l/Xgez —BVed Q)[1-G(Q)].

mated by that of one-component hard-sphere flmddified (2.11
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FIG. 2. The electron-ion and ion-ion RDF’s with the effective r/a

interactions in liquid Rb at 313 K. The solid curves denote the
RDF's, the total electron-density distribution, and the effective ion-  FIG. 3. Electron-electron correlations in an electron gas at the
ion interaction calculated by using the QHN& Q). The dashed density ofrg=4 for temperatures ranging from 0.05 to 30 eV with
curve designates the effective ion-ion potential based on th&=kgT/E indicating the electron degeneracy. The solid curves are
Geldart-VoskoG(Q), which yields the ion-ion RDF plotted by the calculated by the one-component QHNC equation, while the full
open circles®, the electron-ion RDF derived by using an Ashcroft circles denote the result from the TF approximation for each tem-
potential. perature. The classical HNC equation for the OCP corresponding to
a temperature of 30 eV provides the electron-electron correlation
The Fourier transform of the density distribution yields theplotted by the dashed cur¢®CP), which is indistinguishable from
following bootstrap relation to determine the D@R(Q)  the TF result at a temperature of 30 eV.

with combined use of Eq$2.9) and (2.10:
[31]. To show the applicability of the QHNC method to a

Folne(rle) —n§l=x&7xq—1=111-n§Ced Q) xQ1 -1, plasma state, therefore, here we take, as an example, liquid
(2.12  rubidium changing its temperature from 313 K to 3.5
o _ _ ~ X10°K (30 eV) at fixed ion densityri=5.388. Here,r,
which is derived from a certain ansg@8]. At this point, it genotes the Wigner-Seitz radias=r.ag in units of the Bohr
should be noted that the QHNC equati@m) reduces to the radiusag .
well-known HNC equation for a classical electron gas in the |, e application of the QHNC equation to a plasma, we
high-temperature limit, because of the relatiofg=1, X&*  must calculate the electron-density distributiof(r|U )
=Sed Q). andng(r|Ue) =ng exrd —BUe(r)] in the classi-  ynder the external potentiblyg(r) to getge(r) andne(r|e)
cal limit. As a result, approximatiofb) can be replaced by py solving the wave equation generally. However, it is diffi-
the one-component QHNC equati¢B.9) for the electron cyit to determine this density distribution from the wave
gas; with use of other approximatioB)—(4), this replace-  equation at high temperatures, where it becomes nearly the
ment makes Eq92.9—(2.7) a closed set of equations for @ ¢jassical Boltzmann factor:nO(r|Uer) =3 (€;)] (1) |2
p:as:na [ncludlgg[ha. I'qg'd Qg}:"’}l afsl_a 'Zplgglalt 3Cf’§?< Th%nSeXQ—BUeﬁ]. In the calculation of the free-electron den-
electron-ion and the ion-ion S O1 IquIC 13D & - A€ ity distribution, n%'(r|U ) =2/ f(ep)| (1) 2dpl(27) 2,
plotted in Fig. 2 along with the effective ion-ion interactions - P .
. ) at finite temperature, the electron kinetic enekgyis not
calculated using both the QHNC and Geldart-Vosk); L . . ;
. ! . : . limited within the Fermi energ¥g, as is the case at zero
the resulting two effective potentials differ with each other, - . D
temperature. In addition, since the electron-density distribu-

but yield almost the same ion-ion RDF’s as shown by the fu”tion ng(rIUeﬁ) begins to approach the Boltzmann factor

curve and open circles. In Fig. 2 the electron-ion RDF ob-

tained from the QHNC method has an inner-core Structurefrom the large distance as the temperature increases, we must

which is caused by the orthogonality of the free-electron toéalculate the wave funct|ons_ with large angula_r mo_mgnltu.m
o correctly obtain the classical electron-density distribution

the bound-electron wave functions. On the other hand, if the | dist t hiah t i W : ¢

should be noticed that the usual liquid-metal theory based Ot . S.ﬁ"’.‘rgﬁ Ibs ance ath IgTF empera un?. f Ct?]n C||rcutmven

the Ashcroft pseudopotentidl?9] yields an electron-ion IS citticulty by using the 1 approximation fo the electron-
density distribution for >r; the distance . can be chosen

