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Nucleus-electron model for states changing from a liquid metal to a plasma
and the Saha equation

J. Chihara and Y. Ueshima
Advanced Photon Research Center, Japan Atomic Energy Research Institute, Kizu, Kyoto 619-0215, Japan

S. Kiyokawa
Department of Physics, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan

~Received 25 February 1999!

We extend the quantal hypernetted-chain~QHNC! method, which has been proved to yield accurate results
for liquid metals, to treat apartially ionizedplasma. In a plasma, the electrons change from a quantum to a
classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact
able to provide the electron-electron correlation at an arbitrary temperature. As an illustrating example of this
approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV
at a fixed normal ion density 1.0331022/cm3. The electron-ion radial distribution function~RDF! in liquid Rb
has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a
characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a
plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average
ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive
the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides
a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of
differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that,
with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion
and ion-ion RDF’s, and the charge population that are consistent with the atomic structure of each ion for a
partially ionized plasma.@S1063-651X~99!04809-6#

PACS number~s!: 52.25.Kn, 05.30.Fk, 61.25.Mv
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I. INTRODUCTION

In order to calculate thermodynamic functions, transp
coefficients, and optical properties in a partially ioniz
plasma, it is a fundamental problem to determine the aver
ionization ZI , the equilibrium correlations among ions an
electrons, the atomic structure~bound levels in the ions!, and
the charge population~ionization balance! of differently ion-
ized species, in a self-consistent way with each other in th
quantities. However, at the present stage there is no the
which can produce these quantities in apartially ionized
plasma in a unified manner. It is the purpose of the pres
paper to show that the quantal hypernetted-chain~QHNC!
equation@1# developed for a liquid metal can be extended
calculate these quantities of a partially ionized plasma i
unified manner.

Up to the present, in the calculation of thermodynam
functions or optical properties in a partially ionized plasm
the ion sphere~IS! model @2–7# is used as the standar
method. Although there are many kinds of variations in
IS model, the essential point of this model is that the ion-
correlation in a plasma is approximated by the step func
u(r 2a) with the Wigner-Seitz radiusa; an atom is consid-
ered to be either confined within the ion-sphere or immer
in the infinite jellium. It should be remarked that this mod
is only applicable for high-density and low-temperature s
tems, that is, limited to a narrow range of densities and te
peratures for the plasma state.

To judge whether a theory treating a partially ioniz
plasma is proper or not, we have an important criterion a
PRE 601063-651X/99/60~3!/3262~11!/$15.00
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what extent it can reproduce the observed structure factor
liquid metals for which many reliable experimental data e
ist. This is a liquid metal that can be taken as a special t
of partially ionized plasma. In this context, we have pr
posed a set of integral equations for radial distribution fu
tions ~RDF’s! in a liquid metal as a nucleus-electron mixtu
@1# on the basis of the density-functional~DF! theory in the
QHNC approximation. Already, we have applied the QHN
method to several simple liquid metals@8–12#, and obtained
their structure factors in excellent agreement with expe
ments. In these calculations, we have demonstrated tha
QHNC method can determine the ‘‘outer structure’’~the ion-
ion and electron-ion RDF’s and the ionic chargeZI) in a
consistent way with the ‘‘inner structure’’~the atomic struc-
ture of the ions! using the atomic numberZA of the system as
the only input data. Therefore, the QHNC method is sui
for treating a partially ionized plasma, where the ion-ion a
electron-ion interactions may vary over a wide range in c
junction with the internal structure of each ion according
the change of state condition. In a similar spirit, Perrot@13#
has proposed the neutral pseudoatom~NPA! method based
on the DF theory to calculate the effective ion-ion potent
for a partially ionized plasma. Gonza´lez et al. have success
fully applied this theory to alkali liquids@14# and alkaline-
earth liquids@15#. The NPA method can be derived from th
QHNC theory with additional use of the IS approximatio
@16# in the determination of the pseudopotential to constr
an effective ion-ion interaction. This model is called in o
approach the jellium-vacancy model@9# and is used to obtain
an initial guess for the effective ion-ion interaction in th
3262 © 1999 The American Physical Society
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iteration to solve the QHNC equation for a liquid metal.
this point, it should be recognized that the NPA method
not appropriate for treating a high-temperature plasma w
the weak ion-ion correlation, since this method is based
the IS model; this fact will be discussed in the present pa

In the present paper, we extend the QHNC method ap
cable to a plasma state, where the electrons change fro
quantum fluid to a classical fluid gradually with increasi
temperature; this is in contrast with a liquid metal where
electrons can be assumed to be perfectly in the Fermi de
erate state at zero temperature because of the density b
high. When the electrons in a plasma begin to behave
classical particles, it is difficult to calculate the free-electr
density distribution under the external potential by solvi
the wave equation. Therefore, Furukawa@17# used the
Thomas-Fermi~TF! approximation to evaluate the electro
electron RDF in the QHNC equation for a plasma. Also,
and Hansen@18# applied the TF version of the QHNC
method to a hydrogen plasma with a gradient correction
the TF kinetic energy of the electrons. In the full use of t
wave equation to calculate the free-electron density distr
tion, we demonstrate that the QHNC method can treat a
tially ionized plasma by taking liquid rubidium as an illu
trating example; this exhibits what changes are found whe
liquid metal turns to a plasma state with increasing tempe
ture at a fixed ion density. In a liquid metal, there is a cle
distinction between the inner-core and outer-core structu
in the electron-ion RDF, which allows one to construct
electron-ion pseudopotential in a liquid metal. When a liqu
metal changes into a plasma state, this distinction disapp
and we cannot set up a pseudopotential in the same ma
as is performed in the usual liquid-metal theory.