RDF, which has no inner-core structutshown by full i
circles. The Ashcroft pseudopotential is constructed by ne-&ccording to the temperature so thaf}(r|Uer) calculated

glect of this inner-core structure; this cutoff of the inner-corelToM the wave equation becomes almost equal to the TF
structure brings about a simple treatment of liquid metals if€Sult forr=>r.. This situation can be seen in the following

the standard liquid-metal theory. calculation. S ,
The electron-density distribution around a fixed electron

is calculated for a partially degenerate electron plasma at the

density 2.5K10%/cn?, that is, r¢=4 in terms of reag

= (3/4mn§) Y defined for the electron density ; the results
Already, we have calculated the electronic and ioniccalculated for temperatures from 0.05 eV to 30 eV are shown

structures of liquid rubidium in a wide range of temperaturesn Fig. 3. The electron degeneracy is denoted By

and densities: compressed staf86] and expanded states =kgT/Eg, i.e., the temperature over the Fermi energy. For

IlI. NUMERICAL CALCULATION APPLIED
TO RUBIDIUM PLASMA
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1.5 T y - " ' identical with the problem to determine the electron-density
fo= distribution around a fixed nucleus at the center of the
T=0 eV . . . . . .
spherical vacancy in the jellium background. This model is
- essentially the same as thecERNO model[5,7] (or the ion-
% ______________ sphere modelintroduced by Liberman and also to the neu-
sl T tral pseudoatom mod¢lL3] proposed by Perrot. By solving

these integral equations, we can obtain the electron-ion DCF,
and ion-ion effective interactiof®2.7) with the combined use
. , , , of the electron-electron DCF determined by the one-
0 2 QQ 4 6 component QHNC equatiof2.9). As a consequence, we can

F obtain initial input data for the fully self-consistent QHNC

FIG. 4. The LFC's at temperatures from 0 to 30 eV determined®duations(2.5—(2.7). After that, this set of integral equa-
by the one-component QHNC equation. The LFC calculated by th&ions in conjunction with Eqs(2.9) and (2.10 is solved it-
classical HNC for the OCP witi,=0.227 is displayed by the €ratively by varying the bound-electron numbetg
dashed curve, which indicates that this can be used to approximate [ o pp(r)dr until self-consistent condition(2.1), ng(r)
the QHNC LFC at this temperature. =pp(r), is fulfilled.

In the iteration to solve the QHNC equation, we must
high degeneracy0.05 eV}, the TF approximatioridenoted evaluate also the free-electron density distribution around the
by full circles) gives quite a different density distribution nucleus at arbitrary temperature. It has been the standard
from the one calculated by the wave equation. When thenethod [32,33,2,4,7,1V for the calculation of this free-
temperature is increased to 10 eV, the TF result becomeslectron density distribution to use the TF approximation in
almost the same to that obtained by the wave equation exceptich a way:
near the origin. When the temperature approaches 30 eV, the
electron-electron correlation reduces to the classical one; the
classical HNC equation for the one-component plasma Ne (r|U)~2f 2

p“/2m+U(r)>0
(OCP with the electron plasma parametEg=0.277 (30

30 eV (I=0.227)

eV) provides an indistinguishable result from the TF calcu- x{exd — B(p%2m+U(r)—pug)]+1}
lation as is shown in Fig. 3 by the dashed curve. Here, the