In principle, the DF theory generates the exact den
distributions of electrons and ions in a plasma. Note tha
can yield only the average-ion structure in a partially ioniz
plasma. In a real plasma, there are many differently ioni
ions around the average ion. The fundamental theory of
ization in a plasma is provided by the Saha equation. Ho
ever, the usual Saha equation can be applied only to a
density equilibrium plasma, where the interactions amo
particles are negligible. Although there are many modifi
tions of the Saha equation for applicability to dense plasm
by introducing the continuum lowering, any modified theo
cannot treat a dense plasma at low temperatures. In
present paper, on the basis of the DF theory we derive
Saha equation, which provides the charge population of
ferently ionized ions in a dense plasma in the region fr
low to high temperatures; this charge population yields
average ionization consistent with an average ion in
plasma determined in the DF theory. The bound levels
the chemical potential contained in the Saha equation
supplied by the QHNC equation for the ion-ion and electro
ion RDF’s in the plasma. In this way, the QHNC method
shown to generate the electron-ion and ion-ion RDF’s,
average ionizationZI , and the charge population of differ
ently ionized species to be consistent with the atomic str
ture~bound levels! of each ion in a unified fashion, as will b
shown by the example of a rubidium plasma.

The paper is organized as follows. In Sec. II, we prese
summary of the QHNC method along with the on
component QHNC equation for an electron gas in the jelli
s
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model, making extensions to treat a plasma. As an illust
ing example, the application of this formulation to a R
plasma is shown in Sec. III, where the numerical techniq
to solve the QHNC equation is explained. In Sec. IV, we
up the Saha equation on the basis of the DF theory, and
charge populations are calculated for Rb plasmas at a fi
liquid-metal density for several temperatures. The last s
tion is devoted to discussion, where the limitation of the
model is also examined, and prospects of applications ba
on the QHNC method are mentioned, such as calculation
the atomic structure and transport coefficients in a plas
and the determination of the effective interactions to be u
for the molecular-dynamics simulation of a plasma as a c
sical electron-ion mixture.

II. SUMMARY OF A NUCLEUS-ELECTRON MODEL

A liquid metal or a plasma is considered as a binary m
ture of ions and electrons; in this model, the ionic chargeZI
and the electron-ion interaction are unknown except fo
perfectly ionized plasma@19,20#, even if the ion-ion interac-
tion is taken as a pure Coulombic. In the case of a plasm
is rather a fundamental problem to determine the ionizat
ZI . The most fundamental model is to consider a liqu
metal as composed of nuclei and electrons. In this model
input data are known beforehand if provided the atom
numberZA of a liquid metal; this first-principles approac
enables us to treat a plasma in a wide range of temperat
and densities. Therefore, let us think of a plasma a
nucleus-electron mixture@1# consisting of NI nuclei and
ZANI electrons. Here, we single out one nucleus and fix i
the origin. Then, the fixed nucleus at the origin in the m
ture causes the external potentials for electrons and ions,
induces an inhomogeneous system, which can be equ
lently translated into a simpler system: a fixed nucleus w
the atomic numberZA is surrounded by electrons and ions,
which structurerb(r ) is undetermined at first. This unknow
ion structurerb(r ) is determined by the condition that th
central ion withne

b(r ) formed at the origin must be the sam
to any surrounding ion with the assumed structurerb(r )
around it:

rb~r !5ne
b~r !. ~2.1!

This leads to a self-consistent condition to determine the
structurerb(r ); the central ion structurene

b(r ) is iteratively
used as the inputrb(r ), which determines the next effectiv
potential based on the DF theory to evaluate a newne

b(r )
@21#. From this relation Eq.~2.1!, the bound-electron numbe
ZB of each ion in a plasma can be evaluated from the bou
electron density distributionne

b(r ) by ZB5*0
`ne

b(r )dr , that
is written as

ZB[(
i 51

M
gi

exp@b~e i2me
0!#11

, ~2.2!

for the ion withM bound statese i with the degeneracygi ,
and the ionic charge is obtained byZI[ZA2ZB . Also, the
chemical potentialme

0 involved in Eq.~2.2! is determined by
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ZA5(
i 51

M
gi

exp@b~e i2me
0!#11

1
1

n0
I E 2

exp@b~p2/2m2me
0!#11

dp

~2p\!3
. ~2.3!

Here,n0
i denotes the number density of electrons or ionsi

5e or I ). In addition, the bare ion-electron interaction
obtained from the self-consistent potential based on the
theory with use of some approximations@22#:

veI~r ![2
ZA

r
1E vee

c ~ ur2r 8u!ne
b~r 8!dr 8

1mXC@ne
b~r !1n0

e#2mXC~n0
e!, ~2.4!

wherem XC(n0
e) is the exchange-correlation potential in th

local-density approximation.
Thus, with use of the average ionizationZI and the bare

ion-electron interactionveI(r ), a plasma can be now mod
eled as a mixture of electrons and ions interacting thro
pair potentialsv i j (r )@ i , j 5e or I#. Applying the DF theory to
this electron-ion mixture model, the ion-ion and electron-i
RDF’s giI (r ) are exactly expressed in terms of direct cor
lation functions~DCF’s! Ci j (r ) and bridge functionsBiI (r )
@1#. Moreover, it is shown from these expressions forgiI (r )
that the electron-ion mixture can be described as a o
component fluid interacting only via pairwise interactio
veff(r ), if the bridge functionBII (r ) is taken to be the one
component bridge function.

C~r !5exp@2bveff~r !1g~r !1BII ~r !#212g~r !
~2.5!

with an interactionveff(r ), and the other is an equation fo
veff(r ), which is expressed in the form of an integral equ
tion for the electron-ion DCFCeI(r ):

B̂CeI~r !5ne
0 f~r uveI2GeI /b2BeI /b!/n0

e212B̂GeI~r !,
~2.6!

since the effective interionic interactionveff(r ) is given by

bveff~Q![bv II ~Q!2
uCeI~Q!u2n0

exQ
0

12n0
eCee~Q!xQ

0
. ~2.7!

Here,g(r )[*C(ur2r 8u)n0
I @gII (r 8)21#dr 8, and B̂ denotes

an operator defined by

FQ@B̂a f ~r !#[~xQ
0 !aFQ@ f ~r !#5~xQ

0 !aE exp@ iQ•r # f ~r !dr ,

~2.8!

for an arbitrary real numbera, and represents a quantu
effect of the electrons through the density response func
xQ

0 of the noninteracting electron gas. We can obtain a se
closed integral equations~referred to as the QHNC equation!
from Eqs.~2.5!–~2.7! by introducing the following approxi-
mations@1#. ~1! BeI.0 ~the HNC approximation!. ~2! The
bridge functionBII of the ion-electron mixture is approxi
mated by that of one-component hard-sphere fluid~modified
F

h

-

e-

-

n
of

HNC approximation@23#!. ~3! An approximateveI(r ) is
taken to be Eq.~2.4!, where we adopt the Gunnarsso
Lundqvist formula@24# for the exchange-correlation poten
tial mXC(n0

e). ~4! v II (r ) is taken as a pure CoulombicZI
2e2/r .

~5! For liquid metals where the electrons can be assume
be at zero temperature, the electron-electron DCF is appr
mated byCee(Q).2bvee(Q)@12Gjell(Q)# in terms of the
the local-field correction~LFC! Gjell(Q) of the jellium
model; we have used the LFC proposed by Geldart
Vosko @25# in our many applications to liquid metals.

Under these approximations, a set of integral equati
can be solved to determine the electron-ion and ion-ion c
relations in a liquid metal together with the ionization a
electron bound states. Figure 1 is an applied example of
procedure to liquid metals: the structure factors of liqu
rubidium at temperature 313 K and density 1.0331022/cm3.
The full curve is the QHNC result, which exhibits an exce
lent agreement with experiments denoted by open circ
~neutron scattering@26#! and full circles~x-ray @27#!. From
this example, we can expect the QHNC method to yield go
results for partially ionized plasmas. However, when we
ply the QHNC method to a plasma, there occur the followi
problems; the LFC involved in the electron-electron DC
must be evaluated at arbitrary temperature in dealing wit
plasma. Although the LFC at the absolute zero tempera
has been calculated by many investigators and applied
many kinds of liquid metals, there is no standard way
calculate the LFC at finite temperature. For this purpose,
adopt the one-component QHNC equation@28# for an elec-
tron gas in the uniform positive background to obtain t
electron-electron DCF at arbitrary temperature, which
written for an integral equation for the electron-density d
tribution ne(r ue) around the fixed electron in an electron ga

ne~r ue!5ne
0~r uUeff!5S i f ~e i !uc i~r !u2 ~2.9!

with

bUeff~r ![bvee~r !2E Cee~ ur2r 8u!@ne~r 8ue!2n0
e#dr 8.

~2.10!

Here,f (e) is the Fermi distribution function and the DCF fo
a one-component system is defined by

n0
eCee~Q![1/xQ

0 21/xQ
ee52bvee~Q!@12G~Q!#.

~2.11!

FIG. 1. Ion-ion structure factorSII (Q) for liquid Rb at a tem-
perature of 313 K; the QHNC method yields a structure factor~full
curve! in excellent agreement with experiments~open@26# and full
circles @27#!.
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The Fourier transform of the density distribution yields t
following bootstrap relation to determine the DCFCee(Q)
with combined use of Eqs.~2.9! and ~2.10!:

FQ@ne~r ue!2n0
e#5xQ

ee/xQ
0 2151/@12n0

eCee~Q!xQ
0 #21,

~2.12!

which is derived from a certain ansatz@28#. At this point, it
should be noted that the QHNC equation~2.9! reduces to the
well-known HNC equation for a classical electron gas in
high-temperature limit, because of the relationsxQ

0 51, xQ
ee

5See(Q), andne
0(r uUeff)5n0

e exp@2bUeff(r )# in the classi-
cal limit. As a result, approximation~5! can be replaced by
the one-component QHNC equation~2.9! for the electron
gas; with use of other approximations~1!–~4!, this replace-
ment makes Eqs.~2.5!–~2.7! a closed set of equations for
plasma including a liquid metal as a special case. T
electron-ion and the ion-ion RDF’s of liquid Rb at 313 K a
plotted in Fig. 2 along with the effective ion-ion interaction
calculated using both the QHNC and Geldart-VoskoG(Q);
the resulting two effective potentials differ with each oth
but yield almost the same ion-ion RDF’s as shown by the
curve and open circles. In Fig. 2 the electron-ion RDF o
tained from the QHNC method has an inner-core structu
which is caused by the orthogonality of the free-electron
the bound-electron wave functions. On the other hand
should be noticed that the usual liquid-metal theory based
the Ashcroft pseudopotential@29# yields an electron-ion
RDF, which has no inner-core structure~shown by full
circles!. The Ashcroft pseudopotential is constructed by n
glect of this inner-core structure; this cutoff of the inner-co
structure brings about a simple treatment of liquid metals
the standard liquid-metal theory.

III. NUMERICAL CALCULATION APPLIED
TO RUBIDIUM PLASMA

Already, we have calculated the electronic and io
structures of liquid rubidium in a wide range of temperatu
and densities: compressed states@30# and expanded state

FIG. 2. The electron-ion and ion-ion RDF’s with the effectiv
interactions in liquid Rb at 313 K. The solid curves denote
RDF’s, the total electron-density distribution, and the effective io
ion interaction calculated by using the QHNCG(Q). The dashed
curve designates the effective ion-ion potential based on
Geldart-VoskoG(Q), which yields the ion-ion RDF plotted by th
open circles;d, the electron-ion RDF derived by using an Ashcro
potential.
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@31#. To show the applicability of the QHNC method to
plasma state, therefore, here we take, as an example, li
rubidium changing its temperature from 313 K to 3
3105 K ~30 eV! at fixed ion densityr s

I 55.388. Here,r s
I

denotes the Wigner-Seitz radiusa[r s
I aB in units of the Bohr

radiusaB .
In the application of the QHNC equation to a plasma,

must calculate the electron-density distributionne
0(r uUeff)

under the external potentialUeff(r ) to getgeI(r ) andne(r ue)
by solving the wave equation generally. However, it is dif
cult to determine this density distribution from the wa
equation at high temperatures, where it becomes nearly
classical Boltzmann factor:ne