electron plasma parameter is defined Ihy=Be?/rqag. In « dp

the calculation ofi,(r|e), we can obtain at the same time the (27h)3

electron-electron DCF, which determines the LEIQ) T

from the relationBC.« Q)= —Vv.«Q)[1—G(Q)]; the cal- =n¢ (r|V). 3.2

culatedG(Q) atrs=4 is shown in Fig. 4 for each tempera- ) . ] ) o o
ture corresponding to Fig. 3. This figure indicates that thdn this expression, the integration pfis limited within the
LFC at high temperature can be approximated by that calcudomainp®/2m+U(r)>0 to define the free-electron part of
lated from the classical HNC for the OCP, as is shown by théhe usual TF formulan™(r|U), which involves both the
case of 30 eV §=9.62), where the LFC of the classical bound- and free-electron density distributions. In Fig. 5, the
OCP is denoted by the dashed curve. In this way, by mearf@lectron-ion RDF’s at temperatures of 3.50' K and 3.5
of the QHNC equation for an electron gas we can obtain the< 10° K calculated by the QHNC method are shown in com-
electron-electron DCF, which determines the plasma propeiarison with the results from TF approximatid.2). It
ties in terms of the QHNGS(Q). should be noticed that the TF formula for free-electron den-
Using now the QHNC-LFGG(Q) instead of a Geldart- Sity distribution(3.2) is not a good approximation except for
Vosko [25] type G(Q), we apply Egs.(2.5 and (2.6) to large distances even at a high temperature of 3.5
rubidium at the fixed density of the normal liquid metal; the X 10° K (6=5.21), while there the totalfree and bouny
temperature has been varied from(®13 K) to 30 eV in density distribution can be fairly well described by the TF
order to investigate how a liquid metal becomes a p|asmafprmula. Noting this fact, we can evaluate the free-electron
For the purpose of obtaining initial data of the ion-core struc-density distribution functiomg'(r|U) for large distances
ture and the electron-ion correlation for the fully self- >r. by the value 01'nTF(r|U)—n2b(r|U) using the TF den-
consistent QHNC method, we take the jellium-vacancysity distribution n™ (r|U) and the bound-electron density
model as a first step. In this model the following two ap- distribution ngb(r|U) obtained by the wave equation; in the
proximations are introduced in the expression for thecase 3.% 10° K, the cut distance, can be chosen to be @9

electron-ion interaction: as shown by the arrow in Fig. 5. In this way, we can deter-
mine the electron-ion RDF, i.engf(r|U), by solving the
ueffir)= _ fc eyl "N —11dr’. wave equation only for _small angular momentumit is
BUei(N)=Bvelr) 2| el(lr=r"Dnglgy (r) = 1]dr enough to take the maximum angular momentiyg= 15

(3.1 even for the high temperature region.
The electron-ion RDF’s at temperatures of 1 eV and 3 eV
(1) The ion-ion RDF involved above is approximated by theare plotted in Fig. 6 along with the ion-ion RDF’s and the
step function, g, (r)=6(r—a), and (2) the electron-ion effective ion-ion interactions. As is shown in Fig. 2, the
DCF, by a pure Coulomb force, (r)=—Bvg,(r). Then, electron-ion RDF at a temperature of 313 K has distinct
the problem to determine the electron-ion RDF becomesnner-core and outer-core parts. Even at a temperature of 1
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T=35x10°K  Z=1.21 |
Wave 0=1.53
T TF (free and bound)

TF (free)

gel(r)

Wave (free)

gel(r)

T=35x10°K Z=6.08

0=T/Tp=5.21

0 r/a

gel(r)

FIG. 7. The temperature dependence of the electron-ion RDF
for a range from 0 to 30 eV. The inner-core structure near 0.12
reflects the variation of the bound-electron wave functions in an ion
due to the orthogonality between the free- and bound-electron wave

. functions.
FIG. 5. The electron-ion RDF'’s calculated from the wave equa-

tion and the TF approximation at temperatures of318* K (3 ) o
eV) and 3.5¢1C° K (30 eV). The solid curves denote the results disappears and that the ionization, now 1.21, has become
from the wave equation and the dashed curves, from the TF agsignificant. Because of the disappearance of this distinction
proximation. The TF approximation cannot give a good descriptiono€tween the the inner- and outer-core structures, it is difficult
of the free-electron density distributiam{(r|I)=ngg.(r) in the  to construct a pseudopotenital in a plasma state. This makes
core region even at a high temperaty8® eV), where the total a contrast with a liquid-metal state, where a pseudopotential
(bound and fre electron-density distribution is fairly well de- such as the Ashcroft potential can be used to set up an ef-
scribed by the TF approximation. The electron-ion RDF can befective interaction between ions in a liquid metal.
approximated by the TF formula for larger distances than the point The temperature variation of the electron-ion RDF is
(0.9 denoted by the arrow. shown in Fig. 7 for a range from 0 eV to 30 eV. The