0(r uUeff)5S i f (e i)uc i(r )u2

⇒n0
eexp@2bUeff#. In the calculation of the free-electron den

sity distribution, ne
0 f(r uUeff)52* f (ep)ucp(r )u2dp/(2p\)3,

at finite temperature, the electron kinetic energyep is not
limited within the Fermi energyEF , as is the case at zer
temperature. In addition, since the electron-density distri
tion ne

0(r uUeff) begins to approach the Boltzmann fact
from the large distance as the temperature increases, we
calculate the wave functions with large angular momentul
to correctly obtain the classical electron-density distribut
in the large distance at high temperature. We can circumv
this difficulty by using the TF approximation to the electro
density distribution forr .r c ; the distancer c can be chosen
according to the temperature so thatne

0(r uUeff) calculated
from the wave equation becomes almost equal to the
result for r .r c . This situation can be seen in the followin
calculation.

The electron-density distribution around a fixed electr
is calculated for a partially degenerate electron plasma at
density 2.5131022/cm3, that is, r s54 in terms of r saB

[(3/4pn0
e)1/3 defined for the electron densityn0

e ; the results
calculated for temperatures from 0.05 eV to 30 eV are sho
in Fig. 3. The electron degeneracy is denoted byu
[kBT/EF , i.e., the temperature over the Fermi energy. F

-

e

FIG. 3. Electron-electron correlations in an electron gas at
density ofr s54 for temperatures ranging from 0.05 to 30 eV wi
u[kBT/EF indicating the electron degeneracy. The solid curves
calculated by the one-component QHNC equation, while the
circles denote the result from the TF approximation for each te
perature. The classical HNC equation for the OCP correspondin
a temperature of 30 eV provides the electron-electron correla
plotted by the dashed curve~OCP!, which is indistinguishable from
the TF result at a temperature of 30 eV.
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high degeneracy~0.05 eV!, the TF approximation~denoted
by full circles! gives quite a different density distributio
from the one calculated by the wave equation. When
temperature is increased to 10 eV, the TF result beco
almost the same to that obtained by the wave equation ex
near the origin. When the temperature approaches 30 eV
electron-electron correlation reduces to the classical one
classical HNC equation for the one-component plas
~OCP! with the electron plasma parameterGe50.277 ~30
eV! provides an indistinguishable result from the TF calc
lation as is shown in Fig. 3 by the dashed curve. Here,
electron plasma parameter is defined byGe[be2/r saB . In
the calculation ofne(r ue), we can obtain at the same time th
electron-electron DCF, which determines the LFCG(Q)
from the relationbCee(Q)52vee(Q)@12G(Q)#; the cal-
culatedG(Q) at r s54 is shown in Fig. 4 for each tempera
ture corresponding to Fig. 3. This figure indicates that
LFC at high temperature can be approximated by that ca
lated from the classical HNC for the OCP, as is shown by
case of 30 eV (u59.62), where the LFC of the classic
OCP is denoted by the dashed curve. In this way, by me
of the QHNC equation for an electron gas we can obtain
electron-electron DCF, which determines the plasma pro
ties in terms of the QHNCG(Q).

Using now the QHNC-LFCG(Q) instead of a Geldart-
Vosko @25# type G(Q), we apply Eqs.~2.5! and ~2.6! to
rubidium at the fixed density of the normal liquid metal; t
temperature has been varied from 0~313 K! to 30 eV in
order to investigate how a liquid metal becomes a plas
For the purpose of obtaining initial data of the ion-core str
ture and the electron-ion correlation for the fully se
consistent QHNC method, we take the jellium-vacan
model as a first step. In this model the following two a
proximations are introduced in the expression for
electron-ion interaction:

bUeI
eff~r !5bveI~r !2(

l
E Cel~ ur2r 8u!n0

l @glI ~r 8!21#dr 8.

~3.1!

~1! The ion-ion RDF involved above is approximated by t
step function, gII (r )5u(r 2a), and ~2! the electron-ion
DCF, by a pure Coulomb force,CeI(r )52bveI

c (r ). Then,
the problem to determine the electron-ion RDF becom

FIG. 4. The LFC’s at temperatures from 0 to 30 eV determin
by the one-component QHNC equation. The LFC calculated by
classical HNC for the OCP withGe50.227 is displayed by the
dashed curve, which indicates that this can be used to approxi
the QHNC LFC at this temperature.
e
es
pt
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identical with the problem to determine the electron-dens
distribution around a fixed nucleus at the center of
spherical vacancy in the jellium background. This mode
essentially the same as theINFERNO model@5,7# ~or the ion-
sphere model! introduced by Liberman and also to the ne
tral pseudoatom model@13# proposed by Perrot. By solving
these integral equations, we can obtain the electron-ion D
and ion-ion effective interaction~2.7! with the combined use
of the electron-electron DCF determined by the on
component QHNC equation~2.9!. As a consequence, we ca
obtain initial input data for the fully self-consistent QHN
equations~2.5!–~2.7!. After that, this set of integral equa
tions in conjunction with Eqs.~2.9! and ~2.10! is solved it-
eratively by varying the bound-electron numberZB

5*0
`rb(r )dr until self-consistent condition~2.1!, ne

b(r )
5rb(r ), is fulfilled.

In the iteration to solve the QHNC equation, we mu
evaluate also the free-electron density distribution around
nucleus at arbitrary temperature. It has been the stan
method @32,33,2,4,7,17# for the calculation of this free-
electron density distribution to use the TF approximation
such a way:

ne
0 f~r uU !'2E

p2/2m1U(r ).0

3$exp@2b„p2/2m1U~r !2me
0
…#11%21

3
dp

~2p\!3

[nf
TF~r uU !. ~3.2!