electron-ion correlation becomes stronger for temperatures
eV as shown in Fig. 6, this clear distinction remains as charup to 10 eV, and turns to become weaker from 10 eV to 30
acteristic for a liquid metal; the ionization is practically unity eV; the distinction between the inner- and outer-core parts
and the ion-ion effective interaction is almost the same strucnear the point 04 is gradually disappearing with increasing
ture as that of liquid metal at the normal condition, althoughtemperature. On the other hand, the ion-ion RDF'’s are shown
the ion-ion correlation becomes weak because of the smaih Fig. 8 for increasing temperatures from 0 643 K) to 30
plasma parameteF=Z"I',. Therefore, we can consider eV. Also, the effective ion-ion interactions generating the
that rubidium remains as a liquid-metal state even at 1.1&RDF'’s in Fig. 8 are plotted in Fig. 9, where the open circles
X 10* K (1 eV). Figure 6 shows that at a temperature of 3 eVdenote the screened Debye potential expD)Z’elr at a
the distinction between inner- and outer-core parts nea 0.4temperature of 30 eVI{,=0.277) WithDeE(47e2ﬁng)1/2_

We can see that the ion-ion effective potential approach the

r/a

3 T 711 PPNV screened Debye potential as the electron plasma parameter
=1 eV (1.16x10°K) . . .
H - I'e becomes small with increasing temperature. The HNC
Al = equation for a one-component fluid with the screened Debye
. r=5.05 potential at a temperature of 30 eV provides the RIJK(r)
N v b . . .
B 0=0.578 . in fair agreement with the result from the QHNC method for
i aulr) i =
0 : : : : E
lgan | T=3 eV @4sx10°x) |
Z=1.21
2h 11
| v,,e"(r) =247 |
0=153 z
1H 0 >
gilr)
O 1 1 1 1
0 2 4
FIG. 6. The electron-ion and ion-ion RDF’s together with the r/a2 !

effective ion-ion interaction at temperatures of 1 eV and 3 eV. The

electron-ion RDF at 1 eV has an inner-core structure similar to the FIG. 8. The temperature dependence of the ion-ion RDF for a
RDF of a liquid state at the normal conditidof. Fig. 2, and this  range from 0 eM313 K) to 30 eV. The ion-ion RDF becomes small
inner-core structure neafa= 0.4 disappears at 3 eV with a signifi- at 1 eV; nevertheless, rubidium remains as a liquid state &jth
cant ionizationZ,=1.21. =1.
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IV. THE SAHA EQUATION
IN THE DENSITY-FUNCTIONAL THEORY

(mRy)

The DF theory provides the exact electron-density distri-
_ butionng(r|U) in the nonuniform electron system caused by
an external potentidll(r); however, it is important to notice
E that this exact density distributiam(r|U) at finite tempera-
ture is only an average density distribution. Consider a
nucleus with the atomic numbé&, fixed in an electron gas.
The effective external potentidl 4(r) based on the DF
theory gives the bound-electron density distributia{r),
0 2 4 6 which defines an average ion with t&@g bound electrons:
ZB=fn2(r)dr. In the realistic system, the ion should have
FIG. 9. The temperature dependence of the effective ion-iorsome integer number of bound electrons with fluctuations in
interaction for a range from 0 e¥813 K) to 30 eV. The effective time; the numberZg given by the DF theory is only an
potential at a temperature of 30 eV approaches the screened Debgeerage value of this bound-electron number over time. The
potential denoted by the open circles. similar situation is found in the ion structure in a nucleus-
electron mixture. Here, we investigate the charge population
the electron-nucleus mixture; for example, the structure facof differently ionized species in a plasma on the basis of the
tor at zero wave number becom&(0)=0.18 from the ~DF theory. _
screened Debye potential, which should be compared with AS iS discussed in Sec. Il, the average bound-electron
the QHNC resultS, (0)=0.16. This fact suggests that in the numberZg is defined by Eq(2.2) in the nuclgus—electron
high temperature region whei®,(0) becomes large, the model based on the DF theory, and the chemical potenfal
ion-sphere modelthe jellium-vacancy modglcan be im- is determined by Eq(2.3. This average bound-electron
proved by using the approximatiay, (r)~g5>(r) instead of numberZg in an ion in a plasma can be represented by
the step function. "
Figure 10 shows the temperature variation of the outer- _ of
bound levels of an average ion in Rb plasma at the fixed ion ZB:)‘KI” EB:; exd Ble—u0]+1’
density of normal liquid metal. Thes4 and 4p-bound levels i He
are plotted there corresponding to the free atom, 0, 1, 3, 5f introd h th d it fUNCtioR
10, 22, and 30 eV, respectively. As the temperature in W,\,? introduce eregi € grand partiion functiong
creases, the bound levels become deeper due to the decreazsg_i:l[lﬂ‘ exp(=pe) % for th(’_} ion with bound electrons,
of the bound-electron number, which makes the screeninﬁh":h haveM bound levelse; with the degeneracy; , and
effect weak. At temperatures of 22 and 30 eV, new bound = exp(Bue). Alternatively, the grand partition functiofi
levels, 5 and 4d, appear. The occupation numbigle;) at ~ ¢an be expanded in a polynomial bf
the levele; is written at each level line in Fig. 10. The ion-