In this expression, the integration ofp is limited within the
domainp2/2m1U(r ).0 to define the free-electron part o
the usual TF formula,nTF(r uU), which involves both the
bound- and free-electron density distributions. In Fig. 5,
electron-ion RDF’s at temperatures of 3.53104 K and 3.5
3105 K calculated by the QHNC method are shown in co
parison with the results from TF approximation~3.2!. It
should be noticed that the TF formula for free-electron d
sity distribution~3.2! is not a good approximation except fo
large distances even at a high temperature of
3105 K (u55.21), while there the total~free and bound!
density distribution can be fairly well described by the T
formula. Noting this fact, we can evaluate the free-elect
density distribution functionne

0 f(r uU) for large distancesr
.r c by the value ofnTF(r uU)2ne

0b(r uU) using the TF den-
sity distribution nTF(r uU) and the bound-electron densit
distributionne

0b(r uU) obtained by the wave equation; in th
case 3.53105 K, the cut distancer c can be chosen to be 0.9a
as shown by the arrow in Fig. 5. In this way, we can det
mine the electron-ion RDF, i.e.,ne

0 f(r uU), by solving the
wave equation only for small angular momentuml; it is
enough to take the maximum angular momentuml max515
even for the high temperature region.

The electron-ion RDF’s at temperatures of 1 eV and 3
are plotted in Fig. 6 along with the ion-ion RDF’s and th
effective ion-ion interactions. As is shown in Fig. 2, th
electron-ion RDF at a temperature of 313 K has disti
inner-core and outer-core parts. Even at a temperature
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eV as shown in Fig. 6, this clear distinction remains as ch
acteristic for a liquid metal; the ionization is practically uni
and the ion-ion effective interaction is almost the same str
ture as that of liquid metal at the normal condition, althou
the ion-ion correlation becomes weak because of the s
plasma parameterG[ZI

5/3Ge . Therefore, we can conside
that rubidium remains as a liquid-metal state even at 1
3104 K ~1 eV!. Figure 6 shows that at a temperature of 3
the distinction between inner- and outer-core parts near 0a

FIG. 5. The electron-ion RDF’s calculated from the wave eq
tion and the TF approximation at temperatures of 3.53104 K ~3
eV! and 3.53105 K ~30 eV!. The solid curves denote the resul
from the wave equation and the dashed curves, from the TF
proximation. The TF approximation cannot give a good descript
of the free-electron density distributionne

f (r uI )5n0
egeI(r ) in the

core region even at a high temperature~30 eV!, where the total
~bound and free! electron-density distribution is fairly well de
scribed by the TF approximation. The electron-ion RDF can
approximated by the TF formula for larger distances than the p
~0.9! denoted by the arrow.

FIG. 6. The electron-ion and ion-ion RDF’s together with t
effective ion-ion interaction at temperatures of 1 eV and 3 eV. T
electron-ion RDF at 1 eV has an inner-core structure similar to
RDF of a liquid state at the normal condition~cf. Fig. 2!, and this
inner-core structure nearr /a50.4 disappears at 3 eV with a signifi
cant ionizationZI51.21.
r-

c-
h
all

6

disappears and that the ionization, now 1.21, has bec
significant. Because of the disappearance of this distinc
between the the inner- and outer-core structures, it is diffic
to construct a pseudopotenital in a plasma state. This ma
a contrast with a liquid-metal state, where a pseudopoten
such as the Ashcroft potential can be used to set up an
fective interaction between ions in a liquid metal.

The temperature variation of the electron-ion RDF
shown in Fig. 7 for a range from 0 eV to 30 eV. Th
electron-ion correlation becomes stronger for temperatu
up to 10 eV, and turns to become weaker from 10 eV to
eV; the distinction between the inner- and outer-core pa
near the point 0.4a is gradually disappearing with increasin
temperature. On the other hand, the ion-ion RDF’s are sho
in Fig. 8 for increasing temperatures from 0 eV~313 K! to 30
eV. Also, the effective ion-ion interactions generating t
RDF’s in Fig. 8 are plotted in Fig. 9, where the open circl
denote the screened Debye potential exp(2r/De)ZI

2e2/r at a
temperature of 30 eV (Ge50.277) withDe[(4pe2bn0

e)1/2.
We can see that the ion-ion effective potential approach
screened Debye potential as the electron plasma param
Ge becomes small with increasing temperature. The H
equation for a one-component fluid with the screened De
potential at a temperature of 30 eV provides the RDFgII

SD(r )
in fair agreement with the result from the QHNC method f

-

p-
n

e
nt

e
e

FIG. 7. The temperature dependence of the electron-ion R
for a range from 0 to 30 eV. The inner-core structure near 0
reflects the variation of the bound-electron wave functions in an
due to the orthogonality between the free- and bound-electron w
functions.

FIG. 8. The temperature dependence of the ion-ion RDF fo
range from 0 eV~313 K! to 30 eV. The ion-ion RDF becomes sma
at 1 eV; nevertheless, rubidium remains as a liquid state withZI

51.
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the electron-nucleus mixture; for example, the structure f
tor at zero wave number becomesSII (0)50.18 from the
screened Debye potential, which should be compared w
the QHNC result,SII (0)50.16. This fact suggests that in th
high temperature region whereSII (0) becomes large, the
ion-sphere model~the jellium-vacancy model! can be im-
proved by using the approximationgII (r )'gII

SD(r ) instead of
the step function.

Figure 10 shows the temperature variation of the ou
bound levels of an average ion in Rb plasma at the fixed
density of normal liquid metal. The 4s- and 4p-bound levels
are plotted there corresponding to the free atom, 0, 1, 3
10, 22, and 30 eV, respectively. As the temperature
creases, the bound levels become deeper due to the dec
of the bound-electron number, which makes the screen
effect weak. At temperatures of 22 and 30 eV, new bou
levels, 5s and 4d, appear. The occupation numberf (e i) at
the levele i is written at each level line in Fig. 10. The ion
ization variationZI is shown in the top of Fig. 10 as th
temperature is increased.