vi'(r)

4.9

ization variationZ, is shown in the top of Fig. 10 as the — M 0 S 0
temperature is increased. EB=iHl [1+Xexp—Be)] '=QE:0 AN v
OZ|= 0 1.00 1.00 1.21 1.96 3.71 5.08 6.08 with GEE{"'Zlgi . In this expression, the canonical partition
s sow function Z, of the ion with theQ bound electrons is defined
> 096 pgy 4 by
m 4
é 0.10
w2 zQEEI‘, Q(ER)exd — BER] 4.3
g 1eV g0y
2 [ freeatom Sev M g
= 10e s Q
o] = ——  |exd — BE
2 =ng=Q (Sl_ll ns!(gs_ ns)!) n: A {ns}]
(4.9
30eV ] "
= C, exp(— Besny) ], 4,
FIG. 10. The temperature variation of outer bound levels, (4 EEQ 51:[1 [9,Cn exP = Beans)] 4.5

4p, 4d, and %) in the Rb ion in a plasma for a range from 0 eV to

30 eV at a fixed density of's=5.388. The bound I_evc_els become with the total energ)EPEEi'\llesnsz E{Qns} (ns=0 or 1) for
shallow when free atoms are compressed to be a liquid €a¥), 0

and turn to become deeper as the temperature is increased with e Q lbound elegtrons. Her€,(E) represents the number
fixed ion density. Numbers attached to bound levels denote th€f basic states with the ener@f® for the Q bound electrons
occupation number§(e;), and the ionizatiorz, for each tempera- in the ion. Furthermore, the grand partition functigh is
ture is written in the top of this figure. written aSEB=EiG:lUQ using the functiorlJ defined by
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M
UQ_eﬁMeQZQ_EnE H {g C, eXF[B(Me fs)ns]}
° (4.6)

From Egs.(4.2) and (4.6), we obtain the average bound-
electron numbeZg in another form:

d G
Zg=A gy INEe= 2 Q 0-@, @7

il |
@

which means that the probability for the bound-electron

number of the ion to b& is given byUq/Epg

From another point of view, let us count the number of

ions with theQ bound electrons in a plasma, which is de-
noted byNg; this satisfies the reIatioESZON(:,:NI since
the total ion number in the systemNg . In terms ofNg, the
average bound-electron numkgs is determined by another
way:

4.9

2 Q

_Q
N,
The above two expressions of Edg.8) and (4.7) for the

probability that the ion in a plasma h&¥ bound electrons
give rise to the relatiolNg/N;=Uq/Eg, that is,

No

N,
Uq

= (4.9
~B
Since the right-side of this equation is independen®pfve
obtain the expressioNg/Ug=Ng_;/Uqg_;, which can be
rewritten in the form

No/Ng-1=Ug/Uq_1=exd BullZo/Zg- 1. (4.10

If we introduce the canonical partition functloﬂQ
=exf BEJIZ, using excitation energieE{—E§ measured
from the ground statEQ of the ion with theQ bound elec-
trons, Eq.(4.10 is rewritten as

—equmeHQ)] (4.1

NQ 2o,

with the ionization energyl o=Eg§ '—Eg in the ground
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z T zear F
121 3eV 35.79
1.96 5eV. 35.04
3.71 10 eV 33.29
5.08 22 eV, 31.92
5 30.92

"2[6.08 30 eV,

40

35

2‘5 30

Q

FIG. 11. The dependence of the charge populaf¢®) on the
temperature varying from 3 eV to 30 eV for Rb plasnia € 37) at
a fixed ion density of 1.0810°%cm® (ri=5.388). This charge
population provides the average bound-electron nurdhesf ion,
as denoted in this figure for each temperature along with the ion-
izationZ|=Z,—Zg.

!

o)
No-1Ng

s =ex r(BIQ) (4.13

le

to determine the ion densitya=Ng/V in the volumeV. At

this point, note that fundamental relati¢h.9) to derive the
Saha equation is nothing but an ansatz introduced by Bar-
Shalomet al.[35].

It should be recognized here that the solution of the Saha
equation, Eq(4.11) or Eq.(4.13), is obtained by determining
the partition funct|0nUQ of a plasma with aids of relation
(4.9, that is,ng=npUq/Eg. For this calculation, we can
use the following recursive formulé85,36| for the partition
function Ug of the ion with theQ bound electrons:

Uo=1, (4.14
Q
Ug=2 xnUg-n/Q, (4.19

where y, = — =t 1g;(—X))" with X;=exd — B(¢— )]

An applied example of our formula to evaluate the ion
populationP(Q) is shown in the case of Rb plasmas. In the
nucleus-electron model based on the DF theory, the bound
levelse; of the ion in a plasma is determined by solving the

state. This is the Saha equation, which is applicable to avave equation for the self-consistent potential given by
plasma where the electrons may be degenerate at any degre@ff(r) (3.1), and the chemical potentialg of electrons is
and the ions and the electrons in a plasma may interagivaluated by conditiof2.3); the temperature variation of the
strongly with each other at high densities. When the tembound levels of Rb plasma was shown in Fig. 10 for a range
perature of a plasma becomes so high that the electrons bem 0 eV to 30 eV. Using these values, we can obtdis

have as classical particles, the electron chemical potential
determined by the classical relation:

e

no)\3/2— —exp[,BMe] (4.12

with the canonical partition functiod,= 2 (27m/h?B)>? of
a noninteracting electron gas and the thermal wavelexngth
As a result from the above equation, E4.11) is reduced to
the usual expression for the Saha equaf®fi:

Bom the recursive relations, Eqet.14 and (4.15. In this
way, the charge populatioR(Q)=Uq/E g is evaluated for
Rb plasma with the atomic numbgpg =37 varying the tem-
perature from 3 eV to 30 eV at fixed ion density 1.03
X 1074 cm® (ri=5.388), as was studied in Sec. Ill for the
evaluation of the electron-ion and ion-ion RDF’s. Figure 11
displays the charge populatid®(Q) in Rb plasmas for this
temperature variation; the bound-electron numbBgrfrom

Eq. (4.8 is coincident with the values obtained previously by
Eq. (2.2 for each temperature, as a matter of course. At a
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sufficiently low temperature such as 1 eV, the charge popu5.08, and 6.08, respectively. We can see that significant dif-
lation reduces t®(Q) = dq 36 for Rb plasmas at liquid-metal ferences are manifested between the IS and QHNC results, as
density. the temperature increases. The reason for these differences
can be ascribed to the fact that the IS model produces a
V. CONCLUSIVE DISCUSSION screening effect from the ions contained in E§.2) in the
We have demonstrated that the QHNC method, which hagtpr g:]ogmfrg ?fdplg)stnné[;t hisélrs(i)e]gpztgraxrézhv?rgr%rg)e Sb;?o
been successfully applied to many kinds of liquid metals, can !

be extended to treat a partially ionized plasma, taking ruOmes large. As a consequence, the neutral pseudoatom

bidium as an illustrating example. In the application of themOdel[l:{| based on the IS model is, also, not appropriate to