FIG. 9. The temperature dependence of the effective ion
interaction for a range from 0 eV~313 K! to 30 eV. The effective
potential at a temperature of 30 eV approaches the screened D
potential denoted by the open circles.

FIG. 10. The temperature variation of outer bound levels (s,
4p, 4d, and 5s) in the Rb ion in a plasma for a range from 0 eV
30 eV at a fixed density ofr s

I 55.388. The bound levels becom
shallow when free atoms are compressed to be a liquid state~0 eV!,
and turn to become deeper as the temperature is increased wit
fixed ion density. Numbers attached to bound levels denote
occupation numbersf (e i), and the ionizationZI for each tempera-
ture is written in the top of this figure.
c-

th

r-
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-
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IV. THE SAHA EQUATION
IN THE DENSITY-FUNCTIONAL THEORY

The DF theory provides the exact electron-density dis
butionne(r uU) in the nonuniform electron system caused
an external potentialU(r ); however, it is important to notice
that this exact density distributionne(r uU) at finite tempera-
ture is only an average density distribution. Consider
nucleus with the atomic numberZA fixed in an electron gas
The effective external potentialUeff(r ) based on the DF
theory gives the bound-electron density distributionne

b(r ),
which defines an average ion with theZB bound electrons:
ZB5*ne

b(r )dr . In the realistic system, the ion should ha
some integer number of bound electrons with fluctuations
time; the numberZB given by the DF theory is only an
average value of this bound-electron number over time. T
similar situation is found in the ion structure in a nucleu
electron mixture. Here, we investigate the charge popula
of differently ionized species in a plasma on the basis of
DF theory.

As is discussed in Sec. II, the average bound-elect
numberZB is defined by Eq.~2.2! in the nucleus-electron
model based on the DF theory, and the chemical potentiame

0

is determined by Eq.~2.3!. This average bound-electro
numberZB in an ion in a plasma can be represented by

ZB5l
d

dl
ln JB5(

i 51

M
gi

exp@b~e i2me
0!#11

, ~4.1!

if we introduce here the grand partition functionJB

[) i 51
M @11l exp(2bei)#

gi for the ion with bound electrons
which haveM bound levelse i with the degeneracygi , and
l[ exp(bme

0). Alternatively, the grand partition functionJB

can be expanded in a polynomial ofl:

JB[)
i 51

M

@11l exp~2be i !#
gi5 (

Q50

G

lQZQ ~4.2!

with G[( i 51
M gi . In this expression, the canonical partitio

functionZQ of the ion with theQ bound electrons is define
by

ZQ[(
l

V~El
Q!exp@2bEl

Q# ~4.3!

5 (
(ns5Q

S )
s51

M
gs!

ns! ~gs2ns!!
D exp@2bE$ns%

Q #

~4.4!

5 (
(ns5Q

)
s51

M

@gs
Cns

exp~2besns!#, ~4.5!

with the total energyEl
Q[( i 51

M esns5E$ns%
Q (ns50 or 1! for

the Q bound electrons. Here,V(El
Q) represents the numbe

of basic states with the energyEl
Q for theQ bound electrons

in the ion. Furthermore, the grand partition functionJB is
written asJB5( i 51

G UQ using the functionUQ defined by

n

bye

the
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UQ[ebme
0QZQ5 (

(ns5Q
)
s51

M

$gs
Cns

exp@b~me
02es!ns#%.

~4.6!

From Eqs.~4.2! and ~4.6!, we obtain the average bound
electron numberZB in another form:

ZB5l
d

dl
ln JB5 (

Q50

G

Q
UQ

JB
5^Q&, ~4.7!

which means that the probability for the bound-electr
number of the ion to beQ is given byUQ /JB .

From another point of view, let us count the number
ions with theQ bound electrons in a plasma, which is d
noted byNQ ; this satisfies the relation(Q50

G NQ5NI since
the total ion number in the system isNI . In terms ofNQ , the
average bound-electron numberZB is determined by anothe
way:

(
Q50

G

Q
NQ

NI
5ZB . ~4.8!

The above two expressions of Eqs.~4.8! and ~4.7! for the
probability that the ion in a plasma hasQ bound electrons
give rise to the relationNQ /NI5UQ /JB , that is,

NQ

UQ
5

NI

JB
. ~4.9!

Since the right-side of this equation is independent ofQ, we
obtain the expressionNQ /UQ5NQ21 /UQ21, which can be
rewritten in the form

NQ /NQ215UQ /UQ215exp@bme
0#ZQ /ZQ21 . ~4.10!

If we introduce the canonical partition functionZQ8
[exp@bE0

Q#ZQ using excitation energiesEn
Q2E0

Q measured
from the ground stateE0

Q of the ion with theQ bound elec-
trons, Eq.~4.10! is rewritten as

NQ

NQ21
5exp@b~me

01I Q!#
ZQ8

ZQ218
~4.11!

with the ionization energyI Q[E0
Q212E0

Q in the ground
state. This is the Saha equation, which is applicable t
plasma where the electrons may be degenerate at any de
and the ions and the electrons in a plasma may inte
strongly with each other at high densities. When the te
perature of a plasma becomes so high that the electrons
have as classical particles, the electron chemical potenti
determined by the classical relation:

n0
ele

3/25
n0

e

Ze
5exp@bme

0# ~4.12!

with the canonical partition functionZe52(2pm/h2b)3/2 of
a noninteracting electron gas and the thermal wavelengthle .
As a result from the above equation, Eq.~4.11! is reduced to
the usual expression for the Saha equation@34#:
f

a
ree,
ct
-
e-
is

nQ

nQ21n0
e

5exp~bI Q!
ZQ8

ZQ218 Ze

~4.13!

to determine the ion densitynQ5NQ /V in the volumeV. At
this point, note that fundamental relation~4.9! to derive the
Saha equation is nothing but an ansatz introduced by B
Shalomet al. @35#.

It should be recognized here that the solution of the S
equation, Eq.~4.11! or Eq.~4.13!, is obtained by determining
the partition functionUQ of a plasma with aids of relation
~4.9!, that is,nQ5n0

I UQ /JB . For this calculation, we can
use the following recursive formulas@35,36# for the partition
function UQ of the ion with theQ bound electrons:

U051, ~4.14!

UQ5 (
n51

Q

xnUQ2n /Q, ~4.15!

wherexn52( i 51
M gi(2Xi)

n with Xi5exp@2b(ei2me
0)#.

An applied example of our formula to evaluate the i
populationP(Q) is shown in the case of Rb plasmas. In t
nucleus-electron model based on the DF theory, the bo
levelse i of the ion in a plasma is determined by solving t
wave equation for the self-consistent potential given
UeI

eff(r ) ~3.1!, and the chemical potentialme
0 of electrons is

evaluated by condition~2.3!; the temperature variation of th
bound levels of Rb plasma was shown in Fig. 10 for a ran
from 0 eV to 30 eV. Using these values, we can obtainUQ
from the recursive relations, Eqs.~4.14! and ~4.15!. In this
way, the charge populationP(Q)[UQ /JB is evaluated for
Rb plasma with the atomic numberZA537 varying the tem-
perature from 3 eV to 30 eV at fixed ion density 1.0
31022/cm3 (r s

I 55.388), as was studied in Sec. III for th
evaluation of the electron-ion and ion-ion RDF’s. Figure
displays the charge populationP(Q) in Rb plasmas for this
temperature variation; the bound-electron numberZB from
Eq. ~4.8! is coincident with the values obtained previously
Eq. ~2.2! for each temperature, as a matter of course. A

FIG. 11. The dependence of the charge populationP(Q) on the
temperature varying from 3 eV to 30 eV for Rb plasma (ZA537) at
a fixed ion density of 1.0331022/cm3 (r s

I 55.388). This charge
population provides the average bound-electron numberZB of ion,
as denoted in this figure for each temperature along with the
ization ZI[ZA2ZB .
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sufficiently low temperature such as 1 eV, the charge po
lation reduces toP(Q)5dQ,36 for Rb plasmas at liquid-meta
density.

V. CONCLUSIVE DISCUSSION

We have demonstrated that the QHNC method, which
been successfully applied to many kinds of liquid metals,
be extended to treat a partially ionized plasma, taking
bidium as an illustrating example. In the application of t
QHNC method to a plasma, it is necessary to use the L
G(Q) at arbitrary temperature, which is determined by t
one-component QHNC equation for an electron gas in
jellium; the QHNCG(Q) reduces to the LFC obtained b
the classical HNC for the OCP at high temperatures a
shown in Fig. 4. In the numerical calculation in the QHN
method for a plasma, it is very time consuming to evalu
free-electron density distributions at high temperatures;
problem can be easily circumvented by combined use of
TF approximation as discussed in Sec. III. However,
simple TF approximation to the free-electron density dis
bution is shown to give only a rough estimation in Fig.
this may not be applied to calculate the accurate ato
structure in a plasma, although there are many example
mentioned before.

In a liquid metal, the electron-ion RDF has a clear inn
core structure distinct from outer-core structure~cf. Fig. 2!;
this distinction enables us to construct a pseudopotential
liquid-liquid metal. In the case of Rb, it remains as a liqu
metal even at a temperature of 1.163104 K where the inner-
and outer-core distinction is clearly seen withZI51 as is
displayed in Fig. 6; this distinction disappears at 3 eV, wh
rubidium becomes a plasma with a significant ionizationZI
51.21.

It is important to remember that the IS model is not
appropriate approximation to treat a high-temperat
plasma with a small plasma-parameterG. In the IS model,
the ion-ion RDF is approximated by the step function w
the Wigner-Seitz radiusa. Therefore, this approximation i
only valid in the strongly correlated region, where the stru
ture factorSII (0)'0 at zero wave number, because of t
relation

2n0
I E @gII ~r !21#dr512SII ~0!'n0

I 4pa3/3[1.

~5.1!

This condition is very important to keep charge neutra
around the ion@37#:

ZI52ZIn0
I E @gII ~r !21#dr1n0

eE @geI~r !21#dr .

~5.2!

When the ion-ion RDF becomes weaker as the tempera
increases, the structure factorSII (0) grows large; there, the
IS model is not properly applicable. This situation is exe
plified in our calculation of the ionizationZI . The IS
~jellium-vacancy! model provides the ionizationZI : 1.27,
2.05, 3.80, 5.28, and 6.55 for temperatures 3, 5, 10, 22,
30 eV, respectively, while the corresponding values from
fully self-consistent QHNC calculation are 1.21, 1.96, 3.7
u-
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n
-
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e
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e
is
e

e
-
;
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-

a

e

e

-

re

-

nd
e
,

5.08, and 6.08, respectively. We can see that significant
ferences are manifested between the IS and QHNC result
the temperature increases. The reason for these differe
can be ascribed to the fact that the IS model produce
screening effect from the ions contained in Eq.~5.2! in the
approximated formZI@12SII (0)#'ZI , which becomes too
strong for a plasma at high temperatures whereSII (0) be-
comes large. As a consequence, the neutral pseudo
model@13# based on the IS model is, also, not appropriate
construct an effective ion-ion interaction at a hig
temperature plasma. As discussed in Sec. III, the IS mo
can be improved by using the ion-ion RDF from the HN
equation for a screened Debye potential instead of the
function, in dealing with a high-temperature plasma.

In the QHNC method, the inner structure~the atomic
structure of the ion! is determined in the consistent way wit
the outer structures~the electron-ion and ion-ion RDF’s an
the average ionizationZI). Therefore, we can expect thi
method to provide an accurate procedure to deal with
atomic structure in a high-density plasma; the bound lev
in an ion can be calculated by taking account of the den
and temperature effects as is shown in Fig. 10. In addition
should be remarked that the DF theory leads to the S
equation as discussed in Sec. IV, and the QHNC met
based on the DF theory can provide a procedure to solve
Saha equation with ease by using the recursive formula.
an applied example of this formula, the charge populat
P(Q) is calculated from the QHNC result for a Rb plasm
as is displayed in Fig. 11. Moreover, we can expect that
QHNC method can solve various kinds of problems asso
ated with the atomic structure in a plasma by taking acco
of the plasma effects. For example, with the combined us
Slater’s transition-state method@38#, we have already calcu
lated the shift variation of theK edge@39# in an aluminum
plasma along the shock Hugoniot in good agreement with
experiment performed by DaSilvaet al. @40#.