QHNC method to a plasma, it is necessary to use the LFEONStruct an effective ion-ion interaction at a high-
G(Q) at arbitrary temperature, which is determined by thetempera_ture plasma. As_ dlscus_sed_ln Sec. lll, the IS model
one-component QHNC equation for an electron gas in th&an be improved by using the ion-ion RDF from the HNC
jellium; the QHNC G(Q) reduces to the LFC obtained by €guation _for a s_creen_ed De_bye potential instead of the step
the classical HNC for the OCP at high temperatures as i§inction, in dealing with a high-temperature plasma.
shown in Fig. 4. In the numerical calculation in the QHNC  In the QHNC method, the inner structuféhe atomic
method for a plasma, it is very time consuming to evaluatestructure of the ionis determined in the consistent way with
free-electron density distributions at high temperatures; thighe outer structure@he electron-ion and ion-ion RDF’s and
problem can be easily circumvented by combined use of théhe average ionizatioZ,). Therefore, we can expect this
TF approximation as discussed in Sec. Ill. However, themethod to provide an accurate procedure to deal with the
simple TF approximation to the free-electron density distri-atomic structure in a high-density plasma; the bound levels
bution is shown to give only a rough estimation in Fig. 5;in an ion can be calculated by taking account of the density
this may not be applied to calculate the accurate atomiend temperature effects as is shown in Fig. 10. In addition, it
structure in a plasma, although there are many examples &gould be remarked that the DF theory leads to the Saha
mentioned before. _ _ equation as discussed in Sec. IV, and the QHNC method
In a liquid metal, the electron-ion RDF has a clear inner-pased on the DF theory can provide a procedure to solve the
core structure distinct from outer-core structleé Fig. 27 saha equation with ease by using the recursive formula. As
thls_d|§t|npt|on enables us to construct a pseqdopotentl_al N 3 applied example of this formula, the charge population
liquid-liquid metal. In the case of Rb, it remains as a liquid P(Q) is calculated from the QHNC result for a Rb plasma,
metal even at a temperature of 1480 K where the inner- as is displayed in Fig. 11. Moreover, we can expect that the

a_nd outer_corg d'?“”_c“o.” 1S c_IearIy seen wilp=1 as is QHNC method can solve various kinds of problems associ-
displayed in Fig. 6; this distinction disappears at 3 eV, where . . . .

h . o o ated with the atomic structure in a plasma by taking account
rubidium becomes a plasma with a significant ionizatfpn

—101 of the plasma effects. For example, with the combined use of
It is important to remember that the 1S model is not anSlaters transition-state meth¢@8], we have already calcu-

appropriate approximation to treat a high-temperaturéated the shift variation of th& _edge[39] in an aluminum
plasma with a small plasma-parameferin the IS model, plasma along the shock Hugoniot in good agreement with the

the ion-ion RDF is approximated by the step function with @xPeriment performed by DaSihet al. [40]. o
the Wigner-Seitz radius. Therefore, this approximation is "€ QHNC method can provide an accurate description of
only valid in the strongly correlated region, where the struc-the metallic system for a wide range of densities and tem-

ture factorS;, (0)~0 at zero wave number, because of thePeratures from the liquid-metal to the plasma state in a uni-
relation fied manner, as is ascertained from many experiments on

liquid metals. This fact indicates that the QHNC method can

be used to calculate transport properties and an equation of

state in a wide region from the liquid-metallic to the plasma
(5.1 state, where there has been no systematic applicable theory
up to the present.

With decreasing temperature or increasing pressure of a
plasma, some bound state of each ion in a liquid metal or
plasma begins to disappear into the continuum; it becomes a
Z|=—Z|n6f [g||(r)—1]dr+ngf [gei(r)—1]dr. narrow-resonant state and disappears gradually as a wide

(5.2 resonance in the continuum. In our calculation of plasma
states we do not take account of resonant states. In practice,

When the ion-ion RDE becomes weaker as the temperatuﬂé‘e resonant-state contribution in a plasma is not as signifi-
increases, the structure fact8yj(0) grows large; there, the cant as in thg case o_f_ a liquid metal such as a t_ransition
IS model is not properly applicable. This situation is exem-metal. A precise definition of a resonant stpé] is given
plified in our calculation of the ionizatiorZ,. The IS by the poleE,  of the Smatrix S,(E) concerning the wave
(jellium-vacancy model provides the ionizatio,: 1.27, equation for an electron under the effective potential based
2.05, 3.80, 5.28, and 6.55 for temperatures 3, 5, 10, 22, aneh the DF theory witt§,(E) =exd 2i5,(E)] for phase shifts

30 eV, respectively, while the corresponding values from theS,(E). In a strict way, it is required1] that the “bound”-
fully self-consistent QHNC calculation are 1.21, 1.96, 3.71,electron numbeZg in an ion should include a contribution

_nl()J [gu(r)—1]dr=1—S|,(O)~n'o477a3/351.