The QHNC method can provide an accurate description
the metallic system for a wide range of densities and te
peratures from the liquid-metal to the plasma state in a u
fied manner, as is ascertained from many experiments
liquid metals. This fact indicates that the QHNC method c
be used to calculate transport properties and an equatio
state in a wide region from the liquid-metallic to the plasm
state, where there has been no systematic applicable th
up to the present.

With decreasing temperature or increasing pressure
plasma, some bound state of each ion in a liquid meta
plasma begins to disappear into the continuum; it becom
narrow-resonant state and disappears gradually as a
resonance in the continuum. In our calculation of plas
states we do not take account of resonant states. In prac
the resonant-state contribution in a plasma is not as sig
cant as in the case of a liquid metal such as a transi
metal. A precise definition of a resonant state@41# is given
by the poleẼnl of the S matrix Sl (E) concerning the wave
equation for an electron under the effective potential ba
on the DF theory withSl (E)5exp@2idl (E)# for phase shifts
d l (E). In a strict way, it is required@1# that the ‘‘bound’’-
electron numberZB in an ion should include a contributio
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of the physical resonant states (uIm Ẽnl u
!ReẼnl ) in addition to the bound electrons withe i,0 in
such a way that

ZB[ (
e i,0

f ~e i !1 (
nl Pphys.res.

2~2l 11!Re@F~Ẽnl !#.

~5.3!

In the above,F(Ẽnl ) is the function introduced by More
@42# with the definition

F~Ẽnl ![
1

ipE0

`S E

Ẽnl
D 1/2 f ~E!

E2Ẽnl

dE, ~5.4!

to represent the thermal occupation probability of a reson
stateẼnl . Also, the chemical potentialme

0 in consideration
of the resonant states should be determined by

ZA5 (
e i,0

1

exp@b~e i2me
0!#11

1 (
nl Pphys.res.

2~2l 11!Re@F~Ẽnl !#

1
1

n0
I E 2

exp@b~p2/2m2me
0!#11

dp

~2p\!3
. ~5.5!

However, the determination of the charge occupationP(Q)
taking account of the resonant-state contribution is a prob
that remains to be investigated.

Molecular-dynamics~MD! simulation is necessary t
study complex systems, which are inhomogeneous or ti
dependent and so on. In the MD simulation of a den
plasma, the Coulomb interactions among close and dis
particles must be calculated precisely and efficiently;
particle-particle particle-mesh~PPPM! method @43,44#
should be used in the simulation code to treat many partic
In the particle-particle method the Coulomb forces amo
close particles are directly summed up and in the parti
mesh method the forces on a particle are interpolated f
electric fields at mesh points. In theSCOPE~strongly coupled
plasma particle! code@44–46# based on the PPPM metho
the Deutsch potential@47# is adopted to imitate quantum e
fects. With use of the code, bremsstrahlung emission@45#,
transport coefficients, and the Lyapunov exponents@46# were
obtained in dense plasmas. However, the applicability of
Deutsch potential is limited to a hydrogen plasma or to
fully ionized plasma at most, since the ion structure is
considered in the derivation of the Deutsch potential. In
der to perform a classical MD simulation~SCOPE! on a par-
tially ionized plasma, we must introduce effective classi
potentialsv i j

c (r ) applicable to partially ionized ions in
nt

m

e-
e
nt
e

s.
g
-

m

e
a
t
-

l

plasma as a classical mixture of ions and electrons;
QHNC method can produce these effective potentials as
lows. The quantum effects of electron-electron interact
can be taken into account by defining an effective class
pair potentialvee

c (r ) between electrons in such a way that t
HNC equation forne

c(r ue)5n0
egee

c (r ) in classical fluids with
vee

c (r ) provides the same electron-density distributi
ne

QHNC(r ue) determined by the one-component QHNC equ
tion ~2.9!; this condition is written in the following integra
equation forvee

c (r ):

ne
c~r ue![n0

e exp@2bvee
c ~r !1gc~r !#5ne

QHNC~r ue!,
~5.6!

with gc(r )[*Cee
c (ur2r 8u)@ne

c(r 8ue)2n0
e#dr 8. In a similar

way, an electron-ion classical potentialveI
c (r ) is determined

by the condition that the classical electron-ion RDFgeI
c (r )

should be identical with the QHNC result:

geI
c ~r ![exp@2bveI

c ~r !1GeI
c ~r !#5geI

QHNC~r ! ~5.7!

with

GeI
c ~r ![E Cee

c ~ ur2r 8u!n0
e@geI

c ~r 8!21#dr 8

1E CeI
c ~ ur2r 8u!n0

I @gII
QHNC~r 8!21#dr . ~5.8!

With use of the effective potentials determined above,
SCOPE code can be applied to investigate dynamical pro
lems in a partially ionized plasma as a classical ion-elect
mixture.

We have shown that the QHNC method is extended
treat apartially ionizedplasma in a wide range of densitie
and temperatures, and provides the average ionization,
electron-ion and ion-ion RDF’s, the atomic structure of t
ions, and the charge population of differently ionized spec
in a self-consistent manner from the atomic number as
only input data. Therefore, this method produces the fun
mental quantities necessary to calculate the plasma pro
ties, and offers a procedure to treat the spectroscopic p
lem in a plasma. It should be kept in mind that the QHN
method can provide a precise description of ‘‘simple
plasma where the bound states are clearly distinguished f
the continuum state; to take into account the resonant st
in a plasma, some improvement is necessary as was
cussed in the previous work@1#.
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