This condition is very important to keep charge neutrality
around the iorf37]:
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plasma as a classical mixture of ions and electrons; the
QHNC method can produce these effective potentials as fol-
lows. The quantum effects of electron-electron interaction
can be taken into account by defining an effective classical
~ pair potentialv{(r) between electrons in such a way that the
Zg= 2 f(e)+ | Y 2(2/+DREF(E)]. HNC equation fom(r|e) =nSgS(r) in classical fluids with
=0 N ephystes (5.3 vidr) provides the same electron-density distribution
' nd"™NC(r|e) determined by the one-component QHNC equa-

In the above,F(En/) is the function introduced by More tion (2.9); this condition is written in the following integral

of the physical resonant states |IGE,/|

<ReE,,) in addition to the bound electrons with<0 in
such a way that

[42] with the definition equation forvg(r):
_ 1 (= E\¥2 f(E) ng(rle)=n§exd — Bvir)+¥°(r)]=ng""%rle),
FE =] |=— ——dE, (5.4 (5.6)
m™Jo En/ E- En/

. . with yo(r)=[Cgd|r—r'[)[ng(r’|e)—ngldr’. In a similar
to represent the thermal occupation probability of a resonanvtvay, an electron-ion classical potentidl,(r) is determined

stateE, . Also, the chemical potentigk, in consideration by the condition that the classical electron-ion RBE(r)

of the resonant states should be determined by should be identical with the QHNC result:
7= ! gg(N=exi — vg(N+TE(N1=gdMn) 5.7
A 0
<0 exd B(€&—pe) | +1 _
with
+ X 2(2/+1)R4F(E,)]
n/ e phys.res. Fgl(r)z f Cge(lr—r’I)nS[gg,(r’)—l]dr’
N 1f 2 dp 55
nb) exd B(p22m—pud)1+1 (2ah)® +f s(r=r'Hnglg?™(r")—1]dr. (5.8

However, the determination of the charge occupa®¢®)  Wwith use of the effective potentials determined above, the
taking account of the resonant-state contribution is a probler8cope code can be applied to investigate dynamical prob-
that remains to be investigated. lems in a partially ionized plasma as a classical ion-electron
Molecular-dynamics(MD) simulation is necessary to mixture.
study complex systems, which are inhomogeneous or time- \ve have shown that the QHNC method is extended to
dependent and so on. In the MD simulation of a densgreat apartially ionizedplasma in a wide range of densities
plasma, the Coulomb interactions among close and distaRind temperatures, and provides the average ionization, the
particles must be calculated precisely and efficiently; thesjectron-ion and ion-ion RDF’s, the atomic structure of the
particle-particle  particle-mesh(PPPM method [43,44  jons, and the charge population of differently ionized species
should be used in the simulation code to treat many particle$q a self-consistent manner from the atomic number as the
In the particle-particle method the Coulomb forces amongnly input data. Therefore, this method produces the funda-
close particles are directly summed up and in the particlemental quantities necessary to calculate the plasma proper-
mesh method the forces on a particle are interp()lated frorﬂes’ and offers a procedure to treat the Spectroscopic prob_
electric fields at mesh points. In tiseoPE(strongly coupled  |em in a plasma. It should be kept in mind that the QHNC
plasma particlecode[44-46 based on the PPPM method, method can provide a precise description of “simple”
the Deutsch potentid#7] is adopted to imitate quantum ef- plasma where the bound states are clearly distinguished from
fects. With use of the code, bremsstrahlung emis$#fi},  the continuum state; to take into account the resonant states
transport coefficients, and the Lyapunov expong#é§were  jn a plasma, some improvement is necessary as was dis-
obtained in dense plasmas. However, the applicability of the ssed in the previous Wofl].
Deutsch potential is limited to a hydrogen plasma or to a

fully ionized plasma at most, since the ion structure is not
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